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The problem of interest

We want to forecast the time series variable yt (t = 1, ..., T).

The model for yt that we consider is given by

yt+h = α′Ft + β′Wt + εt+h = δ′zt + εt+h

where zt = [F′t, W′t]
′ is (r + n)× 1 and δ = [α′, β′]′.

Problem: Ft is unobserved and potentially correlated with Wt!

Solution: We assume the existence of an m× 1 panel data variable
xi,t (i = 1, ..., N) that loads on the same set of factors as yt;

xi,t = λ′iFt + ei,t
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The problem of interest

We want to estimate the factors from xi,t and use these in place of Ft
when forecasting yt.

The mean-square optimal forecast is given by

yT+h|T = E(yT+h|zT, zT−1, ...) = δ′zT

The feasible forecast is

ŷT+h|T = δ̂′ẑT

where ẑt = [F̂′t, W′t]
′, F̂t is the estimated factor and δ̂ = [α̂′, β̂′]′ is the

OLS slope estimator in a regression of yt+h onto ẑt.
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The problem of interest

This type of factors-based forecasting has attracted A LOT of
attention!

A few references: Stock and Watson (JASA and JBES 2002), Bai and
Ng (ETCA 2006, JE 2008 and JAE 2009), Boivina and Ng (JE 2006),
Cheng and Hansen (JE 2015), Choi (ET 2012), Corradi and Swanson
(JE 2014), Djogbenou et al. (JTSA 2015 and JBES 2017), Gonçalves
and Perron (JE 2014), and Gonçalves et al. (JE 2017).

Reason: “Both the leading indicator and VAR models perform slightly
better than the univariate AR in this simulated out-of-sample
experiment. However, the gains are not large. The factor models offer
substantial improvement” (Stock and Watson, JASA 2002)
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The problem of interest

Figure: Table 2 Stock and Watson (JASA 2002). Journal of the American Statistical Association, December 2002 

Table 2. Simulated Out-of-Sample Forecasting Results Industrial 
Production, 12-Month Horizon 

Forecast method Relative MSE 

Univariate autoregression 1.00 
Vector autogression .97 
Leading indicators .86 
Principal components .58 
Principal components, k = 1 .94 
Principal components, k =2 .62 
Principal components, k =3 .55 
Principal components, k = 4 .56 
Principal components, AR .69 

Root MSE, AR model .049 

NOTE: For each forecast method, this table shows the ratio of the MSE of the forecast made 

by the method for that row to the MSE of a univariate autoregressive forecast with lag length 
selected by the BIC. The final line presents the root MSE for the autoregressive model in 
native (decimal growth rate) units at an annual rate. 

growth. We have already reported similar results for other real 
macroeconomic variables (Stock and Watson 2002). 

6. DISCUSSION 

This article has shown that forecasts of a single series 
based on principal components of a large number of predic- 
tors are first-order asymptotically efficient as N, T -+ oo for 

general relationships between N and T in the context of an 
approximate factor model with dynamics. The Monte Carlo 
results suggest that these theoretical implications provide a 
useful guide to empirical work in datasets of the size typi- 
cally encountered in macroeconomic forecasting. The empiri- 
cal results summarized here and reported in more detail else- 
where suggest that these methods can contribute to substantial 

improvement in forecasts beyond conventional models using 
a small number of variables. 

Several methodologic issues remain. One issue is to explore 
estimation methods that might be more efficient in the pres- 
ence of heteroscedastic and serially correlated uniquenesses. 
Another is to develop a distribution theory for the estimated 
factors that goes beyond the consistency results shown here 
and provides measures of the sampling uncertainty of the esti- 
mated factors. A third theoretical extension is to move beyond 
the I(0) framework of this article and to introduce strong per- 
sistence into the series; for example, by letting some of the 
factors have a unit autoregressive root, which would permit 
some of the observed series to contain a common stochastic 
trend. 

APPENDIX: PROOFS OF THEOREMS 

We begin with some notation. 
Define Ei = E=l and E t = EtT=l 
Let y denote an N x 1 vector and let F = {yy'y/N = 1}, R(y) = 

N-2T-1 y' ,t xtx'y, and R*(y) = N-2T-'Y' ,t AFtFtA'y. 
We begin by collecting a set of results used in the proof. 

Results (R1)-(R19) Hold Under Assumptions F1 and M1 

(R1) N-' 1 e =N2t -, + N(1) 

Proof N-1 i ei2t = N-1 Ei Tii, t + N-1 Ei(ei2 - 
Tii, t)' 

The term N-1 Eiii, is 0(1) from Assumption Ml(b) (because 
N-' i Tii, t < N-1l i Ej 7it tl 0(1)). So it suffices that the sec- 
ond term converges to 0 in probability. Now 

2 

E N-1 (e2 - Tii t)] = N-2 E E(e2t - 
Ttii, ,)(e - Tij, t) 

L i i j 

= N-2 E cov(ei2t, e2) 
i J 

< N-2EE 1 cov(e2, e2t)1 
i j 

N N 

sup N-2 E Icov(eisei,, ejej) -> 0, 
t, i= j=l 

by Assumption Ml(c). Thus N-1 Yi(ei2 - rii, ) - . 

(R2) sup,,E(N2T)- y'e'ey P0. 

Proof. 

(N2T)-ly'e'ey = (N2T)-1 EE yi yjei,ejt 
t i j 

i j t 

<(N -2EE 2 
- 

' 

' 

/J Tj 

x N -2 j (T- t eitejt2) 
/2 

but N-2 Ei Ej yi2y2 = (y'y/N)2, and for all y E r, (y'y/N) = 1. 
Thus 

sup(N2T)-Iy'e'ey < N-2 EE ,T eitej, 
yEr ' ' t 

Now 

N-2 EE(T -E eitej) 
= N-2T-2 E E E E eieiejes 

i j t i j t s 

and 

E N-2T 2 EEE eiteisejtejs] 
i j t s 

N-2T-2 EE i., t Ysi,t,s 
i j t s 

+ N-2 T-2 E E E E E[(eiteis - yi, t, s)(ejtejs - j, t,s)], 
i j t s 

where i, t,s = E(eit e). 
The first term is 

T-2 : yi, t,+ N-. E , t t +u = T)2 
t U V i ) J t u 

because (N-1 Ei i, t,t+u) = N-1E - eitei, t+ = YN, (u) defined in 

Ml(a). Now the absolute summability of IYN,, (u)l in Ml(a) implies 
square summability, so that limNoosutYEuyN, t(u)2 < oo. This 
implies that N-2T-2 Ei EYj E1t Es Yi, t , s 0. 

1174 
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Motivation

The existing literature is based almost exclusively on using principal
components (PC) to estimate Ft.

In the present paper we use the cross-section average (CA) of xi,t as
an estimator of Ft.

Rationales:

Super simple!

Intuitive, as we want to forecast the conditional mean.

Natural given the good performance of the simple average in forecast
combination and interactive effects panel data models.

Facilitates easy interpretation of the estimated factors.
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This paper

We consider the asymptotic and small-sample properties of ŷT+h|T
when

F̂t = xt =
1
N

N

∑
i=1

xi,t

We do what Bai and Ng (ETCA 2006) do for PC under the same
conditions, except that we

allow r ≤ m to be unknown,

need m ≥ 1 panel variables, and

require rk λ = r ≤ m.
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Assumptions

ei,t is mean zero, but may be heteroskedastic and weakly dependent
across both i and t.

λi, Ft and ei,t are independent, and zt and εt are independent of ei,t.

E(εt+h|zt, zt−1, ...) = 0 for h > 0.

zt may be weakly dependent and can include yt.

plimT→∞T−1 ∑T
t=1 ztz′t is positive definite.

rk λ = r ≤ m for all N, including N → ∞.
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Asymptotics

We can show that (under r = m)

ŷT+h|T − yT+h|T = T−1/2
√

T(δ̂− δ0)′ẑT + N−1/2
√

N(λ
−1′

F̂T − FT)

where δ0 = [α′λ
−1′

, β′]′.

Problem: δ̂ is not necessarily consistent for δ0 when rk λ = r ≤ m!

Reason: When r ≤ m we can show that there is an m×m positive
definite rotation matrix Λ such that

Λ
′F̂t =

[
Ft

0(m−r)×1

]
+ op(1)
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Asymptotics

This means that T−1 ∑T−h
t=1 ẑtẑ′t – the “signal matrix” in δ̂ – is

asymptotically singular.

In spite of this, we have

t(yT+h|T) =
ŷT+h|T − yT+h|T√

T−1φ0 + N−1Φ0′ΣeΦ0
→d N(0, 1)

where Σe = limN,T→∞ NE(eTe′T), and φ0 and Φ0 are given in the
paper.

It follows that

min{
√

N,
√

T}(ŷT+h|T − yT+h|T) = Op(1)
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Asymptotics

Inference requires estimators of φ0 and Φ0′ΣeΦ0.

We propose using φ̂ and α̂′Σ̂eα̂, where φ̂ and Σ̂e are given in the
paper.

We can show that φ̂ and α̂′Σ̂eα̂ are consistent if r = m.

Hence, if r = m,

t̂(yT+h|T) =
ŷT+h|T − yT+h|T√
T−1φ̂ + N−1α̂′Σ̂eα̂

= t(yT+h|T) + op(1)

→d N(0, 1)
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Asymptotics

Similarly, if we denote by CIγ(yT+h|T) the 100 · (1− γ)% confidence
interval for yT+h|T, then

lim
N, T→∞

P(yT+h|T ∈ CIγ(yT+h|T)) = lim
N, T→∞

P(|̂t(yT+h|T)| ≤ zγ/2)

= 1− γ

Problem: The inconsistency of δ̂ causes φ̂ and α̂′Σ̂eα̂ to converge to
random variables if r < m!
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Asymptotics

In spite of this, we can show that if r ≤ m,

lim
N, T→∞

P(|̂t(yT+h|T)| > zγ/2) ≤ γ

Hence, while t̂(yT+h|T) is not asymptotically correctly sized, we know
that it will not overreject!

Confidence intervals will also be conservative;

lim
N, T→∞

P(yT+h|T ∈ CIγ(yT+h|T)) ≥ 1− γ
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Monte Carlo

We set h = 4, r = 1 < m = 2, α = 1m×1, W1 = · · · = WT = 1,
β = 1, εt ∼ N(0, 1) and λi ∼ (U[0, 1], U[0, 0.5]).

Ft is generated as

Ft = ρFt−1 +
√

1− ρ2ut

where ρ = 0.5 and ut ∼ N(0, 1).

ei,t ∼ N(0m×1, σ2
e,iIm), where σ2

e,i ∼ U[0.5, 1.5].
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Monte Carlo

Table: Monte Carlo results for ŷT+h|T.

Coverage MSE
N T CA PC F CA PC F
30 30 0.97 0.85 0.95 0.16 0.19 0.07
50 30 0.98 0.89 0.96 0.14 0.16 0.07

100 30 0.98 0.92 0.95 0.12 0.13 0.07
200 30 0.98 0.93 0.95 0.11 0.12 0.07
30 50 0.96 0.79 0.96 0.12 0.16 0.04
50 50 0.97 0.83 0.96 0.10 0.12 0.04

100 50 0.97 0.88 0.95 0.08 0.10 0.04
200 50 0.98 0.92 0.95 0.07 0.08 0.04
30 100 0.94 0.68 0.95 0.09 0.13 0.02
50 100 0.95 0.74 0.95 0.07 0.09 0.02

100 100 0.96 0.82 0.95 0.05 0.06 0.02
200 100 0.97 0.87 0.95 0.04 0.05 0.02
30 200 0.93 0.55 0.95 0.08 0.11 0.01
50 200 0.95 0.62 0.96 0.05 0.07 0.01

100 200 0.96 0.72 0.95 0.03 0.04 0.01
200 200 0.96 0.81 0.95 0.03 0.03 0.01
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Empirical application

We use the “usual” data set in the literature.

We forecast the same eight macroeconomic variables as in Stock and
Watson (JBES 2002).

The panel data set can be divided into 14 categories.

We take one average per category and use the BIC to select the ones
to include in F̂t.

Predictors: ẑt = [F̂′t, 1, yt]′.
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Empirical application

Table: MSE relative to AR × 100.

h = 6 h = 12 h = 24
Variable CA PC CA PC CA PC

IP 70.65 79.52 54.69 62.23 41.87 49.39
Income 70.04 76.59 60.21 62.09 60.34 66.55
Sales 74.80 84.70 58.30 63.72 39.86 43.93
Employees 75.99 83.78 52.13 58.35 37.42 39.03
CPI 67.35 68.96 66.44 74.83 65.50 88.48
Consumption 66.30 65.93 69.03 71.70 71.35 86.03
CPI less energy 71.98 68.79 73.25 82.87 76.81 99.12
Goods CPI 66.94 66.44 62.49 68.73 64.50 69.82
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Conclusion

Thank you for listening!
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