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@ They may fail to estimate convex-weighted averages of causal effects,
even when they succeed at avoiding omitted variables bias (OVB)

@ The "negative weights” can yield sign reversals: e.g. negative OLS/IV
estimates when all causal effects are positive

Much of this literature focuses on specifications that address OVB by
modeling potential outcomes given the treatment (e.g. “parallel trends”)

@ The (possibly negative) weights in the estimand representation are
ex-post: i.e., functions of the realized treatment and controls

@ More flexible specifications can sometimes avoid negative ex-post
weights (e.g. Wooldridge 2021, Borusyak et al. 2023)
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We show that negative ex-post weights also ariss—but are no concern—in
design-based OLS & IV specifications

@ |l.e., those that leverage assumptions on treatment or instrument
assignment, rather than a model for potential outcomes

Design-based estimands have an average-effect representation with ex-ante
weights: expectations of ex-post weights over the assignment distribution

@ These weights are guaranteed to be convex in design-based OLS
specifications, so sign reversals cannot occur

@ In design-based IV specifications, convexity follows under a general
first-stage monotonicity condition
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This analysis connects the recent negative-weight literature with a classic
one on convex weighting in OLS & IV (e.g., Imbens and Angrist 1994, 1995;
Angrist 1998; Angrist and Krueger 1999; Angrist, Graddy and Imbens 2000...)

@ Relative to this literature, we use a weaker mean independence
condition that highlights the role of expected treatments/instruments
(Borusyak and Hull 2023) for design-based OLS/IV identification

o We also use a weaker montonicity condition (c.f. Small et al. 2017)
that allows the IV first stage to be non-causal

Both extensions can be useful for “formula” treatment/instruments, which
combine exogenous shocks with non-random measures of exposure

o E.g. shift-share instruments (Borusyak et al. 2022), treatments
capturing economic/network spillovers (Borusyak and Hull 2023), and
simulated instruments for policy eligibility (Borusyak and Hull 2021)
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Simple Setup
A researcher estimates by OLS:
yi = Bxi+wjy+e;,

for some outcome y;, treatment x;, and vector of controls w;

To interpret this specification, we consider a linear-effect causal model:
Yi = xiBi + &,

with heterogeneous effects fB; and untreated potential outcomes ¢;

Assume appropriate asymptotics for OLS to consistently estimate:

B E[Xiyi] _ E[%:x:Bi] + E[%i€]
E[%7] ER2

where X; are residuals from the population projection of x; on w;
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ASSUMPTION 1: E[g; | xi,wj] = w]y
@ Untreated potential outcomes are linear in controls, given treatment

o E.g. parallel trends, where i indexes unit-period pairs in a panel and
w; includes unit and time dummies

ASSUMPTION 2: E[X,' | Si,ﬁ,',W,'] = Wll)u

@ Treatment is conditionally mean-independent of potential outcomes,
with a linear expected treatment E[x; | w;] (e.g. the propensity score)

o E.g. a stratified experiment, where x; is randomly assigned within
strata dummied out in w;

The second assumption yields a “design-based” OLS specification
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Ex-Post Weights
Since E[X;&i] = 0, the estimand has an average-effect representation under
either assumption:

_ ElyiBi]

= ; i = XiX;
P="Ey1 ¥

But the ex-post weights y; are generally non-convex: E[X;] =0, so X must
take on both positive and negative values

e E.g. if x; >0 then / with low values of x; (the effective control group)
will always receive negative ex-post weight

@ This can lead to sign reversals: e.g. B <0, despite B; >0

The ex-post weights are the end of the story for B under Assumption 1.
But in design-based specifications we can take one more step

@ In experiments, who is in the effective control group is random...
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Ex-Ante Weights

Under Assumption 2 only, the estimand has another representation:

_ E[o:Bi]
P="El1

oi = E[yi | wi, Bi]

The ex-ante weights are necessarily convex: ¢; = Var(x; | w;, ;) >0

@ Sign reversals thus cannot occur in design-based OLS specifications
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The Role of the Expected Treatment

Comparing Assumption 2 to alternatives shows that the key to convex
weights is the design-based specification of the expected treatment

Stronger models for unobservables need not help: e.g. sign reversal still
may occur if we augment Assumption 1 with E[f; | x;, w;] = w/

@ Though more flexible specifications can avoid negative weights under
such models (e.g. Imbens and Wooldridge 2009)

Stronger unconfoundedness assumptions, e.g. x; L (&;, ;) | w; turn out to
be unnecessary for ensuring no sign reversals

@ Though the ex-ante weights are identified under such assumptions:
¢; = Var(x; | w;) (e.g. Angrist and Krueger 1999)
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General Result

Causal model with potential outcomes y;(x) and y; = yi(x;). Generalize:
ASSUMPTION 1": E[yi(0) | zi,wi] = w/y
ASSUMPTION 2": E[z; | yi(+), wi] = w/A,

where z; is an instrument (OLS special case: z; = x;). Further consider:

ASSUMPTION 3: Pr(x; > x| zj = z,yi(-),w;) is non-decreasing in z
for all x, almost surely over (yi(-), w;),

and suppose the IV estimator consistently estimates 8 = E[Z;y;]/ E[Z;xi]
PROPOSITION 1: Let Bi(x) = ZLy;(x). Under either Al or AZ':
B = E[J wi(x)Bi(x)dx]/E[[ wi(x)adx]
for non-convex ex-ante weights y;(x) = Z; - 1[x; > x]. Under A2 only:
B = ELJ 9i(x)Bi(x)dx]/E[] ¢i(x)ax]

for ex-ante weights ¢;(x) = E[yi(x) | yi(-),w;] that are convex under A3
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Proposition 1 applies to treatments/instruments of the form z; = f;(s, g)
where g = (gk)K_, are exogenous shocks and (s, -) governs exposure

o E.g. shift-share instruments: z; =Y, sikgk (Borusyak et al. 2022)
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Proposition 1 applies to treatments/instruments of the form z; = f;(s, g)
where g = (gk)K_, are exogenous shocks and (s, -) governs exposure

o E.g. shift-share instruments: z; =Y, sikgk (Borusyak et al. 2022)

Ignorability, z; L y;(-) | wi;, may be implausible while A2 holds
o E.g. when E[gk | yi(:),qk,s] = q,,0 and ¥ sikqx is controlled for

First-stage monotonicity can hold, despite the first stage not being causal

@ E.g. when the shares s; imperfectly proxy for true shock exposure
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Conclusions

Design-based OLS & IV specifications generally avoid the negative ex-post
weight concerns of the recent literature

e Given correct specification of the expected treatment/instrument

Of course, researchers may have broader goals than avoiding sign reversals

@ More flexible specifications, design-based or otherwise, can let them
pick other (maybe more policy-relevant) weighting schemes

@ Sign reversals may also not arise if effect heterogeneity is limited or
uncorrelated with the ex-post weights

Two other important caveats:

@ “Contamination bias” yields negative ex-ante weights in design-based
specifications with multiple treatments (Goldsmith-Pinkham et al. 2022)

e High-dimensional controls / FEs can also yield bias (Freedman 2008)

11



