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Motivation

A recent literature raises concerns with common OLS & IV specifications:

They may fail to estimate convex-weighted averages of causal effects,
even when they succeed at avoiding omitted variables bias (OVB)

The “negative weights” can yield sign reversals: e.g. negative OLS/IV
estimates when all causal effects are positive

Much of this literature focuses on specifications that address OVB by
modeling potential outcomes given the treatment (e.g. “parallel trends”)

The (possibly negative) weights in the estimand representation are
ex-post: i.e., functions of the realized treatment and controls

More flexible specifications can sometimes avoid negative ex-post
weights (e.g. Wooldridge 2021, Borusyak et al. 2023)
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This Paper

We show that negative ex-post weights also arise—but are no concern—in
design-based OLS & IV specifications

I.e., those that leverage assumptions on treatment or instrument
assignment, rather than a model for potential outcomes

Design-based estimands have an average-effect representation with ex-ante
weights: expectations of ex-post weights over the assignment distribution

These weights are guaranteed to be convex in design-based OLS
specifications, so sign reversals cannot occur

In design-based IV specifications, convexity follows under a general
first-stage monotonicity condition
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Literature Connections

This analysis connects the recent negative-weight literature with a classic
one on convex weighting in OLS & IV (e.g., Imbens and Angrist 1994, 1995;
Angrist 1998; Angrist and Krueger 1999; Angrist, Graddy and Imbens 2000...)

Relative to this literature, we use a weaker mean independence
condition that highlights the role of expected treatments/instruments
(Borusyak and Hull 2023) for design-based OLS/IV identification

We also use a weaker montonicity condition (c.f. Small et al. 2017)
that allows the IV first stage to be non-causal

Both extensions can be useful for “formula” treatment/instruments, which
combine exogenous shocks with non-random measures of exposure

E.g. shift-share instruments (Borusyak et al. 2022), treatments
capturing economic/network spillovers (Borusyak and Hull 2023), and
simulated instruments for policy eligibility (Borusyak and Hull 2021)
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Simple Setup
A researcher estimates by OLS:

yi = βxi +w ′
i γ + ei ,

for some outcome yi , treatment xi , and vector of controls wi

To interpret this specification, we consider a linear-effect causal model:

yi = xiβi + εi ,

with heterogeneous effects βi and untreated potential outcomes εi

Assume appropriate asymptotics for OLS to consistently estimate:

β =
E [x̃iyi ]

E [x̃2
i ]

=
E [x̃ixiβi ]+E [x̃iεi ]

E [x̃2
i ]

,

where x̃i are residuals from the population projection of xi on wi
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Two Paths to Avoiding OVB
E [x̃iεi ] = 0 under either one of two assumptions:

ASSUMPTION 1: E [εi | xi ,wi ] = w ′
i γ

Untreated potential outcomes are linear in controls, given treatment

E.g. parallel trends, where i indexes unit-period pairs in a panel and
wi includes unit and time dummies

ASSUMPTION 2: E [xi | εi ,βi ,wi ] = w ′
i λ

Treatment is conditionally mean-independent of potential outcomes,
with a linear expected treatment E [xi | wi ] (e.g. the propensity score)

E.g. a stratified experiment, where xi is randomly assigned within
strata dummied out in wi

The second assumption yields a “design-based” OLS specification
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Ex-Post Weights

Since E [x̃iεi ] = 0, the estimand has an average-effect representation under
either assumption:

β =
E [ψiβi ]

E [ψi ]
, ψi = x̃ixi

But the ex-post weights ψi are generally non-convex: E [x̃i ] = 0, so x̃i must
take on both positive and negative values

E.g. if xi > 0 then i with low values of xi (the effective control group)
will always receive negative ex-post weight

This can lead to sign reversals: e.g. β < 0, despite βi > 0

The ex-post weights are the end of the story for β under Assumption 1.
But in design-based specifications we can take one more step

In experiments, who is in the effective control group is random...
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Ex-Ante Weights

Under Assumption 2 only, the estimand has another representation:

β =
E [φiβi ]

E [φi ]
, φi = E [ψi | wi ,βi ]

The ex-ante weights are necessarily convex: φi = Var(xi | wi ,βi)> 0

Sign reversals thus cannot occur in design-based OLS specifications
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The Role of the Expected Treatment

Comparing Assumption 2 to alternatives shows that the key to convex
weights is the design-based specification of the expected treatment

Stronger models for unobservables need not help: e.g. sign reversal still
may occur if we augment Assumption 1 with E [βi | xi ,wi ] = w ′

i δ

Though more flexible specifications can avoid negative weights under
such models (e.g. Imbens and Wooldridge 2009)

Stronger unconfoundedness assumptions, e.g. xi ⊥⊥ (εi ,βi) | wi turn out to
be unnecessary for ensuring no sign reversals

Though the ex-ante weights are identified under such assumptions:
φi = Var(xi | wi) (e.g. Angrist and Krueger 1999)

8



The Role of the Expected Treatment

Comparing Assumption 2 to alternatives shows that the key to convex
weights is the design-based specification of the expected treatment

Stronger models for unobservables need not help: e.g. sign reversal still
may occur if we augment Assumption 1 with E [βi | xi ,wi ] = w ′

i δ

Though more flexible specifications can avoid negative weights under
such models (e.g. Imbens and Wooldridge 2009)

Stronger unconfoundedness assumptions, e.g. xi ⊥⊥ (εi ,βi) | wi turn out to
be unnecessary for ensuring no sign reversals

Though the ex-ante weights are identified under such assumptions:
φi = Var(xi | wi) (e.g. Angrist and Krueger 1999)

8



The Role of the Expected Treatment

Comparing Assumption 2 to alternatives shows that the key to convex
weights is the design-based specification of the expected treatment

Stronger models for unobservables need not help: e.g. sign reversal still
may occur if we augment Assumption 1 with E [βi | xi ,wi ] = w ′

i δ

Though more flexible specifications can avoid negative weights under
such models (e.g. Imbens and Wooldridge 2009)

Stronger unconfoundedness assumptions, e.g. xi ⊥⊥ (εi ,βi) | wi turn out to
be unnecessary for ensuring no sign reversals

Though the ex-ante weights are identified under such assumptions:
φi = Var(xi | wi) (e.g. Angrist and Krueger 1999)

8



General Result
Causal model with potential outcomes yi(x) and yi = yi(xi). Generalize:

ASSUMPTION 1′: E [yi(0) | zi ,wi ] = w ′
i γ

ASSUMPTION 2′: E [zi | yi(·),wi ] = w ′
i λ ,

where zi is an instrument (OLS special case: zi = xi).

Further consider:
ASSUMPTION 3: Pr(xi ≥ x | zi = z ,yi(·),wi) is non-decreasing in z
for all x , almost surely over (yi(·),wi),

and suppose the IV estimator consistently estimates β = E [z̃iyi ]/E [z̃ixi ]

PROPOSITION 1: Let βi(x) = d
dx yi(x). Under either A1′ or A2′:

β = E [∫ ψi(x)βi(x)dx ]/E [∫ ψi(x)dx ]

for non-convex ex-ante weights ψi(x) = z̃i ·1[xi ≥ x ]. Under A2′ only:

β = E [∫ φi(x)βi(x)dx ]/E [∫ φi(x)dx ]

for ex-ante weights φi(x) = E [ψi(x) | yi(·),wi ] that are convex under A3
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Application: Formula Instruments

Proposition 1 applies to treatments/instruments of the form zi = fi(s,g)
where g = (gk)

K
k=1 are exogenous shocks and fi(s, ·) governs exposure

E.g. shift-share instruments: zi = ∑k sikgk (Borusyak et al. 2022)

Ignorability, zi ⊥⊥ yi(·) | wi , may be implausible while A2 holds

E.g. when E [gk | yi(·),qk ,s] = q′
kθ and ∑k sikqk is controlled for

First-stage monotonicity can hold, despite the first stage not being causal

E.g. when the shares sik imperfectly proxy for true shock exposure
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Conclusions
Design-based OLS & IV specifications generally avoid the negative ex-post
weight concerns of the recent literature

Given correct specification of the expected treatment/instrument

Of course, researchers may have broader goals than avoiding sign reversals

More flexible specifications, design-based or otherwise, can let them
pick other (maybe more policy-relevant) weighting schemes

Sign reversals may also not arise if effect heterogeneity is limited or
uncorrelated with the ex-post weights

Two other important caveats:

“Contamination bias” yields negative ex-ante weights in design-based
specifications with multiple treatments (Goldsmith-Pinkham et al. 2022)

High-dimensional controls / FEs can also yield bias (Freedman 2008)
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