
 

MODULE FOUR, PART ONE: 

SAMPLE SELECTION IN ECONOMIC EDUCATION RESEARCH 

William E. Becker and William H. Greene * 

 

Modules One and Two addressed an economic education empirical study involved with the 
assessment of student learning that occurs between the start of a program (as measured, for 
example, by a pretest) and the end of the program (posttest).   At least implicitly, there is an 
assumption that all the students who start the program finish the program.  There is also an 
assumption that those who start the program are representative of, or at least are a random 
sample of, those for whom an inference is to be made about the outcome of the program.  This 
module addresses how these assumptions might be wrong and how problems of sample selection 
might occur.   The consequences of and remedies for sample selection are presented here in Part 
One.  As in the earlier three modules, contemporary estimation procedures to adjust for sample 
selection are demonstrated in Parts Two, Three and Four using LIMDEP (NLOGIT), STATA 
and SAS.      

 Before addressing the technical issues associated with sample selection problems in an 
assessment of one or another instructional method, one type of student or teacher versus another, 
or similar educational comparisons, it might be helpful to consider an analogy involving a 
contest of skill between two types of contestants: Type A and Type B.  There are 8 of each type 
who compete against each other in the first round of matches.  The 8 winners of the first set of 
matches compete against each other in a second round, and the 4 winners of that round compete 
in a third.  Type A and Type B may compete against their own type in any match after the first 
round, but one Type A and one Type B manage to make it to the final round.  In the final match 
they tie.  Should we conclude, on probabilistic grounds, that Type A and Type B contestants are 
equally skilled?   
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How is your answer to the above questions affected if we tell you that on the first round 5 
Type As and only 3 Types Bs won their matches and only one Type B was successful in the 
second and third round?    The additional information should make clear that we have to consider 
how the individual matches are connected and not just look at the last match.  But before you 
conclude that Type As had a superior attribute only in the early contests and not in the finals, 
consider another analogy provided by Thomas Kane (Becker 2004). 

 Kane's hypothetical series of races is contested by 8 greyhounds and 8 dachshunds. In the 
first race, the greyhounds enjoy a clear advantage with 5 greyhounds and only 3 dachshunds 
finishing among the front-runners.  These 8 dogs then move to the second race, when only one 
dachshund wins.  This dachshund survives to the final race when it ties with a greyhound.  Kane 
asks: “Should I conclude that leg length was a disadvantage in the first two races but not in the 
third?” And answers: “That would be absurd.  The little dachshund that made it into the third 
race and eventually tied for the win most probably had an advantage on other traits—such as a 
strong heart, or an extraordinary competitive spirit—which were sufficient to overcome the 
disadvantage created by its short stature.” 

 These analogies demonstrate all three sources of bias associated with attempts to assess 
performance from the start of a program to its finish: sample selection bias, endogeneity, and 
omitted variables.   The length of the dogs’ legs not appearing to be a problem in the final race 
reflects the sample selection issues resulting if the researcher only looks at that last race. In 
education research this corresponds to only looking at the performance of those who take the 
final exam, fill out the end-of-term student evaluations, and similar terminal program 
measurements.  Looking only at the last race (corresponding to those who take the final exam) 
would be legitimate if the races were independent (previous exam performance had no effect on 
final exam taking, students could not self select into the treatment group versus control group), 
but the races (like test scores) are sequentially dependent; thus, there is an endogeneity problem 
(as introduced in Module Two).  As Kane points out, concluding that leg length was important in 
the first two races and not in the third reveals the omitted-variable problem: a trait such as heart 
strength or competitive motivation might be overriding short legs and thus should be included as 
a relevant explanatory variable in the analyses.  These problems of sample selection in 
educational assessment are the focus of this module. 

 

SAMPLE SELECTION FROM PRETEST TO POSTTEST AND HECKMAN CORRECTION 

The statistical inference problems associated with sample selection in the typical change-score 
model used in economic education research can be demonstrated using a modified version of the 
presentation in Becker and Powers (2001), where the data generating process for the change 
score (difference between post and pre TUCE scores) for the ith student ( iyΔ ) is modeled as 
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The data set of explanatory variables is matrix X, where Xi is the row of xji values for the 
relevant variables believed to explain the ith student’s pretest and posttest scores, the jβ ’s are the 

associated slope coefficients in the vector β , and iε  is the individual random shock (caused, for 
example, by unobservable attributes, events or environmental factors) that affect the ith student’s 
test scores.  In empirical work, the exact nature of iyΔ is critical.   For instance, to model the 
truncation issues that might be relevant for extremely able students’ being better than the 
maximum TUCE score, a Tobit model can be specified for .iyΔ i  Also critical is the assumed 
starting point on which all subsequent estimation is conditioned.ii 

As discussed in Module One, to explicitly model the decision to complete a course, as 
reflected by the existence of a posttest for the ith student, a “yes” or “no” choice probit model can 
be specified.  Let , if the student takes the posttest and let 1Ti =

thi 0Ti = , if not.  Assume that 

there is an unobservable continuous dependent variable, , representing the  student’s desire 
or propensity to complete a course by taking the posttest. 

*
iT thi

For an initial population of N  students, let be the vector of all students’ propensities 
to take a posttest.  Let  be the matrix of explanatory variables that are believed to drive these 
propensities, which includes directly observable things (e.g., time of class, instructor’s native 
language).  Let α  be the vector of slope coefficients corresponding to these observable variables.  
The individual unobservable random shocks that affect each student’s propensity to take the 
posttest are contained in the error term vector ω .  The data generating process for the  
student’s propensity to take the posttest can now be written:  

*T
H

thi

                                 (2) iiiT ω+= αH*

where  

1Ti = , if , and student i  has a posttest score, and 0T *
i >

0Ti = , if , and student i  does not have a posttest score.  0T *
i ≤

For estimation purposes, the error term iω  is assumed to be a standard normal random 
variable that is independently and identically distributed with the other students’ error terms in 
the  vector.  As shown in Module Four (Parts Two, Three and Four) this probit model for the 
propensity to take the posttest can be estimated using the maximum-likelihood routines in 
programs such as LIMDEP, STATA or SAS. 

ω
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The effect of attrition between the pretest and posttest, as reflected in the absence of a 
posttest score for the ith student  and an adjustment for the resulting bias caused by 

excluding those students from the regression can be illustrated with a two-equation model 

formed by the selection equation (2) and the  student’s change score equation (1).

)0( =iT

iyΔ
thi iii  Each of 

the disturbances in vector ε , equation (1), is assumed to be distributed bivariate normal with the 
corresponding disturbance term in the ω  vector of the selection equation (2).  Thus, for the  
student we have: 

thi

        ~),( ii ωε  bivariate normal ),,,,( ρσε 100                     (3) 

and for all perturbations in the two-equation system we have: 

2( ) ( ) 0, ( ') , ( ') , and ( ')E E E E E= = =σ = =ρσε εε ω εε I ωω I Iεω  .     (4) 

That is, the disturbances have zero means, unit variance, and no covariance among students, but 
there is covariance between selection in getting a posttest score and the measurement of the 
change score.  

The difference in the functional forms of the posttest selection equation (2) and the 
change score equation (1) ensures the identification of equation (1) but ideally other restrictions 
would lend support to identification.  Estimates of the parameters in equation (1) are desired, but 
the  student’s change score is observed in the TUCE data for only the subset of students 

for whom .  The regression for this censored sample of  students is:  

thi iyΔ

1=iT 1Tn =

*
1( | , 1) ( | 0); 1, 2,...i i i i i i TE y T E T i nε =Δ = = + > =X X β  , for Nn 1T <=   .         (5)  

Similar to omitting a relevant variable from a regression (as discussed in Module Two), selection 
bias is a problem because the magnitude of  varies across individuals and yet is not 

included in the estimation of equation (1).  To the extent that 

)|( * 0TE ii >ε

iε  and iω  (and thus ) are 
related, the estimators are biased. 

*
iT

The change score regression (1) can be adjusted for those who elected not to take a 
posttest in several ways. An early Heckman-type solution to the sample selection problem is to 
rewrite the omitted variable component of the regression so that the equation to be estimated is:   

1( | , 1) ( ) ; 1,2,...i i i i i TE y T i nερσ λ =Δ = = + =X X β            (6) 

where , and  and  are the normal density and distribution 

functions.  The inverse Mill’s ratio (or hazard) 

)](/[)( **
iii TF1Tf −−−=λ (.)f (.)F

iλ  is the standardized mean of the disturbance 

term iω , for the student who took the posttest; it is close to zero only for those well above the thi
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1T =  threshold.  The values of λ  are generated from the estimated probit selection equation (2) 
for all students.  Each student in the change score regression ( iyΔ ) gets a calculated value iλ , 
with the vector of these values serving as a shift variable in the persistence regression.   

The single coefficient represented by the product of ρ and εσ (ie., ερσ ) is estimated in a 
two-step procedure in which the probit selection equation (2) is first estimated by maximum 
likelihood and then the change-score equation (1) is estimated by least squares with the inverse 
mills ratio used as an additional regressor to adjust for the selection bias.  The estimates of ρ , 

εσ , and all the other coefficients in equations (1) and (2) can also be obtained simultaneously 
and more efficiently using the maximum-likelihood routines in LIMDEP, STATA or SAS, as 
will be demonstrated in Parts Two, Three and Four of this module using the Becker and Powers 
data set. 

The Heckman-type selection model represented by equations (1) and (2) highlights the 
nature of the sample selection problem inherent in estimating a change-score model by itself.  
Selection results in population error term and regressor correlation that biases and makes the 
coefficient estimators in the change score model inconsistent.  The early Heckman (1979) type 
two-equation estimation of the parameters in a selection model and change-score model, 
however, requires cross-equation exclusion restrictions (variables that affect selection but not the 
change score), differences in functional forms, and/or distributional assumptions for the error 
terms.  Parameter estimates are typically sensitive to these model specifications. 

 

ALTERNATIVE METHODS FOR ADDRESSING SELECTION 

As reviewed in Imbens and Wooldridge (2009), alternative nonparametric and semiparametric 
methods are being explored for assessing treatment effects in nonrandomized experiments but 
these methods have been slow to catch on in education research in general and economic 
education in particular.  Exceptions, in the case of financial aid and the enrollment decision, are 
the works of Wilbert van der Klaauw and Thomas Kane.  Van der Klaauw (2002) estimates the 
effect of financial aid on the enrollment decision of students admitted to a specific East Coast 
college, recognizing that this college’s financial aid is endogenous because competing offers are 
unknown and thus by definition are omitted relevant explanatory variables in the enrollment 
decision of students considering this college. 

The college investigated by van der Klaauw created a single continuous index of each student’s 
initial financial aid potential (based on a SAT score and high school GPA) and then classified 
students into one of four aid level categories based on discrete cut points.  The aid assignment 
rule depends at least in part on the value of a continuous variable relative to a given threshold in 
such a way that the corresponding probability of receiving aid (and the mean amount offered) is 
a discontinuous function of this continuous variable at the threshold cut point.  A sample of 
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individual students close to a cut point on either side can be treated as a random sample at the cut 
point because on average there really should be little difference between them (in terms of 
financial aid offers received from other colleges and other unknown variables).  In the absence of 
the financial aid level under consideration, we should expect little difference in the college-going 
decision of those just above and just below the cut point.  Similarly, if they were all given the 
financial aid, we should see little difference in outcomes, on average.  To the extent that some 
actually get it and others do not, we have an interpretable treatment effect.  (Intuitively, this can 
be thought of as running a regression of enrollment on financial aid for those close to the cut 
point, with an adjustment for being in that position.)  In his empirical work, van der Klaauw 
obtained credible estimates of the importance of the financial aid effect without having to rely on 
arbitrary cross-equation exclusion restrictions and functional form assumptions.   

Kane (2003) uses an identification strategy similar to van der Klaauw but does so for all 
those who applied for the Cal Grant Program to attend any college in California.  Eligibility for 
the Cal Grant Program is subject to a minimum GPA and maximum family income and asset 
level.  Like van der Klaauw, Kane exploits discontinuities on one dimension of eligibility for 
those who satisfy the other dimensions of eligibility.   

 Although some education researchers are trying to fit their selection problems into this 
regression discontinuity framework, legitimate applications are few because the technique has 
very stringent data requirement (an actual but unknown or conceptual defendable continuous 
index with thresholds for rank-ordered classifications) and limited ability to generalize away 
from the classification cut points.  Much of economic education research, on the other hand, 
deals with the assessment of one type of program or environment versus another, in which the 
source of selection bias is entry and exit from the control or experimental groups.  An alternative 
to Heckman’s parametric (rigid equation form) manner of comparing outcome measures adjusted 
for selection based on unobservables is propensity score matching.   

 

PROPENSITY SCORE MATCHING 

Propensity score matching as a body of methods is based on the following logic:  We are 
interested in evaluating a change score after a treatment.  Let O now denote the outcome variable 
or interest (e.g., posttest score, change score, persistence, or whatever) and T denote the 
treatment dummy variable (e.g., took the enhanced course), such that T = 1 for an individual who 
has experienced the “treatment,” and T = 0 for one who has not.  If we are interested in the 
change-score effect of treatment on the treated, the conceptual experiment would amount to 
observing the treated individual (1) after he or she experienced the treatment and the same 
individual in the same situation but (2) after he/she did not experience the treatment (but 
presumably, others did).  The treatment effect would be the difference between the two post-test 
scores (because the pretest would be the one achieved by this individual).  The problem, of 
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course, is that ex post, we don’t observe the outcome variable, O, for the treated individual, in 
the absence of the treatment.  We observe some individuals who were treated and other 
individuals who were not.  Propensity score matching is a largely nonparametric approach to 
evaluating treatment effects with this consideration in mind.iv 

 If individuals who experienced the treatment were exactly like those who did not in all 
other respects, we could proceed by comparing random samples of treated and nontreated 
individuals, confident that any observed differences could be attributed to the treatment.  The 
first section of this module focused on the problem that treated individuals might differ from 
untreated individuals systematically, but in ways that are not directly observable by the 
econometrician.  To consider an example, if the decision to take an economics course (the 
treatment) were motivated by characteristics of individuals (curiosity, ambition, etc.) that were 
also influential in their performance on the outcome (test), then our analysis might attribute the 
change in the score to the treatment rather than to these characteristics.  Models of sample 
selection considered previously are directed at this possibility.  The development in this section 
is focused on the possibility that the same kinds of issues might arise, but the underlying features 
that differentiate the treated from the untreated can be observed, at least in part. 

 If assignment to the treatment were perfectly random, as discussed in the introduction to 
this module, solving this problem would be straightforward.  A large enough sample of 
individuals would allow us to average away the differences between treated and untreated 
individuals, both in terms of observable characteristics and unobservable attributes.  Regression 
methods, such as those discussed in the previous sections of this module, are designed to deal 
with the difficult case in which the assignment is nonrandom with respect to the unobservable 
characteristics of individuals (such as ability, motivation, etc.) that can be related to the 
“treatment assignment,” that is, whether or not they receive the treatment.  Those methods do not 
address another question, that is, whether there are systematic, observable differences between 
treated and nontreated individuals.  Propensity score methods are used to address this problem.   

 To take a simple example, suppose it is known with certainty that the underlying, 
unobservable characteristics that are affecting the change score are perfectly randomly 
distributed across individuals, treated and untreated.  Assume, as well, that it is known for certain 
that the only systematic, observable difference between treated and untreated individuals is that 
women are more likely to undertake the treatment than men.  It would make sense, then, that if 
we want to compare treated to untreated individuals, we would not want to compare a randomly 
selected group of treated individuals to a randomly selected group of untreated individuals – the 
former would surely contain more women than the latter.  Rather, we would try to balance the 
samples so that we compared a group of women to another group of women and a group of men 
to another group of men, thereby controlling for the impact of gender on the likelihood of 
receiving the treatment.  We might then want to develop an overall average by averaging, once 
again, this time the two differences, one for men, the other for women. 

    May 1, 2010: p. 7 
 



 In the main, and as already made clear in our consideration of the Heckman adjustment, 
if assignment to the treatment is nonrandom, then estimation of treatment effects will be biased 
by the effect of the variables that effect the treatment assignment. The strategy is, essentially, to 
locate an untreated individual who looks like the treated one in every respect except the 
treatment, then compare the outcomes. We then average this across individual pairs to estimate 
the “average treatment effect on the treated.”  The practical difficulty is that individuals differ in 
many characteristics, and it is not feasible, in a realistic application, to compare each treated 
observation to an untreated one that “looks like it.”  There are too many dimensions on which 
individuals can differ.  The technique of propensity score matching is intended to deal with this 
complication.  Keep in mind, however, if unmeasured or unobserved attributes are important, 
and they are not randomly distributed across treatment and control groups, matching techniques 
may not work.  That is for what the methods in the previous sections were designed. 

 

THE PROPENSITY SCORE MATCHING METHOD 

We now provide some technical details on propensity score matching.  Let x denote a vector of 
observable characteristics of the individual, before the treatment. Let the probability of treatment 
be denoted P(T=1|x) = P(x). Because T is binary, P(x) = E[T|x], as in a linear probability model.  
If treatment is random given x, then treatment is random given P(x), which in this context is 
called the propensity score. It will generally not be possible to match individuals based on all the 
characteristics individually – with continuously measured characteristics, such as income.  There 
are too many cells. The matching is done via the propensity score. Individuals with similar 
propensity scores are expected (on average) to be individuals with similar characteristics. 

 Overall, for a ‘treated’ individual with propensity P(xi) and outcome Oi, the strategy is to 
locate a control observation with similar propensity P(xc) and with outcome Oc.  The effect of 
treatment on the treated for this individual is estimated by Oi – Oc. This is averaged across 
individuals to estimate the average treatment effect on the treated. The underlying theory asserts 
that the estimates of treatment effects across treated and controls are unbiased if the treatment 
assignment is random among individuals with the same propensity score; the propensity score, 
itself, captures the drivers of the treatment assignment. (Relevant papers that establish this 
methodology are too numerous to list here. Useful references are four canonical papers, 
Heckman et al. [1997, 1998a, 1998b, 1999] and a study by Becker and Ichino [2002].)   

 The steps in the propensity score matching analysis consist of the following:  

Step 1. Estimate the propensity score function, P(x), for each individual by fitting 
a probit or logit model, and using the fitted probabilities. 

    May 1, 2010: p. 8 
 



Step 2. Establish that the average propensity scores of treated and control 
observations are the same within particular ranges of the propensity scores. (This 
is a test of the “balancing hypothesis.”) 

Step 3. Establish that the averages of the characteristics for treatment and controls 
are the same for observations in specific ranges of the propensity score.  This is a 
check on whether the propensity score approach appears to be succeeding at 
matching individuals with similar characteristics by matching them on their 
propensity scores. 

Step 4. For each treated observation in the sample, locate a similar control 
observation(s) based on the propensity scores. Compute the treatment effect,  
Oi – Oc.  Average this across observations to get the average treatment effect. 

Step 5. In order to estimate a standard error for this estimate, Step 4 is repeated 
with a set of bootstrapped samples. 

 

THE PROPENSITY SCORE 

We use a binary choice model to predict “participation” in the treatment.  Thus, 

 Prob(T = 1|x)  =  ( )0 1 1 2 2 ... ( )K KF x x x F ′β + β +β + +β = xβ . 

The choice of F is up to the analyst.  The logit model is a common choice; 

 Prob(T=1|x)  =  exp( )
1 exp( )

′
′+

x
x

β
β

. 

The probit model, = , where Φ(t) is the normal distribution function, is an 
alternative.  The propensity score is the fitted probability from the probit or logit model, 

( )F ′xβ ( ′Φ xβ )

 Propensity Score for individual i   =  ( )ˆ
i iF P′ =xβ . 

The central feature of this step is to find similar individuals by finding individuals who have 
similar propensity scores.  Before proceeding, we note, the original objective is to find groups of 
individuals who have the same x.  This is easy to do in our simple example, where the only 
variable in x is gender, so we can simply distinguish people by their gender.  When the x vector 
has many variables, it is impossible to partition the data set into groups of individuals with the 
same, or even similar explanatory variables.  In the example we will develop below, x includes 
age (and age squared), education, marital status, race, income and unemployment status.  The 
working principle in this procedure is that individuals who have similar propensity scores will, if 
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we average enough of them, have largely similar characteristics.  (The reverse must be true, of 
course.)  Thus, although we cannot group people by their characteristics, xs, we can (we hope) 
achieve the same end by grouping people by their propensity scores.  That leads to step 2 of the 
matching procedure. 

 

GROUPING INDIVIDUALS BY PROPENSITY SCORES 

Grouping those with similar propensity scores should result in similar predicted probabilities for 
treatment and control groups.  For instance, suppose we take a range of propensity scores 
(probabilities of participating in the treatement), say from 0.4 to 0.6. Then, the part of the sample 
that contains propensity scores in this range should contain a mix of treated individuals 
(individuals with T = 1) and controls (individuals with T = 0).  If the theory we are relying on is 
correct, then the average propensity score for treated and controls should be the same, at least 
approximately.  That is, 

     ( ) ( ) ( ) ( )ˆ ˆˆ ˆ 1 and  in the range    0 and  in the range .Average F T F Average F T F′ ′= ≈ =x xβ β  

We will look for a partitioning of the range of propensity scores for which this is the case in each 
range.   

 A first step is to decide if it is necessary to restrict the sample to the range of values of 
propensity scores that is shared by the treated and control observations.  That range is called the 
common support.  Thus, if the propensity scores of the treated individuals range from 0.1 to 0.7 
and the scores of the control observations range from 0.2 to 0.9, then the common support is 
from 0.2 to 0.7.  Observations that have scores outside this range would not be used in the 
analysis. 

 Once the sample to be used is determined, we will partition the range of propensity scores 
into K cells.  For each partitioning of the range of propensity scores considered, we will use a 
standard F test for equality of means of the propensity scores of the treatment and control 
observations: 

( )
( )

2

2 2
, ,

[1, ] , 1,..., .
/ /

k k
C T

k k k
C k C T k T

P P
F d k

S N S N

−
= =

+
K  

The denominator degrees of freedom for F are approximated using a technique invented by 

Satterthwaite (1946): 

    May 1, 2010: p. 10 
 



( )
( ) ( )

2 2
, ,

22
,

2 22 2
, ,

( 1) ( 1)(1 )
/ /

( 1) /
.

( 1) / ( 1) /

C T
k k

C k C T k T

k
T C k C

k k
T C k C C T k T

N Nd w w
S N S N

N S N
w

N S N N S N

− −
= + −

−
=

− + −

 

If any of the cells (ranges of scores) fails this test, the next step is to increase the number of cells. 
There are various strategies by which this can be done.  The natural approach would be to leave 
cells that pass the test as they are, and partition more finely the ones that do not.  This may take 
several attempts. In our example, we started by separating the range into 5 parts.  With 5 
segments, however, the data do not appear to satisfy the balancing requirement. We then try 6 
and, finally, 7 segments of the range of propensity scores.  With the range divided into 7 
segments, it appears that the balance requirement is met. 

 Analysis can proceed even if the partitioning of the range of scores does not pass this test.  
However, the test at this step will help to give an indication of whether the model used to 
calculate the propensity scores is sufficiently specified.  A persistent failure of the balancing test 
might signal problems with the model that is being used to create the propensity scores.  The 
result of this step is a partitioning of the range of propensity scores into K cells with the K + 1 
values, 

[P*]  =  [P1, P2, ..., PK+1] 

which is used in the succeeding steps. 

 

EXAMINING THE CHARACTERISTICS IN THE SAMPLE GROUPS 

Step 3 returns to the original motivation of the methodology.  At step 3, we examine the 
characteristics (x vectors) of the individuals in the treatement and control groups within the 
subsamples defined by the groupings made by Step 2.  If our theory of propensity scores is 
working, it should be the case that within a group, for example, for the individuals whose 
propensity scores are in the range 0.4 to 0.6, the x vectors should be similar in that at least the 
means should be very close.  This aspect of the data is examined statistically.  Analysis can 
proceed if this property is not met but the result(s) of these tests might signal to the analyst that 
their results are a bit fragile.  In our example below, there are seven cells in the grid of 
propensity scores and 12 variables in the model. We find that for four of the 12 variables in one 
of the 7 cells (i.e., in four cases out of 84), the means of the treated and control observations 
appear to be significantly different.  Overall, this difference does not appear to be too severe, so 
we proceed in spite of it. 
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MATCHING 

Assuming that the data have passed the scrutiny in step 3, we now match the observations.  For 
each treated observation (individual’s outcome measure such as a test score) in the sample, we 
find a control observation that is similar to it.  The intricate complication at this step is to define 
“similar.”  It will generally not be possible to find a treated observation and a control observation 
with exactly the same propensity score. So, at this stage it is necessary to decide what rule to use 
for “close.”  The obvious choice would be the nearest neighbor in the set of observations that is 
in the propensity score group.  The nearest neighbor for observation Oi would be the Oc* for 
which |Pi – Pc| is minimized.  We note, by this strategy, a particular control observation might be 
the nearest neighbor for more than one treatment observation and some control observations 
might not be the nearest neighbor to any treated observation.  

 Another strategy is to use the average of several nearby observations.  The counterpart 
observation is constructed by averaging all control observations whose propensity scores fall in a 
given range in the neighborhood of Pi. Thus, we first locate the set [Ct*] = the set of control 
observations for which |Pt – Pc| < r, for a chosen value of r called the caliper.  We then average 
Oc for these observations.  By this construction, the neighbor may be an average of several 
control observations. It may also not exist, if no observations are close enough.  In this case, r 
must be increased.  As in the single nearest neighbor computation, control observations may be 
used more than once, or they might not be used at all (e.g., if the caliper is r = .01, and a control 
observation has propensity .5 and the nearest treated observations have propensities of .45 and 
.55, then this control will never be used).   

 A third strategy for finding the counterpart observations is to use kernel methods to 
average all of the observations in the range of scores that contains the Oi that we are trying to 
match.  The averaging function is computed as follows: 
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The function K[.] is a weighting function that takes its largest value when Pi equals Pc and tapers 
off to zero as Pc is farther from Pi.  Typical choices for the kernel function are the normal or 
logistic density functions.  A common choice that cuts off the computation at a specific point is 
the Epanechnikov (1969) weighting function, 
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K[t]  =  0.75(1 – .2t2)/51/2 for |t| < 5, and 0 otherwise. 

The parameter h is the bandwidth that controls the weights given to points that lie relatively far 
from Pi.  A larger bandwidth gives more distant points relatively greater weight.  Choice of the 
bandwidth is a bit of an (arcane) art.  The value 0.06 is a reasonable choice for the types of data 
we are using in our analysis here. 

 Once treatment observations, Oi and control observations, Oc are matched, the treatment 
effect for this pair is computed as Oi – Oc.  The average treatment effect (ATE) is then estimated 
by the mean, 
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STATISTICAL INFERENCE 

In order to form a confidence interval around the estimated average treatment effect, it is 
necessary to obtain an estimated standard error.  This is done by reconstructing the entire sample 
used in Steps 2 through 4 R times, using bootstrapping.   By this method, we sample N 
observations from the sample of N observations with replacement. Then ATE is computed R 
times and the estimated standard error is the empirical standard deviation of the R observations.  
This can be used to form a confidence interval for the ATE. 

 The end result of the computations will be a confidence interval for the expected 
treatment effect on the treated individuals in the sample.  For example, in the application that we 
will present in Part 2 of this module, in which the outcome variable is the log of earnings and the 
treatment is the National Supported Work Demonstration – see LaLonde (1986) – the following 
is the set of final results:  

+----------------------------------------------------------------------+ 
| Number of Treated observations =    185  Number of controls =   1157 | 
| Estimated Average Treatment Effect   =        .156255                | 
| Estimated Asymptotic Standard Error  =        .104204                | 
| t statistic (ATT/Est.S.E.)           =       1.499510                | 
| Confidence Interval for ATT = (     -.047985  to        .360496) 95% | 
| Average Bootstrap estimate of ATT    =        .144897                | 
| ATT - Average bootstrap estimate     =        .011358                | 
+----------------------------------------------------------------------+ 

 

The overall estimate from the analysis is ATE = 0.156255, which suggests that the effect on 
earnings that can be attributed to participation in the program is 15.6%.  Based on the (25) 
bootstrap replications, we obtained an estimated standard error of 0.104204.  By forming a 
confidence interval using this standard error, we obtain our interval estimate of the impact of the 
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program of (-4.80% to +36.05%).  We would attribute the negative range to an unconstrained 
estimate of the sampling variability of the estimator, not actually to a negative impact of the 
program.v 

 

CONCLUDING COMMENTS 

The genius in James Heckman was recognizing that sample selection problems are not 
necessarily removed by bigger samples because unobservables will continue to bias estimators.  
His parametric solution to the sample selection problem has not been lessened by newer semi-
parametric techniques.  It is true that results obtained from the two equation system advanced by 
Heckman over 30 years ago are sensitive to the correctness of the equations and their 
identification.   Newer methods such as regression discontinuity, however, are extremely limited 
in their applications.  As we will see in Module Four, Parts Two, Three and Four, methods such 
as the propensity score matching depend on the validity of the logit or probit functions estimated 
along with the methods of getting smoothness in the kernel density estimator.  One of the 
beauties of Heckman’s original selection adjustment method is that its results can be easily 
replicated in LIMDEP, STATA and SAS.  Such is not the case with the more recent 
nonparametric and semi-parametric methods for addressing sample selection problems.    
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ENDNOTES 

 

i

i . The opportunistic samples employed in the older versions of the TUCE as well as the new TUCE 
4 have few observations from highly selective schools.  The TUCE 4 is especially noteworthy because it 
has only one such prestige school: Stanford University, where the class was taught by a non-tenure track 
teacher.   Thus, the TUCE 4 might reflect what those in the sample are taught and are able to do, but it 
does not reflect what those in the know are teaching or what highly able students are able to do.  For 
example Alan Krueger (Princeton University) is listed as a member of the TUCE 4 “national panel of 
distinguished economists;” yet, in a 2008 Journal of Economic Education article he writes: “a long 
standing complaint of mine, as well as others, for example Becker 2007 and Becker 2004, is that 
introductory economics courses have not kept up with the economics profession’s expanding emphasis on 
data and empirical analysis.”  Whether bright and motivated students at the leading institutions of higher 
education can be expected to get all or close to all 33 multiple-choice questions correct on either the 
micro or macro parts of the TUCE (because they figure out what the test designers want for an answer) or 
score poorly (because they know more than what the multiple-choice questions assume) is open to 
question and empirical testing.   What is not debatable is that the TUCE 4 is based on a censored sample 
that excludes those at and exposed to thinking at the forefront of the science of economics. 

ii . Because Becker and Powers (2002) do not have any data before the start of the course, they 
condition on those who are already in the course and only adjust their change-score model estimation for 
attrition between the pretest and posttest.  More recently, Huynh, Jacho-Chavez, and Self  (2010) account 
for selection into, out of and between collaborative learning sections of a large principles course in their 
change-score modeling. 

iii.. Although yΔ   is treated as a continuous variable this is not essential.  For example, a bivariate 

choice (probit or logit) model can be specified to explicitly model the taking of a posttest decision as a 
“yes” or “no” for students who enrolled in the course.  The selection issue is then modeled in a way 
similar to that employed by Greene (1992) on consumer loan default and credit card expenditures.  As 
with the standard Heckman selection model, this two-equation system involving bivariate choice and 
selection can be estimated in a program like LIMDEP. 

iv .  The procedure is not “parametric” in that it is not fully based on a parametric model. It is not 
“nonparametric” in that it does employ a particular binary choice model to describe participation, or 
receiving the treatment. But the binary choice model functions as an aggregator of a vector of variables 
into a single score, not necessarily as a behavioral relationship.  Perhaps “partially parametric” would be 
appropriate here, but we have not seen this term used elsewhere. 
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v .  The example mentioned at several points in this discussion will be presented in much greater 
detail in Part 2.  The data will be analyzed with LIMDEP, Stata and SAS.  We note at this point, there are 
some issues with duplication of the results with the three programs and with the studies done by the 
original authors.  Some of these are numerical and specifically explainable.  However, we do not 
anticipate that results in Step 5 can be replicated across platforms.  The reason is that Step 5 requires 
generation of random numbers to draw the bootstrap samples.  The pseudorandom number generators 
used by different programs vary substantially, and these differences show up in, for example, in bootstrap 
replications.  If the samples involved are large enough, this sort of random variation (chatter) gets 
averaged out in the results.  The sample in our real world application is not large enough to expect that 
this chatter will be completely averaged out.  As such, as will be evident later, there will be some small 
variation across programs in the results that one obtains with our or any other small or moderately sized 
data set. 


