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STATE-SPACE REPRESENTATION



Set-up and my notation

Previously:
St = GSi_1+ Fet state equation
Z: = Asi_1 + De; observation equation

My notation and some changes to the specification:

& = F &1+ v state equation

rx1 X rx1 rx1

Vi =H &+ w observation equation
nx1 NXTrrx1  nx1

l.e. st Is & and z; is y, in my notation
also, note the observation equation has &; rather than &_;



Set-up

& = F &+ v state equation
rx1 IXr rxq rx1
Y. = H &+ w; observation equation
nx1 NXrrx1  nx1
Vi ! ! rgr r>(<)n
Ellw) M W) =10 g
rxn nxn

m & state, can be observed, usually unobserved
m obs. eqgn. with exogenous variables (e.g. constant):

Ve= A X¢ +H& +w;

xR px1

m Parameter matrices can be time-varying



Key observation
State equation is an AR(1)

& =F&+wv

hence by iterating forecast is easy to compute:

E[€in] = F'é



Many models fit in the state-space representation
Examples

AR(1)

& = pir + €

Vi=pYrat+e —
Vi =&

AR(2)

Vi=p1 Yt Yiote —

it [P P2 1t €t
()0 9)(E) )



An MA(1) example

Vi =€+ 064 —
51,t . 00 51,t—1 €t
(@) -( o) )

i=00(g)



A VAR(p) in state-space form

Vi = P+ QY+ &
nxn

nx1 nxn nx1

Vi O D, .. Dy Dp| Vi
Yea | I 0 ... O 0 (Vi
Vi pi o 0 ... | O [Vip
& F &1

Q 0

00

o
AN

(@)

QO -

Vi



More examples
A coincident indicator index by Stock and Watson, 2002 JASA

m Let ¢; be a common, unobserved state variable common for
Vi = Vit ..., Ynr) macro variables

m let m; = (M, ..., my;) denote corresponding latent stated for each
macro variable

Assume:

YVe=7C+m;

Ct = ¢cCr1 + Vet
my = ®uMi_q + Vit



A coincident indicator index

Continued

Ct
ma ¢

M ¢
&

Yt

Yt ]
Vi

Exercise: reproduce MA(1) results in Hamilton (1994): 382-384
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Checking covariance-stationarity

AR(1) form of S-S representation makes this easy to check
Erih = Verh + FVernot 4 oo+ 17 e + P&
Covariance-stationarity means: F7 — 0 as h — oo

In practice: if \; forj =1,...,np are the eigenvalues of F
then check if |\j] <1



STATA Example: potential output
sspace_gdp_trend.do

One possible model (there are others):

Vi = Vi + Gi potential output

state equations : .
gt = gt + Vgt growth rate of potential

observation equation: y; = y; + w;

Note: w; is a measure of the output gap



THE KALMAN FILTER



Intuition

Projecting the multivariate Gaussian
Multivariate Gaussian

G~ () (2 S

Projecting x;, onto x;:

X\ N M2\ . Y Yagp
X2 o)’ Yo o
where

Mo = o + 23221_11()(1 —w); Zop =X — 22121_11212 < Xp
\,—/ _,”—/

like OLS “+



Kalman filter recursions
Notation

Wy = Erq(wy) Wi = Yy; &
Wit = E(wy)

P = E[(& — &ye—1) (& — Ete—1)'] MSE(&yt-1)
Poe = E[(& — &) (& — &ut)'] MSE(&qr)
tht—1 = E[(Vt - yt|t—1)(yt - yt|t—1)/] MSE(yt|t—1)



Kalman filter recursions

Set-up
Recall:
£t1 =F& 1 +Vve E(viv))=Q
rx
Y = H& +we  E(wew;) =R
nx1
hence

&e—1 = F&epe—
Pttt = FPr_qeF + Q

Vi1 = H£t|t—1
Gijt—1 = HPye—1H' + R

so far, no surprises



Kalman filter recursions
Projection
Use Gaussian projection:

(@) ~l&): (o )l
& Ee—1) Pe—aH' Py

we get:

& =&y + Pt|tf1H/Gt_‘t1_1(yt — Y1) + Vi
from where:
&t = &re1 + Pt\t—1H/Gt_‘t1_1(yt - yt\t—T)

rule: when conditioning, smallest information set wins



The Kalman filter recursions
Equation (1) is the updating equation:
Ene = Ere— + Pt\t—1H/Gt_‘t1_1(yt — Y1)
with conditional variance:

Pyt = Pyt—1 — Pye— 1H'G] HPye—

tt—1

Remarks
W Y, =Y, sincey, is observed — Gy =0
m fort =0 “guess” &, Py to generate Y10+ Gijo
m for t =1 use updating eq for &y, Py and then &, Paps Vo Gapn

m keep iterating to get {&y:}_s, {&i



The Kalman filter recursions

Recap
from state-equation:

Ett—1 = F&—jt—1
Ptjt—1 = FPr_qt—1F + Q

from observation equation:

Yiji—1 = HEjr—1
Gijt—1 = HPy—1H' + R
at time t we get y,. Hence the update is:

Er = &ye1 + Pt|t—1H/Gt_‘t1_1(yt - yt\t—1)

Pyt = Pye—1 — Pt|tf1H/GJt1,1HPt|tf1



The Kalman filter recursions

Key insight
recall:
&t = Ete + Pt\t—1H/G;‘t1_1(Yt - yt|t—1)
Vit = H&jr
hence:

Eeone = eyt = F{£t|t—1 + Pt H'Gflgq v — yt|t—1)}
&y = F&ee— + FPt\HH/Gt_“ 1 (Ve — Hji—1)
—— —_————

AR(1) Kq forecast error

&1t = F&ee—r + Ke(Vy — HEtje—1)



The Kalman recursions
Initialization
Suppose you knew F, H, Q + stationarity, then:

& =F& 1+ vi — E(&) =FE)
~ =~ =~
E(€) E(¢) E(vt)=0

= (I = F)EE&) =0 —E() =0

Similarly:
E(§ &) = E[(F§ir + Vi) (F&er + W) =
——
e
= FE(&_+&, ;) F + E(ve v;) + cross products
— ¥ = %
: =

Se = FSeF + Q = vec(Se) = [| — (F® F)]"'vec(Q)



Recap so far

m Kalman filter uses Gaussian projection to break complex models into
simpler recursive problems.

m Generalizations have been done along many dimensions:

m time-varying parameters
m non-Gaussian likelihood problems
m nonlinear problems

m Next we will see how to construct likelihood
m Bayesian approach lends itself nicely: e.g., specify a prior for é1|o, I51|0



FORECASTING



Forecasting h-periods ahead
by recursive substitution on AR(1) for &

En = Fe + Fh_1Vt+1 + Fh_ZVt+2 + .o+ FVipo 4 Vi
hence:

Et(€t+h) = €t+h\t = Fh§t|t
with forecast error:

Etrn — Etyhe = F'(& — Eut) + F'"" Wit 4 .+ Vign
and MSE:

Penie = F"Pye(F)" + FFTQ(F)"™" + ...+ FQF + Q



Forecasting h-periods ahead
Continued

bring state-variable forecast into observation equation:

Vien = HEtpn + Wepp
Vgt = HEtn)e

forecast error:
Yioh = Yeene = H(&ern — &tvnpe) + Wegn
MSE:

Gernt = HPeineH + R



Missing observations
Suppose y. is missing from {y,}/_,

Kalman filter offers a natural solution:
replace y, with H&s_

recall the Kalman recursion:

&1t = F&uje—1 + Ke(y, — HEtje—1)

update the state at time s by simply setting:
&sis = €551 and Pgs = Psjs_1 and hence:

554—1\5 = ng\s—1 + Kt(Hfs\s—1 - Hgs\s—1) = F€s|s—1



MAXIMUM LIKELIHOOD ESTIMATION



Recall the MA(1) likelihood estimator

suppose the DGP is:
Vi =+ € + O€r_q; e ~ N(0,0?)

if e_1 were known, easy to set-up Vi|er1 ~ N(u + i1, 0%)
supose you knew eqg = 0, then ¢ = y; — u and

! —(y2 — t — 0er)?
fy2|y1750:0<y2|y17€0 - O, 0) = \/—26Xp |: 2 202 1

210

hence you could work your way throught=2,...,T:

= —p) =0V —p) — ...+ (=)0 — ) + (=)0



MA(1) MLE estimator

Remarks

m this delivers the conditional MLE (conditional on ¢y = 0). Depends on
invertibility

m maximization of the likelihood requires numerical techniques (notice
6 is raised to powers of t as we specify the likelihood for each
observation in the sample

m exact likelihood can be constructed two ways: (1) take ¢; as one more
parameter to estimate; (2) write down exact joint likelihood



EM algorithm—an MA(1) example

suppose instead you had a “guess” {2}, ...
then life is simple: estimate by OLS

Ve = u+906t1+q — et—yt 60€t1

rinse, and repeat until usual stopping rules for non-linear optimization:
{6~ 0 or .

IL(130) LB |
o |, ~ 0; —op ngO,or...

|L(50) — L(7:077)| = 0



MLE with the Kalman filter

The recursions

obs. eqn. Yt :H5t|t_1 /
Gt—1 = HPyt—sH' + R

&1 = F&qje—

state eqn. /
Pye—1 = FPqeF +Q

updating equations:

Ene = Ere— + Pt|t—1H/Gt_‘t1_1(yt - yt\t—1)

Pyt = Pye—1 — Pt|tf1H/GJt1,1HPt|tf1



Kalman filter MLE

Recursive formulation: like conditional MA(1) example
start with {y,}{_,, and initial guess for &, and Py

Yijr—1 ~ N(H&xt—1; Gr—)
fWelyeqs- ... 0) = (27T)_np|6t\t4|_1/2

1
eXp{_i(yt - Hgtlt—1)thTt1—1(Yt - Hgtlt—1)}

the log-likelihood hence becomes:

£< ) logfy17 +Zlogfyt|yt 17"'70)

T

Tn 1 _
L£(0) = -5 log(2m) — = Zlog |Gyje—] — 3 Z(y[ - H&\tq)/Gt\tL(Yt — Hétje—1)
=1 =1



EM approach

Similar to MA(1) example

ingredients:
m {y,}/_, sample of observed data
m {£°}, an initial guess for &
estimate by OLS:

5? = F€?4 + Ve — /:_O§ {‘7?};1 —Q°
Vi, = HEY +we — H° (i}, — R

with 2, Q°, H°, and R® and Kalman recursions generate {£]}
rinse and repeat until convergence
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Identification

For some models, different combinations of F, Q, H, R generate identical
likelihood values. How can you tell?

m likelihood is flat at the max — poor convergence

m poorly identified parameters — near singular 2nd derivatives (similar
to colinearity) — large S.E.s

Solution: no systematic ex-ante check available

use good judgement: more flexibility — lack of identification



Asymptotic properties of MLE

Typical conditions for identification:
m eigenvalues of Finside unit circle
m 6, not on the boundary of ©
then:

VT )% (6 — 65) = N(0,1)

T

1 Z O log f(Y,|Vi_1,---;0) ‘
0=0,

Topr = ——F
2,7 T 0000’

t=1

I{DJ by evaluating at @ = 6: since Izb,r RS Lo



QMLE results

So far assumed y, and &; are jointly Gaussian
What if they are not? White (1982), Watson (1989):

V(0= 0) 5 N (0, (Toor 753 o))

alogf(yt|yt—1a cen »é)

.
~ 1 A A\ / )
Lop = 7 > si(6)si(6);  si(6) = 00

t=1

i.e. usual “sandwich” estimator of the covariance matrix



KALMAN FILTER OUTPUT



Steady-state Kalman filter

Propositions 13.1 + 13.2. Assume:
m Fisrxrand eigenvalues inside unit circle
m Hisarbitraryn x r
m Q and R positive (semidefinite) symmetric
m vec(Pyo) = [l — F® F]"'vec(Q)
then:
W P < Pye—qand Pegqe — Pas T — oo
m if either Q, R or both positive definite, then P unique
m the Kalman gain is such that Ky — Kas T — oo
m eigenvalues of (F — KH) inside unit circle (if P unique)

how is this useful..?



VAR(co) representation

From before, as T — oo:

Eraie = F&ye + Ky — HEe—1) = F L&eyye + K(Vy — H L&t rape)
&1t = [Ir — (F = KH) L]~'Ky,
note: E(Y,4lVs, --.) = H&we = H{Ir — (F — KH) L]~ 'Ky, define:
€rr1 =Yoo — EWenlVe, - )

VAR(co) representation is easily seen to be:

Vi1 = Hllr = (F = KH) L] 'Ky, + €
Veor = H(F — KH)KY, + H(F— KHYKY, o+ -+ v
E(eryr €t4) = HPH +R



Wold representation: MA(co)

Wold thm: every C-S process has MA(oo) representation

invert VAR(co) since (F - KH) invertible:

_ -1
Veer = {ln—Hll; = (F= KH)L]'KL} " €14
can show (see Hamliton p. 393) that:
Vier = {ln+HI = FL 7KL} €t
Viy1 = €41 — HKer — HFKer— — HFKer—p — . ..

useful to find impulse responses for models



Smoothed inference
when &, is itself of interest

e.g. & is natural rate of interest
idea: use the entire sample for best estimate &r

Run KF — {Pyit_y; {Priitior; {&ueks {&qertiy
Work backwards from &rr as follows:

&1 = Eye +Je(Eer — Eepe)

o= PuFPy,

Pyr = Pyt + Je(Peyqr — Pepip)lt

fort=T-1,T—2,...
see Hamilton p. 394



Confidence intervals for &7

Let ft‘r(ér) denote the best estimate from:

MLE estimates of 6r using state-space
using backwards filter to obtain gm(éT)
Note (Hamilton, 1986):

E[(& — &qr(07)) (& — &47(67))] =
E[(& — &7(00)) (& — &ur(60))'] +

'

filter uncertainty

E[(&r(6o) — &ur(67) (&7(00) — &yr(67)]

v~

parameter uncertainty

in practice use Monte Carlo draws or Bayesian MCMC methods



r* in the HLW model

The model
Vo = ViVt output gap
Vi = Yiat gt potential output
gt = Gi—1t+egt growth of potential
Vi = Vi1 +a3Vio —y(ror— i) +e IS curve
T = agpmq+(1— aﬂ)% + KYi—1+ €x¢  Phillips curve
o= 4gi+2z; r-star equation
Zt = Zt 1t é€ unobserved factors

observations: y, = (v, rt, m)’
states: & = (Vf, Vi, O, 7, Zt)'
errors: Vi = (€, €qt, €21)"s Wy = (e, €)' serially and mutually uncorrelated

parameters: o}, a3, v, o,  and o}, 04, ofs, 0%, 02



Confidence intervals for &;r in HLW model
Estimates of r*
Figure 1: U.S. natural rate of the HLW model: median estimates and 90% bands

-4 1 | 1 1 1 1 I I | | 1
1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Notes: quarterly data, 1961Q2-2016Q3. Estimated r* joint with 90% confidence bands. Bands reflect both filter and
parameter uncertainty. Bands are computed using the Hamilton’s (1986) approach with 2000 Montecarlo replications of

the parameter vector.



Filter vs. parameter confidence intervals for r* in HLW model

Figure 2: Filter and parameter uncertainty in the HLW model

10 10r
8F 8l
6 6l
4 4
2t ot
0 0
2+ 2+
' 1970 1980 1990 2000 2010 ' jo70 1980 1990 2000 2010
(a) Parameter uncertainty (b) Filter uncertainty

Notes: quarterly data, 1961Q2-2016Q3. r* joint with 90% confidence bands. Bands in the left-hand side chart reflect

parameter uncertainty; bands in the right-hand side reflect filter uncertainty.



STATA example: simplified HLW

HLW_example.do

Yt
Vi
gt
Yt
Tt
It

rt
Zt

Vi— Vi

Vit g +e;

Jt—1 + €g,t

0.75Vi—1 — y(rer — ri_y) + €
0.957m_1 + (1 — 0.95)7} + KYt_1 + €xt
rf+ 7+ 0751+ €

gt + 2t

Zt—1+ €t

output gap
potential output
growth of potential
IS curve

Phillips curve
nominal interest rate
r-star equation
unobserved factors



Fama and Gibbons 1982

Definitions:
m i 3-m T-Bill for month 3 of quarter t as annual rate
m 7 inflation between month 3 of quarter t and t + 1, as 400 log CPI
m y; = Iy — m, ex-post real rate

State-space:

Vi=p+ &+ Wy
& =&+ v

ex-ante real rate: I7 =iy — 7f = i + &7
m estimate 1}
m compare estimates with HLW - why the difference?
m compute error bands for 7



Observability
Given the state-space:

& = F &+ vi; E(vivy) =Q

rx1 IXT rxq rx1
Vi =H &+ w;  E(wew)) =R
nx1 NXrrx1 nx1

observability: when can we learn about the dynamics of the states from
the observables and disturbances?

H
HF

B= | HF observability requires:rank(B) = r = dim(&,)

e

if rank(B) < r then states not well identified
(wide confidence bands for states)



Observability
An application to HLW
Examine the observability of HLW when:
IS curve is flat (i.e. v = 0)
Phillips curve is flat (i.e. kK = 0)

note:
[1— a%y T+ 4y 'y_
—K 0 0
B_ -y 2+4y—0a, v
—K —K 0
11—y 3+4v—20y v
| —K —2K 0]

check rank(B) =3



