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Introduction

Motivation

@ Imagine you have to design an employee performance pay plan.

o If you know all payoff-relevant parameters (i.e., agent preferences,

production function, etc), you can find optimal contract (in principle).

e Otherwise, agency theory gives us guiding principles (trade-offs, CS)

This paper: How to improve an existing PPP?

@ What information do you need?

@ And how should you use that information?
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Introduction

Preview

@ Framework: Static agency model with a risk-averse agent

o Principal knows only distribution of output following wa(-) and wg(+).

e Goal: Find a new contract that raises profits as much as possible.

Key Lemma:

If the principal takes a stance on the agent's marginal utility for money,

she can predict the distribution of output corresponding to any contract.

@ Then, the principal can find an optimal perturbation.

@ Application using real-effort experiment of DellaVigna and Pope ('17)
@ Predictions: Use any pair of treatments to predict the other 5

@ Counterfactuals: Estimate model and evaluate optimal perturbations
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Model

@ Principal-agent model with the following timing:
@ Principal offers a contract w(-).
@ Agent observes w(-) and chooses effort a(w) € R.
© Output x ~ f(:|a(w)) and payoffs are realized. (Normalize E[x|a] = a.)
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@ Agent observes w(-) and chooses effort a(w) € R.

© Output x ~ f(:|a(w)) and payoffs are realized. (Normalize E[x|a] = a.)
o Preferences:

o Agent’s utility: [ v(w(x))f(x]a)dx - c(a)

o Principal’s profit: m(w) := ma(w) - [ w(x)f(x|a)dx.
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Model

@ Principal-agent model with the following timing:
@ Principal offers a contract w(-).

@ Agent observes w(-) and chooses effort a(w) € R.

© Output x ~ f(:|a(w)) and payoffs are realized. (Normalize E[x|a] =

o Preferences:

o Agent’s utility: [ v(w(x))f(x]a)dx - c(a)

o Principal’s profit: m(w) := ma(w) - [ w(x)f(x|a)dx.
o Information:

o Agent knows all payoff-relevant parameters

o Principal knows (only) f(|a(wa)), f(:|a(wg)), and

f(la(wa)) = © "af,;”;g; - ZE'V'Z()WA))
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The Canonical Principal-Agent Problem

@ In the canonical formulation (Holmstrém, 1979), the principal solves

Wrr(l.e))?(a / [mx — w(x)] f(x|a)dx
st. [ v(w(x))f(x|a)dx - c(a) > u (IR)
acarg m;x{f v(w(x))f(x|?5)dx—c(5)} (1C)

e To do so, she must know v(+), u, c(a), and f(-|a) for all a.
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The Canonical Principal-Agent Problem
@ In the canonical formulation (Holmstrém, 1979), the principal solves
Wrr(l.e))?(a / [mx — w(x)] f(x|a)dx
st. [ v(w(x))f(x|a)dx - c(a) > u (IR)
acarg m;x{f V(W(x))f(x|5)dx—c(5)} (I0)
e To do so, she must know v(+), u, c(a), and f(-|a) for all a.
@ In our setting, only knows f(:|a(w;)) for i € {A, B}, and f5(:|a(wa))
o Notations:

3= a(WA) , ?:= f(|a(wa)) , and /f; = fa('|a(W3))
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Agent’'s Problem

@ Assume optimal effort a(w) satisfies the first-order condition

f v(w(x))fa(xla(w))dx = ¢'(a(w)) (1€)
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Agent’'s Problem

@ Assume optimal effort a(w) satisfies the first-order condition

[ vw))fa(xla(w))dx = ' (a(w)) (1)
@ Suppose w(-) is replaced by (some) contract w(-) + 0t(-), 6 small.
o Define the directional (Gateaux) derivative
da(w + 0t)

do 60

Da(w,t) :=

interpreted as the MC of a when w perturbed in the direction of w + t.
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Agent’'s Problem

@ Assume optimal effort a(w) satisfies the first-order condition

[ vw))fa(xla(w))dx = ' (a(w)) (1)
@ Suppose w(-) is replaced by (some) contract w(-) + 0t(-), 6 small.
o Define the directional (Gateaux) derivative
da(w + 0t)

do 60

Da(w,t) :=

interpreted as the MC of a when w perturbed in the direction of w + t.
@ Assume the principal knows
Da(wa,wg —wpa) ~a(wg) —a(wa).

o Implicitly assuming |wg — wa| ~ 0 and |a(wg) — a(wa)| = 0
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Optimal Perturbations

Principal’s Problem

o If w(-) is replaced by (some) w(-) + 0t(-), then the principal’s profit
m(w+0t) ~7(w) +6Dm(w, t),
where D7r(w, t) is the derivative of m(w) in direction of w + t, and

:(m—[Wfadx)Da(w, t)—ftfdx

dr(w + 0t)

Dr(w,t) = =0

0=0
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Optimal Perturbations

Principal’s Problem

o If w(-) is replaced by (some) w(-) + 0t(-), then the principal’s profit
m(w+0t) ~7(w) +6Dm(w, t),

where D7r(w, t) is the derivative of m(w) in direction of w + t, and

dr(w + 0t) I W) "
—0:0_( f fad)Da( 1) ftfd

do
@ Assume the principal’s goal is to maximize Dm(wa, t) subject to

wa + 0t giving the agent at least as much utility as wy.

Dr(w,t) =
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Optimal Perturbations

Principal’s Problem
o If w(-) is replaced by (some) w(-) + 0t(-), then the principal’s profit

m(w+0t) ~7(w) +6Dm(w, t),

where D7r(w, t) is the derivative of m(w) in direction of w + t, and

dr(w + 0t) I W) "
—0:0_( f fad)Da( 1) ftfd

Dr(w,t) :=
@ Assume the principal’s goal is to maximize Dm(wa, t) subject to

wa + 0t giving the agent at least as much utility as wy.

e Using (IC), this (participation) constraint can be rewritten as

[ tv/(wa)fdx >0
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Optimal Perturbations

Principal’s Problem

o If w(-) is replaced by (some) w(-) + 0t(-), then the principal’s profit
m(w+0t) ~7(w) +6Dm(w, t),

where D7r(w, t) is the derivative of m(w) in direction of w + t, and

@ Assume the principal’s goal is to maximize Dm(wa, t) subject to

dr(w + 0t)

Dr(w,t) = =0

wa + 0t giving the agent at least as much utility as wy.

e Using (IC), this (participation) constraint can be rewritten as

[ tv/(wa)fdx >0

e Info Requirements: Da(wa,t) for all t & marg. utility function v/(-)
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Optimal Perturbations

Simplifying the Informational Requirements

e Using (IC), we can write Da(w, t) in terms of primitives as
[ tv'(w)fydx

DA " TGl - vt
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Optimal Perturbations

Simplifying the Informational Requirements

e Using (IC), we can write Da(w, t) in terms of primitives as
[ tv'(w)fydx
c"(a(w)) — ] v(w)Fradx

Remark 1. For any (upper semi-continuous) t:

Da(w,t) =

Da(wa, wg — wpa)

DQ(WAa t) = [(WB _ WA)V’(WA)?adX

f tv/ (wa)Fdx
[ —

DM(WA,t)
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Optimal Perturbations

Simplifying the Informational Requirements

e Using (IC), we can write Da(w, t) in terms of primitives as
[ tv'(w)fydx
c"(a(w)) — ] v(w)Fradx

Remark 1. For any (upper semi-continuous) t:

Da(w,t) =

Da(wa, wg — wpa)

Da(wa, t) = [ (wg — wa)v'(wa)fadx

f tv/ (wa)Fdx
[ —

DM(WA,t)

@ Perturbation leads to a change in the agent’s marginal incentives,

DM(wa, t), which is predictable given v/ and 7. Locally,

Da(WA, wp — WA)

D t) = C x DM(wa,t) , where C = ‘
a(wa, t) = CxDM(wa, t) , where € = o )

o If the principal takes a stance on v’, she can predict Da(wa,t) Vt.
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Principal’s Problem (Cont'd)

@ The principal solves

max Mf tv'(WA)de—ft?dx

t us.c

st /tv’(WA)?dxzo
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Principal’s Problem (Cont'd)

@ The principal solves

max Mf tv'(WA)de—ft?dx

t us.c

st /tv’(WA)?dxzo

f|t|pdx£ 1

where p € {1,2,...} normalizes the length of t.
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Principal’s Problem (Cont'd)

@ The principal solves

max Mf tv'(WA)de—ft?dx

t us.c

st /tv’(WA)?dxzo

f|t|pdx£ 1

where p € {1,2,...} normalizes the length of t.

@ Problem is convex, so it can be solved using standard techniques.

© Necessary & sufficient condition for wya to be optimal
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Principal’s Problem (Cont'd)

@ The principal solves

max Mf tv'(WA)de—ft?dx

t us.c

st f tv/(wa)fdx >0
f ItP dx < 1
where p € {1,2,...} normalizes the length of t.

@ Problem is convex, so it can be solved using standard techniques.
© Necessary & sufficient condition for wya to be optimal

@ Opt. Perturbation: Replace wa with w = wy + 0t for some 6 > 0 small
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An Approximate Algorithm

Non-Local Perturbations

@ Goal: Develop algorithm for finding optimal non-local perturbations
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An Approximate Algorithm

Non-Local Perturbations

@ Goal: Develop algorithm for finding optimal non-local perturbations

A.1. For all a in some interval that contains 3, f,(-|a) = 7,

@ Hence, the marginal incentive of effort corresponding to w,

M(W):fv(w)’f;dx

does not depend on a itself — agent’s FOC: M(w) = ¢'(a)
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An Approximate Algorithm

Non-Local Perturbations

@ Goal: Develop algorithm for finding optimal non-local perturbations

A.1. For all ain some interval that contains 3, f,(:|a) = f,
@ Hence, the marginal incentive of effort corresponding to w,
M(w) = [ v(w)fdx
does not depend on a itself — agent’s FOC: M(w) = ¢'(a)
A.2. For any w, effort and marginal incentives are related by
loga(w) =+ elog M(w),
where 3 and € estimated using A-B test data and assumed v/(+)

o Implicitly assuming the agent has isoelastic cost function.
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An Approximate Algorithm

Towards an Optimal non-local Perturbation

Claim: Principal should solve

max m(3+Aa)—fW(?+AaE) (P)
w(-),Aa

t. /V(W)?=(3+3Aa)l/E[V(WA)E (10)
fv(w) (’F+Aa’g)zfv(WA)(?+Aa?a) (IR)
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An Approximate Algorithm

Towards an Optimal non-local Perturbation

Claim: Principal should solve

max m(3+Aa)—fW(?+AaE) (P)
w(-),Aa

t. /V(W)?=(3+3Aa)l/E[V(WA)E (10)
fv(w) (?+Aa’g)zfv(WA)(?+Aa?a) (IR)

v

@ Suppose a(w) =3+ Aa. Using a first-order approximation:

f(fa+Aa)=F+Aaf, and c(3+Aa)=c(3) +Aaf v(wa)f,
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An Approximate Algorithm

Towards an Optimal non-local Perturbation

Claim: Principal should solve

max m(3+Aa)—fW(?+AaE) (P)
w(-),Aa

t. /V(W)?=(3+3Aa)l/E[V(WA)E (10)
fv(w) (?+Aa’g)zfv(wA)(?+Aa?a) (IR)

v

@ Suppose a(w) =3+ Aa. Using a first-order approximation:
f(fa+Aa)=F+Aaf, and c(3+Aa)=~c(3)+ Aaf v(wa)f,

o It follows from loga(w) = 8 + elog M(w) that w must satisfy (IC).
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An Approximate Algorithm

Towards an Optimal non-local Perturbation

Claim: Principal should solve

max m(3+Aa)—[W(?+AaE) (P)
w(-),Aa

s.t. /V(W)T:(3+Aa)l/E[V(WA)E (1C)

a

fv(w) (?+Aafa)2fv(wA)(?+AaE) (IR)

v

@ Suppose a(w) =3+ Aa. Using a first-order approximation:
f(fa+Aa)=F+Aaf, and c(3+Aa)=~c(3)+ Aaf v(wa)f,
o It follows from loga(w) = 8 + elog M(w) that w must satisfy (IC).

o Constraint that w gives at least as much utility as wa:

f V(w(x))F(x[3+ Aa) - c(3+ Aa) > [ v(wa)F - ¢(3) — (IR)
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An Approximate Algorithm

Solving for the Optimal non-local Perturbation

o Stage 1: For every Aa, solve

f(Aa) = max m(3+ A3) - f w(F + Aafy)

s.t. fv(w)’f:(Ta\jtgAa)l/E[v(WA)Ta
fv(w)(?+AaE)ZfV(WA) (?+Aa/f;)

@ Optimization program is convex as long as T+ Aaf, > 0 for all x.
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s.t. fv(w)’f:(Ta\jtgAa)l/E[v(WA)Ta
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@ Optimization program is convex as long as T+ Aaf, > 0 for all x.

o Stage 2: Solve
M* = max M(Aa)
Aa

Georgiadis and Powell Optimal Incentives under Moral Hazard Northwestern Kellogg 13 /25



An Approximate Algorithm

Solving for the Optimal non-local Perturbation

o Stage 1: For every Aa, solve

f(Aa) = max m(3+ Aa) - f w(F + Aafy)

s.t. fv(w)’f:(Ta\jtgAa)l/E[v(WA)Ta
fv(w)(?+Aa?;)va(WA) (F+Aafy)

@ Optimization program is convex as long as T+ Aaf, > 0 for all x.

o Stage 2: Solve
M* = max M(Aa)
Aa

o Info. requirements: Must know f, f,, and v/(-) (using [ 7, = 0)
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An Approximate Algorithm

Solving for the Optimal non-local Perturbation

o Stage 1: For every Aa, solve

f(Aa) = max m(3+ Aa) - f w(F + Aafy)

s.t. fv(w)’f::(gtgAa)l/E[v(WA)/f;
fv(w)(?+Aa?;)va(WA) (F+Aafy)

Optimization program is convex as long as T+ Aaf, > 0 for all x.

Stage 2: Solve
M* = max M(Aa)
Aa

Info. requirements: Must know f, f,, and v'(+) (using f’f\a =0)
o Alternative: Can approximate v(w) ~ v(wga) + (w — wa)v'(wa) to
make constraints linear in w—then stage 1 program is convex VAa.
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An Approximate Algorithm

Extensions

1. Bounded payments. Assume that wa(x) + t(x) € [w, W]
o New constraints are linear, so principal's problem remains convex.
2. Heterogeneous abilities. Assume that the principal offers a common
contract to multiple agents who have heterogeneous effort costs.

o Principal must classify the agents into types (¢), and estimate Pr{¢},
%, 7% and Da®(w,7) for each ¢.

o Can induce selection by imposing participation for subset of types.

3. Multidimensional effort. Assume agent’s effort a € RV at cost c(a)

e e.g., effort towards quantity & quality, or selling different products.
o Principal must have output data for K > (N + 3)/2 contracts.
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An Approximate Algorithm

Extensions

4. Parametric contract classes. Assume the principal restricts attention
to contracts of the form w,, where « is a vector of parameters.

o Find optimal perturbation direction z. (New contract: wy+6;)
o Same informational requirements as general case.
5. Other sources of incentives. (Promotion, firing threat, prestige, etc)
o Results hold verbatim if the agent's IC constraint can be written as
[ viwtadx 1a(w)) = ¢'(a(w))

where /(a) denotes marginal benefit of effort due to indirect incentives.
o Key: Additive separability and /(-) not directly dependent on w.

6. Multiplicatively separable utility. Agent's payoff u(w,a) = v(w)c(a)
o Example: Agent's utility satisfies CARA.

o Principal must take a stance on v (instead of v’).
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Dataset

@ Goal: lllustrate application & evaluate methodology
e Dataset from DellaVigna and Pope (2017)
@ Real-effort experiment on M-Turk: Subjects press a-b keys for 10 min

@ 7 treatments with different monetary incentives:

Contract (in ¢) Mean effort N

wi(x) = 100 1521 540
wa(x) = 100 + 0.001x 1883 538
ws(x) = 100 + 0.01x 2029 558
wg(x) =100 + 0.04x 2132 566
ws(x) = 100 + 0.10x 2175 538

We (X) =100+40 H{X22000} 2136 545
VV7(X) =100+ 80 H{X22000} 2188 532

@ Each subject participates in a single treatment, once.
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Empirical Validation

Two Exercises

@ Assume subjects are identical, and make assumptions about v’ and m

I. Given data for any two treatments, predict effort & profits for others.
o Test predictions of two models:

loga(w) = 3+ elog M(w)
a(w) = fo + SLM(w)

where M(w) = [ v(w)f,, and constants are estimated using A-B test.
e Sensitivity analysis: Prediction accuracy vs. assumptions about v’
[l. Counterfactuals:

@ Use all seven treatments to estimate the parameters of the model
@ Characterize optimally perturbed contract

©® Compare projected profits to those of wy and optimal contract
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Step 1
@ Assume subjects have CRRA utility — specifically, v/(w) = w™03
@ Normalize a(w;) = (Mean effort);.
@ Given A-B test, estimate f(:|a(w;)) for i € {A, B}, and compute

= f(xla(wg)) - f(x|a(wa))
fa(X) - a(WB) _ a(WA)

Fla) FCla)
oo} —F(las) =1t
—F(|ay) —f(|as)
sol —FClas) —1(las)
f 7
07 /
/ 6
< | LCL
2 o
[} Ay
£ z
-} P
g o4 z
2 &
’
03 f
/ 2
02
01 1
[J 7500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500
z T
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Empirical Validation

Exercise 1(a): Effort Predictions given Treatments 2 and 4

Predicted effort using the two models
T

T T T T
+
2500 B
= Actual effort
* Qlin
* Qjog
2250 - B
1 ]
® -
T
g . .
o 2000 B
+
* ®
1750 - B
1500 2 I I I I I I
1 2 3 5 6 7

4
Treatment

Georgiadis and Powell Optimal Incentives under Moral Hazard Northwestern Kellogg 18 / 25



Exercise 1(b): Effort Prediction Accuracy

N > =)

o

Absolute Percentage Error (APE)

Effort Prediction Accuracy
T T T

T T T T T
| + Mean APE (a,m (avg = 6.06) i
* Mean APE(alog avg = 2.08) v
| AMax. APE(a A - i
v Max. APE(q al(,g
A
A A
A v v
L Al
+
L A _
A
+ A
A +.
________________ A —mpmmmmmm——— A e
+ a »
+
+ + + + + * *
L . A
v v v v +
v < v v
ittt diddid ———V“——-s———;———u———v———-* ——————— g-———--—----- -
» * * . * *
- * *
I I I I I I I I I I I I I I I
23 24 25 26 2-7 34 35 36 3-7 4-5 46 4-7 56 57 67
Treatment Pair
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Exercise 1(c): Sensitivity Analysis

Effort Prediction Accuracy as a function of assumptions about v'(-)

T T T T T T T T
— MAPE (dy, CRRA utility)

g —MAPE (G, CRRA utility) |
E —MAPE (@iin, Quadratic utility)
= MAPE (a4, Quadratic utility)
=
= 6L

—

o]

=)

m

& 5-

8

=1

3]

O

-

g :
)

2

=

Qo

w0

Q 3F —
<

g

L o~

E N o R—— o ATy ve P A S P IAVPmiyPr F S . |

| | | | | | | | |
0 0.1 02 03 04 05 06 07 08 09 1
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Exercise 1(d): Profit Prediction Accuracy

Profit Prediction Accuracy
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Estimate Model

@ Use estimates of {f(-|a(w;))}; to fit f(:|a) for all a using linear
interpolation (thus assuming f,(x|a) is piece-wise linear in a)

@ Assume agent has CRRA utility and isoelastic costs; i.e.,

1-p
w
— d _ P+1
v(w) 1 and c(a) = +1a

and given w, he chooses his effort a(w) such that

f v(w)f(a(w))dx + 1 = cP(a(w)) .
Then, we estimate the unknown coefficients.

© Assign value to principal's marginal profit — specifically, m = 0.2
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Exercise 2(a): Optimal Perturbation

A B test comprlses treatments 4 and 7

240 :
—Optimal Perturbatlon (Proﬁt = 252. 82)
220 —Status Quo (w4) (Profit = 241.98) _
—Optimal Contract (Profit = 253.64)
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Empirical Validation

Exercise 2(b): Profits relative to Optimal Contract

100 * + *
N i
* * x
b
A T A
98— A * *
* % * A
x
A
96|~ *
*—r—100—0—90
*~-—r———o
A

% , T
* A *
A

—n—o—

*A *
*

Profit as a percentage of optimal contract profit
© ©
N X
T T

©

8
T

*

* >

A
o Status quo contract (Avg = 94.72)
4 Optimal perturbation (Avg = 97.01)
* Optlmal perturba‘clon (LP) (Avg = 97 25)

88
23 24 25 2-6 27 32 34 3-5 36 3-7 42 43 4-5 46 4-7 52 53 5-4 57 62 6-3 6-4 6-7 72 7-3 7-4 75 78

Treatment Pair

Georgiadis and Powell Optimal Incentives under Moral Hazard Northwestern Kellogg 24 / 25



Summary & Future Work

o Framework for using agency theory to address an empirical question.

e How to improve an existing performance pay plan?

e What information do you need to do so?

@ Other questions:

o Optimal experimentation (ratchet effects, behavioral constraints)?

o Extend to other settings (non-monetary instruments, dynamics)?
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