
MODULE ONE, PART THREE:  READING DATA INTO STATA, CREATING AND 
RECODING VARIABLES, AND ESTIMATING AND TESTING MODELS IN STATA 

 

 

 

This Part Three of Module One provides a cookbook-type demonstration of the steps required to 
read or import data into STATA.  The reading of both small and large text and Excel files are 
shown though real data examples.  The procedures to recode and create variables within STATA 
are demonstrated.  Commands for least-squares regression estimation and maximum likelihood 
estimation of probit and logit models are provided. Consideration is given to analysis of variance 
and the testing of linear restrictions and structural differences, as outlined in Part One.  (Parts 
Two and Four provide the LIMDEP and SAS commands for the same operations undertaken 
here in Part Three with STATA. For a review of STATA, version 7, see Kolenikov (2001).) 

 

IMPORTING EXCEL FILES INTO STATA 

STATA can read data from many different formats. As an example of how to read data created in 
an Excel spreadsheet, consider the data from the Excel file “post-pre.xls,” which consists of test 
scores for 24 students in four classes.  The column titled “Student” identifies the 24 students by 
number, “post” provides each student’s post-course test score, “pre” is each student’s pre-course 
test score, and “class” identifies to which one of the four classes the students was assigned, e.g., 
class4 = 1 if student was in the fourth class and class4 = 0 if not.  The “.” in the post column for 
student 24 indicates that the student is missing a post-course test score. 

To start, the file “post-pre.xls” must be downloaded and copied to your computer’s hard drive. 
Unfortunately, STATA does not work with “.xls” data by default (i.e., there is no default 
“import” function or command to get “.xls” data into STATA’s data editor); however, we can 
still transfer data from an Excel spreadsheet into STATA by copy and paste.* First, open the 
“post-pre.xls” file in Excel. The raw data are given below:  

 

 

                                                            
* See Appendix A for a description of Stat/Transfer, a program to convert data from one format to 
another. 
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student   post    pre   class1   class2   class3   class4 
1     31   22   1   0   0    0  
2     30   21   1   0   0    0  
3     33   23   1   0   0    0  
4     31   22   1   0   0    0  
5     25   18   1   0   0    0  
6     32   24   0   1   0    0  
7     32   23   0   1   0    0  
8     30   20   0   1   0    0  
9     31   22   0   1   0    0  
10     23   17   0   1   0    0  
11     22   16   0   1   0    0  
12     21   15   0   1   0    0  
13     30   19   0   0   1    0  
14    21  14  0  0  1   0  
15    19  13  0  0  1   0  
16    23  17  0  0  1   0  
17    30  20  0  0  1   0  
18    31  21  0  0  1   0  
19    20  15  0  0  0   1  
20    26  18  0  0  0   1  
21    20  16  0  0  0   1  
22    14  13  0  0  0   1  
23    28  21  0  0  0   1  
24     .  12  0  0  0   1  
 
 

In Excel, highlight the appropriate cells, right-click on the highlighted area and click “copy”. 
Your screen should look something like: 
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Then open STATA. Go to “Data”, and click on “Data Editor”: 
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Clicking on “Data Editor” will yield the following screen: 

 

From here, right-click on the highlighted cell and click “paste”: 
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Your data is now in the STATA data editor, which yields the following screen: 
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Note that STATA, unlike LIMDEP, records missing observations with a period, rather than a 
blank space. Closing the data editor, we see that our variables are now added to the variable list 
in STATA, and we are correctly told that our data consist of 7 variables and 24 observations. 

 

Any time you wish to see your current data, you can go back to the data editor. We can also view 
the data by typing in “browse” in the command window. As the terms suggest, “browse” only 
allows you to see the data, while you can manually alter data in the “data editor”. 

 

READING SPACE, TAB, OR COMMA DELINEATED FILES INTO STATA 

Next we consider externally created text files that are typically accompanied by the “.txt” or 
“.prn” extensions. As an example, we use the previous dataset with 24 observations on the 7 
variables (“student,”  “post,”  “pre,” “class1,” “class2,”  “class3,” and “class4”) and saved it as a 
space delineated text file “post-pre.txt.”  To read the data into STATA, we need to utilize the 
“insheet” command. In the command window, type  

insheet using “F:\NCEE (Becker)\post-pre.txt”, delimiter(“ “) 

The “insheet” tells STATA to read in text data and “using” directs STATA to a particular file 
name. In this case, the file is saved in the location “F:\NCEE (Becker)\post-pre.txt”, but this will 
vary by user. Finally, the “delimiter(“ “)” option tells STATA that the data points in this file are 
separated by a space. If your data were tab delimited, you could type 
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insheet using “F:\NCEE (Becker)\post-pre.txt”, tab 

and if you were using a “.csv” file, you could type 

inshee

iter (e.g., a 
colon, semicolon, et

ield the following screen: 

t using “F:\NCEE (Becker)\post-pre.csv”, comma 

In general, the “delimiter( )” option is used when your data have a less standard delim
c.).  

Once you’ve typed the appropriate command into the command window, press enter to run that 
line of text. This should y

 

Just as before, STATA tells us that it has read a data set consisting of 7 variables and 24 
observations, and we can access our variable list in the lower-left window pane. We can also see 
previously written lines from the “review” window in the upper-left window pane. Again, we can 

emory allocation is different depending on the version of STATA you are using. 
emory is allocated by default. From the 

previous screenshot, for instance, STATA indicates that 1.00mb is set aside for STATA’s use. 

view our data by typing “browse” in the command window and pressing enter. 

 

READING LARGE DATA FILES INTO STATA 

The default m
When STATA first opens, it will indicate how much m
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This is shown in the note directly above the entered command, which appears every time we sta
STATA. The 1.00mb memory is the standard for Intercooled STATA, which is the version used
for this module. For a slightly more detailed look at the current memory allocation, you can typ
into the command window, “memory” and press enter. This provides the following: 

rt 
 

e 

 

A more useful (and detailed) description of STATA’s memory usage (among other things) can 
be obtained by typing “creturn list” into the command window. This provides: 
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You may have to click on the “-more-“ link (bottom left of the STATA output window) to see 
this output. You can also press spacebar in the command window (or any key) to advance 
screens whenever you see “-more-“ at the bottom. Two things to notice from this screen are: (1) 
c(max_N_theory) tells us the maximum possible number of records our version of STATA will 
allow, while c(max_N_current) tells us the maximum possible number of records we have 
currently allocated to STATA based on our memory allocation, and (2) c(max_k_theory) tells us 
the maximum possible number of variables, while c(max_k_current) tells us the maximum 
number of variables based on our current memory allocation.  

To work with large datasets (in this case, anything larger than 1mb), we can type “set memory 
10m” into the command window and press enter. This increases the memory allocation to 10 mb, 
and you can increase by more or less to your preference. You can also increase STATA’s 
memory allocation permanently by typing, “set memory 10m, permanently” into the command 
line. To check that our memory has actually increased, again type “memory” into the command 
window and press enter. We get the following screen: 
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The maximum amount of memory you can allocate to STATA varies based on your computer’s 
performance. If we try to allocate more memory that our RAM can allow, we get an error: 
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Note that the total amount of memory allowed depends on the computer’s performance; 
however, the total number of variables allowed may be restricted by your version of STATA. (If 
you’re using Small STATA, then the memory allocation is also limited.) For Intercooled 
STATA, for instance, we cannot have more than 2048 variables in our data set.  

For the Becker and Powers data set, the 1mb allocation is sufficient, so we need only follow the 
process to import a “.csv” file described above. Note, however, that this data set does not contain 
variable names in the top row. You can assign names yourself with a slight addition to the 
insheet command: 

    insheet var1 var2 var3 … using “filename.csv”, comma 

Where, var1 var2 var3 …, are the variable names for each of the 64 variables in the data set. Of 
course, manually adding all 64 variable names can be irritating. For more details on how to 
import data sets with data dictionaries (i.e., variable names and definitions in external files), try 
typing “help infile” into the command window. If you do not assign variable names, then 
STATA will provide default variable names of “v1, v2, v3, etc.”. 

 

LEAST-SQUARES ESTIMATION AND LINEAR RESTRICTIONS IN STATA 

As in the previous section using LIMDEP, we now demonstrate various regression tools in 
STATA using the “post-pre” data set. Recall the model being estimated is 

1 2 ( )post pre f classesβ β ε= + + + . 

STATA automatically drops any missing observations from our analysis, so we need not restrict 
the data in any of our commands. In general, the syntax for a basic OLS regression in STATA is 

regress y-variable x-variables, 

where y-variable is just the independent variable name and x-variables are the dependent 
variable names. Now is a good time to mention STATA’s very useful help menu. Typing “help 
regress” into the command window and pressing enter will open a thorough description of the 
regress command and all of its options, and similarly with any command in STATA. 

Once you have your data read into STATA, let’s estimate the model 

1 2 3 4 51 2 3post pre class class classβ β β β β= + + + + + ε  

by typing: 

regress post pre class1 class2 class3 
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into the command window and pressing enter. We get the following output: 

 

To see the predicted post-test scores (with confidence intervals) from our regression, we type: 

predict posthat 
predict se_f, stdf 
generate upper_f = posthat + invttail(e(df_r),0.025)*se_f 
generate lower_f = posthat + invttail(e(df_r),0.025)*se_f 

 
You can either copy and paste these commands directly into the command window and press 
enter, or you can enter each one directly into the command window and press enter one at a time. 
Notice the use of the “predict” and “generate” keywords in the previous set of commands. After 
running a regression, STATA has lots of data stored away, some of which is shown in the output 
and some that is not. By typing “predict posthat”, STATA applies the estimated regression 
equation to the 24 observations in the sample to get predicted y-values. These predicted y-values 
are the default prediction for the “predict” command, and if we want the standard error of these 
predictions, we need to use “predict” again but this time specify the option “stdf”. This stands for 
the standard deviation of the forecast. Both posthat and se_f are new variables that STATA has 
created for us. Now, to get the upper and lower bounds of a 95% confidence interval, we apply 
the usual formula taking the predicted value plus/minus the margin of error. Typing “generate 
upper_f=…” and “generate lower_f=…” creates two new variables named “upper_f” and 
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“lower_f”, respectively. To see our predictions, we can type “browse” into the command window 
and press enter. This yields: 

 

Just as with LIMDEP, our 95% confidence interval for the 24th student’s predicted post-test score 
is [11.5836, 17.6579]. For more information on the “predict” command, try typing “help predict” 
into the command window. 

To test the linear restriction of all class coefficients being zero, we type: 

test class1 class2 class3 

into the command window and press enter. STATA automatically forms the correct test statistic, 
and we see  

F(3, 18) = 5.16 
Prob > F = 0.0095 

The second line gives us the p-value, where we see that we can reject the null that all class 
coefficients are zero at any probability of Type I error greater than 0.0095. 

 

TEST FOR A STRUCTURAL BREAK (CHOW TEST) 
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The above test of the linear restriction β3 = β4 = β5 = 0 (no difference among classes), assumed 
that the pretest slope coefficient was constant, fixed and unaffected by the class to which a 
student belonged.  A full structural test can be performed in two possible ways. One, we can run 
each restricted regression and the unrestricted regression, take note of the residual sums of 
squares from each regression, and explicitly calculate the F-statistic. This requires the fitting of 
four separate regressions to obtain the four residual sum of squares that are added to obtain the 
unrestricted sum of squares.  The restricted sum of squares is obtained from a regression of 
posttest on pretest with no dummies for the classes; that is, the class to which a student belongs 
is irrelevant in the manner in which pretests determine the posttest score. 

For this, we can type: 

regress post pre if class1==1 

into the command window and press enter. The resulting output is as follows: 

. regress post pre if class1==1 
 
      Source |       SS       df       MS              Number of obs =       5 
-------------+------------------------------           F(  1,     3) =  417.63 
       Model |  35.7432432     1  35.7432432           Prob > F      =  0.0003 
    Residual |  .256756757     3  .085585586           R-squared     =  0.9929 
-------------+------------------------------           Adj R-squared =  0.9905 
       Total |          36     4           9           Root MSE      =  .29255 
 
------------------------------------------------------------------------------ 
        post |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         pre |   1.554054   .0760448    20.44   0.000     1.312046    1.796063 
       _cons |  -2.945946    1.61745    -1.82   0.166    -8.093392    2.201501 

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 

We see in the upper-left portion of this output that the residual sum of squares from this 
restricted regression is 0.2568. We can similarly run a restricted regression for only students in 
class 2 by specifying the option “if class2==1”, and so forth for classes 3 and 4.  

The second way to test for a structural break is to create several interaction terms and test 
whether the dummy and interaction terms are jointly significantly different from zero. To 
perform the Chow test this way, we first generate interaction terms between all dummy variables 
and independent variables. To do this in STATA, type the following into the command window 
and press enter: 

generate pre_c1=pre*class1 
generate pre_c2=pre*class2 
generate pre_c3=pre*class3 

With our new variables created, we now run a regression with all dummy and interaction terms 
included, as well as the original independent variable. In STATA, we need to type: 
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regress post pre class1 class2 class3 pre_c1 pre_c2 pre_c3 

into the command window and press enter. The output for this regression is not meaningful, as it 
is only the test that we’re interested in. To run the test, we can then type: 

    test class1 class2 class3 pre_c1 pre_c2 pre_c3 

into the command window and press enter. The resulting output is: 

. test class1 class2 class3 pre_c1 pre_c2 pre_c3 
 
 ( 1)  class1 = 0 
 ( 2)  class2 = 0 
 ( 3)  class3 = 0 
 ( 4)  pre_c1 = 0 
 ( 5)  pre_c2 = 0 
 ( 6)  pre_c3 = 0 
 
       F(  6,    15) =    2.93 
            Prob > F =    0.0427 

Just as we saw in LIMDEP, our F-statistic is 2.93, with a p-value of 0.0427. We again reject the 
null (at a probability of Type I error=0.05) and conclude that class is important either through the 
slope or intercept coefficients. This type of test will always yield results identical to the restricted 
regression approach. 

 

HETEROSCEDASTICITY 

You can control for heteroscedasticity across observations or within specific groups (in this 
class, within a given class, but not across classes) by specifying the “robust” or “cluster” option, 
respectively, at the end of your regression command. 

To account for a common error term within groups, but not across groups, we first create a class 
variable that identifies each student into one of the 4 classes. This is used to specify which group 
(or cluster) a student is in. To generate this variable, type: 

    generate class=class1 + 2*class2 + 3*class3 + 4*class4 

into the command window and press enter. Then to allow for clustered error terms, our 
regression command is: 

    regress post pre class1 class2 class3, cluster(class) 

This gives us the following output: 

. regress post pre class1 class2 class3, cluster(class) 
 
Linear regression                                      Number of obs =      23 
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                                                       F(  0,     3) =       . 
                                                       Prob > F      =       . 
                                                       R-squared     =  0.9552 
Number of clusters (class) = 4                         Root MSE      =  1.2604 
 
------------------------------------------------------------------------------ 
             |               Robust 
        post |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         pre |   1.517222   .1057293    14.35   0.001     1.180744      1.8537 
      class1 |    1.42078   .4863549     2.92   0.061    -.1270178    2.968579 
      class2 |   1.177399   .3141671     3.75   0.033     .1775785    2.177219 
      class3 |   2.954037   .0775348    38.10   0.000     2.707287    3.200788 
       _cons |  -3.585879   1.755107    -2.04   0.134    -9.171412    1.999654 

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 

Similarly, to account for general heteroscedasticity across individual observations, our regression 
command is: 

    regress post pre class1 class2 class3, robust 

and we get the following output: 

. regress post pre class1 class2 class3, robust 
 
Linear regression                                      Number of obs =      23 
                                                       F(  4,    18) =  165.74 
                                                       Prob > F      =  0.0000 
                                                       R-squared     =  0.9552 
                                                       Root MSE      =  1.2604 
 
------------------------------------------------------------------------------ 
             |               Robust 
        post |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         pre |   1.517222   .0824978    18.39   0.000       1.3439    1.690543 
      class1 |    1.42078   .7658701     1.86   0.080     -.188253    3.029814 
      class2 |   1.177399   .8167026     1.44   0.167      -.53843    2.893227 
      class3 |   2.954037   .9108904     3.24   0.005     1.040328    4.867747 
       _cons |  -3.585879   1.706498    -2.10   0.050    -7.171098   -.0006609 

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 

 

ESTIMATING PROBIT MODELS IN STATA 

We now want to estimate a probit model using the Becker and Powers data set. First, read in the 
“.csv” file:i 

. insheet a1 a2 x3 c al am an ca cb cc ch ci cj ck cl cm cn co cs ct cu  /// 
> cv cw db dd di dj dk dl dm dn dq dr ds dy dz ea eb ee ef               /// 
> ei ej ep eq er et ey ez ff fn fx fy fz ge gh gm gn gq gr hb            /// 
> hc hd he hf using "F:\NCEE (Becker)\BECK8WO2.csv", comma                  
(64 vars, 2849 obs) 
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Notice the “///” at the end of each line. Because STATA by default reads the end of the line as 
the end of a command, you have to tell it when the command actually goes on to the next line. 
The “///” tells STATA to continue reading this command through the next line. 

As always, we should look at our data before we start doing any work. Typing “browse” into the 
command window and pressing enter, it looks as if several variables have been read as character 
strings rather than numeric values. We can see this by typing “describe” into the command 
window or simply by noting that string variables appear in red in the browsing window. This is a 
somewhat common problem when using STATA with Excel, usually because of variable names 
in the Excel files or because of spaces placed in front or after numeric values. If there are spaces 
in any cell that contains an otherwise numeric value, STATA will read the entire column as a 
character string. Since we know all variables should be numeric, we can fix this problem by 
typing: 

    destring, replace 

into the command window and pressing enter. This automatically codes all variables as numeric 
variables. 

Also note that the original Excel .csv file has several “extra” observations at the end of the data 
set. These are essentially extra rows that have been left blank but were somehow utilized in the 
original Excel file (for instance, just pressing enter at last cell will generate a new record with all 
missing variables). STATA correctly reads these 12 observations as missing values, but because 
we know these are not real observations, we can just drop these with the command “drop if 
a1==.”. This works because a1 is not missing for any of the other observations. 

Now we recode the variable a2 as a categorical variable, where a2=1 for doctorate institutions 
(between 100 and 199), a2=2 for comprehensive master’s degree granting institutions (between 
200 and 299), a2=3 for liberal arts colleges (between 300 and 399), and a2=4 for two-year 
colleges (between 400 and 499). To do this, type the following command into the command 
window: 

    recode a2 (100/199=1) (200/299=2) (300/399=3) (400/499=4) 

Once we’ve recoded the variable, we can generate the 4 dummy variables as follows:ii 

generate doc=(a2==1) if a2!=. 
generate comp=(a2==2) if a2!=. 
generate lib=(a2==3) if a2!=. 
generate twoyr=(a2==4) if a2!=. 

The more lengthy way to generate these variables would be to first generate new variables equal 
to zero, and then replace each one if the relevant condition holds. But the above commands are a 
more concise way. 

Ian M. McCarthy  Module One, Part Three: Using STATA  September 4, 2008: p. 17   



Next 1 - 0 bivariates are created to show whether the instructor had a PhD degree and where the 
student got a positive score on the postTUCE. We also create new variables, dmsq and hbsq, to 
allow for quadratic forms in teacher experiences and class size:  

generate phd=(dj==3)  if dj!=. 
generate final=(cc>0) if cc!=. 
generate dmsq=dm^2 
generate hbsq=hb^2 
 

In this data set, all missing values are coded −9. Thus, adding together some of the responses to 
the student evaluations provides information as to whether a student actually completed an 
evaluation. For example, if the sum of ge, gh, gm,  and gq equals −36, we know that the student 
did not complete a student evaluation in a meaningful way.  A dummy variable to reflect this fact 
is then created by:iii   

 
generate noeval=(ge + gh + gm + gq == -36) 

Finally, from the TUCE developer it is known that student number 2216 was counted in term 2 
but was in term 1 but no postTUCE was taken.  This error is corrected with the following 
command: 

    recode hb (90=89) 

We are now ready to estimate the probit model with final as our dependent variable. Because 
missing values are coded as -9 in this data set, we need to avoid these observations in our 
analysis. The quickest way to avoid this problem is just to recode all of the variables, setting 
every variable equal to “.” if it equals “-9”. Because there are 64 variables, we do not want to do 
this one at a time, so instead we type: 

foreach x of varlist * { 
replace `x’=. if `x’==-9 
} 

You should type this command exactly as is for it to work correctly, including pressing enter 
after the first open bracket. Also note that the single quotes surrounding each x in the replace 
statement are two different characters. The first single quote is the key directly underneath the 
escape key (for most keyboards) while the closing single quote is the standard single quote 
keystroke by the enter key. For more help on this, type “help foreach” into the command 
window. 

Finally, we drop all observations where an=. and where cs=0 and run the probit model by typing 

    drop if an==. 

Ian M. McCarthy  Module One, Part Three: Using STATA  September 4, 2008: p. 18   



    drop if cs==0 
probit final an hb doc comp lib ci ck phd noeval  

into the command window and pressing enter. We can then retrieve the marginal effects by 
typing “mfx” into the command window and pressing enter. This yields the following output: 

. drop if cs==0  
(1 observation deleted) 
 
. drop if an==. 
(249 observations deleted) 
 
. probit final an hb doc comp lib ci ck phd noeval 
 
Iteration 0:   log likelihood = -1284.2161 
Iteration 1:   log likelihood = -840.66421 
Iteration 2:   log likelihood = -823.09278 
Iteration 3:   log likelihood = -822.74126 
Iteration 4:   log likelihood = -822.74107 
 
Probit regression                                 Number of obs   =       2587 
                                                  LR chi2(9)      =     922.95 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -822.74107                       Pseudo R2       =     0.3593 
 
------------------------------------------------------------------------------ 
       final |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
          an |    .022039   .0094752     2.33   0.020      .003468      .04061 
          hb |  -.0048826   .0019241    -2.54   0.011    -.0086537   -.0011114 
         doc |   .9757148   .1463617     6.67   0.000     .6888511    1.262578 
        comp |   .4064945   .1392651     2.92   0.004       .13354     .679449 
         lib |   .5214436   .1766459     2.95   0.003      .175224    .8676632 
          ci |   .1987315   .0916865     2.17   0.030     .0190293    .3784337 
          ck |     .08779   .1342874     0.65   0.513    -.1754085    .3509885 
         phd |   -.133505   .1030316    -1.30   0.195    -.3354433    .0684333 
      noeval |  -1.930522   .0723911   -26.67   0.000    -2.072406   -1.788638 
       _cons |   .9953498   .2432624     4.09   0.000     .5185642    1.472135 
------------------------------------------------------------------------------ 
 
. mfx 
 
Marginal effects after probit 
      y  = Pr(final) (predict) 
         =  .88118215 
------------------------------------------------------------------------------ 
variable |      dy/dx    Std. Err.     z    P>|z|  [    95% C.I.   ]      X 
---------+-------------------------------------------------------------------- 
      an |    .004378      .00188    2.33   0.020   .000699  .008057   10.5968 
      hb |  -.0009699      .00038   -2.54   0.011  -.001719  -.00022   55.5589 
     doc*|   .1595047      .02039    7.82   0.000   .119537  .199473   .317743 
    comp*|   .0778334      .02588    3.01   0.003   .027107   .12856   .417859 
     lib*|   .0820826      .02145    3.83   0.000   .040039  .124127   .135678 
      ci |   .0394776      .01819    2.17   0.030   .003834  .075122   1.23116 
      ck*|   .0182048      .02902    0.63   0.530  -.038667  .075077   .919985 
     phd*|  -.0257543      .01933   -1.33   0.183  -.063632  .012123   .686123 
  noeval*|   -.533985      .01959  -27.26   0.000  -.572373 -.495597   .290684 
------------------------------------------------------------------------------ 
(*) dy/dx is for discrete change of dummy variable from 0 to 1 
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For the other probit model (using hc rather than hb), we get: 

. probit final an hc doc comp lib ci ck phd noeval 
 
Iteration 0:   log likelihood = -1284.2161 
Iteration 1:   log likelihood = -843.39917 
Iteration 2:   log likelihood = -826.28953 
Iteration 3:   log likelihood = -825.94736 
Iteration 4:   log likelihood = -825.94717 
 
Probit regression                                 Number of obs   =       2587 
                                                  LR chi2(9)      =     916.54 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -825.94717                       Pseudo R2       =     0.3568 
 
------------------------------------------------------------------------------ 
       final |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
          an |   .0225955   .0094553     2.39   0.017     .0040634    .0411276 
          hc |   .0001586    .002104     0.08   0.940    -.0039651    .0042823 
         doc |    .880404   .1486641     5.92   0.000     .5890278     1.17178 
        comp |   .4596089   .1379817     3.33   0.001     .1891698     .730048 
         lib |   .5585268   .1756814     3.18   0.001     .2141976     .902856 
          ci |   .1797199    .090808     1.98   0.048     .0017394    .3577004 
          ck |   .0141566   .1333267     0.11   0.915    -.2471589    .2754722 
         phd |  -.2351326   .1010742    -2.33   0.020    -.4332344   -.0370308 
      noeval |  -1.928216   .0723636   -26.65   0.000    -2.070046   -1.786386 
       _cons |   .8712666   .2411741     3.61   0.000     .3985742    1.343959 
------------------------------------------------------------------------------ 
 
. mfx 
 
Marginal effects after probit 
      y  = Pr(final) (predict) 
         =  .88073351 
------------------------------------------------------------------------------ 
variable |      dy/dx    Std. Err.     z    P>|z|  [    95% C.I.   ]      X 
---------+-------------------------------------------------------------------- 
      an |   .0045005      .00188    2.40   0.017    .00082  .008181   10.5968 
      hc |   .0000316      .00042    0.08   0.940   -.00079  .000853   49.9749 
     doc*|   .1467544      .02132    6.88   0.000   .104969   .18854   .317743 
    comp*|    .087859      .02554    3.44   0.001   .037809  .137909   .417859 
     lib*|   .0867236      .02066    4.20   0.000   .046228   .12722   .135678 
      ci |   .0357961      .01807    1.98   0.048   .000383  .071209   1.23116 
      ck*|   .0028395      .02693    0.11   0.916  -.049938  .055617   .919985 
     phd*|  -.0444863      .01819   -2.45   0.014  -.080145 -.008828   .686123 
  noeval*|  -.5339711      .01957  -27.29   0.000  -.572326 -.495616   .290684 
------------------------------------------------------------------------------ 
(*) dy/dx is for discrete change of dummy variable from 0 to 1 

 

Results from each model are equivalent to those of LIMDEP, where we see that the estimated 
coefficient on hb is -0.005 with a p-value of 0.01, and the estimated coefficient on hc is 0.00007 
with a p-value of 0.974. These results imply that initial class size is strongly significant while 
final class size is insignificant. 
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To assess model fit, we can form the predicted 0 or 1 values by first taking the predicted 
probabilities and then transforming these into 0 or 1 depending on whether the predicted 
probability is greater than .5. Then we can look at a tabulation to see how many correct 0s and 1s 
our probit model predicts. Because we have already run the models, we are not interested in the 
output, so to look only at these predictions, type the following into the command window: 

quietly probit final an hb doc comp lib ci ck phd noeval  
predict prob1 
generate finalhat1=(prob1>.5) 

this yields: 

 

. quietly probit final an hb doc comp lib ci ck phd noeval 
 
. predict prob1 
(option p assumed; Pr(final)) 
 
. generate finalhat1=(prob1>.5) 
 
. tab finalhat1 final 
 
           |         final 
 finalhat1 |         0          1 |     Total 
-----------+----------------------+---------- 
         0 |       342        197 |       539  
         1 |       168      1,880 |     2,048  
-----------+----------------------+---------- 
     Total |       510      2,077 |     2,587  

 

These results are exactly the same as with LIMDEP. For the second model, we get 

. quietly probit final an hc doc comp lib ci ck phd noeval 
 
. predict prob2 
(option p assumed; Pr(final)) 
 
. generate finalhat2=(prob2>.5) 
 
. tab finalhat2 final 
 
           |         final 
 finalhat2 |         0          1 |     Total 
-----------+----------------------+---------- 
         0 |       337        192 |       529  
         1 |       173      1,885 |     2,058  
-----------+----------------------+---------- 
     Total |       510      2,077 |     2,587  

 

Again, these results are identical to those of LIMDEP.  
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We can also use the built-in processes to do these calculations. To do so, type “estat class” after 
the model you’ve run. Part of the resulting output will be the tabulation of predicted versus 
actual values. Furthermore, to perform a Pearson goodness of fit test, type “estat gof” into the 
command window after you have run your model. This will provide a Chi-square value. All of 
these postestimation tools conclude that both models do a sufficient job of prediction. 
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APPENDIX A : Using Stat/Transfer 

Stat/Transfer is a convenient program used to convert data from one format to another. Although 
this program is not free, there is a free trial version available at www.stattransfer.com. Note that 
the trial program will not convert the entire data set—it will drop one observation.  

Nonetheless, Stat/Transfer is very user friendly. If you install and open the trial program, your 
screen should look something like: 

 

We want to convert the “.xls” file into a STATA format (“.dta”). To do this, we need to first 
specify the original file type (e.g., Excel), then specify the location of the file. We then specify 
the format that we want (in this case, a STATA “.dta” file). Then click on Transfer, and 
Stat/Transfer automatically converts the data into the format you’ve asked.  

To open this new “.dta” file in STATA, simply type  

   use “filename.dta” 

into the command window and press enter. 
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ENDNOTES 

 
i When using the “insheet” command, STATA automatically converts A1 to a1, A2 to a2 and so 
forth. STATA is, however, case sensitive. Therefore, whether users specify “insheet A1 A2 …” 
or  “insheet a1 a2 …,” we must still call the variables in lower case. For instance, the following 
insheet command will work the exact same as that provided in the main text: 
. insheet A1 A2 X3 C AL AM AN CA CB CC CH CI CJ CK CL CM CN CO CS CT CU  /// 
> CV CW DB DD DI DJ DK DL DM DN DQ DR DS DY DZ EA EB EE EF               /// 
> EI EJ EP EQ ER ET EY EZ FF FN FX FY FZ GE GH GM GN GQ GR HB            /// 
> HC HD HE HF using "F:\NCEE (Becker)\BECK8WO2.csv", comma     
              
ii The conditions “if a2!=.” tell STATA to run the command only if a2 is not missing. Although 
this particular dataset does not contain any missing values, it is generally good practice to always 
use this type of condition when creating dummy variables the way we have done here. For 
example, if there were a missing observation, the command “gen doc=(a2==1)” would set doc=0 
even if a2 is missing. 

iii An alternative procedure is to first set all variables to missing if they equal -9 and then 
generate the dummy variable using: 

generate noeval=(ge==.&gh==.&gm==.&gq==.) 

 


