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Abstract

This article reviews recent developments in the study of industry dy-
namics, with a special emphasis on the econometric endogeneity of mar-
ket structure. Endogeneity of market structure follows from the pres-
ence of serially correlated unobservable shocks to the profitability of
firms’ dynamic decisions, a feature common to many empirical settings.
We particularly focus on extensions of standard two-step methods that
leverage instrumental variables to address endogeneity, in both single-
agent and oligopoly models.
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1. Introduction

The field of Industrial Organization (IO) studies firms and markets in equilibrium. Many
classic IO models are static. This is not surprising, as it can be difficult enough to model
interactions between firms without modeling how firms and markets change over time. Yet,
we know that industries and firms evolve. IO models often speak of “market structure,”
which is the broad category of market primitives that are held fixed in a static model of
oligopoly price or quantity. These primitives include features like the number of firms, the
cost and demand characteristics of those firms, and so forth. While market structure might
be held fixed in the short run, it is clearly an economic outcome that is built up over time, in
a dynamic setting.

We think that market structure is dynamic partly because we think that sunk costs may be
important. In the presence of sunk costs, we understand that markets may exhibit hysteresis,
a dependence on past market conditions, as in Dixit (1992). Furthermore, in the presence of
sunk costs, decisions about, e.g., firm entry, investment, or product development depend on
firm’s forward-looking beliefs about future market conditions. All of this points the study of
market structure towards explicitly dynamic settings.

There are, however, many interesting static empirical models of market structure, for
example those reviewed in Berry & Reiss (2007) and Berry & Tamer (2007). These models
may be an appropriate approximation to reality in the a case where market fundamentals are
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(relatively) unchanging and firms have settled into a clear “best-response” Nash equilibrium
to rivals’ behavior. However, even in a relatively unchanging market, a static model will
not be able to distinguish sunk from fixed costs, as the distinction is entirely dynamic. This
matters since many counterfactual policies may depend critically on the nature of sunk costs.

To state, even informally, rough conditions for a credible use of static market structure
models is to make a case for dynamic models. A strong counterargument, though, is that
dynamic models of market structure face an extremely difficult set of challenges. In the end,
we may worry that the attempt to introduce dynamics creates so many compromises that the
result is not better than the static version.

This article reviews the difficulties and trade-offs that applied empirical researchers face
in estimating dynamic models of market structure. It covers a set of possible solutions, with
an emphasis on competing approaches that differ in their computational tractability and their
(relative) realism.

In particular, this review focuses on the econometric endogeneity of market structure
that follows from the presence of serially correlated unobservable shocks to the profitability
of firms’ dynamic decisions. It seems clearly preferable to allow for these serially correlated
shocks, but the history of the literature shows that this leads to challenges for both identifica-
tion and estimation/computation. Possible modeling solutions that allow for realistic serial
correlation are an active area of research and the primary subject of this review.

The topic of serial correlation in unobservables sounds “technical,” but it involves issues
of first-order importance to the modeling of industry dynamics. If market structure is built
up over time, then it depends on the past profitability of the industry. Since the data is
unlikely to capture all drivers of firm profitability, past profitability typically includes the
effect of past unobservables. But if unobservables are correlated over time, this implies that
current market structure is correlated with current unobservables, creating an endogeneity
problem.

This logic is famously emphasized, for example, in Olley & Pakes (1996). They consider
capital stock as an element of market structure, which is built up over time and which then
shifts the short-run marginal cost curves of oligopolistic firms. In the estimation of a produc-
tion function, they emphasize that the firm’s capital stock will be correlated with the current-
period unobserved productivity shock precisely because that shock is correlated with the
past shocks that influenced past investment decisions, which in turn led to the current capi-
tal stock. Thus, the “market structure” of the short-run fixed capital stock is econometrically
endogenous in the production function even if the capital stock is not directly determined
by the current productivity shock. Importantly, ignoring this endogeneity will lead to mis-
leading economic conclusions about, for example, the role of capital, labor and unobserved
productivity in explaining output changes over time.

Igami & Yang (2016) provide another example, where “market structure” is the number
of firms in a market. Their dataset consists of Canadian hamburger chain outlets (“stores”)
and they provide some simple descriptive evidence that points to the importance of market
structure endogeneity. Table 1 is adapted from Table 3 in their paper.1 We see that adding
fixed effects (for market and firm) greatly changes the coefficients in these descriptive regres-
sions. If we gave the coefficients a causal interpretation, the first column results (without
fixed effects) would appear to say that, if anything, the presence of a rival firm increases the

1Standard errors are in parentheses and a set of further controls (population and income) are omitted
from the table. Further details are available in the original paper.
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probability that the own-firm will enter the market.2

The literature on empirical dynamic models is vast and earlier reviews include Ackerberg
et al. (2007), Aguirregabiria & Mira (2010) and Arcidiacono & Ellickson (2011), among others.
Here, we focus primarily on the issue of econometrically endogenous market structure. We
first consider single-agent problems in Section 2. Many methods for single-agent models
extend easily to multiple-agent settings and have the added benefit of simpler notation, so
we use the single-agent case to illustrate the different approaches. We start from the methods
that rule out serial correlation in the unobservables (Section 3) and then move on to those that
do allow for serial correlation and thus account for the econometric endogeneity of market
structure (Section 4). We emphasize two approaches to serial correlation and endogeneity.
The first is a mixture model approach, following on Kasahara & Shimotsu (2009), that models
persistent unobserved heterogeneity via a limited number of discrete types. The second is an
instrumental variables (IV) approach, presented in a general context by Berry & Compiani
(2020) and in a clever special case by Kalouptsidi, Scott & Souza-Rodrigues (2020). In Section
5, we turn to oligopoly models, with a special emphasis on the unique challenges that are
introduced there, notably the issue of multiple equilibria. However, many of the ideas of the
single-firm case carry over to the oligopoly setting so that most of our work is done by that
point.

Finally, it is worth noting that while we focus our discussion on examples of endogenous
market structure, the issue of serial correlation in dynamic models is much broader and thus
our discussion could be applied to a much wider range of empirical settings.

2. Single-Firm Dynamics

We start by considering single-firm settings. These models may be directly applicable to
situations on both extremes of competition: either firms that are “market takers” and ignore
the behavior of their rivals (on one hand) or strict monopoly firms (on the other).

We first introduce some general notation and explicitly state the identification problem.
We then consider a simple entry/exit example, which is helpful to illustrate the alternative
approaches described in Sections 3 and 4. We conclude this section with a discussion of the
initial conditions problem in models with serially correlated errors.

2.1. Model Setup

The model setup and notation closely follow Berry & Compiani (2020). We consider identi-
fication of a model that generates data on a large set of markets indexed by i. Since, in this
section, there is a single firm per market, we will often use the expression “firm i” to refer to
“the firm in market i.” Within-sample time periods are denoted by t = 1, ..., T. Firm i’s cur-
rent market structure is xit and in period t firm i chooses an action ait out of the set of feasible
actions, denoted A(xit). Examples of market structure xit include a continuous measure of
capital stock, an indicator of whether a firm is operating in a market, and the current quality
level of a firm’s product. Actions ait associated with those example states might be (respec-
tively) investment, entry/exit, and R&D expenditure. The single-period profits of firm i are
given by

π (ait, xit, wit, uit; θπ) , (1)

2Indeed, this interpretation is offered in the Toivanen & Waterson (2005) study of UK data.
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where wit is a vector of exogenous profit shifters that are observed by both the firm and the
researcher while uit is an exogenous profit shifter that is observed by the firm but not by the
researcher.

The law of motion for the unobservables is

Φ(uit+1|λit; θu), (2)

with θu a vector of parameters that govern the distribution of uit. Note that (2) implicitly
assumes that the unobservables follow a first-order Markov process. The full vector of un-
known parameters of the dynamic model is θ ≡ (θπ , θu). The term λit includes various
possible sources of serial correlation. One leading special case is a simple first-order autocor-
relation process, where we have

λit ≡ uit. (3)

A second important special case is time-invariant discrete heterogeneity. Due to time-
invariance, we can drop the t subscript and write

λi ∈ (λ̄1, λ̄2, . . . , λ̄M). (4)

In this notation, the λ̄k are the possible discrete values of the persistent heterogeneity. The
parameters θu then include the λ̄ vector plus the probabilities of each of those discrete values.

The endogenous market structure evolves over time according to the transition probabil-
ities

Γ(xit+1|ait, xit, wit). (5)

Our examples will focus on special cases involving deterministic transitions that are specified
by the model, but the framework allows for any transitions that can be directly estimated
from the data. The exogenous states wit are assumed to evolve according to the law of motion

ψ(wit+1|wit). (6)

As is typical in the literature, we assume that both (5) and (6) are directly observed or known
by the researcher.

The firm’s dynamic problem is given by the Bellman equation:

V (xit, wit, uit) =

max
ait∈A(xit)

(
π (ait, xit, wit, uit; θπ) + βE [V (xit+1, wit+1, uit+1) |ait, xit, wit, uit; θu]

)
. (7)

where β denotes the discount factor and V the value function. Following much of the litera-
ture, we assume throughout that the discount factor β is known.

The expected value function on the right-hand side of this expression is determined by
the laws of motion of the different variables, i.e.

E [V (xit+1, wit+1, uit+1) |ait, xit, wit, uit; θu] =∫ ∫ ∫
V (xit+1, wit+1, uit+1) dΓ(xit+1|ait, xit, wit)dψ(wit+1|wit)dΦ(uit+1|λit; θu)

(8)

Note that the expectation of the future value function in (7) and (8) depends on θu because
that parameter governs the serial correlation of the unobservables, which influences future
expected profits conditional on uit.
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Associated with the true Bellman equation is then the “policy function” that gives the
optimal action for each state,

ait = σ(xit, wit, uit). (9)

It is important to distinguish the true policy function, generated by the Bellman equation
evaluated at the true value of the parameter, from the policy function that would result from
the Bellman equation evaluated at arbitrary guesses for the parameter θ. We denote the policy
function consistent with an arbitrary parameter θ as σ̂(xit, wit, uit; θ). Obviously, if the true
parameter is θ0, then

σ(xit, wit, uit) = σ̂(xit, wit, uit; θ0). (10)

2.2. The Identification Problem

For purposes of identification, we assume that we observe the true data generating process
for the observable variables (ai, xi, wi), but not for u. The underlying parameters to be iden-
tified are θ = (θπ , θu).3 It many applications, it will also be useful to think separately about
the identification of the policy function, σ(xit, wit, uit).

2.3. Single-Firm Entry/Exit Example

We now introduce a simple single firm entry/exit example which will illustrate different
approaches in Sections 3 and 4. Consider a monopolist entry/exit example where the en-
dogenous state xit ∈ {0, 1} indicates whether the firm was active in the market in the prior
period and ait ∈ {0, 1} is the decision to operate in the current period. The single-period
profit from being active in the market is

π(x, w, u) = π̄(x, w)− u, (11)

where π̄(x, w) is the “variable profit” of operations and the scalar u is a random fixed cost.
The exogenous profits shifters are discrete, taking on one of Kw possible values. The sunk
cost of entry, π̄(1, w) − π̄(0, w), is here allowed to depend on the exogenous profit shifters
w. In every period when the firm is inactive, it earns a single-period profit of zero. However,
the firm retains the ability to re-enter the market. The value function is then

V(x, w, u) =

max(π̄(x, w)− u + βEw′ ,u′ [V(1, w′, u′)|w, u; θu], βEw′ ,u′ [V(0, w′, u′)|w, u; θu]), (12)

Under well-understood conditions,4 the value function is strictly decreasing in u and so the
policy function σ(x, w, u) involves a cut-off rule where the firm enters if and only if

u < δ(x, w), (13)

where δ(x, w) is the value of u that sets the expected dynamic return of being in the market
equal to the value of being out. From (12), this is defined implicitly by

δ(x, w) = π̄(x, w) + βEw′ ,u′
[
V(1, w′, u′)−V(0, w′, u′)|w, u = δ(x, w); θu

]
. (14)

3Because u enters the single-period profit function, there is a somewhat arbitrary distinction between
the parameters of the single-period profit function, θπ , and the parameters of the distribution of unob-
servables, θu. However, in many cases it is clear how to define θu so that it contains the parameters that
govern serial correlation.

4See Stokey et al. (1989) and, for examples close to the present context, Bajari et al. (2007).
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We denote the true cutoffs in the data as δ(x, w) and the cutoffs that result from computation
of the firm’s fixed point at an arbitrary parameter vector θ as δ̂(x, w, θ). In this special exam-
ple and related cases with cutoff rules, δ(x, w) is the most general description of the policy
function. Moreover, when x and w are discrete (as in our example), this involves a finite
parametrization.

In the most general case, the unknown profit parameters, θπ , are the 2Kw variable profit
terms π̄(x, w). We assume that the normalized marginal density of u, φ0(u), is known and
that the unknown parameter θu controls the serial correlation of u.

2.4. The Initial Conditions Problem

When the data tracks each firm or market from the beginning of their potential life, the distri-
bution of the first-period unobservables, ui1 can be considered an additional primitive of the
model. However, if we first observe firms in the middle of their existence, serially correlated
unobservables will likely be selected by past history. Specifically, the distribution of ui1 will
not be equal to the unconditional marginal distribution of the unobservables. This creates
a well-known “initial conditions problem,” as discussed in many classic papers, including
Heckman (1981), Chamberlain (1985), Blundell & Bond (1998), and Wooldridge (2005). These
papers emphasize that structural parameters may not be identified without placing restric-
tive assumptions on the distribution of initial conditions.

Honoré & Tamer (2006) note that an alternative is to look for estimators that allow for
unspecified initial conditions. In the context of dynamic panel data models, they show that
leaving initial conditions unspecified may result in set-identified parameters. They also show
that in many cases the identified set is quite small and thus useful for economic analysis. As
discussed below, Berry & Compiani (2020) take a similar approach to initial conditions in the
context of dynamic models of endogenous market structure.

3. Approaches With No Serial Correlation in u

This section discusses approaches to recovering the primitives of dynamic models under
the assumption that the unobservables are not serially correlated. While, as discussed above,
this restriction effectively amounts to assuming away the econometric endogeneity of market
structure, it greatly simplifies the analysis and is thus maintained in the much of the empirical
literature to date. Lessons from this literature prove to be very useful once serial correlation
is introduced, and we will refer back to these lessons below.

While the focus throughout is primarily on model identification, we do discuss selected
important computation and estimation issues that can influence the choice of methods.

3.1. Full-Solution MLE

Dating back at least to Rust (1987), one popular approach to dynamic models uses the struc-
ture of the Bellman equation to write the likelihood of the data as a function of the structural
parameters. We illustrate with the simple entry/exit model of Section 2.3, providing a useful
starting point for discussion.

The cutoff rule in (13) defines a set of intervals in RT giving the set of (ui1, . . . , uiT) values
that are consistent with the data. For example, if firm i chooses ait = 1 in period t, then we
know that uit < δ(xit, wit), and if it chooses ait = 0, then uit > δ(xit, wit). Without serial
correlation, the two-period likelihood when the firm is not active in the first period but is
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active in the second period is

Li(θ) =
∫ ∞

δ̂(xi1,wi1,θ)

∫ δ̂(xi2,wi2,θ)

−∞
φ0(u2)φ0(u1)du2du1. (15)

Critically, it is possible to use the unconditional density φ0 for the first-period unobserv-
able u1 in (15) only under the assumption of no serial correlation in the unobservables, unless
we observe the firm or market from the beginning of its existence.

A full-computation MLE method proceeds by evaluating the likelihood function in (15)
at trial values of the parameters θ, which in the general case requires computational tech-
niques (such as value-function iteration) to solve for the value function and the policy cutoffs
δ̂(x, w, θ). Rust (1987) and Rust (1994) refer to this method as a “nested fixed point,” since
the Bellman equation must be solved for each trial value of θ. Rust and later authors find
computational short-cuts that apply to special cases, whereas Dubé et al. (2012) develop a
different computational approach based on more modern advances.

3.2. Two-Step Methods

Motivated by a desire to avoid the computational burden inherent in full-solution methods,
Hotz & Miller (1993) propose a two-step alternative that does not require solving the model
for each candidate parameter value.5 In the first step, the policy function is recovered from
the data. For example, when actions are discrete, the policy function is identified from ob-
served conditional choice probabilities, leading to the moniker of “CCP” methods. In the
second step, the policies are combined with restrictions from Bellman’s equation to recover
the structural profit parameters.

When specialized to the entry/exit model of Section 2.3, the first step involves estimating
the probabilities of entry for each value of (x, w), p(x, w). This works because when u is not
serially correlated, (x, w) are econometrically exogenous in the policy function equation (9)
and thus p(x, w) capture the true “causal” effect of (x, w). Specifically,

p(x, w) ≡ Pr(u < δ(x, w)) = Φ0(δ(x, w)), (16)

where Φ0 is the CDF of u. Assuming that Φ0 is strictly increasing, δ(x, w) is then recovered
as

δ(x, w) = Φ−1
0 (p(x, w)). (17)

Thus, in the example, knowing p (x, w) is equivalent to knowing the entry cutoffs δ (x, w).
This first-step identification of δ(x, w) depends entirely on the observed data and the as-
sumed distribution for u, with no use of the dynamic model other than the existence of a
cutoff rule. While our example involves a binary action, the original Hotz & Miller (1993)
paper derives a vector equivalent of δ(x, w) by inverting the action probabilities in a multi-
nomial discrete choice problem. The idea is the same. Further, the Hotz-Miller insight of
uncovering the policy function in a first step can be extended to many other cases lacking
serial correlation, including the wide range of discrete choice problems considered in Berry
(1994) and Berry, Gandhi & Haile (2013).

5The broad idea of the two-step method is reviewed in many places, including Aguirregabiria & Mira
(2010).
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Bajari, Benkard & Levin (2007), henceforth “BBL,” consider a case with continuous ac-
tions where the policy function takes the form

a = σ(x, w, u), (18)

with a and u continuously distributed. Under appropriate assumptions, the methods of
Stokey et al. (1989) can be used to establish the strict monotonicity of σ in u, so that the
equation can be inverted to obtain

u = σ−1(x, w, a) (19)

This is a non-separable regression of the form in Matzkin (2003) and can be identified from
the inverse distribution function of a conditional on (x, w). As in step one of Hotz-Miller, this
then gives us the policy function directly from the data, without reference to the dynamic
model. More complicated versions, with a mix of discrete and continuous variables are also
possible. In each of these “extended CCP” examples, the policy function is point-identified
in the first step without reference to Bellman’s equation. This first step identifies the data-
generating process without recovering the underlying structural parameters that necessary
for many interesting counterfactuals.

The second step of a CCP-style method conditions on the policy function from the first
step and imposes Bellman’s equation to recover the single-period profit parameters. There
are several alternative approaches to this step. In this review, we focus on the forward sim-
ulation method of Hotz, Miller, Sanders & Smith (1994) (“HMSS”). This method is broadly
applicable to the class of models considered in the CCP literature and BBL also emphasize
forward simulation. The approach is useful for our purposes because Berry & Compiani
(2020) extend the idea to the case of serially correlated unobservables. We discuss that exten-
sion in Section 4.8.

To review the forward simulation procedure as applied to the entry/exit model, recall
the cutoff defined in equation (14). Without serial correlation, we drop the conditioning on
u, giving

δ(x, w) = π̄(x, w) + βEw′ ,u′
[
V(1, w′, u′)−V(0, w′, u′)|w

]
. (20)

HMSS show how to use first-step policy functions, together with a guess for the profit pa-
rameters, to “forward simulate” the value functions in (20). Intuitively, starting from a state
(x, w), draw u from its assumed distribution, use the known policy function to obtain the
action a = σ(x, w, u) and then assign the profit π(a, x, w, u) to that action. The known state
transitions then predict new states (x′, w′), which are used to obtain next period’s profits via
the same steps, and so forth. The sum of discounted profits computed in this way can be
used to construct an unbiased estimate of the value function and the average of many such
simulations will provide a more precise estimate. Denote such a simulated value function by
Ṽ(x, w, u; σ, θ).

Furthermore, HMSS note that if the single-period profit function is linear in a set of pa-
rameters, then the forward-simulated version of the expected value function will also be lin-
ear in those parameters. This yields a system of linear-in-parameters equations of the form
(20), which we write as

δ(x, w) = h0(x, w; σ) + h1(x, w; σ)θπ . (21)

The δ on the left-hand side of this equation is known from the first CCP step and the h0, h1
functions on the right-hand side are known from the forward simulation, given the σ un-
covered in the first step. We then have a set of linear equations (one for each (x, w)) in the
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unknown θπ . The parameter is point identified if the equations have a unique solution in θπ ,
which is easy to check. The argument in HMSS is applied to multinomial choice, as opposed
to this binary example, but the logic is exactly the same.

BBL note that the HMSS examples is exposited only for the dynamic discrete-choice ex-
ample. They propose a more general strategy of forward simulating the value function under
alternative policies, σ′(x, w, u). Since the true policy maximizes the value function, at the true
θπ it must be that for all possible policies σ′(x, w, u),

Ṽ(x, w, u; σ, θπ) ≥ Ṽ(x, w, u; σ′, θπ), (22)

This yields very many inequality constraints. A finite set of such constraints may not point-
identify θπ , so BBL consider set-identification of θπ , even when σ is point-identified in the
first step.

Berry & Compiani (2020) propose two alternatives to the BBL inequalities. Each general-
izes to the case of serially correlated unobservables. The first, more general, approach relies
on a single “policy function” iteration of the Bellman equation. The second approach, appli-
cable in a very wide range of cases, generalizes HMSS to a broader class of problems while
retaining computational simplicity. In this second case, we note that HMSS is implicitly using
an “indifference” condition that applies to a much broader class of models. We now review
each of the two approaches.

As a first alternative to the BBL inequalities, Berry & Compiani (2020) propose that a
guess θπ be rejected if a single policy iteration on the forward-simulated Bellman equation
does not return the first-step σ(x, w, u). In the entry/exit example this is

σ̃(x, w, u; σ, θπ) ≡

1
{

π̄(x, w)− u + βEw′ ,u′ [Ṽ(1, w′, u′; σ, θπ)− Ṽ(0, w′, u′; σ, θπ)|w] > 0
}

, (23)

where 1 {·} is the indicator function. We then exclude a candidate θπ from the identified set
if

σ̃(x, w, u; σ, θ) 6= σ(x, w, u) (24)

for any value of (x, w, u). This amounts to checking whether the firm’s static “best response”
to its future self playing σ is to also play σ. This is one iteration on the policy-function fixed
point implied by Bellman’s equation. Beyond the entry/exit example, the general method is
to reject a given θπ if it does not solve the policy-function problem in one interation, an idea
general to any problem where Bellman’s equation generates a unique policy function.

However, the policy-function iteration still requires some computational effort since it
involves searching over candidate values of θπ . As a second alternative to BBL style in-
equalities, Berry & Compiani (2020) show that the HMSS approach implicitly uses a set of
indifference conditions in the unobservables. To see this in the simple entry/exit example,
note that the expected discounted values of taking action a, denoted by v(a, x, w, u), are

v(0, x, w, u) = βEw′ ,u′
[
V(0, w′, u′)|w

]
v(1, x, w, u) = π̄(x, w)− u + βEw′ ,u′

[
V(1, w′, u′)|w

]
At u = δ(x, w), these two equations imply equation (20). That is, setting u = δ(x, w) equates
the values of being in and out of the market and this results in the HMSS style condition
in (20). A similar indifference condition, across the action-specific values of all the choices,
holds in the multinomial analysis of HMSS.
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Berry & Compiani (2020) go further and show formally that policy functions in problems
with discrete actions are generally defined by indifference conditions, as long as payoffs are
continuous in the unobservables. Under mild conditions, for every pair of actions a and a′

there is an unobservable ũ(a, a′, x, w) such that the firm is indifferent between actions a and a′

when the firm is at the state (x, w, ũ(a, a′, x, w)). That is, letting ṽ (a, x, w, ũ(a, a′, x, w); σ, θπ)

denote the forward-simulated version of the action-specific value functions, we have

ṽ
(
a, x, w, ũ(a, a′, x, w); σ, θπ

)
= ṽ

(
a′, x, w, ũ(a, a′, x, w); σ, θπ

)
. (25)

If, as in the CCP literature, the first step of the identification procedure uniquely identifies
σ, then we can treat σ as known when we get to the second step. The values ṽ(a, w, u; σ, θπ)

can be forward simulated and they are linear in θπ when the single-period profit function
is linear in θπ . In that case, then, for a given (a, a′, x, w), (25) defines one linear equation
in θπ .6 Berry & Compiani (2020) note that there will typically be at least one equation of
the form of (25) for each combination of (a, a′, x, w). In many discrete examples, this is a
sufficient number of equations to potentially identify a θπ of length equal to the number
of distinct combinations of (a, x, w). In our entry/exit model where a, x and w each take
on discrete values, this implies that we could consider the identification of a model with
the most flexible (“natural”) profit parameterization, i.e. one that treats the value of π̄ at each
combination of (x, w) as a separate parameter. Whether the implied equations actually invert
is directly verifiable from a given data generating process.7

We can also consider continuous actions, or a mix of continuous and discrete actions.
With continuous actions, the analog of the indifference conditions may be found in first-
order conditions. Stokey et al. (1989) provide sufficient conditions for the differentiability of
the value function, under which the optimal continuous actions satisfy

∂ṽ(a, x, w, u; σ, θπ)

∂a
= 0. (26)

Note that the derivative ∂ṽ/∂a can often be forward simulated and again will typically be
linear in θπ if the single-period profits are linear in θπ . The first-order conditions then provide
a large number (likely a continuum) of equations that restrict the values of θπ . Again, the
point-identification of θπ via these conditions is verifiable. Berry & Compiani (2020) provide
a particularly easy differentiable example based on a “stochastic accumulation” model.

In summary, then, our review of second-step CCP style methods is weighted toward
ideas that extend to the case of serially correlated errors. The Berry-Compiani explica-
tion/extension of HMSS implies that the second step can be quite easy and that the inequality
approach of BBL may be unnecessary in most cases, including examples with continuous ac-
tions. However, we do find that BBL’s suggested use of forward simulation is quite useful
and will extend nicely to the case of serial correlation.

6Note that we do not require that ũ(a, a′, x, w) be unique. Indeed, the original HMSS “indifference”
conditions use a vector u at which the values of all actions, including the outside choice, are equal. There
are other planes in the u space that equate the value of two actions, as in Ichimura & Thompson (1998).
However, these are not necessary for identification in this example.

7Berry & Haile (2018) formally define “verifiable” as the identification of the binary truth or falsehood
of the hypothesis that the given condition holds.
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4. Approaches With Serial Correlation in u

After briefly covering two established approaches that allow for serial correlation—full-
solution MLE and methods based on mixture models—we focus on the more recent gen-
eralized instrumental variable (GIV) approach in Berry & Compiani (2020).

4.1. Full-Solution MLE

It is possible to adapt the full-solution MLE approach described in Section 3.1 to the case with
serial correlation in the unobservables. Again, unless one observes firms from the beginning
of their existence, this requires modeling the dependence of the distribution of the first-period
ui1 on (xi1, wi1). This conditional distribution then replaces the unconditional φ0(u1) in (15)
and the distribution of u2 is conditioned on u1 and parameterized by θu. One approach to
initial conditions is to flexibly parameterize the distribution of u0 as a function of (xi1, wi1);
another is to assume that it is equal to the stationary distribution generated by the model
(see, e.g., Collard-Wexler (2014)).

To our knowledge, the identification properties of the fixed point MLE method are not
well-explored in the general case with serial correlation. To build some intuition, consider
our entry/exit example where the policy cutoffs δ, which enter the likelihood, depend on a
limited amount of data. Specifically, the model implies that past data is excluded from these
cutoffs. As a consequence, if the degree of hysteresis in the data cannot be entirely explained
by the cutoffs, the likelihood method may find evidence of serial correlation. The methods
below further clarify the role of exclusion restrictions and make this intuition more precise.

4.2. Mixture Models

The problem of serially correlated unobservables can be reframed as a problem of “unob-
served heterogeneity.” The challenge involves “controlling for” the persistent aspects of
firms or markets that we don’t see. One suggestion is to posit discrete unobserved hetero-
geneity, such as the time-invariant discrete heterogeneity in equation (4).

In labor economics, beginning at least with Heckman & Singer (1984), discrete hetero-
geneity is a popular approach to disentangling persistent heterogeneity from “state depen-
dence.” In our context, state dependence would follow, for example, from sunk costs that
make a firm more likely to be active in a market if it was active in the prior period. Dynamic
labor supply models often employ low-dimensional time-persistent discrete unobserved het-
erogeneity, as in Wolpin & Keane (1994) and a large related literature.

In an important contribution, Kasahara & Shimotsu (2009) discuss the identification of
finite mixture models in the context of two-step methods. In our entry/exit example, we
could specify the single-period profits from entry as

π(x, w, u) = π̄(x, w, λ)− ε, (27)

where the unobservables are now u = (λ, ε). In the simplest case, λ would take two possible
values, λ ∈ {0, 1}, that are time-invariant. The spirit of Kasahara & Shimotsu (2009) is that
all of the time-persistent heterogeneity is in λ, so ε is assumed independent over time.

While Magnac & Thesmar (2002) obtain negative results for mixture approaches with
two periods of data, Kasahara & Shimotsu (2009) consider the advantages of longer periods
of data. One reason for the longer time series is to deal with the initial conditions problem.
With discrete heterogeneity, fully flexible initial conditions add only a finite number of extra
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parameters. The additional restrictions coming from more periods of data can then achieve
point-identification.

For some intuition, suppose we see the joint distribution of three periods of discrete data,
Pr(a3, x3, a2, x2, a1, x1), where we suppressed the notation for w. According to a first-order
Markov model, we should be able to predict this distribution exactly via the Markov repre-
sentation. Say that p̃(at, xt|at−1, xt−1) is the first-order Markov transition function, constant
across time. If correct, this model should fit the data for every two-period transition. One
can also test longer and shorter sequences, constrained only by the length of the data. For
example, for every observed data sequence we should have

Pr(a3, x3, a2, x2, a1, x1) = p̃(a3, x3|a2, x2) p̃(a2, x2|a1, x1)p∗(a1, x1), (28)

where p∗(a1, x1) is an “initial condition.” If the restrictions are rejected, there are two
possible conclusions. First, the underlying data process may not actually be first-order
Markov. Second, the apparent long dependence in the data might be explained by per-
sistent hidden states. If these states are indexed by m, then there are hidden probabilities
p̃m(at, xt|at−1, xt−1) and hidden initial conditions p∗,m(a1, x1) for types m = (1, . . . , M).

Kasahara & Shimotsu (2009) consider all the possible sequences and subsequences of the
data and form all the possible restrictions. Variation in x and w will help greatly with iden-
tification. If d is the number of covariates and T the number of time periods, then Kasahara
& Shimotsu (2009) show that there are on the order of dT restrictions. With sufficiently long
time series (T ≥ 3) and sufficiently rich variation of the data, they show it is possible to use
the restrictions to identify a limited number of different hidden types and, with even larger
T, to identify more types and/or types that can change over time. The identification problem
is, as usual, made more complicated by the initial conditions problem. As mentioned above,
the discrete heterogeneity literature deals with this, first, by restricting the heterogeneity to
depend on a small number of types and, second, by using longer periods of data.

That the number of types is limited by the time-periods and variability of the data is not
surprising. A great advantage of the method, however, is that once the type probabilities are
identified, all of the classic first and second step CCP approaches come into play. In terms
of the first step, once we known the action (choice) probabilities conditional on λ, we can
use them to identify the λ-specific policy functions. Because ε in (27) is independent over
time, all of the classic CCP second step methods work as well. This includes not only the
HMSS style forward simulation methods, but also the original second step method of Hotz
& Miller (1993) as well as the “finite dependence” approaches that are well-summarized in
Arcidiacono & Ellickson (2011).

To the degree that the empirical curse of dimensionality (i.e. the statistical problem of
estimating many choice probabilities) is a problem for the original CCP models, it is an even
larger problem for the multiple-type mixture model, as we are trying to identify a larger
number of probabilities and are cutting the data into smaller bins to do so. To gain possible
efficiencies, Arcidiacono & Miller (2011) develop an MLE approach.

We can see some similarities between the instrumental variables intuition and the
mixture-model approach. In mixture models, the exclusion of sufficiently past history from
the “causal” policy function is critical. Furthermore, there has to be sufficient variation in
this excluded history. Finally, once we condition on the discrete heterogeneity, past history is
“exogenous” in the sense that it is independent of the current unobservables. This combina-
tion of exclusion, variation and exogeneity is familar from IV methods. The next subsection
will push this idea further.
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4.3. Introduction to IV Methods in the Single-Firm Case

We now turn to formal instrumental variable methods introduced in this context by Berry &
Compiani (2020) and, for an interesting special case, by Kalouptsidi, Scott & Souza-Rodrigues
(2020). We next discuss a modified two-step method motivated by Berry & Compiani (2020).
In the first step, identification of the policy functions is modified to use “Generalized Instru-
mental Variable” (GIV) methods, as discussed in Chesher & Rosen (2017) and elsewhere.8

The GIV approach can handle both the initial conditions problem and endogenous mar-
ket structure by leveraging instrumental variables and the structure of the model. The ap-
proach may result in point-identification of the policy functions, but it also allows for set-
identification. In either case, the second-step forward simulation approach of subsection 3.2
carries over easily. When the policy function is set-identified, the second step is applied to
each policy in the identified set. This results in an identified set for the single-period profit
parameters θπ .

4.4. An IV Special Case

Kalouptsidi, Scott & Souza-Rodrigues (2020) discuss the problem of endogenous states and
propose an IV approach for a special case. They call their method an Euler conditional choice
probability, or “ECCP”, approach. In their model, there are many firms within each market
and oligopoly behavior is assumed away. Serially correlated shocks are modeled at the mar-
ket level and the form of the serial correlation can be quite general, in contrast to the mixture
model approach. At the individual firm level, additive time-independent shocks allow for
techniques to be adapted from the CCP literature, including from the “finite dependence” lit-
erature that starts with Hotz & Miller (1993) and is extended in Arcidiacono & Miller (2011)
and elsewhere.

The model treats market-level terms as fixed effects that can be differenced out across
firms within market and finite dependence creates a kind of multi-period indifference con-
dition related to that in Section 3.2. The result is an equation that is linear in the parameters
and is amenable to IV approaches. The paper provides a nice set of empirical examples with
endogenous states (durable goods, land use, technology adoption and labor supply).

The ECCP method point-identifies firm-specific profit parameters, but not parameters
on market-level effects. The authors note the potential complementarity between ECCP and
GIV methods. Under the appropriate conditions, the ECCP approach could be used to iden-
tify some parameters, with remaining parameters identified (possibly set-identified) by GIV
methods. We turn to those methods next.

4.5. A GIV First Step

The idea of the GIV first step is to set-identify policy functions from the data, using some
structure from the model together with instrumental variables. An appealing feature of the

8That paper considers a broad class of models with nonseparable error structures, develops an ap-
proach explicitly based on the instrumental variables logic and provides a sharp characterization of the
identified set. The results build on the work of Galichon & Henry (2011) and Beresteanu et al. (2011),
while the broad approach to set-identification is informed by a vast literature that includes Manski &
Tamer (2002), Tamer (2003), Manski (2003), Chernozhukov et al. (2007), Berry & Tamer (2007), Ciliberto
& Tamer (2009), Beresteanu et al. (2011), Galichon & Henry (2011), Chesher (2010), and Andrews & Shi
(2013).
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GIV approach is that it accommodates features relevant to dynamic settings, notably dis-
creteness of states and outcomes, set-identification, and incompleteness of the model, as dis-
cussed (for example) in Tamer (2003). In dynamic settings, incompleteness will often arise in
the case of an unknown initial condition. In the absence of incompleteness, the GIV approach
will often be equivalent to MLE.

To be useful, potential instrumental variables should be correlated with current-period
endogenous states and yet excluded from the current period policy function and indepen-
dent of u. One class of potential IVs in our model consists of past values of the exogenous
w. In many specifications, past values of w do not enter the current period policy function
and so are “excluded exogenous” variables, available as instruments as long as they shift cur-
rent states (which is typically guaranteed by the dynamic nature of the model). Exogenous
variables from the pre-sample period may be particularly useful in dealing with the initial
conditions problem if they are correlated with the initial state. An example of such variables
might be past demand shifters, such as market size, that are correlated with current market
structure (conditional on current market size). Some such variables may be available from
the pre-sample period even though the full set of variables is not.

More formally, the potential instruments are

zi = (ri, wi), (29)

where the vector ri consists of information prior to the sample period. To motivate the econo-
metric use of these instruments, we assume independence of the instrument and the unob-
servables:9

zi ⊥ ui.

Table 2, taken directly from Berry & Compiani (2020), gives some ideas of possible instru-
ments in different contexts. As in all applied situations, the independence assumption may
be better motivated in some examples than in others and, as with all IV methods, this discus-
sion will be a key component of applied work. One advantage of GIV methods is that they
bring this discussion to the forefront of the identification approach.

Given these IVs, we now sketch the use of GIV methods to set-identify the policy func-
tion. Let ~ai ≡ [ai1, . . . , aiT ] and similarly for ~xi, ~wi and ~ui. If the sequence (~ai,~xi, ~wi) occurs,
then ~ui must be in the inverse image set

U (~ai,~xi, ~wi, σ) = {~ui : σ(xit, wit, uit) = ait, ∀t}.

Then, the Chesher-Rosen GIV conditions for identification are as follows. A pair
(σ(xit, wit, uit), θu) is in the identified set if and only if

Pr(ui ∈ S ; θu) ≥ Pr
(
U (ai, xi, wi, σ) ⊆ S |z

)
(30)

for all closed sets S in the space of unobservables, and for all instrument values z. There
are obviously very many “test sets” S that one could check. Chesher and Rosen show how
to find the “core-determining” subset of these sets, i.e. the minimal collection of sets that
one needs to check in order to characterize the sharp identified set. This collection includes
all the “elemental sets,” comprising the list of U (ai, xi, wi, σ) across all the possible values of

9While we focus on this restriction throughout the paper, Chesher & Rosen (2017) show that the GIV
approach may also be applied under weaker assumptions, such as mean or quantile independence.
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actions and states. However, the core-determining set also includes the unions of partially
overlapping elemental sets, excluding cases of strict subsets. We denote the resulting sharp
identified set as

ΣIV(θu) ⊆ F , (31)

where F is the set of possible σ functions. The set F can be restricted to include, for example,
only those σ functions that satisfy natural monotonicity restrictions grounded in the model.
Note that Σ(θu) depends on θu since the left-hand side of (30) depends on the joint distribu-
tion of ~ui. Further, if Σ(θu) is the null set, then that value of θu is rejected by the data and the
GIV conditions.

Before turning to the second step of the Berry-Compiani approach, we illustrate the first
step via two examples: first, an extension of the continuous investment problem discussed
in the context of (19), and, second, our single-firm entry/exit model. The first example might
plausibly provide a point-identified policy function, while the second example seems likely
to lead to set-identification.

4.6. Point-Identifying the Policy Function in a Continuous IV Example

Consider a continuous choice problem, such as an investment problem with convex costs
of investment, that leads to a strictly positive investment level, ait, in each period. Here,
the state xit is the current capital stock and wit could be within-sample cost shifters. The
unobservable could represent a shock to the profitability of investment. A formal version of
this model is given in Olley & Pakes (1996). Under appropriate monotonicity conditions, we
can invert the policy function as in (19) and write

uit = σ−1(xit, wit, ait), ui ⊥ zi. (32)

This differs from a similar example in BBL only because we need to use an IV strategy to deal
with the potential correlation of u and x. Luckily, equation (32) takes exactly the form of the
quantile IV regression in Chernozhukov & Hansen (2005). That paper provides conditions
for the point-identification of σ. Under those conditions, we have completed step one of the
analog to the CCP two-step method. Further, note that equation (32) also yields identification
of all uit, which implies that its distribution, including the serial correlation parameter θu, is
identified.

4.7. Set-Identifying the Policy Function Using GIV in the Entry Example

With discrete variables, it is less likely that IV conditions point-identify the policy function.
Chesher (2010) considers set-identification of discrete-outcome models via instrumental vari-
ables. This subsumes the problem of recovering the policy function for our entry/exit exam-
ple in the especially challenging case where we only see one period of data on (ai1, xi1) and
we do not place any restrictions on the initial condition other than the availability of an ex-
ogenous instrument zi that predicts xi1.

We illustrate with our simple entry/exit model, for simplicity dropping variation in w.
First consider the extreme example of data on just one transition: all we see for each firm
is (ai1, xi1, zi). The data give us the observed probabilities, p(xi1, zi1), of being active in the
market but with serially correlated errors and an initial conditions problem these do not give
the causal effects of x on entry. Therefore, we cannot invert these choice probabilities, as in
(16), to find the cutoffs δ(x) characterizing the policy function.
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As an alternative, drawing on the bounds estimation literature, Chesher (2010) works
with the necessary conditions for actions, i.e. imposes the restriction that the probability of a
necessary condition for an event be greater than or equal to the observed probability of that
event. For instance, the necessary condition for ai1 = 1 is the cutoff rule ui1 < δ(xi1) and
the necessary condition for ai1 = 0 is ui1 > δ(xi1). In this extreme case, then, we have four
necessary conditions for the outcomes of the endogenous variables ai1 and xi1. With sunk
costs of entry, entry should be more likely when xi1 = 1 and so we expect that δ(1) > δ(0).
Given this monotonicity restriction, we can note that ui1 < δ(1) is a necessary condition not
just for the event (ai1, xi1) = (1, 1) but also for the event (1, 0), i.e. when costs are low the firm
is active no matter whether it was in or out last period. Similarly, ui1 > δ(0) is a necessary
condition for both the event (ai1, xi1) = (0, 1) and the event (ai1, xi1) = (0, 0). For every
value of z, this gives a set of straightforward bounds on the policy parameters δ(0) and δ(1).
These bounds come from the model, the instruments and the entry probabilities:

Pr(u1 < δ(1)) ≥ Pr(a = 1, x1 = 1|z) + Pr(a = 1, x1 = 0|z)
Pr(u1 < δ(0)) ≥ Pr(a = 1, x1 = 0|z)
Pr(u1 > δ(1)) ≥ Pr(a = 0, x1 = 1|z)
Pr(u1 > δ(0)) ≥ Pr(a = 0, x1 = 1|z)) + Pr(a = 0, x1 = 0|z).

Note that the probabilities on the left-hand side are not conditioned on z because u is inde-
pendent of z by assumption. Even if there is only one value of z (i.e. there is no instrument),
the structure of the model yields nontrivial upper and lower bounds. However, Chesher
(2010) emphasizes that variation in the instrument is helpful because, e.g., some values of z
might be predictive of x1 = 1 and this will increase the conditional probabilities involving
x1 = 1, tightening those inequality constraints. Other values of z might predict x1 = 0, in-
creasing those probabilities. In the limit, if some value of z perfectly predicts x1 = 1, then
those bounds collapse to a point, possibly leading to point-identification of δ(1). If we also
had variation in w, this could further tighten the bounds.

With only one period of data, there is no hope of learning about any parameter char-
acterizing the serial correlation in the unobservables. With T = 2, however, we can make
progress. Table 3 displays probabilities of necessary conditions associated with the eight
combinations of (x1, a1, a2) that are possible in our example.10 In the first column are the
probabilities of necessary conditions for the events, calculated via the bivariate distribution
of u, which depends on θu. In the second column are probabilities of events in the data. At
the true values of δ and θu, the probabilities in the first column must be greater than those in
the second column. The inequalities based on Table 3 are special cases of (30) where the sets
S are taken to be the elemental sets corresponding to the eight possible sequences (x1, a1, a2).
As mentioned above, characterizing the sharp identified set requires also considering unions
of partially overlapping elemental sets. In our example, this would expand the number of
restrictions from eight to a total of thirteen. Adding w back into the model would further
increase the number of sets.

Note that, unlike the T = 1 case, the probabilities of the necessary conditions in Ta-
ble 3 depend on θu. If, for example, ui1 and ui2 were perfectly correlated, the event
(x1, a1, a2) = (1, 0, 1) would not be possible; similarly, a serial correlation parameter close
to one would make that event unlikely. Thus, imposing inequalities based on two or more

10Similar information is displayed in two-dimensional graphs in Berry & Compiani (2020).
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time periods places restrictions on θu and the number of restrictions increases in the number
of time periods in the data. Berry & Compiani (2020) illustrate the advantages of more time
periods, and better instruments, via computed examples.

The discussion so far has focused on (set-)identification of the policy functions and θu. In
practice, with finite samples, one typically wants to go one step further and obtain confidence
regions. Given that the model restrictions take the form (30), the large literature on moment
inequalities provides approaches to conduct inference (e.g., Chernozhukov et al. (2007), An-
drews & Soares (2010), Beresteanu et al. (2011), Galichon & Henry (2011), Andrews & Shi
(2013), and Chernozhukov et al. (2013)). Within this literature, of particular importance are
the papers that focus on the case where the number of inequalities is large relative to the sam-
ple size (e.g., Menzel (2014), Andrews & Shi (2017), and Chernozhukov et al. (2018)), since
this scenario is likely to arise in the GIV framework, especially when the number of time
periods in the data is large.

4.8. The Second Step with Serial Correlation in u

The Berry-Compiani first step results in an identified set for the policy functions—in our
entry/exit example, the thresholds δ(x, w)—plus the θu parameters. To map this into the
space of θπ , Berry & Compiani (2020) note that the identified set for the structural parameters
is

ΘID ≡ {θ = (θπ , θu) : σ̂(xit, wit, uit; θ) ∈ ΣIV(θu)}, (33)

where σ̂(·, ·, ·; θ) is again the policy function that results from Bellman’s equation evaluated at
θ. The identification condition says that the solution to the dynamic model at the parameter
θ must satisfy the GIV conditions in the data. This defines the sharply identified set.

Given the set of policies identified by the GIV first step, the second step method of subsec-
tion 3.2 carries over easily. First, note that it is still trivial to forward simulate value functions.
For the purposes of forward simulation, the serially correlated u are just like a serially corre-
lated w. In addition, policy functions will still be typically defined by boundaries in u space
leading to indifference conditions.

llustrating the second-step indifference equations for the entry/exit example with serial
correlation, note that the action-specific value functions are now

ṽ(1, x, w, u; σ, θ) = π̄(x, w)− u + βEw′ ,u′
[
Ṽ(1, w′, u′)|w, u; σ, θ

]
ṽ(0, x, w, u; σ, θ) = βEw′ ,u′

[
Ṽ(0, w′, u′)|w, u; σ, θ

]
.

From equation (14),

ṽ(1, x, w, u = δ(x, w); σ, θ) = ṽ(0, x, w, u = δ(x, w); σ, θ). (34)

These are the equations used in the Berry-Compiani second-step procedure. Once again, they
will be linear in θπ when π̄(x, w) is linear in θπ .

Note that some other CCP style second-step methods, such as in the original Hotz &
Miller (1993) paper, cannot be directly employed in this example of serially correlated un-
observables. That is because these methods use “tricks” that are specific to models with
additive independent errors. In particular, they do not account for the conditioning on u in
future expectations, as in equation (14). However, it is possible to choose specifications (as in
subsection 4.2) that include both a serially correlated unobserved component and an additive
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time-independent unobserved component. The original Hotz-Miller second step will work
in this case.

In the case of serially correlated errors, the forward simulation will depend on θu as well
as θπ , as θu is necessary to simulate future values of u. If the GIV first step produces an
identified set of (σ, θu) pairs, then the Berry-Compiani second step based on (34) needs to be
applied to each (σ, θu) in the set. This second step produces an identified set for θπ . If the GIV
first step produces a point-identified (σ, θu), then the second step will similarly procedure a
point-identified θπ (as long as there is a unique solution in θπ to the indifference conditions
in (34)). Similarly, a confidence region for θ can be produced by applying the second step to
each element in the confidence region for (σ, θu).

Note that if for some reason the second step forward-simulated indifference condition
method fails, Berry and Compiani’s first idea for the second step, outlined in (23) and (24), is
still available.

5. Oligopoly

Moving from single-firm to oligopoly problems adds realism and greatly increases the scope
for interesting policy counterfactuals. However, the dynamic estimation problem becomes
more complicated as the full computation approach becomes a “doubly nested fixed point.”
Given rivals’ strategies, each firm is solving a “best reply” Bellman fixed-point equation that
defines its own behavior as a function of rivals’ strategies. In a dynamic Nash (or Bayes-
Nash) equilibrium, these strategies themselves must solve a second fixed point: the mapping
between strategies and the dynamic best-replies to those strategies. This raises questions of
both existence and uniqueness of equilibria that make full computational methods particu-
larly difficult. As a result, much of the oligopoly literature eventually followed the single-
agent literature into models without serial correlation.

A more recent approach has been to tackle serial correlation and endogenous market
structure by combining the insights of the Hotz-Miller style oligopoly literature with the
insights of the discrete heterogeneity literature and/or the GIV approach of Berry & Com-
piani (2020). We first discuss full computational methods and then turn to the more recent
advances.

5.1. Full Computational Methods

One motive for the a full computation approach in market structure models has been pre-
cisely to account for serial correlation. The work of Ericson & Pakes (1995), Pakes & McGuire
(1994) and Pakes & Ericson (1996) emphasized the idea of rich oligopoly models with a mix
of discrete and continuous variables together with serially correlated unobservables. They
suggest an empirical strategy of fitting the ergodic market structure distribution computed
from long-run simulations on the computed model to observed transitions in the data. This
deals with the initial conditions problem by assuming that the industry has settled into its
long-run distribution of transitions. Gowrisankaran & Town (1997) provide one of the rare
full empirical applications of this approach.

The Ericson & Pakes (1995) method faces problems of both existence and uniqueness
of equilibria, as discussed in Doraszelski & Pakes (2007), Doraszelski & Satterthwaite (2010),
and Pesendorfer & Schmidt-Dengler (2010). It is hard to guarantee uniqueness of equilibrium
in the general case and it can be hard or impossible to find all of the equilibria that may exist
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(Borkovsky et al. (2012)).
In a series of paper, Igami considers the problem of dynamic market structure estimation

in the context of industries that are not in a stationary equilibrium, but rather in the process
of rising and/or falling, as in Igami (2017), Igami (2018), and Igami & Uetake (2020). In the
first two of those papers, Igami takes a full computation approach that ensures a unique equi-
librium, which aids both estimation and countefactual analysis. Specifically, Igami ensures
uniqueness by (a) assuming sequential moves (with either deterministic or random order)
and (b) modeling a long but finite horizon. Under thee conditions, the oligopoly game can
be uniquely solved backwards from the end. Igami assumes serially uncorrelated errors, and
therefore has no initial conditions problem. However, in one case he also traces the indus-
try from its birth, which would solve the initial conditions problem even in the presence of
serially correlated unobservables. One interesting extension would be to apply the Igami
sequential-move approach to the case with unknown initial conditions, either in a GIV or
mixture-model framework.

However, in many cases the problems of multiple equilibria led the oligopoly literature
back to two-step methods with serially uncorrelated errors, as we discuss next.

5.2. Two-Step Methods applied to Oligopoly

The similar starting point of several dynamic oligopoly papers is to assume that, even when
the model admits multiple equilibria, the industry plays the same equilibrium every time it
reaches the same state (Aguirregabiria & Mira (2007), Bajari et al. (2007), Pakes et al. (2007),
and Pesendorfer & Schmidt-Dengler (2008)).11 In addition, each paper assumes that the un-
observables are [i] independent over time and [ii] pure private information. Under these
assumptions, a firm can treat its rivals’ behavior just like “plays of nature.” That is, the evo-
lution of rivals’ behavior is just like the evolution of the exogenous w profit shifters in the
single-firm case. Further, private information means that firms cannot take current period
rival shocks into account and independence over time means that neither own-firm nor rival
states are correlated with current-period unobservables. Thus, there is no endogeneity prob-
lem. Under these assumptions, then, the computational simplicity of the pre-existing CCP
methods can be brought to oligopoly dynamics. This includes both first and second step
methods.

In this literature, Pesendorfer & Schmidt-Dengler (2008) is the closest to Hotz-Miller, tak-
ing particular care to make the formal connection between the dynamic oligopoly model
and the Hotz-Miller framework. Pakes et al. (2007) “flips” Hotz-Miller, arguing that it is the
distribution of unobservables that should be identified from knowledge of the single-period
return, instead of the other way round. They argue that the elements of single-period variable
profits can in many cases be identified from “static” data on prices and quantities (and per-
haps variable cost or input data), whereas fixed and sunk costs are only revealed by dynamic
behavior. We have already discussed BBL.

Empirical applications of these methods to market structure include Ryan (2012) and
Fowlie et al. (2016) on environmental policy, Holmes (2011) on the entry of Walmart, Collard-
Wexler (2013) on responses to demand fluctuations, Aguirregabiria & Ho (2012) on airlines,
Sweeting (2013) and Jeziorski (2014) on product positioning and entry in radio mergers,

11An early version of the idea is in Rust (1994) and a related insight (in the context of dynamic auctions)
can be found in Jofre-Bonet & Pesendorfer (2003).
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Dunne et al. (2013) on entry subsidies for health care providers. Many such papers make
explicit use of the empirical strategy developed by Bajari et al. (2007). Dunne et al. (2013)
follow the Pakes et al. (2007) suggestion of estimating the variable profit function prior to the
dynamic estimation of sunk and fixed costs.

Given the same assumption of “one equilibrium in the data,” the mixture model ap-
proach of section 4.2 also carries over to the oligopoly context. In this case, we would assume
that persistent unobservables are known to the firms, but that the single-period profits are
further shocked by an independent and private information term, as in (27). In that equa-
tion, the extension to oligopoly involves adding the rivals’ states to a firm’s own state in the
x vector.

As noted in the introduction, Igami & Yang (2016) provide an empirical example of mix-
ture models applied to entry in fast food markets. The empirical strategy in that paper fol-
lows the likelihood approach of Arcidiacono & Miller (2011). The results of Kasahara & Shi-
motsu (2009) are used to identify the minimum number of discrete profit levels that would
explain the serial correlation in the empirical transition, and that number is used in the em-
pirical work. As noted, the paper emphasizes the incorrect inferences that would result from
entirely ignoring persistent heterogeneity.

In two-step applications to oligopoly, the curse of dimensionality can be particularly se-
vere because the states of rival firms enter the own-firm state space. One approach that is
applicable to cases with a large number of small firms (and perhaps a small number of large
firms) is the “oblivious equilibrium” concept of Weintraub et al. (2008). Another strategy is to
consider continuous time models, as in Doraszelski & Judd (2012). Arcidiacono et al. (2016)
discuss an appropriate two-step estimation approach and provide an empirical application
that considers the effect of entry by Walmart on existing competitors. They model perfectly
persistent heterogeneity, for each type of store, via a mixture model method in the first step.

5.3. GIV Methods in Oligopoly

As with full computational and two-step methods, the work done in the single-agent case
carries over to GIV methods applied to oligopoly. As in the single-agent case, we let i index
markets and t index time. In addition, we introduce j = 1, . . . , J to index firms that coexist in
a market.

Firm j’s profits depend on its own action aijt as well as its rivals’ actions. Thus, letting
ait =

(
ai1t, . . . , ai Jt

)
, firm j’s profit is now

πj (ait, xit, wit, uit; θπ)

In equilibrium, each firm’s policy is the single-agent best reply to its rivals’ equilibrium strate-
gies. The firm still solves a value function problem similar to (7), but now its expectations of
the future evolution of endogenous market states depend on its action as well as the equilib-
rium actions of its rivals.

In the oligopoly case, Berry & Compiani (2020) assume that the serially correlated unob-
servables are complete information to all of the firms. Private serially correlated information
raises very difficult issues of signaling behavior, which would be a large additional compli-
cation. However, mixture models of the private information may help, as in Hodgson (2019).

Denoting the equilibrium policies of firm j’s rivals by the function σ−j, the firm expects
the states to evolve in equilibrium according to transition probabilities of the form

Γj

(
xit+1|aijt, xit, wit, σ−j(xit, wit, uit)

)
. (35)
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Thus, in equilibrium, the Bellman equation for firm j depends on the strategies played by its
rivals, although we drop this dependence from the notation.

Vj (xit, wit, uit) = (36)

max
aijt∈A(xijt)

(
πj (ait, xit, wit, uit; θπ) + βE

[
Vj (xit+1, wit+1, uit+1) |ait, xit, wit, uit; θu

])
.

This dynamic program yields a “best response” strategy for firm j, which we assume is
unique and denote by σ̄j(σ−j, θ). We stack the best response function into a J−vector

σ̄(σ, θ) = (σ̄1(σ−1, θ), . . . , σ̄J(σ−J , θ)).

Any equilibrium strategy, σ∗, then must satisfy the fixed point

σ∗ = σ̄(σ∗, θ). (37)

Given this, the set of possible equilibrium policy functions associated with a candidate pa-
rameter θ is given by

ΣEQ(θ) = {σ∗ : σ∗ = σ̄(σ∗, θ)}.

Following the discussion of earlier papers, we maintain the “one equilibrium in the data”
assumption. The set ΣEQ(θ0), where θ0 is the true parameter that generates our data, then
contains the true policy function.

As in the single-agent case, we define the sharply identified set for the structural param-
eters as the set of values of θ that simultaneously satisfy the GIV restrictions and solve the
equilibrium Bellman equation, i.e.

ΘID ≡ {θ = (θπ , θu) : there exists σ∗ ∈ ΣEQ(θ) such that σ∗ ∈ ΣIV(θu)}. (38)

In other words, a parameter vector θ belongs to the sharp identified set if there is a policy that
both [i] is not rejected by the GIV restrictions and the data (given θu) and [ii] is an equilibrium
strategy given θ.

Again, the first step consists of characterizing the set ΣIV(θu) of policies that survive
the GIV restrictions. However, this step will be complicated by a possibly large state space
and by the presence of multiple firm unobservables in the policy functions. The large state
space may lead to the use of parameterized and simplified policy functions, which is already
common in existing CCP applications.

The first step can be illustrated through a simple extension of the Olley & Pakes (1996)
style capital accumulation model of section 4.6 to the duopoly case. Denote the equilibrium
policy functions of the two firms by

aijt = σ(xit, wit, uit), (39)

where the capital stocks are xit = (xi1t, xi2t) and investments are ait = (ai1t, ai2t). Similarly,
(ui1t, ui2t) is the vector of serially correlated unobservables and wit are exogenous shifters
of the profitability of investment. Under the assumption that xijt and aijt are continuous
variables and that the policy functions are continuous and injective in uit, we can write

uijt = σ−1
j (xit, wit, ait), (40)
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This is now a two-equation version of the “quantile IV model” of Chernozhukov & Hansen
(2005). Following on that paper, the policies may then be point-identified. Importantly, this
would yield identification of each uijt and thus of its distribution, including the serial corre-
lation parameter θu.

This example shows how multiple unobservables can naturally show up in the policy
functions of oligopoly firms. In the case of discrete actions, this may pose particular problems
that are yet to be fully explored in the literature. Once again, the problems might be dealt
with in part by parsimoniously parameterizing the policy functions, while leaving the single-
period profit functions as free as possible.

Up to (difficult) issues involving the dimensions of the observed and unobserved states,
then, the GIV first step is the same in the oligopoly and single-firm cases.

The second step also follows through quite easily. Recall that Berry & Compiani (2020)
proposed two approaches that accommodate serially correlated unobservables. Adapted to
the oligopoly case, the first idea now amounts to calculating a best reply to (a) one’s rivals’
future behavior plus (b) one’s own optimal future behavior. This is much easier than com-
puting (i) the full best-response to rivals’ behavior and especially (ii) the fixed-point of the
dynamic oligopoly.

The “indifference” approach carries forward to the oligopoly case with even less modi-
fication. Recall again that the second step only employs the structure of the model and that
whether a given variable was observed by us (or not) in the first step plays no role. Thus,
in this step the states of rival firms, whether initially observed by us or not, simply become
additional (x, w) terms in (25).

As an empirical oligopoly example, Collard-Wexler (2014) studies entry and exit in the
concrete industry, modeling a parametric policy function and serially correlated market-level
shocks. He considers a restrictive (although not unreasonable) initial condition assumption
that allows him to point-identify and estimate the policy function parameters (as well as a
serial correlation parameter) by MLE. His work is guided by an full-computation oligopoly
framework found in Abbring & Campbell (2010). Berry & Compiani (2020) use a simplied
version of the same data to illustrate how their approach allows one to drop the restrictive
initial conditions and use a GIV first step. They also employ the linear indifference equations
in (25), with different degrees of parametrization, to produce a confidence region for the
single-period profit function that is valid given the set-identified policy functions. They show
that the GIV method can easily reject the model with serially uncorrelated unobservables and
that the presence of serial correlation greatly alters counterfactuals involving changes in the
sunk cost of entry, as might be caused by changes in regulation.

This empirical application serves as a proof of concept for further empirical work. That
work would ideally explore additional policy questions as it grapples with the issues of find-
ing good instruments and dealing with the traditional problems of high-dimensional state
spaces in dynamic modeling.

6. Conclusion

Two-step “CCP” methods without serially correlated errors helped the empirical analysis of
theoretically endogenous market structure to overcome various problems with fully com-
puted equilibrium oligopoly models. However, the initial gains in the literature came at
the expense of econometrically exogenous market structure, with associated large likely bi-
ases in counterfactual predictions There are now at least two approaches to including serially
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correlated errors in such models: mixture model of discrete persistent heterogeneity and gen-
eralized instrumental variables methods that allow for general forms of serial correlation. At
a practical level, GIV methods can allow for shorter time periods, unrestricted initial condi-
tions, a mix of continuous and discrete actions, and different kinds of serial correlation. This
comes at the cost of potentially set-identified parameters and counterfactuals. Theoretical
concerns and existing empirical results show the importance of further developing this re-
search agenda by applying and refining methods that allow for serial correlation in models
of industry dynamics.
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7. Tables

Table 1 Market Structure Coefficients with and without Fixed Effects
Ordered Probit Regressions of Entry/Exit

Igami and Yang (2016), Table 3

Fixed Effects

Profit Shifter No Yes

Own-store presence -0.31 -0.78
(0.02) (0.03)

Rival-store presence 0.02 -0.23
(0.01) (0.02)

Table 2 Examples of Possible Instruments from Berry and Compiani (2020)
State Example Instruments

Capital Past investment cost
Out/In of Market Past market population, past regulation
# of Stores Distance from headquarters, interacted with time
Quality Past R&D shocks, age of firm

Table 3 Probabilities of Necessary Conditions for Elemental Events with T = 2

Probability of Necessary Condition Prob of Events in Data

Pr(u1 < δ(1), u2 < δ(1); θu) Pr(1, 1, 1|z) + Pr(0, 1, 1|z)
Pr(u1 < δ(1), u2 > δ(1); θu) Pr(1, 1, 0|z) + Pr(0, 1, 0|z)
Pr(u1 > δ(1), u2 < δ(0); θu) Pr(1, 0, 1|z)
Pr(u1 > δ(1), u2 > δ(0); θu) Pr(1, 0, 0|z)
Pr(u1 < δ(0), u2 < δ(1); θu) Pr(0, 1, 1|z)
Pr(u1 < δ(0), u2 > δ(1); θu) Pr(0, 1, 0|z)
Pr(u1 > δ(0), u2 < δ(0); θu) Pr(0, 0, 1|z) + Pr(1, 0, 1|z)
Pr(u1 > δ(0), u2 > δ(0); θu) Pr(0, 0, 0|z) + Pr(1, 0, 0|z)
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