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A classic

Question
What’s the revenue-maximizing mechanism to sell a durable good to a privately informed agent?

• If the seller has commitment: a posted price
• For instance, if v ∈ {vL, vH}, the seller sets a price of

- vL if prior belief that v = vH is below vL/vH
- vH if prior belief that v = vH is above vL/vH
- both prices are optimal if prior equals vL/vH.

• This result does not depend on binary valuations or the length of the interaction (e.g., Baron
and Besanko (1984))

constant posted price
• This result does depend on the seller’s commitment: the optimal mechanism is time
inconsistent



A classic revisited

Question
What’s the revenue-maximizing mechanism to sell a durable good to a privately informed agent?

• If the seller has limited commitment: much less is known



A classic revisited

Question
What’s the revenue-maximizing mechanism to sell a durable good to a privately informed agent?

• If the seller has limited commitment: much less is known
1. Ausubel & Deneckere (1989): if seller is patient and continuum of types and no gap, then posted
prices can achieve monopoly profits



A classic revisited

Question
What’s the revenue-maximizing mechanism to sell a durable good to a privately informed agent?

• If the seller has limited commitment: much less is known
1. Ausubel & Deneckere (1989): if seller is patient and continuum of types and no gap, then posted
prices can achieve monopoly profits

2. Skreta (2006): under finite horizon and continuum of types, optimal mechanism is to post a price



A classic revisited

Question
What’s the revenue-maximizing mechanism to sell a durable good to a privately informed agent?

• If the seller has limited commitment: much less is known
1. Ausubel & Deneckere (1989): if seller is patient and continuum of types and no gap, then posted
prices can achieve monopoly profits

2. Skreta (2006): under finite horizon and continuum of types, optimal mechanism is to post a price
3. Rest of the literature: price dynamics under limited commitment

Stokey (1979), Bulow (1982), Gul et al. (1986), Hart and Tirole (1988)



A classic revisited

Question
What’s the revenue-maximizing mechanism to sell a durable good to a privately informed agent?

• If the seller has limited commitment: much less is known
1. Ausubel & Deneckere (1989): if seller is patient and continuum of types and no gap, then posted
prices can achieve monopoly profits

2. Skreta (2006): under finite horizon and continuum of types, optimal mechanism is to post a price
3. Rest of the literature: price dynamics under limited commitment

Stokey (1979), Bulow (1982), Gul et al. (1986), Hart and Tirole (1988)

How come? Lack of tractability

• no ‘revelation principle’
• Optimal mechanisms in finite horizon:
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• Optimal mechanisms in finite horizon:
Laffont and Tirole (1986,1990), Kumar (1985), Bester and Strausz (2000,2001,2007), Skreta (2006,2015), Deb and Said
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• Contracting in infinite horizon:
Strulovici (2017), Acharya and Ortner (2017), Gerardi and Maestri (2018).

• New tool: Revelation principle for limited commitment: Doval and Skreta (2018)



This paper

1. characterize revenue-maximizing mechanism with limited commitment and infinite horizon
- there is no last period where we know what the optimal mechanism is

with binary types.
2. revenue-maximizing PBE can be implemented as a sequence of posted prices

• even when the seller can offer any mechanism
• echoes the result for the case of commitment.
• microfoundation for the strategy space in the literature that studies the sale of a durable good.
• price dynamics are the ones from the price-posting game.

3. methodology for mechanism design w/ limited commitment and transferable utility.
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The how matters: a recipe for transferable utility

Commitment:
1. Revelation principle
2. Optimum: search for binding constraints
3. Use binding constraints to replace transfers:
virtual surplus

4. Decision problem: find optimal allocation.
5. Recover transfers from constraints and
check global ones.

Limited Commitment:
X Revelation principle (Doval & Skreta (2018))
2. Seller optimal PBE: binding constraints.
3. Use binding constraints to replace transfers:
virtual surplus

4. Intrapersonal game: find optimal allocation.
5. Go back to original game: build PBE
assessment.to induce line break
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Setup

Primitives:

• A seller and a buyer interact over infinitely many periods.
• The seller owns one unit of a durable good.
• The buyer’s valuation for the good is her private information, v ∈ {vL, vH}. µ0 = P0(v = vH)
• An allocation is (q, x) ∈ {0, 1} × R.
• Quasilinear flow payoffs: uB(q, x; v) = vq− x,uS(q, x; v) = x
• Common discount factor δ ∈ (0, 1)

Timing: If in period t, the good has yet to be sold:

t.1 The seller offers the buyer a mechanism,
t.2 Observing the mechanism, the buyer accepts or rejects

t.2.1 If she rejects, no trade and no payments→ period t+ 1
t.2.2 If she accepts, she participates in the mechanism, which determines the rules of trade

- If the allocation is no trade→ period t+ 1



Mechanisms

As in Doval and Skreta (2018), when we say mechanism, we mean:

M =
(
〈MM, βM, SM〉, αM

)

where
βM : MM 7→ ∆∗(SM)︸ ︷︷ ︸
communication device

and αM : SM 7→ ∆∗({0, 1} × R)︸ ︷︷ ︸
allocation

• qM : SM 7→ [0, 1] is a probability of trade,
• xM : SM 7→ R is a payment from the buyer to the seller.
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Quasilinear payoffs

How does this work?

- Buyer inputs privately m ∈ MM , unobserved by the seller
- An output message s ∈ SM is drawn from βM(·|m), public

- The allocation (qM(s), xM(s)) is determined, public
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• Strategies:
- For the seller, choose a mechanism for every history Γ.
- For the buyer, when her type is v ∈ {vL, vH}, participation, πv , and reporting, rv , for each private
history.

• Beliefs: at each history, the seller holds beliefs about the buyer’s:
- payoff relevant type, v ∈ {vL, vH},
- input messages into the mechanism (payoff irrelevant private history).

equilibrium
A Perfect Bayesian Equilibrium is a tuple 〈Γ, (πv, rv)v∈{vL,vH}, µ〉 such that:

1. Given beliefs µ, strategies are sequentially rational,
2. Beliefs are obtained via Bayes’ rule where possible.

goal
Characterize maximum equilibrium revenue, u∗S (µ0)
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Main result

Theorem
There is a PBE assessment 〈Γ∗, (π∗

v , r∗v )v∈V , µ∗〉 that achieves u∗S (µ0) such that each period the
seller posts a price.

What does it mean that the seller posts a price? indirect implementation

• In each period, the mechanism will have two inputs/outputs {m∅,mB}

• (q(m∅), x(m∅)) = (0,0)
• (q(mB), x(mB)) = (1,p)



Step 1: revelation principle Doval & Skreta (2018)

1. Equilibria of simpler game: only offer canonical mechanisms

M = 〈( V︸︷︷︸
input=type

, βM, ∆(V)︸ ︷︷ ︸
output=belief about type µ

), (qM, xM)〉 = canonical mechanism

2. The seller’s equilibrium choice of a mechanism has to satisfy

• Participation constraints for each type,
• Incentive compatibility constraints for each type.

}
≃ Mechanism design

3. Output messages have a literal meaning: information design
4. Buyer’s strategy does not depend on the payoff irrelevant part of the private history Public
PBE outcomes=PBE outcomes; can (eventually!) invoke self-generation and check one-step
deviations.

Seller’s expected revenue

u∗S (µ0) =
∑

v∈V

µ0(v)
∑

µ′∈∆(V)

βM
∗

0 (µ′|v)[xM
∗

0 (µ′) + δ(1− qM
∗

0 (µ′)) U∗
S (h1)︸ ︷︷ ︸

cont. at h1

h1 = M∗
0, 1, µ′,0, xM

∗

0 a public history
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Necessary conditions at seller-optimal PBE–preliminary observations

1. wlog, if buyer rejects the seller’s equilibrium choice of mechanism at ht, the seller assigns
probability 1 to the buyer’s valuation being vH. (non-participation cont. paypoff 0)

2. seller-optimal PBE is incentive efficient: given buyer’s cont. values, seller obtains best payoff
3. vL’s continuation value is 0 a�er every history.
4. vH is indifferent between reporting vH and vL a�er every history. U∗

H|L denote vH’s rent
5. use those bindings constraints to replace the transfers (xM

∗

0 (µ′)) out of the seller’s payoff and
obtain the virtual surplus

Key theme: different µ’ evaluate rents differently
Whenever the seller sells to both types, he leaves rents∆v to vH . The “cost" depends on µ:

vL = µ(vH −∆v) + (1− µ)vL = µvH + (1− µ)

(
vL −

µ

1− µ
∆v

)

= µvH + (1− µ)v̂L(µ)

at µ̄1 ≡
vL
vH

we have that v̂L(µ̄1) = 0
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U∗
S (µ

∗(ht)) =
∑

µ′∈∆(V) τ
M∗

t (µ∗(ht), µ′)
[
qM∗

t (µ′)(µ′vH + (1− µ′)v̂L(µ∗(ht))) + (1− qM∗

t (µ′))×

δ
(
U∗
S (µ

′) + ( µ
′

1−µ′ −
µ
∗(ht)

1−µ∗(ht) )(1− µ′)U∗
H|L(µ

′)
)]



necessary conditions for seller optimal PBE: takeaway the recursion

incentive efficiency implies that given beliefs and buyer’s rents→ history does not matter:
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M∗
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′
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qM

∗

0 (µ′
1)(µ

′
1vH + (1− µ′

1)v̂L(µ0)) + (1− qM
∗

0 (µ′
1))×

δR∗(µ′
1, µ0)]

,



necessary conditions for seller optimal PBE: takeaway the recursion

incentive efficiency implies that given beliefs and buyer’s rents→ history does not matter:

R∗(µ0, µ0) =

∑
µ′∈∆(V) τ

M∗

0 (µ0, µ
′
1)
[
qM

∗

0 (µ′
1)(µ

′
1vH + (1− µ′

1)v̂L(µ0)) + (1− qM
∗

0 (µ′
1))×

δR∗(µ′
1, µ0)]

,

and for all histories on the path of play, we have

R∗(µ∗(ht), µ∗(ht)) =
∑

µ′∈∆(V) τ
M∗

t (µ∗(ht), µ′)
[
qM

∗

t (µ′)(µ′vH + (1− µ′)v̂L(µ∗(ht))) + (1− qM
∗

t (µ′))×

δR∗(µ′, µ∗(ht))
]
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Key conceptual innovation

Optimal design with limited commitment as an Intrapersonal Game

• A solution to the recursive problem is an intrapersonal equilibrium
Strotz (1955), Pollak (1968), Peleg and Yaari (1973), Bernheim et al. (2015), Cao and Werning (2018)

• The buyer has been reduced to a series of constraints (yay!)
• Now we are le� with proving an equilibrium exists in this game:

• Continuum of “types", but no natural measure to do distributional strategies
• Continuation payoffs may fail upper-semi continuity: conflicts in tie-breaking.
• Cetemen, Feng, Urgun (2019) use distributional strategies:

- There is a natural measure,
- and there is enough continuity built in that continuation values are usc.

• Hence, we construct the equilibrium by hand:
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• Fix some policy (τ,q) and construct the continuation values R(τ,q).
• Fix the seller’s prior, µ0. We want to find

max
τ ′,q′

∫ [
q′(µ′)(µ′vH + (1− µ′)v̂L(µ0)) + (1− q′(µ′))δR(τ,q)(µ′, µ0)

]
τ ′(dµ′)

where
∫
µ′dτ ′(µ′) = µ0 and q′(·) ∈ [0, 1].

• This is an information design problem: if R(τ,q) is upper semi-continuous, then

cav
[
max{µ′vH + (1− µ′)v̂L(µ0), δR(τ,q)(µ′, µ0)}

]
(µ0)

- At most two posteriors
- Without information about R(τ,q) difficult to draw conclusions; we guess and verify

1. For all µ0, there exist two beliefs in the support of τ(µ0, ·), µD(µ0) ≤ µ0 ≤ µS(µ0),
2. for all µ0 , µS(µ0) = 1 and q(µ0, µS(µ0)) = 1,
3. if vL

vH
≤ µ0 , q(µ0, µD(µ0)) = 0 (if µ0 < vL

vH
, then q(µ0, µD(µ0)) = 1–identical to “commitment")



Intrapersonal equilibrium: existence

Theorem
There exists a unique intrapersonal equilibrium 〈(τ∗,q∗),R(τ∗

,q∗)〉. It is characterized by a
sequence of optimal delay beliefs: µ0 < µ1 < · · · < µn < . . . with µ0 = 0, µ1 = vL/vH, such that if
µ0 ∈ [µi, µi+1),

1. if i ≥ 1, then µD
∗

(µ0) = µi−1 while
2. and i = 0, then τ∗(µ0, µ0) = 1,q∗(µ0, µ0) = 1 (zero delay for low priors)

• Indifferences are resolved in favor of maximizing delay
• Conflict in tie-breaking: if µ0 ∈ [µi, µi+1), then

- Prefers maximum delay for µ′ ≤ µi
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• Indifferences are resolved in favor of maximizing delay
• Conflict in tie-breaking: if µ0 ∈ [µi, µi+1), then

- Prefers maximum delay for µ′ ≤ µi
- Prefers minimum delay for µ′ > µi. Failure of upper semi-continuity.

• Uniqueness: the original game does not have a unique equilibrium.
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Updating below vL/vH
Fix µ0 ≥ vL/vH. Then, the seller updates to µ′ = 0 in finitely many periods.

• Fudenberg, Levine, Tirole (1985): this is optimal for a seller who faces a myopic buyer
• Logic here is slightly different: today’s seller is happy with infinite delay.
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Step 6: From Intrapersonal Equilibrium Back to PBE of the original extensive form

• From the intrapersonal equilibrium we obtain
- a strategy for the seller on the path of play,
- the seller’s beliefs on the path of play.

• This is not a full PBE assessment since we are missing:
- Buyer’s strategy a�er seller deviations,
- Seller’s strategy a�er buyer/seller deviations.

• We specify the seller offers the “same" mechanism on and off path
• We complete the buyer’s strategy.

1. Off path, the seller when indifferent may need to randomize
2. This guarantees that the correspondence of continuation payoffs is uhc for buyer→ Simon & Zame
(1990)

• Self-generation.
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Limited Commitment:
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4. Intrapersonal game: find optimal allocation.
5. Go back to original game: build PBE
assessment.to induce line break

Thank you!!



Perfect Bayesian Equilibrium



Bayes’ rule where possible

• Fix a strategy profile (Γ, (πv, rv)v∈V), and two nodes v and v′ such that v precedes v′.
• We can use the strategy profile to define a probability, P(Γ,(πv,rv)v∈V )(v′|v), of reaching node v′

conditional on being at node v.
• Extend this probability to all nodes by making it 0 for nodes v′ that do not succeed v.

Consecutive information sets
Say that information set ht precedes information set ht+1 if there exists a mechanism, M, such that
either of the following hold:

1. there is a posterior, µ′, such that
∑

v∈V β
M(µ′|v) > 0 and ht+1 = (ht,M, 1, µ′, (0, xM(µ′)), ωt+1),

or
2. ht+1 = (ht,M,0, ∅, (0,0), ωt+1).



Bayes’ rule where possible

Fix an assessment, 〈Γ, (πv, rv)v∈V , µ〉, and two consecutive information sets ht,ht+1.

• ht+1 is reached with positive probability from ht under 〈Γ, (πv, rv)v∈V , µ〉,if

P〈Γ,(πv,rv)v∈V ,µ〉(ht+1|ht) ≡
∑

v∈ht,v′∈ht+1
µ∗(v|ht)P(Γ,(πv,rv)v∈V)(v′|v) > 0

• ht+1 can be reached from ht through a deviation by the seller if there exists Γ′ such that
P〈Γ′,(πv ,rv)v∈V ,µ〉(ht+1|ht) > 0.



Bayes’ rule where possible

Bayes’ rule where possible
An assessment 〈Γ, (πv, rv)v∈V , µ〉 satisfies Bayes’ rule where possible if for all t ≥ 0 and for all
consecutive ht,ht+1, µ(v′|ht+1) is obtained via Bayes’ rule from µ(·|ht) if either

1. P〈Γ,(πv,rv)v∈V ,µ〉(ht+1|ht) > 0, or
2. ht+1 can be reached from ht through a deviation by the seller.
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