Negative Weights are No Concern in Design-Based Specifications

Kirill Borusyak Berkeley Peter Hull Brown

ASSA 2024

Motivation

A recent literature raises concerns with common OLS & IV specifications:

- They may fail to estimate convex-weighted averages of causal effects, even when they succeed at avoiding omitted variables bias (OVB)
- The "negative weights" can yield *sign reversals*: e.g. negative OLS/IV estimates when all causal effects are positive

Motivation

A recent literature raises concerns with common OLS & IV specifications:

- They may fail to estimate convex-weighted averages of causal effects, even when they succeed at avoiding omitted variables bias (OVB)
- The "negative weights" can yield *sign reversals*: e.g. negative OLS/IV estimates when all causal effects are positive

Much of this literature focuses on specifications that address OVB by modeling potential outcomes given the treatment (e.g. "parallel trends")

- The (possibly negative) weights in the estimand representation are *ex-post*: i.e., functions of the realized treatment and controls
- More flexible specifications can sometimes avoid negative ex-post weights (e.g. Wooldridge 2021, Borusyak et al. 2023)

This Paper

We show that negative ex-post weights also arise—but are no concern—in *design-based* OLS & IV specifications

• I.e., those that leverage assumptions on treatment or instrument assignment, rather than a model for potential outcomes

This Paper

We show that negative ex-post weights also arise—but are no concern—in *design-based* OLS & IV specifications

• I.e., those that leverage assumptions on treatment or instrument assignment, rather than a model for potential outcomes

Design-based estimands have an average-effect representation with *ex-ante* weights: expectations of ex-post weights over the assignment distribution

- These weights are guaranteed to be convex in design-based OLS specifications, so sign reversals cannot occur
- In design-based IV specifications, convexity follows under a general first-stage monotonicity condition

Literature Connections

This analysis connects the recent negative-weight literature with a classic one on convex weighting in OLS & IV (e.g., Imbens and Angrist 1994, 1995; Angrist 1998; Angrist and Krueger 1999; Angrist, Graddy and Imbens 2000...)

- Relative to this literature, we use a weaker mean independence condition that highlights the role of expected treatments/instruments (Borusyak and Hull 2023) for design-based OLS/IV identification
- We also use a weaker montonicity condition (c.f. Small et al. 2017) that allows the IV first stage to be non-causal

Literature Connections

This analysis connects the recent negative-weight literature with a classic one on convex weighting in OLS & IV (e.g., Imbens and Angrist 1994, 1995; Angrist 1998; Angrist and Krueger 1999; Angrist, Graddy and Imbens 2000...)

- Relative to this literature, we use a weaker mean independence condition that highlights the role of expected treatments/instruments (Borusyak and Hull 2023) for design-based OLS/IV identification
- We also use a weaker montonicity condition (c.f. Small et al. 2017) that allows the IV first stage to be non-causal

Both extensions can be useful for "formula" treatment/instruments, which combine exogenous shocks with non-random measures of exposure

• E.g. shift-share instruments (Borusyak et al. 2022), treatments capturing economic/network spillovers (Borusyak and Hull 2023), and simulated instruments for policy eligibility (Borusyak and Hull 2021)

Simple Setup

A researcher estimates by OLS:

$$y_i = \beta x_i + w_i' \gamma + e_i,$$

for some outcome y_i , treatment x_i , and vector of controls w_i

Simple Setup

A researcher estimates by OLS:

$$y_i = \beta x_i + w_i' \gamma + e_i,$$

for some outcome y_i , treatment x_i , and vector of controls w_i

To interpret this specification, we consider a linear-effect causal model:

$$y_i = x_i \beta_i + \varepsilon_i,$$

with heterogeneous effects β_i and untreated potential outcomes ε_i

Simple Setup

A researcher estimates by OLS:

$$y_i = \beta x_i + w_i' \gamma + e_i,$$

for some outcome y_i , treatment x_i , and vector of controls w_i

To interpret this specification, we consider a linear-effect causal model:

$$y_i = x_i \beta_i + \varepsilon_i,$$

with heterogeneous effects β_i and untreated potential outcomes ε_i

Assume appropriate asymptotics for OLS to consistently estimate:

$$\beta = \frac{E[\tilde{x}_i y_i]}{E[\tilde{x}_i^2]} = \frac{E[\tilde{x}_i x_i \beta_i] + E[\tilde{x}_i \varepsilon_i]}{E[\tilde{x}_i^2]}$$

where \tilde{x}_i are residuals from the population projection of x_i on w_i

 $E[\tilde{x}_i \varepsilon_i] = 0$ under either one of two assumptions:

 $E[\tilde{x}_i \varepsilon_i] = 0$ under either one of two assumptions:

ASSUMPTION 1: $E[\varepsilon_i | x_i, w_i] = w'_i \gamma$

- Untreated potential outcomes are linear in controls, given treatment
- E.g. parallel trends, where *i* indexes unit-period pairs in a panel and *w_i* includes unit and time dummies

 $E[\tilde{x}_i \varepsilon_i] = 0$ under either one of two assumptions:

ASSUMPTION 1: $E[\varepsilon_i | x_i, w_i] = w'_i \gamma$

- Untreated potential outcomes are linear in controls, given treatment
- E.g. parallel trends, where *i* indexes unit-period pairs in a panel and *w_i* includes unit and time dummies

ASSUMPTION 2: $E[x_i | \varepsilon_i, \beta_i, w_i] = w'_i \lambda$

- Treatment is conditionally mean-independent of potential outcomes, with a linear expected treatment E[x_i | w_i] (e.g. the propensity score)
- E.g. a stratified experiment, where x_i is randomly assigned within strata dummied out in w_i

 $E[\tilde{x}_i \varepsilon_i] = 0$ under either one of two assumptions:

ASSUMPTION 1: $E[\varepsilon_i | x_i, w_i] = w'_i \gamma$

- Untreated potential outcomes are linear in controls, given treatment
- E.g. parallel trends, where *i* indexes unit-period pairs in a panel and *w_i* includes unit and time dummies

ASSUMPTION 2: $E[x_i | \varepsilon_i, \beta_i, w_i] = w'_i \lambda$

- Treatment is conditionally mean-independent of potential outcomes, with a linear expected treatment E[x_i | w_i] (e.g. the propensity score)
- E.g. a stratified experiment, where x_i is randomly assigned within strata dummied out in w_i

The second assumption yields a "design-based" OLS specification

Since $E[\tilde{x}_i \varepsilon_i] = 0$, the estimand has an average-effect representation under either assumption:

$$eta = rac{E[\psi_i eta_i]}{E[\psi_i]}, \qquad \psi_i = ilde{x}_i x_i$$

Since $E[\tilde{x}_i \varepsilon_i] = 0$, the estimand has an average-effect representation under either assumption:

$$eta = rac{E[\psi_i eta_i]}{E[\psi_i]}, \qquad \psi_i = ilde{x}_i x_i$$

But the ex-post weights ψ_i are generally non-convex: $E[\tilde{x}_i] = 0$, so \tilde{x}_i must take on both positive and negative values

Since $E[\tilde{x}_i \varepsilon_i] = 0$, the estimand has an average-effect representation under either assumption:

$$eta = rac{E[\psi_i eta_i]}{E[\psi_i]}, \qquad \psi_i = ilde{x}_i x_i$$

But the ex-post weights ψ_i are generally non-convex: $E[\tilde{x}_i] = 0$, so \tilde{x}_i must take on both positive and negative values

• E.g. if $x_i > 0$ then *i* with low values of x_i (the effective control group) will always receive negative ex-post weight

Since $E[\tilde{x}_i \varepsilon_i] = 0$, the estimand has an average-effect representation under either assumption:

$$eta = rac{E[\psi_ieta_i]}{E[\psi_i]}, \qquad \psi_i = ilde{x}_i x_i$$

But the ex-post weights ψ_i are generally non-convex: $E[\tilde{x}_i] = 0$, so \tilde{x}_i must take on both positive and negative values

- E.g. if $x_i > 0$ then *i* with low values of x_i (the effective control group) will always receive negative ex-post weight
- This can lead to sign reversals: e.g. $\beta < 0$, despite $\beta_i > 0$

Since $E[\tilde{x}_i \varepsilon_i] = 0$, the estimand has an average-effect representation under either assumption:

$$eta = rac{E[\psi_ieta_i]}{E[\psi_i]}, \qquad \psi_i = ilde{x}_i x_i$$

But the ex-post weights ψ_i are generally non-convex: $E[\tilde{x}_i] = 0$, so \tilde{x}_i must take on both positive and negative values

- E.g. if $x_i > 0$ then *i* with low values of x_i (the effective control group) will always receive negative ex-post weight
- This can lead to sign reversals: e.g. $\beta < 0$, despite $\beta_i > 0$

The ex-post weights are the end of the story for β under Assumption 1. But in design-based specifications we can take one more step

• In experiments, who is in the effective control group is *random*...

Under Assumption 2 only, the estimand has another representation:

$$eta = rac{E[\phi_ieta_i]}{E[\phi_i]}, \hspace{1em} \phi_i = E[\psi_i \mid w_i, eta_i]$$

Under Assumption 2 only, the estimand has another representation:

$$eta = rac{E[\phi_ieta_i]}{E[\phi_i]}, \hspace{1em} \phi_i = E[\psi_i \mid w_i, eta_i]$$

The ex-ante weights are necessarily convex: $\phi_i = Var(x_i \mid w_i, \beta_i) > 0$

• Sign reversals thus cannot occur in design-based OLS specifications

The Role of the Expected Treatment

Comparing Assumption 2 to alternatives shows that the key to convex weights is the design-based specification of the expected treatment

The Role of the Expected Treatment

Comparing Assumption 2 to alternatives shows that the key to convex weights is the design-based specification of the expected treatment

Stronger models for unobservables need not help: e.g. sign reversal still may occur if we augment Assumption 1 with $E[\beta_i | x_i, w_i] = w'_i \delta$

• Though more flexible specifications can avoid negative weights under such models (e.g. Imbens and Wooldridge 2009)

The Role of the Expected Treatment

Comparing Assumption 2 to alternatives shows that the key to convex weights is the design-based specification of the expected treatment

Stronger models for unobservables need not help: e.g. sign reversal still may occur if we augment Assumption 1 with $E[\beta_i | x_i, w_i] = w'_i \delta$

• Though more flexible specifications can avoid negative weights under such models (e.g. Imbens and Wooldridge 2009)

Stronger unconfoundedness assumptions, e.g. $x_i \perp (\varepsilon_i, \beta_i) \mid w_i$ turn out to be unnecessary for ensuring no sign reversals

• Though the ex-ante weights are identified under such assumptions: $\phi_i = Var(x_i \mid w_i)$ (e.g. Angrist and Krueger 1999)

General Result

Causal model with potential outcomes $y_i(x)$ and $y_i = y_i(x_i)$. Generalize: ASSUMPTION 1': $E[y_i(0) | z_i, w_i] = w'_i \gamma$ ASSUMPTION 2': $E[z_i | y_i(\cdot), w_i] = w'_i \lambda$,

where z_i is an instrument (OLS special case: $z_i = x_i$).

General Result

Causal model with potential outcomes $y_i(x)$ and $y_i = y_i(x_i)$. Generalize: ASSUMPTION 1': $E[y_i(0) | z_i, w_i] = w'_i \gamma$ ASSUMPTION 2': $E[z_i | y_i(\cdot), w_i] = w'_i \lambda$,

where z_i is an instrument (OLS special case: $z_i = x_i$). Further consider: ASSUMPTION 3: $Pr(x_i \ge x | z_i = z, y_i(\cdot), w_i)$ is non-decreasing in z for all x, almost surely over $(y_i(\cdot), w_i)$,

and suppose the IV estimator consistently estimates $\beta = E[\tilde{z}_i y_i]/E[\tilde{z}_i x_i]$

General Result

Causal model with potential outcomes $y_i(x)$ and $y_i = y_i(x_i)$. Generalize: ASSUMPTION 1': $E[y_i(0) | z_i, w_i] = w'_i \gamma$ ASSUMPTION 2': $E[z_i | y_i(\cdot), w_i] = w'_i \lambda$,

where z_i is an instrument (OLS special case: $z_i = x_i$). Further consider: ASSUMPTION 3: $Pr(x_i \ge x | z_i = z, y_i(\cdot), w_i)$ is non-decreasing in z for all x, almost surely over $(y_i(\cdot), w_i)$,

and suppose the IV estimator consistently estimates $\beta = E[\tilde{z}_i y_i]/E[\tilde{z}_i x_i]$

PROPOSITION 1: Let $\beta_i(x) = \frac{d}{dx}y_i(x)$. Under either A1' or A2':

 $\beta = E[\int \psi_i(x)\beta_i(x)dx]/E[\int \psi_i(x)dx]$

for non-convex ex-ante weights $\psi_i(x) = \tilde{z}_i \cdot \mathbf{1}[x_i \ge x]$. Under A2' only:

$$\beta = E[\int \phi_i(x)\beta_i(x)dx]/E[\int \phi_i(x)dx]$$

for ex-ante weights $\phi_i(x) = E[\psi_i(x) | y_i(\cdot), w_i]$ that are convex under A3

Application: Formula Instruments

Proposition 1 applies to treatments/instruments of the form $z_i = f_i(s,g)$ where $g = (g_k)_{k=1}^{K}$ are exogenous shocks and $f_i(s, \cdot)$ governs exposure

• E.g. shift-share instruments: $z_i = \sum_k s_{ik}g_k$ (Borusyak et al. 2022)

Application: Formula Instruments

Proposition 1 applies to treatments/instruments of the form $z_i = f_i(s,g)$ where $g = (g_k)_{k=1}^K$ are exogenous shocks and $f_i(s, \cdot)$ governs exposure

• E.g. shift-share instruments: $z_i = \sum_k s_{ik}g_k$ (Borusyak et al. 2022)

Ignorability, $z_i \perp y_i(\cdot) \mid w_i$, may be implausible while A2 holds

• E.g. when $E[g_k \mid y_i(\cdot), q_k, s] = q'_k \theta$ and $\sum_k s_{ik}q_k$ is controlled for

Application: Formula Instruments

Proposition 1 applies to treatments/instruments of the form $z_i = f_i(s,g)$ where $g = (g_k)_{k=1}^K$ are exogenous shocks and $f_i(s, \cdot)$ governs exposure

• E.g. shift-share instruments: $z_i = \sum_k s_{ik}g_k$ (Borusyak et al. 2022)

Ignorability, $z_i \perp y_i(\cdot) \mid w_i$, may be implausible while A2 holds

• E.g. when $E[g_k \mid y_i(\cdot), q_k, s] = q'_k \theta$ and $\sum_k s_{ik} q_k$ is controlled for

First-stage monotonicity can hold, despite the first stage not being causal

• E.g. when the shares s_{ik} imperfectly proxy for true shock exposure

Conclusions

Design-based OLS & IV specifications generally avoid the negative ex-post weight concerns of the recent literature

• Given correct specification of the expected treatment/instrument

Conclusions

Design-based OLS & IV specifications generally avoid the negative ex-post weight concerns of the recent literature

• Given correct specification of the expected treatment/instrument

Of course, researchers may have broader goals than avoiding sign reversals

- More flexible specifications, design-based or otherwise, can let them pick other (maybe more policy-relevant) weighting schemes
- Sign reversals may also not arise if effect heterogeneity is limited or uncorrelated with the ex-post weights

Conclusions

Design-based OLS & IV specifications generally avoid the negative ex-post weight concerns of the recent literature

• Given correct specification of the expected treatment/instrument

Of course, researchers may have broader goals than avoiding sign reversals

- More flexible specifications, design-based or otherwise, can let them pick other (maybe more policy-relevant) weighting schemes
- Sign reversals may also not arise if effect heterogeneity is limited or uncorrelated with the ex-post weights

Two other important caveats:

- "Contamination bias" yields negative ex-ante weights in design-based specifications with multiple treatments (Goldsmith-Pinkham et al. 2022)
- High-dimensional controls / FEs can also yield bias (Freedman 2008)