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Abstract

We develop a flexible semi-structural time-series model to estimate jointly several macroe-
conomic “stars” — i.e., unobserved long-run equilibrium levels of output (and growth rate
of output), the unemployment rate, the real rate of interest, productivity growth, the price
inflation, and wage inflation. The ingredients of the model are in part motivated by eco-
nomic theory and in part by the empirical features necessitated by the changing economic
environment. Following the recent literature on inflation and interest rate modeling, we
explicitly model the links between long-run survey expectations and stars to improve the
stars’ econometric estimation. Our approach permits time variation in the relationships
between various components, including time variation in error variances. To tractably esti-
mate the large multivariate model, we use a recently developed precision sampler that relies
on Bayesian methods. The by-products of this approach are the time-varying estimates of
the wage and price Phillips curves, and the pass-through between prices and wages, both of
which provide new insights into these empirical relationships’ instability in US data. Fur-
thermore, our estimates of the stars are among the most precise. Lastly, we document the
competitive real-time forecasting properties of the model and, separately, the usefulness of
stars’ estimates as steady-state values in external models.
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1. Introduction

The estimates of long-run equilibrium levels of macroeconomic variables (often denoted

with the “star” symbol) are of central importance in macroeconomics. These long-run levels

are thought to reflect the fundamental structure of the economy in the absence of shocks. Hence,

they are used as reference points, and deviations from these long-run levels reflect idiosyncratic

and cyclical fluctuations, which typically serve as the source data for macroeconomic models

(e.g., Smets and Wouters, 2003; Canova and Ferroni, 2011).

In this paper, we estimate jointly seven macroeconomic stars of broader interest to macroe-

conomists and policymakers: the level of potential output (gdp-star), the growth rate of poten-

tial output (g-star), the long-run equilibrium levels of the unemployment rate (u-star), the real

short-term interest rate (r-star), labor productivity growth (p-star), price inflation (pi-star),

and the nominal wage inflation (w-star).1 The assumption that a long-run equilibrium exists

implies that in the long run, the economy is growing at potential, price inflation is growing

at its trend rate, the unemployment rate has no cyclical pressure and only reflects structural

factors, nominal wages grow at a rate equal to the sum of labor productivity growth and price

inflation, and the real interest rate reflects the rate consistent with output growing at potential

and stable inflation.2

In practice, determining the values of these stars is difficult because stars and some of

their determinants are unobserved. To infer the estimates of the stars, economists apply a

range of econometric methods to observable historical data.3 The multivariate unobserved

components (UC) models, which are statistical models that use economic theory to frame the

empirical specification, have been shown to provide reasonable estimates of the stars (e.g.,

Kuttner, 1994; Laubach and Williams, 2003; Chan, Koop, and Potter, 2016). Hence, they are

the dominant methods for obtaining estimates of the stars. However, with few exceptions, the

popular multivariate UC models that estimate time-varying stars focus on a small number of

observables, often just two or three, and minimal structure (e.g., Laubach and Williams, 2003).

Studies that entertain more variables have abstracted from important empirical features such

as time-varying parameters and stochastic volatility (e.g., Hasenzagl, Pellegrino, Reichlin, and

Ricco, 2022; Del Negro et al., 2017; Fleischman and Roberts, 2011). A priori, one would expect a

framework based on greater information that explicitly permits (contemporaneous) interactions

between stars and between cyclical components, and a richer structure to provide more reliable

1The subset of these stars, p-star, g-star, u-star, and r-star, reflect the fundamental structural features of the
economy, whereas others, pi-star and w-star, are thought to be influenced by central banks and monetary policy.

2The literature has referred to the concept of long-run equilibrium using different terminologies, such as
“natural,” “neutral,” “trend,” “steady-state,” and “long-run.” There are subtle differences among them, but
they can be interpreted as the same for the purpose of this paper. In some studies, especially those using
dynamic stochastic general equilibrium (DSGE) models, the concept of the natural rate refers to medium-horizon
equilibrium, and in these same models, the concept of steady state is used to refer to the long-run equilibrium.

3The methods range from statistical univariate filters (e.g., Hodrick and Prescott, 1997; Ashley and Ver-
brugge, 2008) to multivariate models, including semi-structural time-series models (e.g., Pescatori and Turunen,
2016; Morley and Wong, 2020), and fully structural DSGE models (e.g., Del Negro, Giannone, Giannoni, and
Tambalotti, 2017).
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estimates of the objects of interest (e.g., stars) than frameworks that ignore them.

Accordingly, in this paper, we take on the challenge of jointly estimating several macroeco-

nomic stars simultaneously, including g-star (and gdp-star), u-star, r-star, p-star, pi-star, and

w-star, using a semi-structural time-series model. For each star, we formulate a rich structure

whose elements are guided by past research and informed by economic theory. For example,

econometric estimation of r-star is informed by various sources: the investment-savings (IS)

equation, the Taylor-type rule, the equation linking g-star and r-star, and the equation relating

r-star to survey expectations. We allow for time variation in important macroeconomic rela-

tionships and error variances. Fernández-Villaverde and Rubio-Ramı́rez (2010), and Carriero,

Clark, and Marcellino (2019), among many others, highlight the importance of allowing for

stochastic volatility in macroeconomic models. Incorporating these empirical features should

better distinguish between cyclical fluctuations and lower-frequency movements in the macroe-

conomic aggregates considered in this paper.

We extend the Chan, Clark, and Koop (2018) – henceforth CCK – approach of using long-

run survey expectations to improve pi-star precision to other macroeconomic stars. Specifically,

for each macroeconomic variable of interest, we explicitly model the link between the unobserved

“star” and the expectations about the star contained in the Blue Chip survey of economic fore-

casters (or as reported by the Congressional Budget Office [CBO] when the survey estimate

is not available).4 In a high-dimensional model like ours, the use of long-run survey expecta-

tions, which are direct measures of stars, could help anchor model-based estimates of stars to

reasonable values (especially in times of heightened uncertainty) and potentially improve the

precision of the estimates. We estimate the feature-rich UC model using Bayesian techniques,

specifically the efficient sampling techniques developed in Chan, Koop, and Potter (2013) and

the precision sampler proposed in Chan and Jeliazkov (2009).

All in all, the combination of time-varying parameters, SV, joint modeling of multiple stars,

implementation of an expanded structure, and allowing for a direct connection between stars

and long-term survey expectations is what differentiates our UC model from those in the existing

literature. Many popular UC models could be viewed as special cases of our larger UC model,

which facilitates model comparison. We note that among the stars considered, w-star has

received less attention in the literature. Our UC model’s ability to provide real-time estimates

of w-star and its model-based decomposition into its determinants p-star and pi-star, as implied

by economic theory, is a novel contribution. This specific decomposition is useful to monetary

policymakers, who often refer to developments in nominal wages to support their forecasts and

related discussions on price inflation and employment.

Olivier Blanchard, a prominent macroeconomist, recently suggested that the central banks

should target nominal wage inflation instead of price inflation.5 If in the future central banks

4The long-run survey expectations can be thought of as a hybrid forecast because it combines judgment based
on a range of information and forecast derived from a range of modeling approaches. Our use of such a hybrid
forecast implicitly serves as an additional channel through which the issue of omitted variable bias is mitigated.

5See page 61 of the transcript from the Brookings Institution WHAT’S (NOT) UP WITH INFLATION? , Oc-
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define a longer run goal for nominal inflation in a measure of wage inflation, then the framework

presented in this paper would prove valuable.

Our results indicate that there are payoffs to modeling stars jointly using a larger multivari-

ate UC model. The metric of Bayesian model comparison generally favors our larger UC model

over smaller-scale UC models. The model yields credible estimates of stars and the output gap.

For example, the output gap estimate is similar to the CBO estimate based on a production

function approach. A deeper examination reveals that joint modeling of the unemployment rate

and real GDP and allowing for SV in their cyclical components are the two key ingredients to

obtaining credible estimates of the output gap.

Generally, when assessed over long periods, the contours of stars echo those documented

elsewhere in the literature but at times, which can be for extended periods, the estimates

are different, and these differences are significant enough to matter for policy. For example,

let’s consider pi-star. From 2000 to 2010, our UC model has an estimate of the pi-star stable

at or close to 2%, whereas pi-star from a popular univariate model (of Stock and Watson,

2007) displays notable fluctuations around 2%, and the bivariate model of CCK indicates a

stable pi-star about a few tenths below 2%. These differences matter for central banks tasked

with inflation targeting. Compared to some of the popular UC models and the smaller-scale

restricted variants of our larger UC model, the precision estimates of the stars and the output

gap from our UC model are among the most precise, where precision is measured as the width

of 90% credible intervals. The model’s reliance on long-term survey expectations data is the key

reason for this improved precision.6 Survey expectations have played a crucial role in guiding

the model-based assessment of stars during the COVID-19 pandemic, a period of heightened

uncertainty. The accuracy of our UC model’s real-time point and density forecasts rivals and,

in some cases, outperforms hard-to-beat benchmarks, including small-scale UC models.

We also demonstrate the usefulness of our estimated stars as terminal values for external

models. Previous research shows that forecasting models, such as steady-state vector autore-

gressive (VAR) models, often improve their forecast accuracy by using external information

about steady states informed by long-run survey expectations (e.g., Wright, 2013). Using a

real-time forecasting comparison, we show that if we were to inform steady states in a VAR

with the stars from our UC model, gains in forecast accuracy for some of the variables would be

achieved compared to the standard approach relying on survey expectations. Hence, our frame-

work provides a potential source for obtaining the stars’ estimates in real time. An advantage

of our framework compared to surveys is that it provides estimates of stars (steady states) for

variables not covered by surveys (e.g., w-star) and offers both point and uncertainty estimates.

We summarize three additional findings. First, we find that the empirical evidence in the

link between r-star and g-star, as implied by theory, is weak (consistent with Hamilton, Harris,

tober 3rd, 2019. https://www.brookings.edu/wp-content/uploads/2019/10/es 20191003 inflation transcript.pdf
6Our precision estimates are on a par with recent studies highlighting the improved precision of stars derived

from their approaches (e.g., r-star by Del Negro et al., 2017; u-star by Crump, Eusepi, Giannoni, and Şahin,
2019; pi-star by CCK).
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Hatzius, andWest, 2016; Lunsford andWest, 2019), but by bringing survey expectations into the

model, the link becomes stronger (providing support to Laubach and Williams, 2016). Second,

our results indicate economically and statistically significant evidence of time variation in the

model parameters capturing macroeconomic relationships and strong support for SV’s inclusion

in the model equations. It lends support to the popular narratives of: “The price Phillips curve

has weakened over time,” “The wage Phillips curve is alive,” and “There is weakening in the

procyclicality of labor productivity.” Third, a comparison between final and real-time estimates

of the stars indicates that their broad movements have generally tracked each other closely.

We view this as a valuable finding because it suggests that we have made some progress in

mitigating the well-known difficulties associated with the real-time estimation of the stars.

In recent years, advances in computational power and numerical methods have enabled re-

searchers to estimate stars using UC models with more indicators and or an expanded structure.

For example, Johannsen and Mertens (2021) [henceforth JM], Pescatori and Turunen (2016),

Del Negro et al. (2017), Brand and Mazelis (2019), González-Astudillo and Laforte (2020),

among others, have examined the roles of additional determinants in explaining r-star.7 None

of these studies feature time-varying parameters, and only JM allows for SV, but their model

size is significantly smaller than ours. Chan, Koop, and Potter (2016) [henceforth CKP] illus-

trate the value of modeling u-star and pi-star as bounded random walk processes in a bivariate

Phillips curve. More recently, using fixed-parameter UC models, Crump et al. (2019) estimate

u-star by combining a range of labor market indicators across demographic groups and survey

expectations of inflation, and Hasenzagl et al. (2022) jointly estimate pi-star, u-star, gdp-star

(and output gap).8 Feunou and Fontaine (2023) develop a UC model with SV to examine the

secular decline in bond yields by jointly modeling r-star, g-star, and pi-star.

The paper is organized as follows. The next section describes in detail the econometric

model and its variants. Section 3 describes the data and estimation. Section 4 presents and

discusses in detail the estimates of stars and other model parameters. Section 5 reports the

real-time forecasting results and a discussion comparing real-time and final estimates of stars.

Section 6 illustrates the ability of the model to handle the COVID-19 pandemic data. Section

7 concludes. This paper has a supplementary online appendix that lists detailed Bayesian

estimation steps and additional results.

7Pescatori and Turunen (2016) enrich the underlying structure to estimate r-star. In particular, to extract
a reliable estimate of the output gap, they bring additional information from the Congressional Budget Office’s
(CBO) estimate of the output gap by treating it as a noisy measure of the “true” output gap.

8Morley and Wong (2020) and Chan (2019) propose an alternative modeling framework based on VARs to
estimate the long-run equilibrium values. The advantage of the VAR-based framework is the ability to handle
larger amounts of information conveniently and flexibly compared to UC models. On the other hand, the
advantage of UC modeling, as emphasized by CKP, is the availability of the direct estimates of stars, which in
the case presented here proves quite convenient to allow for direct modeling of the relationships between various
stars.
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2. Empirical Macro Model and Variants

The ingredients of our macroeconomic econometric model are guided both by economic the-

ory and by empirical considerations – namely, features that previous research has demonstrated

to be empirically relevant. These features include stochastic volatility and time-varying pa-

rameters, which in turn imply time-varying predictability. Collectively, these empirical features

permit modeling changing macroeconomic relationships in a flexible way.

We represent our empirical model using six sets of equations, which we denote blocks. These

six blocks, which allow for contemporaneous interactions between them, characterize the joint

dynamics of the unemployment rate, output growth, labor productivity growth, price inflation,

nominal wage inflation, nominal interest rate, and corresponding stars. To be sure, the model

assumes that all innovations are uncorrelated both serially and across equations. However, we

emphasize that any assumed current period correlations between the cyclical components and

or between stars are directly modeled via the model equations that define the contemporaneous

relationships between the components (e.g., the cyclical output gap at time t with the cyclical

unemployment gap at t; r-star and g-star).

Before we describe the model, we provide some necessary background information, including

the econometric definition of the star and the usefulness of long-run survey expectations in the

estimation of stars.

2.1. The econometric notion of a long-run equilibrium

Following CCK, Mertens (2016), and Lee and Nelson (2007), among many, this paper defines

the long-run equilibrium (or star) of a particular macroeconomic series as its infinite-horizon

forecast conditional on the current information set. This definition of a star is consistent with

the notion of Beveridge-Nelson trend decomposition, and an extensive literature has adopted

this approach to estimate stars. Equivalently, as commonly defined in the trend estimation

literature, the infinite-horizon forecast could be viewed as an estimate of trend conditional on

the current information set (e.g., CCK, Mertens, 2016, Lee and Nelson, 2007). As discussed in

Mertens (2016), among others, different information sets would likely yield different estimates

of the infinite-horizon forecast (or trend). Mertens showed that including survey projections of

long-term inflation in the information set led to more precise and forward-looking estimates of

trend inflation.

The link between the infinite-horizon forecast and the underlying trend is described well

by the unobserved components (UC) model (see Laubach and Williams, 2003; Lee and Nelson,

2007; Mertens, 2016; CCK). In a UC model, a series (Yt) is typically represented as the sum of

a nonstationary trend component Y ∗
t , which is assumed to evolve slowly and a stationary cycle

Y c
t , whose infinite-horizon conditional expectation is assumed to be zero. Accordingly,

Yt = Y ∗
t + Y c

t . (1)
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The trend component Y ∗
t is interpreted as the limiting forecast of the series (conditional on

the information set It) as the forecast horizon tends to infinity,

lim
j→∞

E[Yt+j |It] = Y ∗
t . (2)

Differencing the above equation yields,

Y ∗
t = Y ∗

t−1 + lim
j→∞

E[Yt+j |It]− lim
j→∞

E[Yt+j |It−1] = Y ∗
t−1 + et, et ∼ N(0, σ2e). (3)

which suggests a random walk process for the trend Y ∗
t . It also suggests a stationary, ergodic

mean-zero process for Y c
t .

Intuitively, the above set of assumptions implies that once the effects of the shocks have

fully played out, the macroeconomic series of interest, Yt, gravitates to its underlying trend

level, Y ∗
t .

As discussed in CCK, various statistical and econometric models could fit within the above-

specified decomposition. This paper formulates a specific unobserved components time-series

model and its variants.

2.2. The role of survey expectations

As discussed in the introduction, an important contribution of this paper is to provide a

direct role for long-run survey expectations in refining the stars’ estimates. Specifically, we follow

the approach of CCK (and Pescatori and Turunen, 2016). These papers explicitly estimate an

equation linking the observed measure of a long-run forecast obtained from external sources

(survey in the case of CCK and CBO projection of the output gap in Pescatori and Turunen)

to an unobserved object of interest. We extend their approach to the macroeconomic variables

considered in this paper.

Several papers have documented an essential role of long-run survey (and institutional)

forecasts in helping refine the econometric estimation of model parameters, including the latent

components (e.g., pi-star: Kozicki and Tinsley, 2012; Mertens, 2016; Mertens and Nason, 2020;

CCK; gdp-star: Pescatori and Turunen, 2016; r-star: Del Negro et al., 2017). Specifically,

Mertens and Nason (2020), CCK, Mertens (2016), and Kozicki and Tinsley (2012), in using

different methodologies (in combining survey data with model forecasts) to estimate the trend

in US inflation, show that long-run survey forecasts of inflation deliver crucial additional infor-

mation (beyond the recent inflation history) in refining trend estimates and improving model

fit.9 In a similar vein, Pescatori and Turunen (2016) document the usefulness of the CBO’s

projection of the potential output gap in improving their model’s output gap precision. It is this

particular literature that motivates us to consider long-run survey forecasts in our large-scale

9An important empirical finding of CCK is that long-run survey expectation of inflation is a biased measure
of the underlying trend inflation, at least at some times. Hence, simply equating pi-star with the long-run survey
expectation (as is commonly done in macroeconomic models) may not be a reasonable strategy.
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econometric model.

The advantage of survey (and institutional) forecasts stems from the fact that they could be

viewed as hybrid forecasts, i.e., a combination of judgment and forecasts derived from various

modeling approaches. Furthermore, in high-dimensional models, such as the one developed

in this paper, the use of long-run survey projections, which are targeted and direct measures

of stars, could help anchor model-based estimates of stars to reasonable values and have the

potential to improve precision of the estimates.

Accordingly, in this paper, with the exceptions of nominal wage inflation and labor pro-

ductivity, for each of the remaining four variables, we model a direct link between long-run

survey projections (or the long-run CBO projections in the years for which survey projections

are unavailable) and the corresponding star using the following econometric equations:10

Zj
t = Cj

t + βjj∗t + εzjt , ε
zj
t ∼ N(0, σ2zj), j = π, u, g, r (4)

Cj
t = Cj

t−1 + εcjt , ε
cj
t ∼ N(0, σ2cj), j = π, u, g, r (5)

where π refers to price inflation, u refers to the unemployment rate, g refers to real GDP

growth, r refers to the real short-term interest rate, Zj
t refers to the long-run survey forecast

corresponding to the variable j, and j∗t is the unobserved j star.11

Cj
t is a time-varying intercept assumed to evolve as an RW process to possibly capture the

permanent wedge between the survey estimate and the model-based star. This wedge can arise

for several reasons, including the fact that star is assumed to be the infinite-horizon forecast,

whereas the survey forecast refers to the average forecast for the five-year period starting seven

years into the future in the case of BC and the ten-year-ahead forecast in the case of the SPF

(for price inflation).

The above set of equations defines a simplistic and flexible relationship between the long-run

survey expectations and the star.

2.3. Unemployment block

The long-run equilibrium level of unemployment (u-star) is the (nonzero) unemployment rate

that prevails when output is growing at potential, and the economy adds jobs so as to maintain

the full-employment level. As discussed in Crump et al. (2019), two approaches are commonly

10For the long-run inflation forecast, we use the Survey of Professional Forecasters (SPF) (and PTR series
that is available to download from the website of the Federal Reserve Board), and for the long-run forecasts of
the other three variables, we use the Blue Chip (BC) survey.

11Because survey expectations of g-star, i.e., Zg, are reported as annualized rates, the precise formulation of
the equation linking survey expectations to g-star is Zg

t = Cg
t + βg ∗ 4 ∗ g∗t + εzgt . We note that r-star survey

projections are not direct estimates; instead, they are inferred from the Blue Chip survey’s long-run projections
of the GDP deflator and short-term interest rates using the long-run Fisher equation. The inferred estimates of
survey expectations for r-star goes back to 1983.Q1. Please refer to the online appendix A9 for details on the
procedure to back-cast estimates all the way back to 1959.
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used to estimate u-star. The first approach applies UC modeling to detailed labor market

data (such as job vacancies, firms’ recruiting intensity, demographic changes, flows into and

out of unemployment) to extract respective trends. These trends are used to construct implied

estimates of u-star (e.g., Davis, Faberman, and Haltiwanger, 2013). The second approach uses

a combination of information from prices (and or nominal wages, survey expectations) and the

estimated Phillips curve relationship between price inflation and the aggregate unemployment

rate to back out the estimate of u-star (e.g., Stella and Stock, 2015, CKP).12 We adopt the

latter approach.

Specifically, we posit that the observed unemployment rate is decomposed into a (bounded)

RW trend component (u-star) and a stationary cyclical component.

Ut = U∗
t + U c

t (6)

The cyclical component is modeled as an AR(2) process.13 Because we are also modeling

the output gap (i.e., the level of real GDP minus the level of potential real GDP), we depart

from the previous literature by augmenting the AR2 unemployment gap with the output gap

(denoted ogap) as an additional explanatory variable.14

Ut − U∗
t = ρu1(Ut−1 − U∗

t−1) + ρu2(Ut−2 − U∗
t−2) + ϕuogapt + εut , ε

u
t ∼ N(0, eh

u
t ) (7)

where, ρu1 + ρu2 < 1, ρu2 − ρu1 < 1, and |ρu2 | < 1.

The variance of the error term εut is allowed to change over time.15

Similarly, as shown later, we add information from the unemployment gap when modeling

the output gap. The joint modeling of both the output gap and the unemployment gap allows

us to estimate the strength of the relationship between the two cyclical components, popularly

known as Okun’s law.16 In equation (7), the coefficient ϕu captures the contemporaneous

12As mentioned in Crump et al. (2019), one of the criticisms of this approach is that it will be affected by the
breakdown of the Phillips curve relationship post-2007. However, by allowing time variation in the coefficients
capturing the price and wage Phillips curve relationships, as we do, our approach should face less of a problem.
In addition, as illustrated in Del Negro, Giannoni, and Schorfheide (2015) including information from long-run
survey expectations of inflation (as we do) should further help capture the inflation behavior in the post-2007
period.

13The use of a parsimonious (time-invariant) AR2 process to identify the cyclical component of the unem-
ployment rate is a commonly used assumption, in our case motivated by a recent string of empirical studies, e.g.,
Lee and Nelson (2007), CKP, and Gaĺı and Gambetti (2019). CKP explore the empirical importance of allowing
for time variation in the parameters of an AR2 process, and find that the data prefer the time-invariant AR2
process, hence validating the widely used assumption of a simple AR2 process.

14Sinclair (2009), Grant and Chan (2017a), and Berger, Everaert, and Vierke (2016), among several others,
document the empirical importance of jointly modeling the unemployment rate gap and the output gap.

15Mertens (2014), Stella and Stock (2015), and Berger, Everaert, and Vierke (2016) provide evidence in
support of SV in the cyclical component of the unemployment rate.

16We note that when jointly modeling output and the unemployment rate, most researchers assume a common
cyclical component between the two. However, in light of the empirical evidence that cyclical unemployment
displays more persistence than the output gap (e.g., Berger, Everaert, and Vierke (2016)), we model two separate
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relationship between the output gap and the cyclical unemployment rate gap. The estimate,
1−ρu1−ρu2

ϕu , could be interpreted as the Okun’s law coefficient.17

U-star is modeled as a bounded RW, where the bounds’ values are fixed at 3.5% (lower

bound) and 7.5% (upper bound).18

U∗
t = U∗

t−1 + εu∗t , ε
u∗
t ∼ TN(au − U∗

t−1, bu − U∗
t−1; 0, σ

2
u∗) (8)

where the notation TN(a, b;µ, σ2) refers to normal distribution with mean µ and variance

σ2 but truncated in the interval (a, b).19

2.4. Output block

We are interested in both the potential output (i.e., gdp∗) and the growth rate in potential

output (i.e., g∗). To feasibly estimate both of these latent processes, we follow the commonly

adopted approach, which decomposes the level of aggregate output into the level of potential

output and a cyclical component (output gap), where the cyclical component is defined as the

deviation of the observed aggregate output level from potential output. This simple decompo-

sition has a long tradition going back to Clark (1987).

gdpt = gdp∗t + ogapt (9)

where gdp ≡ log(GDP ) and gdp∗ refers to potential output, which is unobserved.

Following Grant and Chan (2017b), gdp∗ is assumed to follow a second-order Markov pro-

cess.20

cycles linked to each other via the Okun’s law relationship (similar to Sinclair (2009) and Grant and Chan
(2017b)).

17As shown in Berger, Everaert, and Vierke (2016), in a specification that entertains two separate cycles
(cyclical unemployment and the output gap), the data support a time-invariant parameter describing the Okun’s
law relationship. In contrast, a specification with a common cyclical component favored a time-varying Okun’s
law relationship (adding support to Knotek II, 2007). Once they allowed for a sluggish response of the cyclical
unemployment rate by adding persistence, via a one-period lag of the cyclical unemployment rate, evidence of
a time-varying Okun coefficient disappears. We found similar evidence, i.e., the Bayesian model comparison
assessment slightly preferred the approach of two separate cycles with a time-invariant Okun’s law compared to
a common cycle with a time-varying Okun’s law parameter.

18These values are informed by estimating the CKP model over our estimation sample, and are close to values
reported in CKP based on their estimation sample. As a further check, most estimates of the u-star reported in
the commonly cited literature fall within the bounds we use in this paper.

19With the exception of CKP, most of the literature models u-star as a driftless RW. The use of an unrestricted
RW process has empirically been shown to work well, but CKP show that modeling u-star as a bounded RW
process is even better. They use bounds because, by construction, the unemployment rate is a bounded variable,
which implies that the long-run equilibrium in the labor market would restrict the movements in u-star within
a bounded interval. CKP argue that economic forces that govern the movements in u-star are slow-moving and
those forces would not cause the unemployment rate to fall to levels close to zero or to levels that are higher than
the previous peaks caused by recessions.

20This modeling assumption implies that all permanent shocks to output are attributed as shocks to g∗.
Results are similar had we instead modeled gdp∗ as a random walk with a time-varying drift term, where the
time-varying drift term (interpreted as g∗) is assumed to follow a random walk process (to allow for a stochastic
g∗). However, the metric of Bayesian model comparison slightly favors the assumption of second-order Markov
process for gdp∗, which is consistent with the findings of Grant and Chan (2017b). An advantage of modeling
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gdp∗t = 2gdp∗t−1 − gdp∗t−2 + εgdp∗t , εgdp∗t ∼ N(0, σ2gdp∗) (10)

Which can be re-written as

△gdp∗t = △gdp∗t−1 + εgdp∗t

If we define g∗t ≡ △gdp∗t , where △ is the first difference operator, then,

g∗t = g∗t−1 + εgdp∗t (11)

The cyclical component, ogap, is assumed to be a stationary AR(2) process augmented with

additional explanatory variables: the real interest rate gap and the unemployment gap,

ogapt = ρg1(ogapt−1) + ρg2(ogapt−2) + ar(rLt − r∗t − tp∗t ) + λg(Ut − U∗
t ) + εogapt (12)

where, εogapt ∼ N(0, eh
o
t ), ρg1 + ρg2 < 1, ρg2 − ρg1 < 1, and |ρg2| < 1

Equation (12) could be interpreted as defining an IS-curve (as in LW and subsequent papers

modeling r-star) that allows feedback (via parameter ar) from the real interest rate gap to the

output gap (i.e., the real interest rate gap responds to economic slack). The IS equation is

inspired by LW but with two modifications. First, instead of using the interest-rate gap based

on the short-term real rate of interest, we use the long-term real interest rate (as in González-

Astudillo and Laforte, 2020).21 Specifically, the long-term real interest rate, rL, is constructed

as the difference between the nominal yield on a 10-year Treasury bond and the 10-year inflation

expectations (i.e., the PTR series for PCE inflation).22 The long-run value of term premium,

tp∗ is treated as an exogenous variable and is constructed as the average of the differential

between the long-term interest rate (i.e., 10-year Treasury bond) and the federal funds rate,

similar to Johannsen and Mertens (2021).

Second, to improve the econometric estimation of the output gap, we enrich the IS equation

by bringing in information from the unemployment gap (from the unemployment block) as an

explanatory variable.23 This latter addition is motivated by the approach taken in a long list

g∗ as a second-order Markov process compared to an RW with time-varying drift is that it requires estimating a
single shock parameter (σ2

gdp∗), as opposed to two for the latter (one for the shock to gdp∗ and the other for the
shock to the time-varying drift, aka g∗). It is worth noting that the assumption of gdp∗ following a second-order
Markov process is consistent with the Beveridge-Nelson trend described in section 2.1 (see Proietti, 1995).

21In theoretical models, the long-term interest rate influences household consumption decisions and business
investment decisions.

22We also experimented with an alternative specification, in which the interest rate gap is constructed as
the difference between the short-term federal funds rate and the first lag of four-quarter trailing PCE inflation,
similar in spirit to LW. Based on model fit, this specification was slightly inferior. It is worth noting that had
the longer history of long-term inflation expectations data been available at the time of the writing, LW would
have constructed the interest rate gap using the long-term interest rate (see page 1064 in LW).

23Model fit, the precision metric for u-star and the output gap, and the plausibility of the estimates of output
gap strongly support the joint modeling of the output gap and the unemployment gap.
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of papers (e.g., Morley and Wong, 2020; Grant and Chan, 2017a; Fleischman and Roberts,

2011; Sinclair, 2009) that demonstrate the usefulness of the unemployment rate in improving

the econometric estimation of the output gap. The coefficient λg captures the contemporaneous

relationship between the output gap and the unemployment gap.24

2.5. Productivity block

The estimates of the long-run level of (labor) productivity growth (p-star) are of considerable

interest to policy makers.25 This is because standard macroeconomic models tightly connect

p-star to the long-run level of the real interest rate (i.e., r-star). In these models, a lower level

of p-star implies a lower level of r-star, and a higher level of p-star implies a higher r-star (see

Lunsford, 2017). However, based on post-1960 data, Lunsford and Fiorentini, Galesi, Pérez-

Quirós, and Sentana (2018) found no statistical evidence supporting the link between p-star

and r-star.

Several papers have endeavored to estimate the long-run level of productivity growth using

various statistical and econometric models. To extract more precise and timely estimates of p-

star, various authors (e.g., Kahn and Rich, 2007; Roberts, 2001) have proposed using additional

variables alongside labor productivity (e.g., real compensation, real consumption, and average

hours worked). On the other hand, Edge, Laubach, and Williams (2007) show that estimates

of long-run productivity growth obtained from a simple trend-cycle univariate model solved

with the Kalman filter do an adequate job of mirroring the long-run projections of productivity

growth reported in the SPF and institutional forecasts (e.g., CBO).

On closer inspection, the ability of the Kalman filter to echo the predictions of the profes-

sional forecasters is not surprising. Productivity growth is a notoriously volatile series and is

subject to extreme revisions from one vintage to another. So, distinguishing highly persistent

fluctuations from truly permanent changes is a difficult job for professionals and models alike.

Jacobs and van Norden (2016) discuss in detail some of these challenges when working with

productivity data.

The findings in Lunsford (2017), Edge, Laubach, and Williams (2007), and Jacobs and van

Norden (2016) motivate the formulation of a parsimonious structure for the productivity block

relative to other blocks of the model. In particular, we abstract from explicit modeling of direct

links between p-star and r-star and between p-star and g-star. However, in an alternative speci-

fication we allow for the latter, i.e., a direct link between p-star and g-star.26 Our formulation is

24We note that innovations ε2gdp∗ and ε2ogap are uncorrelated. In an important contribution, Morley, Nelson,
and Zivot (2003), who assume a deterministic g-star, show that this assumption matters for estimating potential
output. However, Grant and Chan (2017a) show that in their specification, once a stochastic g-star is allowed for,
the correlation between ε2gdp∗ and ε2ogap goes to zero. They also show that the model without correlation performs
comparably to the model with correlated innovations based on Bayesian model comparison. Accordingly, to keep
estimation tractable, we assume uncorrelated innovations.

25Labor productivity is defined here as output per hour worked.
26We abstract from the direct link between p-star and g-star in the baseline specification because doing so

reduces the model fit and notably lowers the precision of the stars’ estimates and the other model parameter
estimates.
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richer than that used in the cited literature, as we allow for time-varying parameters, including

stochastic volatility.

The productivity gap, which is defined as (nonfarm) labor productivity growth27 (quarterly

annualized) less p-star, is modeled as a function of a one-quarter lag in the productivity gap

and the contemporaneous cyclical unemployment gap.

Pt − P ∗
t = ρp(Pt−1 − P ∗

t−1) + λpt (Ut − U∗
t ) + εpt , ε

p
t ∼ N(0, eh

p
t ) (13)

where, |ρp| < 1

The inclusion of the cyclical unemployment gap helps tease out movements in productivity

associated with the business cycle.28

Gaĺı and van Rens (2021) find weakening in the correlation between labor productivity and

the cyclical indicator, which motivates time variation in the coefficient λp.

λpt = λpt−1 + ελpt , ε
λp
t ∼ N(0, σ2λp) (14)

The variance of the error term εpt is allowed to change over time. Allowing for the time

variation in the cyclical relationship and the error term allows the model to better discriminate

the cyclical movements and idiosyncratic movements in productivity from those associated with

shifts in p-star.

P-star is modeled as a driftless random walk component, and the variance of the shocks to

this component is assumed to be constant.

P ∗
t = P ∗

t−1 + εp∗t , ε
p∗
t ∼ N(0, σ2p∗) (15)

Modeling p-star this way allows it to capture both unobserved and observed factors that

are thought to be persistent but hard to measure. In particular, one factor is developments in

fiscal policy; for example, high levels of government debt in the longer term tend to crowd out

private investment, thereby reducing longer-term productivity growth.

Economic theory posits that the long-run nominal wage inflation equals the sum of long-run

27As discussed in Kahn and Rich (2007), the focus outside of the farm sector is primarily on avoiding short-term
transitory volatility in the farm sector that is heavily driven by weather and other nontechnological factors.

28The growth in labor productivity (and more generally aggregate productivity) has been shown to be pro-
cyclical to some degree (e.g., Roberts, 2001); it typically increases sharply at the onset of recoveries and falls
during recessions. However, empirical evidence on the strength and the direction of the cyclical relationship
is mixed. This mixed evidence stems from the use of different estimation samples and or cyclical indicators
(employment-based or output-based). For instance, Gaĺı and van Rens (2021), using split sample estimation,
illustrate empirically the significant weakening in the correlation between labor productivity and employment,
especially post-1984. They find that the relationship has become countercyclical in the past three decades when
using employment as the cyclical indicator. But it is slightly procyclical when using output as the cyclical indi-
cator. In an alternative specification we replace cyclical unemployment with the output gap and obtain similar
results. Gaĺı and van Rens (2021) using a structural macro model attribute the weakening procyclicality of labor
productivity in part to the increased flexibility of the US labor market post-1984, which has enabled firms to
make adjustments at the extensive margin quickly and easily in response to shocks.
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productivity growth and long-run price inflation. As discussed later in the wage inflation block,

this theoretical restriction defines the law of motion for w-star and constitutes an additional

channel influencing the dynamics of p-star.

2.6. Price inflation block

We use price inflation as measured by the personal consumption expenditures (PCE) price

index, the inflation measure that the Federal Reserve targets. Our formulation for the price

inflation block closely follows CKP and CCK, combining elements from both of these papers.

Specifically, as in CKP, the stationary component, the inflation gap (defined as the deviation

of inflation from pi-star), is modeled as a function of the one-quarter lagged inflation gap,

unemployment gap, and an error term, whose variance is allowed to vary over time.

The coefficient, ρπ on the lagged inflation gap, which captures persistence in inflation dy-

namics, is allowed to vary over time.29

πt − π∗t = ρπt (πt−1 − π∗t−1) + λπt (Ut − U∗
t ) + επt , ε

π
t ∼ N(0, eh

π
t ) (16)

ρπt = ρπt−1 + ερπt , ερπt ∼ TN(0− ρπt−1, 1− ρπt−1; 0, σ
2
ρπ) (17)

The innovations to the AR(1) coefficient, ρπ are truncated so that 0 < ρπt < 1, ensuring

that the inflation gap (in equation 16) is stationary at each point in time t.

λπt = λπt−1 + ελπt , ελπt ∼ TN(−1− λπt−1, 0− λπt−1; 0, σ
2
λπ) (18)

λπ is the slope of the price Phillips curve and is constrained in the interval (-1,0).

The parameter λ estimates the price Phillips curve relationship. There is ample empirical

evidence in support of a time-varying price Phillips curve (e.g., Stella and Stock, 2015; CKP),

hence our choice of allowing for time-variation in the parameter λπ.

Pi-star is modeled as a driftless random walk component, and the variance of the shocks to

this component is assumed to be constant (as in CKP). This latter assumption of homoscedastic

errors is in contrast to Stock and Watson (2007), Mertens (2016), and several others. Our choice

not to incorporate SV into shocks to pi-star is made to keep the estimation manageable and

maintain consistency with our modeling assumptions for the stars.30

29Chan, Koop, and Potter (2013), CKP, and CCK have found strong empirical support for the time-variation
in the coefficient of inflation gap. Our results reinforce the empirical importance of allowing for time-variation
in this coefficient.

30Allowing SV in the inflation gap component and not in the trend component is not without precedent. Be-
sides CKP, Chan (2013) is a recent paper modeling SV only in the measurement equation (i.e., cyclical/transitory
component). Berger, Everaert, and Vierke (2016) find support for SV in the inflation gap component but weak
evidence for SV in the trend component. Our preliminary results indicate similar findings: that adding SV to
the pi-star equation neither helps nor hurts the model fit.
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π∗t = π∗t−1 + επ∗t , επ∗t ∼ N(0, σ2π∗) (19)

Lastly, as we show next (see equation 20), pi-star is restricted to satisfy the long-run re-

striction informed by theory.

2.7. Wage inflation block

The long-run equilibrium level of nominal wage inflation (w-star) is the nominal wage growth

rate consistent with its fundamentals – p-star and pi-star. As noted earlier, in the long run,

economic theory posits that the nominal wage inflation equals the sum of the long-run growth

rate of labor productivity and the long-run level of price inflation. In other words, in the

long run, labor productivity growth is the only fundamental driver of real wages; therefore,

price inflation and nominal wage inflation have to adjust relative to each other to maintain the

fundamental relationship. In our setup, we impose this relationship to define w-star.

W ∗
t = π∗t + P ∗

t +Wedget + εw∗
t , εw∗

t ∼ N(0, σ2w∗) (20)

Wedget =Wedget−1 + εwlr
t , εwlr

t ∼ N(0, σ2wlr) (21)

Because all three, nominal wage inflation, price inflation, and labor productivity growth data

come from different sources and so differ in scope and coverage, a time-varying wedge, which

is assumed to evolve as an RW process, is added to the above equation. The above equation

implies that W ∗ adjusted for the wedge is approximately equal to sum of π∗t + P ∗
t .

Equation (22) relates the nominal wage inflation gap – defined as the difference between the

nominal wage inflation and w-star – to its one-quarter lagged gap, the cyclical unemployment

gap, and the price inflation gap. The variance of the error term, εwt , is allowed to vary over

time.

Wt −W ∗
t = ρwt (Wt−1 −W ∗

t−1) + λwt (Ut − U∗
t ) + κwt (πt − π∗t ) + εwt , ε

w
t ∼ N(0, eh

w
t ) (22)

The findings in Knotek II and Zaman (2014) motivate the inclusion of a one-quarter lagged

nominal wage inflation gap, with time variation in the parameter ρw; the latter quantifies the

persistence in wage inflation dynamics.

ρwt = ρwt−1 + ερwt , ερwt ∼ TN(0− ρwt−1, 1− ρwt−1; 0, σ
2
ρw) (23)

The innovations to the AR(1) coefficient, ρw, are truncated so that 0 < ρwt < 1, to ensure

that the wage gap (in equation 22) is stationary at each point in time t.
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The parameter λw in equation (22) measures the strength of the cyclical relationship between

the nominal wage gap and labor market slack (aka the wage Phillips curve). Many studies, both

theoretical (e.g., Gaĺı, 2011) and empirical (e.g., Knotek II and Zaman, 2014; Peneva and Rudd,

2017; Gaĺı and Gambetti, 2019), have documented strong support for the existence of a wage

Phillips curve in the US data. These studies have also demonstrated the instability of the wage

Phillips curve, motivating the need for time-variation in the parameter λw.31

λwt = λwt−1 + ελwt , ελwt ∼ TN(−1− λwt−1, 0− λwt−1; 0, σ
2
λw) (24)

where λw is the slope of the wage Phillips curve and is constrained in the interval (-1,0).

As discussed earlier in the price inflation block, both theory and empirical evidence point

to the connection between price inflation and nominal wage inflation. The standard fully struc-

tural models describing the New Keynesian Phillips curve posit a tight relationship between

price and wage inflation via the channel of current and expected future marginal costs. In

these models, price inflation today is a function of expected price inflation and expected fu-

ture marginal costs, where marginal costs are generally linked to wages. Knotek II and Zaman

(2014) provide empirical evidence of the connection between nominal wage and price inflation.

In particular, they show no clear evidence of one Granger-causing the other; instead, both wage

and price inflation generally tend to move together. This reasoning would suggest the impor-

tance of modeling the direct relationship between wage inflation and price inflation. Hence, this

motivates the inclusion of the price inflation gap in the measurement equation (22).

Several studies document a significant weakening in the empirical link between price inflation

and nominal wage inflation since the 1980s (e.g., Peneva and Rudd, 2017; Knotek II and Zaman,

2014), motivating time variation in the parameter κw. The expression
κw
t

1−ρwt
could be interpreted

as an estimate of the short-run pass-through from price inflation to wage inflation.

κwt = κwt−1 + εκwt , εκwt ∼ N(0, σ2κw) (25)

2.8. Interest rate block

We close the model with the interest rate block characterizing the interest rate dynamics

and the law of motion for r-star (the long-run equilibrium real short-term interest rate).

Our first equation of the block brings information from the nominal short-term interest rate

via a Taylor-type rule (TR) to aid in identifying r-star. Specifically, this equation characterizes

the dynamics of the short-term nominal interest rate gap, where the gap is the difference between

the nominal short-term interest rate i, and the long-run level of the nominal neutral rate of

interest, i-star. (i-star = pi-star + r-star). When modeling the nominal short-term interest

31Literature has posited various explanations for the instability of the wage Phillips curve, including downward
nominal wage rigidities, where the degree of rigidity varies with the phase of the business cycle (see Daly and
Hobijn, 2014).
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rate, especially in a framework like ours, one must account for the effective lower bound (ELB)

period.

The recent literature provides at least two options for handling the ELB. The first is to

explicitly but separately model the observed short-term nominal rate, which cannot go below

zero, and the “shadow interest rate,” which is a hypothetical unobserved and unbounded coun-

terpart. Wu and Xia (2016) popularized the concept of the shadow interest rate, and JM and

González-Astudillo and Laforte (2020) are two recent approaches well suited for inclusion in

UC models. The second approach is to treat the estimate of the “shadow rate” obtained from

Wu and Xia (2016) as the measure of the short-term nominal interest rate in measurement

equations such as the TR (e.g., Pescatori and Turunen, 2016).32

Given our model’s size and complexity, we adopt the latter approach, which is simpler

though not perfect.33 Using a direct measure of the nominal shadow rate allows us to capture

both conventional and unconventional monetary policy effects when the (observed) nominal

federal funds rate is constrained at the ELB.34

Equation (26) relates the nominal interest rate gap (based on the shadow federal funds rate)

to its one-period lag interest rate gap, the current quarter inflation gap (i.e., the deviation of

inflation from pi-star), and the unemployment rate gap (i.e., the deviation of the unemployment

rate from u-star). This equation roughly characterizes the monetary policy reaction function

as defined by Taylor (2001).35 There is a broad consensus that policy adjustments outside of

cyclical turning points are made very gradually. Hence, this motivates the inclusion of the

lagged interest rate gap term.

Chan and Eisenstat (2018b,a) and JM document strong empirical support for constant

parameters in the Taylor rule equation while allowing for stochastic volatility in the errors.

Accordingly, we allow for SV in the interest rate equation. JM, González-Astudillo and Laforte

(2020), and Brand and Mazelis (2019) document the usefulness of adding the TR equation

32The estimates from Wu and Xia (2016) are publicly available and regularly updated. Treating the shadow
rate as the measure of the short-term nominal rate in place of the federal funds rate is commonly done, and often
academic papers report results indicating robustness to the use of Wu and Xia’s shadow rate (e.g., Beyer and
Wieland, 2019; Lewis and Vazquez-Grande, 2019)

33Acknowledging the critiques in using the exogenous measure of the shadow rate, we examine the robustness
of our results to the shadow federal funds rate obtained from Jones, Kulish, and Morley (2021), which is based
on an estimated structural macroeconomic model. We also test the robustness of replacing the shadow federal
funds rate with the actual federal funds rate, i.e., the federal funds rate of zero over the ZLB period, which
sidesteps the generated regressor criticism of Mavroeidis (2021). We find that the estimates of stars (including
r-star) are fairly identical across different measures of the shadow interest rate (and the federal funds rate). The
shadow rates obtained from different models may reflect differences in the effectiveness of the conventional and
unconventional monetary policy. Our finding that the resulting estimates of the stars, including r-star, are robust
in whether we use the shadow rate of Wu and Xia or Jones, Kulish, and Morley (2021) or the actual federal
funds rate is comforting. The inclusion of the SV in the TR equation is the key reason for this robust finding,
as differences in the shadow rates’ estimates are reflected in the SV estimates, leaving r-star and other stars
unaffected.

34The nominal shadow federal funds rate is identical to the nominal federal funds rate when the effective lower
bound is not binding.

35It is worth emphasizing that we denote this equation as a “Taylor-type rule” and not an exact Taylor-rule
because in our equation, pi-star refers to the estimate of trend inflation, which may or may not be equal to
central bank’s long-run inflation goal.
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to identify r-star. The latter two do not entertain SV, which JM has found to be empirically

important. As discussed later, we also found that adding the TR equation improves the precision

of the r-star estimates significantly, and the data strongly favor allowing for SV in the error

process.

it − π∗t − r∗t = ρi(it−1 − π∗t−1 − r∗t−1) + λi(Ut − U∗
t ) + κi(πt − π∗t ) + εit, ε

i
t ∼ N(0, eh

i
t) (26)

where ρi is truncated so that 0 < ρi < 1.

Our second equation motivated by LW heeds the economic theory suggesting the role of

various real factors in influencing movements in r-star. These factors include long-run output

growth (and long-run productivity growth), trend labor force growth (reflecting shifts in demo-

graphics and net migration), taxation structure, government expenditure shifts, and shifts in

liquidity preferences (e.g., Del Negro et al., 2017). Accordingly, equation (27) expresses r-star

as a linear function of g-star and a “catch-all” component D. In our baseline specification, both

g-star and D follow random walk processes similar to LW (and many other papers).36

r∗t = ζg∗t +Dt. (27)

Dt = Dt−1 + εdt , ε
d
t ∼ N(0, σ2d) (28)

All in all, information from six sources and/or elements informs the econometric identifica-

tion of r-star. These sources include: an IS equation (12); a TR equation (26), which allows for

SV; an equation linking r-star to survey expectations; the shadow rate; and an equation relating

r-star to g-star. As we show shortly, all of these sources play a role in improving r-star’s pre-

cision. To reiterate, in our framework, we use information from both short-term interest rates

(via a TR equation) and long-term interest rates (via an IS equation) to inform the estimation

of r-star.37

2.9. Stochastic Volatility in ”gap” equations

As discussed earlier, the variance of the error terms, εut , ε
ogap
t , εpt , ε

π
t , ε

w
t , and εit is al-

lowed to vary over time. This implies that the model permits changing size of the shocks to

36The RW assumption for D is an appropriate one, given that our focus is the long-run r-star that should, in
principle, be influenced over time by permanent shifts in aggregate supply and demand (Laubach and Williams,
2016). Researchers have also explored an AR process for component D, which would be consistent if the interest
is in medium-term r-star (see Lewis and Vazquez-Grande, 2019), as this would allow r-star to be influenced by the
transitory shocks to aggregate demand (via the AR process) and permanent shocks to aggregate supply (via the
RW process for g-star). In studies focused on the long-run notion of r-star, such as LW, Laubach and Williams
(2016), Clark and Kozicki (2005), and Kiley (2020), specification based on the RW assumption has been shown
to be empirically favored by the data compared to AR assumption.

37Del Negro et al. (2017), JM, Bauer and Rudebusch (2020), and González-Astudillo and Laforte (2020) are
recent studies that have highlighted the usefulness of exploiting information from both short-term and long-term
interest rates in the identification of r-star.
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processes defining the cyclical unemployment, cyclical output, productivity gap, price inflation

gap, nominal wage inflation gap, and nominal interest rate gap.

Following a long list of papers, we define the SV process as a driftless random walk in the

log-variance.

hidt = hidt−1 + εjt , ε
j
t ∼ N(0, σ2j ) (29)

where id = {u, ogap, p, π, w, i}, and j = {hu, ho, hp, hπ, hw, hi}

2.10. Base model and its variants

The equations (4), (5). . . (29) define our baseline model formulation (denoted Base). Figure

1 provides a visual representation of our Base model. And section A1.a. of the online appendix

lists all of the equations for the Base model for easy reference. To assess the usefulness of survey

information in the econometric estimation of our multivariate UC model, we also estimate a

variant of the baseline model that excludes the equations linking long-run survey expectations

to stars (i.e., excluding equations 4 and 5). We denote the latter specification as Base-NoSurv.

The model specifications Base and Base-NoSurv constitute our two main model specifications.

To assess the empirical support for numerous additional features (informed by theory and past

empirical research) embedded in our modeling framework, we formulate several additional model

specifications, each of which is a restricted variant of the Base. To keep the length of the paper

manageable, we report selected results from the auxiliary model specifications in the main part

of the paper with additional results included in the online appendix. Below, we summarize the

description of the additional model variants.38

Base-NoSurv. To assess the usefulness of survey expectations, we estimate a variant of

the baseline model that excludes all the equations linking surveys to stars.

Base-NoSV. To assess the empirical support of stochastic volatility in shock variances, we

estimate a variant of the baseline model with no SV in any of the measurement (gap) equations.

Base-NoTVP. To assess the empirical support of time variation in important macroeco-

nomic relationships, we estimate a constant parameter variant of the baseline model. Specifi-

cally, we make the parameters, λp (eq.13), λπ and ρπ (eq. 16), Wedge (eq. 20), rhow, λw, and

κw (eq. 22) time-invariant. We still allow for SV in the measurement (gap) equations.

Base-W*RW. To assess the empirical support of the theoretical restriction defined by

equation 20 (which defines w-star as the sum of pi-star and p-star), we estimate a variant of the

baseline model that replaces equation 20 with a random walk assumption for w-star as defined

38In the working paper version, we list several more specifications but to keep the length of this paper
manageable, here we focus on a smaller number of specs.
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by equation 20b.

W ∗
t =W ∗

t−1 + εw∗
t , εw∗

t ∼ N(0, σ2w∗) (20b)

Base-R*RW. To assess the empirical support for the theoretical restriction defined by

equation 27 (the link between g-star and r-star), we estimate a model specification that replaces

equation 27 with a random walk assumption for r-star as defined by the equation 27b.

r∗t = r∗t−1 + εr∗t , ε
r∗
t ∼ N(0, σ2r∗) (27b)

Base-NoLinkStars. To assess the empirical support of both theoretical restrictions defined

by equations 20 and 27, we estimate a variant of the baseline model that combines Base-W*RW

and Base-R*RW.

Base-G*LinkP*. To assess the empirical support for the theoretical link between g-star

and p-star, we estimate a model specification that replaces equations 10 and 11 with equations

10b, 11b, and 11c.

gdp∗t = gdp∗t−1 + g∗t + εgdp∗t , εgdp∗t ∼ N(0, σ2gdp∗) (10b)

g∗t = ψp∗t + gother∗t (11b)

gother∗t = gother∗t−1 + εgother∗t , εgother∗t ∼ N(0, σ2gother∗) (11c)

The equation 11b expresses g-star as a linear function of p-star and a “catch-all” component

gother∗, which captures the influence on g-star of all factors other than p-star. The parameter

ψ captures strength of the relationship between trend growth and trend productivity.

Base-NoBoundU*. To assess the empirical support for imposing bounds on the U*, we

estimate a model specification without the bounds on U* process defined in eq. 8.

Base-PT-Wages-to-Prices. To assess the empirical support of allowing for pass-through

from wages to prices, we estimate a model specification that replaces eq. 16 with eq. 16b, which

adds the nominal wage inflation gap as an explanatory variable in the equation describing price

inflation gap. The parameter γπ captures the strength of the relationship between the two

cyclical inflation measures. The expression γπ

1−ρπ can be interpreted as the pass-through from

cyclical wage inflation to cyclical price inflation.39

πt − π∗t = ρπt (πt−1 − π∗t−1) + λπt (Ut − U∗
t ) + γπ(Wt −W ∗

t ) + επt , ε
π
t ∼ N(0, eh

π
t ) (16b)

Base-NoPT. The Base model allows for pass-through from prices to wages. We assess the

empirical support of this restriction by estimating a model specification that replaces eq. 22

39We explored the possibility of allowing for time-variation in γπ but the estimation ran into difficulties hence
we resort to time-invariant γπ.
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with eq. 22b, which removes the price inflation gap in the equation describing nominal wage

inflation gap.

Wt −W ∗
t = ρwt (Wt−1 −W ∗

t−1) + λwt (Ut − U∗
t ) + εwt , ε

w
t ∼ N(0, eh

w
t ) (22b)

3. Data and Bayesian Estimation

3.1. Data

We estimate the empirical model using the following quarterly data: (1) the unemployment

rate; (2) real GDP growth; (3) nonfarm labor productivity growth; (4) the inflation rate in

personal consumption expenditures (PCE) price index; (5) average hourly earnings (AHE)

of production and nonsupervisory workers (total private industries);40 (6) the federal funds

rate; (7) nominal yield on the 10-year Treasury bond; (8) shadow federal funds rate from

Wu and Xia (2016); (9) Blue Chip41 (real-time) long-run projections of three-month Treasury

bill, real output growth, the unemployment rate, and GDP deflator inflation; (10) long-run

inflation expectations of PCE inflation (PTR series). We also collect the real-time long-run

CBO projections of real output growth, the level of real potential output, and the natural rate

of unemployment. For forecast evaluation exercises, the real-time data vintages of real GDP

growth, PCE inflation, the unemployment rate, AHE, and nonfarm labor productivity spanning

1998Q1 through 2019Q4 are downloaded from the ALFRED database maintained by the St.

Louis Fed and the real-time database maintained by the Federal Reserve Bank of Philadelphia.

For the data series labeled (1) through (7), which comprises our core data set, we collect two

vintages of revised data: 2020Q2 and 2020Q4 vintages, respectively. We use data starting in

1959Q4 through 2019Q4 from the 2020Q2 vintage (which includes the third estimate of 2019Q4)

as a featured sample for this paper. To show the implications of the COVID-19 data for our

model estimates, we estimate our model(s) using the 2020Q4 vintage, which has data spanning

1959Q4 through 2020Q3. The vintages corresponding to the revised data are downloaded from

Haver Analytics.

3.2. Bayesian estimation

We use Bayesian estimation methods to fit our Base model and its variants. The use of in-

equality restrictions on latent parameters in our model(s) setup leads to a nonlinear state-space

model, which renders estimation using standard Kalman filter methods infeasible. Accordingly,

we implement our Markov chain Monte Carlo (MCMC) posterior sampler based on computa-

tional methods developed in Chan, Koop, and Potter (2013) and CKP, who use the band and

sparse matrix algorithms detailed in Chan and Jeliazkov (2009). The CKP posterior sample

40Average hourly earnings (AHE) of production and nonsupervisory workers in total private industries goes
back to 1964Q1. From 1959Q4 through 1963Q4, we use the AHE of production and nonsupervisory workers in
goods-producing industries. We splice them together.

41Blue Chip Economic Indicators data published by Wolters Kluwer Legal and Regulatory Solutions U.S.
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developed for a relatively smaller-scale nonlinear state-space model is carefully extended to

accommodate the additional structure and numerous features of our model(s). Since the com-

putational methods used in this paper are based on CKP, we relegate the specific details of the

sampler to the online appendix A1.

In a methodological sense, this paper’s novelty is in assembling the existing sampling al-

gorithms based on the fast band and sparse matrix routines to solve a large nonlinear and a

high-dimensional UC model. We found that the use of inequality restrictions, such as bounds on

the u-star and other parameters, is crucial to estimate the model, especially in the Base-NoSurv

model. Intuitively, features such as truncated distributions that we implement for some of the

time-varying parameters, e.g., the Phillips curve (price and wage), persistence, and bounds on

u-star facilitate estimation by guiding the estimation procedure to the credible regions of the

parameter space.

For each model, we simulate 1 million posterior draws from the MCMC posterior sampler.

We then discard the first 500,000 draws, and of the remaining, we keep every 100th draw.

Accordingly, all of the reported results for the Base model and its variants are based on 5000

retained draws.42

Bayesian model comparison is based on the marginal likelihood metric. In computing

marginal likelihood for various models, we use the approach proposed by CCK, which decom-

poses the marginal density of the data (e.g., inflation) into the product of predictive likelihoods;

see appendix A1.d for details. An important advantage of the CCK approach is that it allows

us to separately compute marginal data density for each variable of interest: inflation, nominal

wages, interest rate, real GDP, the unemployment rate, and labor productivity. The variable-

specific marginal densities prove useful because it allows for deeper insights into the source of

the deficiencies, which helps differentiate models at a more granular level.

We note that our prior settings are similar to those used in CKP, CCK, and González-

Astudillo and Laforte (2020). As discussed in CCK, UC models with several unobserved vari-

ables, such as the one developed in this paper, require informative priors. That said, our prior

settings for most variables are only slightly informative. The use of inequality restrictions on

some parameters such as the Phillips curve, persistence, and bounds on u-star could be viewed

as additional sources of information that eliminate the need for tight priors, something also

noted by CKP. For the parameters on which there is strong agreement in the empirical lit-

erature on their values, such as the Taylor-rule equation parameters, we use relatively tight

priors, such that prior distributions are centered on prior means with small variance. In model

comparison exercises, the priors are kept the same for the common parameters across models.

42In the appendix, we report the efficiency diagnostics of our MCMC algorithm. Those diagnostics, which
include inefficiency factors and convergence metrics, indicate good convergence properties (and low autocorre-
lation) of our sampler for both Base and Base-NoSurv models. Regarding computational time, given the high
dimensionality of our model(s) and the number of posterior simulations we require, the speed is quite fast (in
our assessment). When applied to the Base model, the MCMC algorithm, which is implemented in Matlab,
takes about 350 seconds to generate 10,000 posterior draws using a laptop computer with an Intel(R) Xeon(R)
E-2176M CPU @ 2.70 GHz processor. To generate 1 million posterior draws, it takes less than 10 hours.
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We also perform prior sensitivity analysis reported in appendix A2.

4. Full Sample Estimation Results

This section discusses the results obtained by estimating the models using the sample from

1959 through the end of 2019.

The importance of SV in model equations

Our results provide strong evidence in the importance of allowing for SV in all the six

equations describing the gap components. Figure 2 plots the posterior mean estimates of time-

varying standard deviation of the innovations to the unemployment rate gap, output gap, labor

productivity gap, price inflation gap, nominal wage inflation gap, and the nominal interest rate

gap. Also, plotted are the corresponding 90% credible intervals. The plots indicate statistically

significant evidence of time variation in the volatility of the idiosyncratic components in all the

gap equations. For example, in the case of price inflation gap, estimates imply high volatility

during the period of the Great Inflation that fell subsequently. Inflation volatility increased

sharply again during the Great Recession but has trended lower since then. By 2019, inflation

volatility had returned to the low levels of the early 2000s but remains shy of the historic lows

of the mid-1960s and mid-1990s. The model comparison further provides evidence supporting

SV inclusion, as evident by Base-NoSV model’s significantly inferior fit to the data compared

to Base and model variants that allow for SV (see Table 1).

Time variation in parameters defining macro relationships

Figure 3 presents the time-varying posterior mean estimates (and the 90% credible intervals)

of the parameters from the Base model describing the persistence in the price and nominal wage

inflation gaps, the price and wage Phillips curves, the short-run pass-through from prices to

wages, and the cyclical dynamics of labor productivity. A quick visual inspection indicates

both statistically and economically significant evidence of time variation in these parameters

that capture important empirical relationships.

Price inflation gap persistence (Panel a). There is strong evidence of time variation in

parameter ρπ, inflation gap persistence. For example, gap persistence was low (0.25) in early

1960, but from there on began to increase steadily, reaching close to 0.83 by early 1970, and

remained at that level through the early 1980s. Subsequently, the persistence had declined

steadily to 0.3 by the early 2000s, and it remained close to that level through the end of 2019.

Nominal wage gap persistence (Panel b). The posterior mean estimate of the parameter ρw,

capturing the persistence in the nominal wage inflation gap indicates increasing persistence in

the wage inflation gap beginning in early 1960 and peaking in mid-1980. From the mid-1980s to

the early 1990s, the persistence steadily declines but after that increases through the mid-2000s;

from there on through the early 2010s, the estimated persistence in the nominal wage gap falls
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to levels seen in the mid-1970s. Since then, it has been slowly increasing. It is worth noting

that the credible intervals around the posterior mean are wide, suggesting high uncertainty in

the inference about the estimated persistence.

Price Phillips curve (Panel c). The plot indicates strong evidence of time variation in the

slope of the Phillips curve. For example, the model estimates a steeper Phillips curve in the

1960s that subsequently weakens (becomes less negative) over time through 2010. From there

on, it slowly begins to become steeper (more negative), ending 2019 at -0.23, which is still weak,

historically speaking, and is surrounded by wide intervals spanning -0.05 to -0.52.

Wage Phillips curve (Panel d). The plot provides strong evidence supporting the existence

of the wage Phillips curve in the post-war data. Notably, the plot also offers convincing evidence

of time variation in this relationship. According to the posterior mean estimate, from the early

1960s through early-1980s, the model implies that the strength of the wage Phillips curve is at

a moderate level, but from there on through the mid-1980s, the wage Phillips curve steepened

sharply. By the mid-1980s, the posterior mean of the wage Phillips curve parameter is estimated

to be −0.5, with 90% credible intervals ranging from −0.1 to −0.7. The estimated strength in

the relationship remained at that level through mid-2000s. From there on, it began to flatten

rapidly until early 2010. In 2010, the model estimates the posterior mean of the Phillips curve

parameter at −0.25. The prevalence of the downward wage rigidities during the Great Recession

is among the primary explanations for the flattening wage Phillips curve (see Daly and Hobijn,

2014). From 2010 onward, with an improving economy, the estimated wage Phillips curve has

steadily steepened. Our empirical evidence on the wage Phillips curve is consistent with the

findings of Peneva and Rudd (2017), and Gaĺı and Gambetti (2019).

Short-run pass-through from prices to wages (Panel e). The posterior estimate of pass-

through (defined by
κw
t

1−ρwt
) indicates a weakening relationship between cyclical nominal wage

inflation and cyclical price inflation over the estimation sample, confirming the evidence pre-

sented in Peneva and Rudd (2017). The relationship between the two was strong in the 1970s to

the mid-1980s, but since then, it has gradually weakened such that it has been nonexistent (i.e.,

the pass-through is estimated to be zero) for the past decade. This period of the breakdown

in the relationship between the two cyclical components has coincided with a period of low

and stable price inflation. The literature has offered various explanations for this breakdown in

the relationship, including an improved anchoring of inflation expectations (Peneva and Rudd,

2017) and an amplification of downward wage rigidities during low levels of price inflation (Daly

and Hobijn, 2014).

Cyclical dynamics of labor productivity (Panel f). The plot of the estimate of the parameter

λp, which relates cyclical unemployment to the productivity gap, indicates a high level of

uncertainty around the estimate of λp. The 90% credible intervals are wide, such that they

include both positive and negative values, complicating reliable inference. Going just by the

posterior mean estimate, the evidence suggests a countercyclical behavior of labor productivity,
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with this relationship weakening over time.43 We also explored the possibility that the SV may

be soaking up the variation in productivity, which otherwise would have been attributed to the

cyclical component of productivity. The model specification Base-NoSV, which shuts down SV

in the idiosyncratic component of productivity (and other model equations), yields estimate

of λp similar to Base, suggesting that SV is not contributing to the ambiguous result on the

cyclicality of labor productivity.

The importance of allowing for TVP in important macroeconomic relationships is further

supported by the model comparison results (shown in Table 1) that indicate the Base-NoTVP

model’s significantly inferior fit to the data compared to the Base model.

Links between survey expectations and stars

Our model estimates indicate that for the four stars, where the model structure permits

information from survey expectations, the estimated relationships between survey expectations

and stars are found to be strong, suggesting an influential role of the survey expectations in

econometric estimation of the model-based stars. For example, the model estimation yields a

posterior mean estimate of 0.99 for βπ, with 90% credible intervals spanning 0.92 to 1.07 (also

reported in Table 2). The estimates of the time-varying intercepts (e.g., Cπ
t ) indicate evidence

of considerable time-variation in the estimated relationship between the survey expectations

and model-based stars. Figure A6 in online appendix plots the posterior estimates of the coeffi-

cients capturing the estimated relationship between survey expectations and model-based stars.

Bayesian model comparison

As discussed in the next section, bringing in additional information from surveys leads to

more reasonable and precise estimates of stars, however, the Bayesian model comparison indi-

cates comparable support in the data for both Base and Base-NoSurv. And both models have

marginally higher support over Base-NoLinkStars, as shown in Table 1. The breakdown of the

marginal data density by variables suggests that the Base model has a better fit to the nominal

interest rate data compared to Base-NoSurv, but that improved fit is offset by its inferior fit

to the unemployment rate, resulting in comparable overall fit across the two models. As noted

above, the model specifications without SV and TVP have a significantly inferior fit to the data

compared to the other three specifications.

Next, we sequentially discuss (full-sample) estimates for each of the six stars.

43We explored an alternative model specification, Base-P*CycOutputgap, which relates productivity to the
output gap instead of the unemployment gap and the results indicate generally similar inference about the cyclical
nature of labor productivity (corroborating the evidence presented in Gaĺı and van Rens (2021)). Please refer to
appendix A13.
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4.1. Estimation results for u-star

Figure 4 plots the evolution of u-star (and its uncertainty) covering the period 1960 through

2019. Panel (a) plots the posterior estimates from the Base model and panel (b) from the

Base-NoSurv model. Also plotted are the corresponding 90% credible intervals. In the past six

decades, the (posterior mean of) u-star has fluctuated between 4.0% and 7.0%, peaking in the

early 1980s and troughs at the end of our sample period. The contours of u-star from both

models are generally similar; however, the level of u-star can differ notably in some periods.

From 1960 through the late 1970s, u-star has gradually increased (from 5.4% to 6.5% in Base

and 5.3% to 7.1% in Base-NoSurv). But since the mid 1980s through the late 1990s, u-star has

steadily drifted lower (to 5.0%). This downward trend in the later period is also documented in

the u-star literature based on job-flows data, which attributes the decline in u-star to declining

trends in job-separation and job-finding rates (e.g., Crump et al., 2019).

From early 2000 through early 2010, u-star has slowly trended higher, with a sharp pickup

during the Great Recession period. Since 2010, u-star has steadily drifted lower. By the end

of 2019, both Base and Base-NoSurv have u-star at 4.2% (with a 90% interval covering 3.7%

to 4.9%). As shown in Figure 5, at the end of 2019, the unemployment gap implied by both

models is negative, i.e., the unemployment rate is below the estimated u-star.

The use of survey information in the Base model mainly contributes to the difference in

the levels of u-star across the two models. To facilitate comparison, panel (a) also plots u-star

from the survey. As is evident from the plot, u-star from the survey displays more pronounced

shifts in u-star than the model-based estimates. However, due to a strong estimated relationship

between the survey u-star and Base u-star (i.e., posterior mean of βu = 0.95), the Base estimate

of u-star reflects the contours in survey u-star. As can be seen comparing width of the credible

bands between panels (a) and (b), taking survey information onboard improves the precision of

u-star notably.

Surprisingly, based on the Bayesian model comparison, the Base model has an inferior fit to

the unemployment data compared to Base-NoSurv. As shown later, this result contrasts with

the results for pi-star, r-star, and g-star, for which survey information helps improve the model

fit or at least does not worsen the fit.

Sensitivity of u-star to modeling assumptions including information set

We explore several variants of the Base model to examine the sensitivity of u-star to mod-

eling assumptions and the informational aspect of joint modeling. We also compare our model

estimates to the u-star estimate from the CBO. For the sake of brevity we have included the

results and discussion in the online appendix A13.a, but here we highlight one noteworthy find-

ing related to the implementation of bounds on u-star. We find that using bounds on u-star

is extremely important in the Base-NoSurv model, as it helps keep the estimation tractable.

At the time of writing this paper, the world was hit with a COVID-19 shock, an extreme and

unprecedented global health shock along various dimensions, leading several analysts to call it a
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“once-in-a-lifetime upheaval.” As we will show in Section 6, the implementation of bounds on u-

star is part of the story in preventing our models from blowing up in response to COVID-19 data.

Cyclical unemployment

Figure 5 presents the posterior mean estimate of the unemployment gap and the correspond-

ing 90% credible intervals. The top panel plots the estimates from the Base model, and the

bottom panel from the Base-NoSurv model. A visual inspection indicates that the movements

in cyclical unemployment correspond quite well with the NBER’s business cycle dating. For

instance, cyclical unemployment falls in economic expansions and rises during recessions. Both

models show a significant spike in the cyclical unemployment rate in the 1982-83 and 2007-09

recessions, and a sharper recovery following the 1982-83 recession but a more gradual recovery

following the Great Recession. The figure also highlights that both models produce similar

estimates of cyclical unemployment.

4.2. Estimation results for g-star and the output gap

Panel (a) in Figure 6 plots the g-star estimates from Base, Base-NoSurv, and the univariate

model (of Grant and Chan, 2017b), and panel (b) plots the corresponding precision. Also

included in panel (a) are the survey expectations of g-star. As is evident, g-star estimates from

our two main models indicate a steady decline throughout the sample, except a temporary rise

in the late 1990s, which the literature has attributed to the technology boom. According to the

posterior mean estimates of g-star from our Base and Base-NoSurv models, the growth rate of

potential output has continuously drifted lower from an annualized rate of close to 4.5% in early

1960 to 1.2% by 2012. Thereafter, it gradually moves up reaching 1.9% (1.7% in Base-NoSurv)

by the end of 2019.44 From 1960 through early 1980, the story is generally similar based on the

inference from univariate model, which could be viewed as a nested specification of the Base

model. However, 1980 onward, the inference from the univariate model is notably different.

Not surprisingly, the precision of the g-star estimates displays patterns that align well with

intuition. For instance, Base model that incorporates survey expectations yields more precise

estimates than specifications that ignore survey data. Base and Base-NoSurv models that relies

on multivariate information generate significantly more precise estimates than the univariate

model. Table 3 reports the assessment of model fit to the GDP data for the various model

specifications. As is evident, Base model has the best fit to GDP data. The model specification

denoted Bivariate, which builds on the univariate GDP model by adding the unemployment

rate, has better fit than the univariate model. And adding SV to univariate and bivariate mod-

44This continuous reduction in the growth rate of potential output has been extensively documented elsewhere
(e.g., Berger, Everaert, and Vierke, 2016; Grant and Chan, 2017b; Coibion, Gorodnichenko, and Ulate, 2018) and
in particular the decline since 2009 has been of great concern among policymakers. Several other researchers,
including Pescatori and Turunen (2016); Laubach and Williams (2016); Antolin-Diaz, Drechsel, and Petrella
(2017); Holston, Laubach, and Williams (2017), have also documented the secular decline in g-star over the past
two decades.
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els significantly improves their respective fits to the GDP data.

Output gap estimates: Base vs. CBO and LW

Next, we examine the estimates of the output gap. Panel (c) in Figure 6 presents the

output gap estimates from the Base model, the CBO, and the LW model. A few observations

immediately stand out. First, the estimate from Base model accords well with the NBER

recession dates and lends support to the business cycle asymmetry, in that recessions are shorter

in duration but deeper than expansions in the US (Morley and Piger, 2012). It is instructive to

highlight that estimates imply a more negative output gap (of −8.8%; posterior mean) during

the 1981-82 recession compared to the Great Recession period (−7%) when output fell more

dramatically. At a first pass, this may seem odd. But a closer inspection reveals that in

comparison to the 1981-82 recession, during the Great Recession, g-star fell significantly (as

can be seen in panel a), resulting in a smaller negative output gap; in contrast, during the

1981-82 recession, g-star is estimated to have remained stable. Second, the output gap estimate

implied from the LW model is notably different over the second half of the sample period. In

particular, during the Great Recession period, the output gap from LW turned slightly negative,

while other estimates implied larger negative gaps. The slight negative gap in the LW model

is the result of the LW model estimating a dramatic fall in potential output, in line with the

collapse in actual output.

Third, with few exceptions, the estimate from Base model is generally similar to the CBO

estimate. This close similarity is notable because the CBO approach is based upon an entirely

different methodology, a production function approach (see Shackleton, 2018). However, similar

to our framework, CBO also relies on multivariate information to infer the output gap. Our

supplementary analysis suggests that joint modeling of real GDP and the unemployment rate,

and allowing for SV in their respective cyclical components are the key ingredients to obtaining

credible output gap estimate (i.e., resembling CBO estimate).45

Our paper’s result indicating a close resemblance of our models’ output gap estimates to

the CBO’s output gap provides evidence supporting the common practice of using output gap

estimates from the CBO as an exogenous variable in empirical macroeconomic models (e.g.,

JM; Stock and Watson, 2020). We view this result as a useful contribution to the applied

macroeconomics literature.

Posterior parameter estimates for the output block

Next, we discuss the Base model’s parameter estimates of the output block that drive the

dynamics of g-star and the output gap. The posterior mean estimates of parameters ρg1 and ρg2

45Morley and Wong (2020), who estimate the output gap using a large BVAR, also found that the unem-
ployment rate is the most crucial indicator for the output gap. (In online appendix A8, we compare our model
estimates with additional estimates, including Morley and Wong’s). Recently, Barbarino, Berge, Chen, and Stella
(2020) use a range of small-scale UC models (without SV) to estimate the output gap and similarly find that the
unemployment rate is the most valuable indicator.
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indicate a high degree of persistence (ρg1 + ρg2 = 0.73) and suggest a hump-shaped response of

the output gap to shocks (as ρg1 > 1). These parameters are precisely estimated as evidenced by

tight posterior credible intervals. The posterior estimate of parameter λg (the coefficient on the

unemployment gap in the output gap equation) is negative and highly significant statistically.

The estimated posterior mean of λg is −0.48 (with 90% interval −0.61 to −0.35). Similarly,

the parameter ϕu (the coefficient on the output gap in the unemployment equation), discussed

earlier, is also negative and highly significant statistically. Together, these estimates indicate

a strong Okun’s law relationship in the data. The implied posterior mean estimate of the

Okun’s law coefficient,
(1−ρu1−ρu2 )

ϕu
is −2.2, with 90% credible intervals spanning −2.4 to −1.9.

This estimated coefficient is strikingly identical to the conventional estimate often discussed in

macroeconomic textbooks. Therefore, not surprisingly, both the estimated output gap and the

unemployment gap (shown earlier) reveal similar cyclical dynamics. For instance, according to

both cyclical measures, the 1981-82 recession is estimated to have been deeper than the Great

Recession.

The parameter ar, which relates the output gap to the real rate gap (characterizing the IS

relation), is negative and much smaller than the prior mean. The estimated posterior mean of

ar is −0.04 (with 90% interval −0.09 to −0.00). The posterior mean estimate of E(σ2gdp∗), the

variance parameter of the innovations to the process governing the evolution of g-star (and gdp-

star), is nearly identical across the Base and Base-NoSurv models: 0.022. For comparison, the

prior mean E(σ2gdp∗) is 0.01
2. The estimation results suggest that the data are quite informative

in influencing the dynamics of both the output gap and g-star, confirming Kiley (2020).

4.3. Estimation results for p-star

Figure 7 presents posterior estimates of p-star and other parameters of the productivity

block. Panel (a) presents p-star estimate from the Base model. Both the posterior mean and the

90% credible intervals are shown. Also plotted is the actual labor productivity series. A visual

inspection of the actual series indicates the unusually high volatility of the quarterly productivity

data. Not surprisingly, researchers have emphasized that these difficulties of extreme volatility,

extensive revisions, and real-time measurement issues with productivity data complicate its

trend-cycle decomposition (e.g., Edge, Laubach, and Williams, 2007; Kahn and Rich, 2007).

Our model-based estimates reflect these challenges. For instance, the estimate of the param-

eter ρp, reported in Table 2, indicates close to zero persistence in the labor productivity data,

defined as the difference between the growth rate in labor productivity and p-star. Similarly,

our estimation indicates that the labor productivity data have very little influence on the esti-

mate of p-star. Put differently, the data are so volatile to allow for a meaningful identification of

trend in the productivity data. The posterior mean of E(σ2p∗), the variance of the shock process

for p-star, is essentially the same as the prior mean.46 As a result, the degree of time variation

46We tried different values for the prior mean on this parameter, and found that the posterior moves with the
prior.
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in p-star is primarily influenced by the prior setting. So conditional on our prior belief, which

allows p-star to evolve slowly from one quarter to the next, we find considerable evidence of

gradual time variation in p-star over the post-war sample. The evidence of time variation is

economically significant and is consistent with the findings of Roberts (2001), Benati (2007),

Edge, Laubach, and Williams (2007), and Fernald (2007).

Panel (b) presents posterior mean estimates of p-star from the Base-NoSurv, and Base-

W*RW models, respectively. The latter model removes the restriction that the long-run w-star

grows at a rate equal to the sum of pi-star and p-star. So removing this restriction eliminates

the direct influence on p-star from wages and prices. As evident from the Bayesian model

comparison reported in Table 4, the elimination of this restriction marginally improves the fit

of the model to the productivity data but significantly reduces the overall model fit to other

data, particularly interest rates – via the changes in pi-star and u-star in the Taylor-type rule

equation. That said, all three models generally indicate similar broad patterns in p-star.

After averaging between 2% and 3% in the 1960s, the models indicate that p-star experienced

a sharp deceleration in the 1970s through mid-1980s, mirroring the dramatic fall in productivity

growth. Both Base and Base-NoSurv estimates show p-star trending lower from 2.4% (2.3%)

in early 1970 to 1.2% by mid-1980, whereas Base-W*RW has it falling close to 1.5%, with wide

90% credible intervals that range from 0.6% to 2.3%. From there on through to the late 1990s,

p-star increased sharply, at a pace roughly equivalent to its deceleration in prior periods, to

reach a level of 2.4% by 1999. The literature attributes part of this acceleration in the latter

half of the 1990s to the information technology boom. Roberts (2001), Edge, Laubach, and

Williams (2007), and Benati (2007) document estimates of trend productivity generally similar

to the p-star implied from the Base-W*RW model.47

In the 2000s, the models have p-star gradually declining to a level close to 1.2% by 2012.

It remained close to that level through most of the past decade, but since 2018, it has steadily

increased. At the end of our sample, all three models estimate the posterior mean of p-star at,

or close to, 1.5%. As we show in appendix A12, these estimates of p-star are consistent with

the narrative implied by the two-regime Markov-switching model of Kahn and Rich (2007), an

influential contribution to the trend productivity literature.

The uncertainty around the posterior mean estimates of p-star is large. Panel (c) quanti-

fies this uncertainty by reporting the width of the 90% credible intervals corresponding to all

three models. The plots provide evidence that the theoretical restriction (defined by eq. 20)

contributes to improved precision of p-star (just as it does for pi-star and w-star), as is evident

in the Base and Base-NoSurv plots lying below the Base-W*RW.

47Edge, Laubach, and Williams (2007), who collect real-time estimates of long-run productivity from vari-
ous sources, including historical Economic Reports of the President, document a similar pattern in the trend
productivity estimates.
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4.4. Estimation results for π-star

Panels (a) and (b) of Figure 8 plot the posterior mean estimates of pi-star along with

the 90% credible intervals from the Base and Base-NoSurv model specifications, respectively.

Panel (c) plots the corresponding precision estimates, defined as the width of the 90% intervals.

A quick visual inspection shows that the pi-star from the Base specification is significantly

more precise than Base-NoSurv, as evidenced by narrower credible bands and the precision

plot corresponding to Base lying below the Base-NoSurv plot. Based on the marginal likelihood

criteria, the fit of the inflation equation to the data in the case of Base is marginally better than

Base-NoSurv (as reported in Table 1). Our finding that adding survey expectations improves

both the model fit and the precision of pi-star is consistent with CCK.

The broad contours reflected in the posterior mean pi-stars from the two models are similar

to those documented elsewhere in the literature (e.g., CCK). For instance, pi-star was low in the

1960s, high in the 1970s, fell sharply in the 1980s, continued a steady deceleration in the 1990s,

fluctuated in a narrow range between 2.0% and 2.5% in the 2000s, and has been below 2% since

2012. This general pattern is consistent with the widely held view. Focusing on the specifics,

unlike some papers (e.g., Stock and Watson, 2007; Mertens, 2016), which show two peaks in

pi-star, one in the mid-1970s, and another in the early 1980s, our model-based estimates (both

with and without survey data) do not show the earlier peak (similar to CCK). Relatedly, in

those same papers, pi-star is estimated to peak at a level of 10% or higher; in contrast, the

mean estimate of pi-star in our model specifications peaks at a lower level (similar to CCK and

Mertens, 2016 – in his model specification that is augmented with survey data).48

Comparing estimates from Base and Base-NoSurv specifications, the level of pi-star is similar

in the 1960s but starting in early 1970, pi-star from the Base specification sharply accelerates,

to peak at 5.8% in early 1980, while the estimates of pi-star from the Base-NoSurv specification

also accelerate but peak at a lower level of 3.7%. As shown, uncertainty about pi-star increases

sharply in early 1980, with the Base-NoSurv estimates experiencing a much more dramatic

rise. It is the case that uncertainty around pi-star (as measured by the width of the 90%

credible intervals) inferred from the Base-NoSurv is higher compared to the Base throughout

the estimation sample. But in early 1980, the differential in uncertainty is twice as large, as

can be seen comparing the dotted and solid plots in panel (c).

A similar rise in model-based estimates of pi-star uncertainty in the late 1970s through early

1980 (known as the Great Inflation period) has been noted elsewhere (e.g., Mertens, 2016). A

subset of the literature attributes the rise in pi-star uncertainty to the un-anchoring of inflation

expectations during the Great Inflation period. Beginning in early 1980 and continuing through

early 2000, both models have (posterior mean of) pi-star steadily declining to 2%. Between 2000

and 2012, whereas in the case of Base, pi-star is flat at 2%, in Base-NoSurv, it is stable at a

48Since both Stock and Watson (2007) and Mertens (2016) endow the RW process governing pi-star with
SV, whereas we do not, this difference in the modeling assumption may explain the difference in the pi-star
estimates around the Great Inflation period. However, CCK, who also allow SV in the pi-star process, yield
pi-star estimates generally similar to ours, suggesting that the SV assumption is likely not the answer.
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slightly higher level of 2.4%. Since 2012, pi-star has slowly moved down to reach 1.6% (in Base)

and 1.7% (in Base-NoSurv).

In the online appendix A11.a, we include the results and a discussion comparing pi-star

estimates from the Base model to external models: CCK, CKP, and UCSV. The estimates indi-

cate that the CCK model generates the most precise pi-star, followed by the Base model, CKP,

and UCSV. Overall, comparing across Base and Base-NoSurv specifications, and comparing the

Base specification with outside models, strongly suggest the usefulness of survey expectations in

improving the econometric estimation of pi-star (i.e., survey forecast information yields sensible

estimates of pi-star and improved precision), hence, corroborating evidence in CCK, Mertens,

2016, and Nason and Smith (2021).

In the online appendix A11.b and A11.c, we explore and discuss the sensitivity of pi-star

to modeling assumptions such as the usefulness of theoretical restriction imposed by (20). The

Bayesian model comparison provides evidence supporting the long-run theoretical restriction

defined by equation (20).

4.5. Estimation results for W-star

In modeling w-star, a novel feature of our framework is the decomposition of w-star into its

fundamental components, pi-star and p-star. Figure 9 presents posterior estimates of w-star

along with the decomposition. The first row in the figure plots estimates from the Base model,

and the second row plots estimates from the Base-NoSurv. The third row plots p-star estimates

from other model variants alongside Base and Base-NoSurv models, and also presents precision

estimates of w-star.

The estimates imply that w-star increased steadily in the 1970s and peaked in the early

1980s. This increasing w-star reflected an upward drift in pi-star that more than offset the

downward drift in p-star, as evidenced by the widening in the shaded area representing pi-star

and the slight narrowing of the shaded area representing p-star. The Base model implies that

w-star peaked at 7.1% in the early 1980s, while Base-NoSurv has w-star peaking at 5.8% in the

later half of 1970. Both models have w-star sharply drifting lower through much of the 1980s,

to reach near 3.4% by early 1990. From there on, the path of w-star across the two models is

very similar and indicates a gradual slowing to 2.7% by the end of 2017. W-star moved up to

3.0% by the early 2018.

Not surprisingly, w-star is more precisely estimated in the Base model than in the Base-

NoSurv model, as shown in panel (f). The considerable uncertainty around w-star, implied by

the Base-NoSurv model during the 1970s, is mostly driven by pi-star. As noted earlier, the

pi-star estimate from the Base-NoSurv was highly imprecise during the 1970s. Interestingly,

despite the inferior precision of the Base-NoSurv compared to Base, the Bayesian model com-

parison suggests marginally better fit of the Base-NoSurv model to the nominal wage data than
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Base (see Table 5).

Sensitivity of w-star to modeling assumptions

Panel (e) plots estimates of w-star from two additional Base model variants: Base-W*RW

and Base-NoPT. The Base-W*RW model eliminates the long-run restriction that w-star is the

sum of p-star and pi-star (on average) and instead models w-star as an RW process. Inter-

estingly, the path of w-star implied by Base-W*RW is below other models. Since then, it is

similar to Base and Base-NoSurv. Although in the first half of the estimation sample, w-star

from Base-W*RW is less precisely estimated than Base, in the second half of the sample, it is

more precise. According to the Bayesian model comparison, the fit of the Base-W*RW to the

nominal wage data is substantially inferior to both Base-NoSurv and Base.

The Base-NoPT model eliminates the pass-through from prices, i.e., it removes the price

inflation gap from the equation describing the wage inflation gap. In other words, the direct link

between the cyclical components of prices and nominal wages is eliminated, but the connection

between the permanent components pi-star and w-star remains. Doing so has notable impli-

cations for the estimate of w-star and the model’s fit. As shown in panel (e), w-star implied

from Base-NoPT is higher than that implied by the other models through the first half of the

sample. While the Base model has w-star peaking at a little above 7% in the early 1980s, the

Base-NoPT model implies a higher peak of 7.8%. The acceleration in w-star implied by the

Base-NoPT model during the 1970s is much stronger than that implied by the Base model es-

timates. This stronger path of w-star is associated with more precise estimates of w-star in the

1970s compared to the Base and other models, as can be seen in panel (f). However, according

to the Bayesian model comparison reported in Table 5, removing the connection between the

cyclical components negatively impacts the model fit, as evidenced by the substantially inferior

fit of the Base-NoPT model to data compared to the Base model.

4.6. Estimation results for r-star

Figure 10 presents r-star and the “catch-all” component D estimates for our two main model

specifications. The top row of the figure plots the estimates of r-star (panel a) and component D

(panel b) from the Base model. Also included in panel (a) are the survey expectations of r-star

(which enters our Base model). As can be seen, the contours of (posterior mean) r-star from

the Base model track the survey estimate; this suggests that survey data play an influential

role in guiding the model’s assessment of r-star. The posterior mean estimate from the Base

model shows r-star staying relatively flat at 3.4% in the 1960s, and then slowly trending down

through the 1970s, to reach 2.5% by early 1980. Thereafter, it fluctuates in a range between

2.0% and 3.0% until the beginning of 2000. From there on, it steadily declines, reaching 1.0%

at the end 2019.

Panel (b) plots the estimate of component D, whose dynamics are shaped by the survey

expectations data and by information from the Taylor rule and IS equations. As can be seen in
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the figure, component D is imprecisely estimated. According to the posterior mean estimate,

in the 1960s, component D exerts slight upward pressure on r-star that is mostly offset by

downward pressure coming from g-star (via equation 27), helping keep r-star relatively flat.

After that, with D remaining flat through 2000, developments in g-star shape the trajectory

of r-star. From 2000 onward, all forces (as captured through the model structure) work in the

same direction to push r-star steadily downward. The estimated link between r-star and g-star

is of moderate strength (posterior mean of parameter m = ζ
4 = 0.66); see Table 2); therefore,

movements in g-star play an influential role in driving r-star.

Moving on to the Base-NoSurv model specification, in panel (c), the mean estimate shows r-

star rising from 1.6% in early 1960 to 2.4% through early 1980 and then remaining stable through

early 2000. From 2000 onward, r-star steadily declines, reaching 1.3% at the end of 2019. The

trajectory of r-star from 2000 onward is similar to that from the Base model. It is worth noting

that our models’ indication of a secular decline in r-star beginning in 2000 is also documented

elsewhere in the literature tackling r-star (the exception being JM).49 However, the extent

of decline varies considerably across studies. The literature offers various explanations for this

secular decline in r-star, including a trend decline in g-star (e.g., Laubach and Williams (2016));

rising premiums for convenience yield, i.e., increased demand for safe and liquid Treasury bonds

(see Del Negro et al., 2017); demographic changes (see Fiorentini et al., 2018); and excess global

savings (Pescatori and Turunen, 2016).

The uncertainty around the r-star estimate from the Base-NoSurv model is substantially

higher than that in Base, as can be seen by comparing panel (a) and panel (c) of Figure 10, and

also shown in panel (f). The increased uncertainty in r-star comes from component D, which is

imprecisely estimated without the survey data. Furthermore, based on the marginal likelihood

criteria, the Base model is favored over the Base-NoSurv model (see Table 1).

Without the survey information about r-star, the estimated link between g-star and r-star is

significantly weaker (posterior mean of m = ζ
4 = 0.35; see Table 2), which is consistent with the

evidence documented in Hamilton et al. (2016) and Lunsford and West (2019). Therefore, the

movements in component D significantly dominate the contours of r-star in the Base-NoSurv

model. Both the IS curve and Taylor-rule equations shape the evolution of component D. The

hump-shaped patterns in both D and r-star reflect the trends in real long-term interest rates

(informed from the IS equation) and short-term interest rates (from the Taylor-rule equation).

It is interesting to note that the r-star estimates from JM (and González-Astudillo and Laforte,

2020) – who use the Taylor-rule equation and information from both short- and long-term

interest rates – also exhibit hump-shaped behavior (though, in the case of JM, it is only slight).

As we show shortly, the prior setting on the shock process for r-star (in our Base and Base-

49JM document that r-star from their preferred specification (which allows for SV in the TR equation) is
generally flat over their sample, spanning 1960 through 2018. However, in an alternative specification, which does
not permit SV, the r-star estimate exhibits a decline in r-star similar to that documented elsewhere. Similarly,
we find that the r-star trajectory from the Base-NoSV specification (i.e., Base without SV) indicates a more
significant decline since 2000 than the r-star estimate from the Base.
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NoSurv cases, component D) plays an essential role in shaping the contours of r-star.

As discussed earlier, the estimates of g-star from both the Base and Base-NoSurv models are

quite similar. Therefore, the primary source of the differential in the r-star estimates between

Base and Base-NoSurv is the quantitatively weaker relation estimated between r-star and g-star

in Base-NoSurv than Base.

Random walk assumption for r*: Base vs. Base-NoLinkStars

As is commonly done when estimating stars, a random walk assumption for r-star is a

popular choice (e.g., Kiley, 2020; JM) and our model specification Base-NoLinkStars embeds

this assumption. By adopting an RW assumption for r-star, the model will be unable to uncover

any specific causes of movements in estimates of r-star.

Figure 10, panel (e) plots the posterior mean r-star estimate from the Base-NoLinkStars

model. To facilitate comparison, also shown are estimates from Base and Base-NoSurv models.

Panel (f) plots the corresponding r-star precision estimates. A few observations immediately

stand out. First, the estimated r-star from Base-NoLinkStars, although exhibiting broadly sim-

ilar contour, is higher than those obtained from the specifications that impose a relationship

between r-star and g-star. Second, from 2000 and onward, r-star estimates from the specifica-

tions with the assumed link between r-star and g-star experience a more stark decline than from

the specification with the RW assumption. For instance, by late 2019, the estimate of r-star

from Base-NoLinkStars settle at close to 1.5%, whereas those from the Base and Base-NoSurv

models fall further to a range of 1.0 to 1.3%. This differential is mostly explained by the lack

of direct downward pressure from g-star in the specification with the RW assumption. Third,

bringing in information from surveys improves the precision of the r-star estimates substantially,

irrespective of whether r-star is modeled simply as an RW process or as a combination of an

RW component and a component linking r-star to g-star.

Based on the model comparison metric reported in Table 1, the Base model yielding the

most precise r-star does not necessarily rank as the best fitting model to the interest rate data.

It’s fit to the interest rate data is inferior to Base-NoLinkStars model. However, the overall fit

of the Base model is slightly better than the Base-NoLinkStars model.

Taken together, the evidence described above suggests that the RW assumption for r-star

is a viable option, and bringing in information from surveys helps improve precision of the

estimates of r-star substantially.50

We also explored the role of data versus priors in determining r-star, and in the interest of

brevity, the results are relegated to the online appendix (see A10.a). In online appendix A10.b,

we compare our model(s) estimates of r-star with external models. In the online appendix

A10.c, using our two main models we provide an assessment of the stance of monetary policy,

defined as deviation of the short-term nominal interest rate from the long-run nominal neutral

50In a supplementary set of exercises, we illustrate the usefulness of the Taylor-type rule equation and the
equation linking r-star to survey expectations for identifying r-star. The addition of the Taylor-type rule equation
turns out to be crucial to yielding plausible and precise estimates of r-star.
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rate of interest (i.e., sum of r* and pi*).

Overall, we find that when it comes to r-star, specification choices matter a lot (something

also highlighted by Clark and Kozicki (2005), Beyer and Wieland (2019), and Kiley (2020)).

The model specifications that include survey expectations yield reasonable estimates and better

fit the interest rate data, as evidenced by the Bayesian model comparison metric. Since 2000,

the best fitting model specifications indicate a steady decline in r-star.

5. Real-time Estimates and Forecasting

In this section, we perform two real-time, out-of-sample forecasting exercises. In the first

exercise, we compare the real-time forecasting performance of our two main models, Base and

Base-NoSurv. We evaluate both the point and density forecast accuracy for real GDP growth,

PCE inflation, the unemployment rate, nominal wage inflation, labor productivity growth, and

the shadow federal funds rate. We show that the Base model is generally more accurate on

average compared to Base-NoSurv for all variables of interest except the shadow federal funds

rate. We also document our Base model’s superior forecasting properties relative to “hard to

beat” benchmarks, including some of the recently proposed UC models for inflation forecasting.

By-products of our real-time forecasting exercise are the real-time estimates of the stars from

1999 through 2019. In the next subsection, we compare these real-time estimates to the final

(smoothed) estimates – based on the entire sample spanning 1959Q4 through 2019Q4.

In the second forecasting exercise, using the real-time stars’ estimates obtained in the pre-

vious exercise (using our two main models), we illustrate their efficacy by demonstrating their

usefulness in forecasting with external models (e.g., steady-state VARs). We find that the qual-

ity of our estimates of the stars from the Base model is generally competitive with the survey

estimates, which are commonly used as proxies for stars in VAR forecasting models. For pur-

poses of brevity, we relegate the discussion of forecasting results corresponding to the first and

second exercises to the online appendices A4 and A5, respectively. And discuss the real-time

estimates of the stars next.

Real-time versus final estimates

Up to this point, we only examined the smoothed estimates of the stars inferred using all

the sample data, i.e., from 1959Q4 through 2019Q4, which we denote here as final estimates. As

discussed in CKP and Clark and Kozicki (2005), the examination of final estimates is beneficial

for “historical analysis,” such as the evaluation of past policy. But for real-time analysis, such

as forecasting and policymaking, real-time estimates at time t – estimates based on data and

model estimation through time t (instead of through 1:T) – are the relevant measures. In

estimating the stars, a voluminous number of papers have documented the typical pattern of

notable differences between real-time and final estimates; e.g., see Clark and Kozicki (2005) and
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Beyer and Wieland (2019) for r-star.51

Relatedly, several researchers have attributed the inability to precisely know the location

of these stars in real time to past policy mistakes; see Powell (2018) and references therein.

The documented differences between the real-time and final estimates, which at times could

be dramatic, and the recognition of these differences by policymakers have been the primary

reason limiting the usefulness of real-time estimates of the stars in policy discussions in recent

years (see Powell, 2018). Hence, there is a strong preference for methods that can provide more

credible inferences about stars in real time.52

Comparing real-time and final estimates of the stars from our Base model suggests that we

have made some progress in mitigating the difficulties in previous real-time estimation of the

stars. However, in the Base-NoSurv model, there is less success in mitigating this issue. We

believe a big reason for this lack of success in the latter case is that we estimate a very high-

dimensional model with a lot less data (as will be the case when stopping estimation at earlier

periods). An artifact of this is that it requires the imposition of very tight priors in earlier

periods than when estimating with more recent periods, which, in turn, affects the posterior

estimates of model parameters and the stars. This latter fact mechanically contributes to more

considerable observed differences between real-time and final estimates in the first half of the

sample period analyzed. In the case of the Base model, the use of survey information helps

anchor the estimates to more reasonable values even in the face of tight priors.

Figure 11 plots the real-time posterior estimates of r-star, u-star, and the output gap from

1999Q1 to 2019Q4. Also plotted are the corresponding final or smoothed posterior estimates

and the 68% and 90% credible bands, respectively The real-time estimates are the end-sample

posterior mean (of the smoothed) estimates at any given period. For example, the 1999Q1

estimate corresponds to estimating the model(s) from 1959Q4 to 1999Q1; similarly, the 1999Q2

estimate corresponds to estimating the models from 1959Q4 to 1999Q2. Figures A2 and A3

in the online appendix A6 plot the estimates for pi-star, p-star, w-star, and g-star. As can be

seen, for the most part (with the exception of g-star), the real-time posterior mean estimates of

the stars and the output gap generally remain within the credible intervals, especially the 68%

credible sets implied based on full-sample information. Alternatively, the final posterior mean

estimates of the stars and the output gap generally fall within the credible bands generated

using real-time data.

Beginning with r-star (panel a), the contours of the real-time and final estimates are remark-

ably similar. Between 2000 and 2005, and post-2014, the real-time estimate closely tracked the

51Both revisions to past data and the accrual of additional data could contribute to the observed differences
between the real-time and final estimates. The estimation with additional data has been found by many to be
the primary factor causing revisions to historical estimates of the stars and contributing to divergence between
the real-time and final estimates (see Clark and Kozicki, 2005).

52The issue of imprecision in the estimation of stars is an important one. It has been long recognized that con-
siderable uncertainty surrounds the estimated stars complicating reliable inference. Despite the stars’ imprecision,
they continue to be used as inputs into policymaking and for other purposes. After all, as discussed in Mester
(2018), uncertainty about the stars is just one source of uncertainty among many that confront policymakers.
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final estimate. From 2006 through 2013, the real-time estimate averaged 20 basis points higher

than the final estimate. In our assessment, the magnitude of the gap between real-time and

final estimates is relatively small compared to the uncertainty estimate around the posterior

mean and estimates of uncertainty typically reported in papers estimating r-star, e.g., Clark

and Kozicki (2005), Laubach and Williams (2016), and Lubik and Matthes (2015). Further-

more, the real-time estimate of r-star remained within the 68% credible intervals throughout

the sample period considered. The width of the estimated 68% (and 90%) intervals from the

Base model has been remarkably stable between 1.0 and 1.3 percent (1.7 and 2.2 percent) in

the last 25 years. For reference, the typical estimates of 90% bands from popular models such

as LW and Lubik and Matthes (2015) have a width averaging more than 4% and 3.5%, respec-

tively.53 Given that the 68% and 90% credible intervals are significantly narrower compared

to typical estimates reported elsewhere in the literature, we view the evidence of our real-time

r-star remaining inside the estimated credible intervals as encouraging.

In the case of u-star (panel b), in the first half of the forecast evaluation sample, the real-

time estimate generally tracked the posterior mean of the final estimate closely. But post-Great

Recession, although the movements between the two tracked each other, it is the case that

real-time estimate is notably higher and mostly fell outside the posterior credible bands.

Panel c plots the real-time posterior estimates and the final (smoothed) posterior mean

estimate of the output gap from the Base model, whereas panel (d) plots the final posterior

estimates and the real-time posterior mean estimate of the output gap. These plots indicate

that it is generally the case that both real-time and final estimates track each other closely,

as evidenced by the smoothed posterior mean mostly falling within the credible intervals con-

structed using real-time data (panel c). And similarly, the real-time posterior mean estimate

mostly falls within the credible intervals based on full-sample data (panel d). As expected,

the credible intervals based on full-sample (panel d) are tighter than those constructed using

real-time data (panel c).

To illustrate the usefulness of the SV in modeling the output gap, panels e and (f) plot

the corresponding estimates for the output gap from the variant of the Base model without

SV. As can be seen, comparing plots in these panels to those corresponding to the Base model,

allowing for SV, significantly improves the real-time reliability of the output gap estimates,

especially during the Great Recession period and the subsequent recovery, and leads to tighter

credible intervals. This finding reinforces the contribution of Mertens (2014), who also finds

that allowing for SV in the output gap leads to improved inference.

Overall, the real-time estimates of stars and forecast evaluation based on the past 20 years of

data provide empirical evidence supporting the competitive forecasting and real-time properties

of the Base model. Unfortunately, the high dimensionality of our models and the limited

availability of real-time data on nominal wage inflation prevent the evaluation of the models’

53We note that recent approaches to model r-star such as JM and Del Negro et al. (2017) also generate precise
intervals similar to ours.
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forecasting properties over a more extended historical sample.

6. The Implications of the COVID-19 Pandemic For Stars

At the time of writing the first draft of this paper, the global economy was in the midst of

an ongoing global pandemic crisis (GPC), which started in early 2020, contributed to extreme

movements in many US macroeconomic indicators, including those used in this paper. For

instance, US real GDP growth in quarterly annualized terms declined from -5% in Q1 to -

31% in Q2, the deepest contraction in the post-war data (COVID-19 recession). And in Q3,

growth rebounded to +33%, a record increase in the post-war data. These extreme movements,

which were several standard deviations away from their historical averages, contributed to the

breakdown of many conventional time-series models, especially the time-invariant VAR models

estimated with monthly data; see Lenza and Primiceri (2020) and Carriero, Clark, Marcellino,

and Mertens (2022).

We find that the Base model handled pandemic data well and continues to do so, whereas

Base-NoSurv did not. The following three observations inform our assessment of the Base

model. First, estimates of the stars appear reasonable, indicating the model isn’t blowing

up. The model attributes the bulk of the data fluctuations during the pandemic as cyclical (or

transitory), leaving the stars mostly unaffected until 2021. Second, adding pandemic data to the

estimation sample has small effects on the stars’ historical (posterior mean) estimates. However,

as expected, the persistent and elevated inflation from 2021 through 2022 has led the model

to revise the recent history of pi-star and w-star upwards. Third, as expected, the precision

plots indicate an uptick in uncertainty during the early part of the pandemic, which gradually

subsided as the recovery from the pandemic continued. Relatedly, the revisions to the historical

estimates of precision are small. The Base-NoSurv model had difficulty estimating the pandemic

data. However, a scaled-down version of the Base-NoSurv (i.e., shutting down SV in output

and the unemployment rate) was successfully estimated. Still, it displayed notable revisions

to historical estimates for some stars, particularly u-star, and a more significant increase in

the uncertainty than Base. The Base’s reliance on the survey expectations significantly helped

anchor the econometric estimates of stars to a reasonable range.

We believe that the rich features of our models helped position our models, especially the

Base model, to handle the pandemic data well. In the interests of brevity, we refer the reader

to online appendix A8 for the results comparing the pre-pandemic to pandemic periods and

Base model estimates to outside sources, including the CBO; see online appendix A14 for a

comparison of stars’ estimates across vintages spanning 2019 to 2022.
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7. Conclusion

This paper takes up the challenge of developing a large-scale UC model to jointly estimate

the dynamics of inflation, nominal wages, labor productivity, the unemployment rate, real GDP,

interest rates, and their respective survey expectations to back out estimates of the long-run

counterparts of these variables. These long-run counterparts include potential output (gdp-

star), the growth rate of potential output (g-star), the equilibrium levels of the unemployment

rate (u-star), the real short-term interest rate (r-star), price inflation (pi-star), labor produc-

tivity growth (p-star), and nominal wage inflation (w-star). The structure of our UC model is

guided by economic theory and past empirical research, which has highlighted strong evidence

of changing macroeconomic relationships and allows for stochastic volatility in the shocks to

cyclical components of a range of macroeconomic indicators. Accordingly, our model structure

permits time-varying parameters and stochastic volatility in the main model equations.

An essential feature of our model structure is the explicit role of long-run survey expectations

in possibly informing the econometric estimation of the stars. We show significant improvements

in the precision of the stars’ estimates by bringing in additional information from survey ex-

pectations. Generally, when assessed over long periods, the contours of the stars echo those

documented elsewhere in the literature, but at times, which can be for extended periods, the

estimates of stars are different, and these differences are significant enough to matter for policy.

We also show that our baseline model held up well when including the COVID-19 pandemic

data.

We explore the empirical relevance of various features incorporated in our baseline model

by estimating several variants of the baseline model. The Bayesian model comparison results

provide strong support to model features informed by past research and confirm findings doc-

umented elsewhere. For instance, we find that allowing for SV in the model equations is very

important. Similarly, we find economically and statistically significant evidence of a time-

varying price Phillips curve, wage Phillips curve, the evolving cyclicality of labor productivity,

a changing pass-through relationship between wages and prices, and evolving persistence in

price inflation and wage inflation gaps. Given the richness of our model, we document an ex-

pansive set of empirical results that we hope will prove helpful for both applied and theoretical

macroeconomists alike.

We note that among the stars considered, w-star has received less attention in the liter-

ature. Our UC model’s ability to provide real-time estimates of w-star and its model-based

decomposition into its determinants p-star and pi-star, as implied by economic theory, is a

novel contribution. This specific decomposition is useful to monetary policymakers, who often

refer to developments in nominal wages to support their forecasts and related discussions on

price inflation and employment.

Lastly, we document the competitive real-time forecasting properties of both our main model

and, separately, the estimates of the stars, if they were to be used as steady-state values in

external models.
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Fig. 1. Visual Overview of Interactions Between Blocks

Notes: The solid lines represent a contemporaneous relationship between the element(s) of the blocks.

LR link denotes long-run relationship, i.e., link between stars.

Table 1: Bayesian Model Comparison: Main Models and Selected Variants

Base Base- Base- Base- Base-

NoSurv NoLinkStars NoTVP NoSV

MDD of Inflation -365.2 -365.6 -365.6 -379.8 -412.5

MDD of Productivity -604.3 -603.7 -602.3 -612.0 -630.1

MDD of Nominal Wage -275.3 -274.1 -283.7 -273.3 -341.6

MDD of Unemployment 89.4 93.1 89.3 89.3 40.9

MDD of Interest rate -211.7 -215.5 -205.8 -215.9 -323.3

MDD of GDP -220.1 -221.4 -220.3 -220.1 -273.0

MDD -1587.3 -1587.1 -1588.4 -1611.8 -1939.7
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Table 2: Parameter Estimates

Parameter Parameter description Posterior estimates

Base Base-NoSurv

Mean 5% 95% Mean 5% 95%

ar Coefficient on interest-rate gap -0.041 -0.086 -0.001 -0.022 -0.066 0.019

ρg1 + ρg2 Persistence in output gap 0.726 0.666 0.788 0.708 0.642 0.774

ρu1 Lag 1 coefficient on UR gap 1.269 1.224 1.315 1.252 1.206 1.295

ρu2 Lag 2 coefficient on UR gap -0.502 -0.539 -0.466 -0.508 -0.543 -0.474

ρu1 + ρu2 Persistence in UR gap 0.767 0.726 0.809 0.744 0.704 0.779

ρp Persistence in productivity gap -0.023 -0.139 0.092 -0.025 -0.140 0.093

m = ζ
4 Relationship between r* and g* 0.658 0.576 0.740 0.346 0.227 0.464

ρi Persistence in interest-rate gap 0.876 0.836 0.913 0.866 0.828 0.903

λi Interest rate sensitivity to UR gap -0.254 -0.303 -0.206 -0.272 -0.320 -0.225

κi Interest rate sensitivity to inflation 0.059 0.012 0.103 0.085 0.040 0.130

λg Output gap response to UR gap -0.479 -0.613 -0.349 -0.538 -0.689 -0.386

ϕu UR gap response to Output gap -0.108 -0.127 -0.088 -0.120 -0.140 -0.103
(1−ρu1−ρu2 )

ϕu
Implied Okun’s Law -2.172 -2.421 -1.937 -2.141 -2.375 -1.923

βg Link between g* and survey 0.875 0.723 1.030 — — —

βu Link between u* and survey 0.950 0.880 1.021 — — —

βr Link between r* and survey 1.032 0.932 1.137 — — —

βπ Link between π∗ and survey 0.993 0.916 1.072 — — —

σ2π∗ Variance of the shocks to π∗ 0.1192 0.1002 0.1402 0.1182 0.0822 0.1622

σ2p∗ Variance of the shocks to p∗ 0.1422 0.1102 0.1802 0.1402 0.1082 0.1782

σ2u∗ Variance of the shocks to u∗ 0.0932 0.0792 0.1062 0.1212 0.1032 0.1392

σ2gdp∗ Variance of the shocks to gdp∗ 0.0242 0.0182 0.0302 0.0242 0.0172 0.0332

σ2d Variance of the shocks to d 0.0942 0.0782 0.1122 0.1002 0.0762 0.1282

σ2w∗ Variance of the shocks to w∗ 0.0322 0.0242 0.0412 0.0322 0.0242 0.0412

σ2ho Var. of the Volatility – Output gap eq. 0.5222 0.4382 0.6152 0.5232 0.4382 0.6162

σ2hu Var. of the Volatility – UR gap eq. 0.5992 0.4872 0.7232 0.6632 0.5242 0.8222

σ2hp Var. of the Volatility – Productivity eq. 0.2752 0.2202 0.3392 0.2762 0.2202 0.3382

σ2h Var. of the Volatility – Price Inf. eq. 0.2972 0.2382 0.3632 0.2982 0.2362 0.3662

σ2hw Var. of the Volatility – Wage Inf. eq. 0.2942 0.2332 0.3612 0.2942 0.2352 0.3622

σ2hi Var. of the Volatility – Interest rate eq. 0.3802 0.2972 0.4722 0.3832 0.2972 0.4852

σ2λπ Var. of the shocks to TVP λπ 0.0422 0.0322 0.0532 0.0422 0.0332 0.0542

σ2λw Var. of the shocks to TVP λw 0.0412 0.0322 0.0522 0.0442 0.0332 0.0592

σ2λp Var. of the shocks to TVP λp 0.0452 0.0342 0.0582 0.0452 0.0342 0.0592

σ2κw Var. of the shocks to TVP κw, PT 0.0412 0.0322 0.0522 0.0422 0.0322 0.0532

σ2ρw Var. of the shocks to TVP ρw 0.0422 0.0322 0.0542 0.0422 0.0322 0.0542

σ2ρπ Var. of the shocks to TVP ρπ 0.0482 0.0362 0.0602 0.0482 0.0362 0.0602

41



Fig. 2. Full Sample Estimates of Stochastic Volatility

Notes: The posterior estimates are based on the full sample (from 1959Q4 through 2019Q4).
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Fig. 3. Full Sample Estimates of Time Varying Parameters

Notes: The posterior estimates are based on the full sample (from 1959Q4 through 2019Q4).
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Fig. 4. Full Sample Estimates for Unemployment Rate Block

Notes: The posterior estimates are based on the full sample (from 1959Q4 through 2019Q4).

Fig. 5. Full Sample Estimates for Cyclical Unemployment

Notes: The posterior estimates are based on the full sample (from 1959Q4 through 2019Q4). The shaded

areas represent NBER recession dates.

44



Fig. 6. Full Sample Estimates for Output Block

Table 3: Model Comparison: Variants Focused on GDP

Base Base-NoSurv Bivariate-SV Univariate-SV Bivariate Univariate

MDD of GDP -220.1 -221.4 -223.2 -239.6 -280.4 -296.5
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Fig. 7. Full Sample Estimates for Productivity Block

Notes: The posterior estimates are based on the full sample (from 1959Q4 through 2019Q4).

Table 4: Model Comparison: Variants Focused on Labor Productivity

Base Base-NoSurv Base-W*RW Base-NoSV

MDD of Productivity -604.3 -603.7 -602.3 -630.1

MDD of model -1587.3 -1587.1 -1594.3 -1939.7

Fig. 8. Full Sample Estimates for Price Inflation Block

Notes: The posterior estimates are based on the full sample (from 1959Q4 through 2019Q4).
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Fig. 9. Full Sample Estimates for Nominal Wage Block

Notes: The posterior estimates are based on the full sample (from 1959Q4 through 2019Q4).

Table 5: Model Comparison: Variants Focused on Nominal Wages

Base Base-NoSurv Base-W*RW Base-NoPT Base-NoSV

MDD of Nominal wages -275.3 -274.1 -283.9 -279.3 -341.6

MDD of model -1587.3 -1587.1 -1594.3 -1592.3 -1939.7
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Fig. 10. Full Sample Estimates for Interest Rate Block

Notes: The posterior estimates are based on the full sample (from 1959Q4 through 2019Q4). In the top

panel, the plot labeled ”survey exp.” is an implied estimate: inferred from the Blue Chip survey long-run

estimates of the GDP deflator and short-term interest rates (3-month Treasury bill) using the long-run

Fisher equation. Specifically, the long-run forecast of 3-month Treasury bill less the long-run forecast of

GDP deflator. To this differential, we add +0.3 to reflect the average differential between the federal

funds rate and the 3-month Treasury bill.
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Fig. 11. Real-time Recursive Estimates of Stars

Notes: The plots labeled Base are posterior estimates reflecting information in the full sample (from

1959Q4 through 2019Q4). The plots labeled Base:RealTime are posterior estimates reflecting information

available at a given point in time (i.e., truly real time).
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