Impulse Response Heterogeneity Òscar Jordà and Karel Mertens

AEA Continuing education 2023

Last updated: December 22, 2022

See also: https://sites.google.com/site/oscarjorda/home/local-projections

The views expressed herein do not necessarily represent the views of any of the institutions in the Federal Reserve System.

WARMUP OBSERVATIONS

Where do the response dynamics come from?

suppose:

$$\begin{cases} \Delta y_t &= \beta \Delta s_t + \rho \Delta y_{t-1} + u_t^y \\ \Delta s_t &= \theta \Delta s_{t-1} + u_t^s \end{cases}; \ \boldsymbol{u}_t \sim D(\boldsymbol{0}, I) \end{cases}$$

easy to see that:

$$\mathcal{R}_{ys}(h) = \underbrace{\beta \theta^{h} + \beta \theta^{h-1} + \ldots + \beta \theta \rho^{h-1}}_{\text{due to policy persistence}} + \underbrace{\beta \rho^{h}}_{\mathcal{R}_{ys}^{*}(h)}$$
$$\mathcal{R}_{ss}(h) = \theta^{h}$$

setting $\theta = 0$:

 $\mathcal{R}^*_{ys}(h)=eta
ho^h$ internal propagation

Actual response versus response conditional on future treatments Simulated data from counterfactual.do

 \mathcal{R}_{ys} : dashed blue line; \mathcal{R}_{ss} : purple. Lighter colors are \mathcal{R}_{ys}^* and \mathcal{R}_{ss}^*

Back to the example

Suppose that instead of $\mathcal{R}_{ss}(h) = \theta^h$, you feed counterfactual $\mathcal{R}_{ss}^c(h)$ Can show that:

$$\begin{aligned} \mathcal{R}_{ys}^{c}(0) &= \mathcal{R}_{ys}^{*}(0)\mathcal{R}_{ss}^{c}(0) \\ \mathcal{R}_{ys}^{c}(1) &= \mathcal{R}_{ys}^{*}(0)\mathcal{R}_{ss}^{c}(1) + \mathcal{R}_{ys}^{*}(1)\mathcal{R}_{ss}^{c}(0) \\ \mathcal{R}_{ys}^{c}(2) &= \mathcal{R}_{ys}^{*}(0)\mathcal{R}_{ss}^{c}(2) + \mathcal{R}_{ys}^{*}(1)\mathcal{R}_{ss}^{c}(1) + \mathcal{R}_{ys}^{*}(2)\mathcal{R}_{ss}^{c}(0) \\ \mathcal{R}_{ys}^{c}(3) &= \mathcal{R}_{ys}^{*}(0)\mathcal{R}_{ss}^{c}(3) + \mathcal{R}_{ys}^{*}(1)\mathcal{R}_{ss}^{c}(2) + \mathcal{R}_{ys}^{*}(2)\mathcal{R}_{ss}^{c}(1) + \mathcal{R}_{ys}^{*}(3)\mathcal{R}_{ss}^{c}(0) \\ &\vdots &= \vdots \end{aligned}$$

Example: couterfactual.do

Illustration: recovering the original response Using original treatment path

 \mathcal{R}_{ys} : solid blue line; $\mathcal{R}_{ys}^* \mathcal{R}_{ss}$: dashed line

Counterfactuals in practice

Estimate usual LP but control for future treatments:

$$y_{t+h} - y_{t-1} = a_h + b_h \Delta s_t + \sum_{\substack{j=1 \ new}}^h c_{jh} \Delta s_{t+j} + d_h \Delta y_{t-1} + e_h \Delta s_{t-1} + v_{t+h}$$

Then b_h is an estimate of $\mathcal{R}^*_{ys}(h)$ $\mathcal{R}^c_{ss}(h)$ is supplied by user given particular counterfactual

Counterfactual response versus original response Simulated data from counterfactual.do

 \mathcal{R}_{ys} : solid blue line; $\mathcal{R}_{ys}^{c} = \mathcal{R}_{ss} + 0.25$: dashed blue

Are these operations valid?

Mechanically: yes; causally: ?

- Conditioning on future treatments: are they randomly assigned?
- **Counterfactual treatment path:** how different from *R*_{ss}(*h*)? Note:

$$\left(\mathcal{R}_{ss}^{*}-\hat{\mathcal{R}}_{ss}\right)'\Sigma_{ss}^{-1}\left(\mathcal{R}_{ss}^{*}-\hat{\mathcal{R}}_{ss}\right)\rightarrow\chi_{H}^{2}$$

Worth reading: Viviano, Davide and Jelena Bradic. 2021.
 Dynamic covariate balancing: estimating treatment effects over time.

IMPULSE RESPONSE HETEROGENEITY: KITAGAWA-OAXACA-BLINDER DECOMPOSITIONS Cloyne, Jordà, and Taylor (2020). Decomposing the fiscal multiplier Back to index

Potential outcomes: A static setup first Borrowing from applied micro

Think of observed y as coming from a latent mixture:

$$y = (1 - s) y_0 + s y_1 = y_0 + s (y_1 - y_0); \quad s = 0, 1$$

Assumption:

 $y_i \sim f(\mu_j; \sigma_j); \quad j = 0, 1$ unobservable random variables

we would like: $E(y_1 - y_0)$ average treatment effect

Assume linear model for latent variables: y_j ; j = 0, 1let $y_j = \mu_j + v_j$, $E(v_j) = 0, j = 0, 1$. v_j captures heterogeneity

let
$$v_j = (\mathbf{x} - \boldsymbol{\mu}_x) \, \boldsymbol{\gamma}_j + \epsilon_j$$
 with $E(\epsilon_j) = 0$ and $E(\epsilon_j | \mathbf{x}) = 0$

then:

$$\underbrace{E_{x}[E(y_{1}|s=1;x) - E(y_{0}|s=0;x)]}_{ATE} = [\mu_{1} + E_{x}[E(x-\mu_{x}|s=1)] \gamma_{1}] - [\mu_{0} + E_{x}[E(x-\mu_{x}|s=0)] \gamma_{0}]$$

add/subtract counterfactual: $E_x[E(\mathbf{x} - \boldsymbol{\mu}_x | s = 1)] \boldsymbol{\gamma}_0$

$$ATE = (\mu_1 - \mu_0) + E_x[E(\mathbf{x} - \boldsymbol{\mu}_x | \mathbf{s} = 1)] (\boldsymbol{\gamma}_1 - \boldsymbol{\gamma}_0) + \\ E_x[E(\mathbf{x} - \boldsymbol{\mu}_x | \mathbf{s} = 1) - E(\mathbf{x} - \boldsymbol{\mu}_x | \mathbf{s} = 0)] \boldsymbol{\gamma}_0$$

Kitagawa-Oaxaca-Blinder decomposition components

recall:

$$ATE = \underbrace{(\mu_{1} - \mu_{0})}_{direct} + \underbrace{E_{x}[E(\mathbf{x} - \boldsymbol{\mu}_{x}|s=1)](\boldsymbol{\gamma}_{1} - \boldsymbol{\gamma}_{0})}_{indirect} + \underbrace{E_{x}[E(\mathbf{x} - \boldsymbol{\mu}_{x}|s=1) - E(\mathbf{x} - \boldsymbol{\mu}_{x}|s=0)] \boldsymbol{\gamma}_{0}}_{composition}$$

direct: ATE under random assignment

indirect: treatment spillovers on covariates

composition: failure of random assignment? small sample bias

interesting null hypotheses

linear case, still working through applied micro motivation

$$y_i = \mu_0 + (\mathbf{x}_i - \overline{\mathbf{x}}_0) \, \boldsymbol{\gamma}_0 + s_i \left[\beta + (\mathbf{x}_i - \overline{\mathbf{x}}_1) \, \boldsymbol{\theta}\right] + \omega_i$$

note:
$$\beta = \mu_1 - \mu_0$$
; $\theta = \gamma_1 - \gamma_0$; and $\omega_i = \epsilon_{0,i} + s_i (\epsilon_{1,i} - \epsilon_{0,i})$

hence:

- $H_0: \beta = 0$ null of no *direct* treatment effect
- $H_0: \boldsymbol{\theta} = 0$ null of no *indirect* effect

•
$$H_0: E(\mathbf{x}|s=1) - E(\mathbf{x}|s=0) = 0$$
 null of no *composition* effect

• $H_0: \gamma_0 = 0$ null of random assignment (hence no composition effect possible)

What does this mean for local projections?

let $\mathbf{y}_t = (y_t, y_{t+1}, \dots, y_{t+H})$ and \mathbf{y} denote the associated r.v.

assume conditional mean independence let $E(\mathbf{y}_s) = \mu_s$ for $s \in \{0, 1\}$, wlog $\mathbf{y}_s = \boldsymbol{\mu}_s + \mathbf{v}_s$ under linearity $\mathbf{v}_s = (\mathbf{x} - \boldsymbol{\mu}_x) \mathbf{B}_s + \boldsymbol{\epsilon}_s$, then:

$$E(\mathbf{y}_{s}|\mathbf{x}) = \boldsymbol{\mu}_{s}; \quad E(\mathbf{v}_{s}) = 0; \quad E(\boldsymbol{\epsilon}_{s}|\mathbf{x}) = 0; \quad s \in \{0, 1\}$$

note: Angrist et al. (2017) assume stronger conditional ignorability

hence:

$$y_{t+h} = \underbrace{\mu_0^h + (\mathbf{x}_t - \overline{\mathbf{x}}) \gamma_0^h + s_t \beta^h}_{\text{usual local projection}} + \underbrace{s_t (\mathbf{x}_t - \overline{\mathbf{x}}) \theta^h}_{\text{Kitagawa term}} + \omega_{t+h};$$

$$h = 0, 1, \dots, H; t = h, \dots, T.$$

Kitagawa decomposition components

recall:

$$y_{t+h} = \underbrace{\mu_0^h + (\mathbf{x}_t - \overline{\mathbf{x}}) \gamma_0^h + s_t \beta^h}_{\text{usual local projection}} + \underbrace{s_t (\mathbf{x}_t - \overline{\mathbf{x}}) \boldsymbol{\theta}^h}_{\text{Kitagawa terms}} + \omega_{t+h};$$

$$h = 0, 1, \dots, H; t = h, \dots, T.$$

direct effect:
$$\hat{\mu}_1^h - \hat{\mu}_0^h = \hat{\beta}^h$$
indirect effect: $(\bar{\mathbf{x}}_1 - \bar{\mathbf{x}})(\hat{\gamma}_1^h - \hat{\gamma}_0^h) = (\bar{\mathbf{x}}_1 - \bar{\mathbf{x}})\hat{\theta}^h$ composition effect: $(\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_0)\hat{\gamma}_0^h$

ergodicity: needed to ensure $\overline{x}
ightarrow \mu_{\scriptscriptstyle X}$

Implications: state-dependence

note: suppose $x = x^*$ then total response is:

$$E(\mathbf{y}_1 | \mathbf{x}^*, \mathbf{s} = \delta) - E(\mathbf{y}_0 | \mathbf{x}^*, \mathbf{s} = 0)$$

= $\delta \mu_1 + \delta [\mathbf{x}^* - E(\mathbf{x})] \boldsymbol{\gamma}_1 - \{\mu_0 + [\mathbf{x}^* - E(\mathbf{x})] \boldsymbol{\gamma}_0\}$
= $\delta \beta + \delta [\mathbf{x}^* - E(\mathbf{x})] \boldsymbol{\theta},$

remarks:

- dependence on **x*** is only partial equilibrium
- need identification (instruments) for x
- usual single variable stratification omits other terms in $x \rightarrow bias$

Example from a previous experiment: two episodes

how effective was monetary policy in ...

- 1 November 1987 (post-stock market crash)
 - stocks 23% lower by end of October
 - Fed lowered funds rate 50bps
- **2** February 1996 (middle of a long expansion)
 - middle of stable funds rate

idea: two different scenarios, but similar policy paths \rightarrow differences not due to different policy

funds rate path nearly identical and to baseline baseline is average over the sample

policy unable to boost activity post-1987crash policy as usual February 1996

Industrial production

Example: GDP response to fiscal policy varies with monetary stance Cloyne, Jordà, and Taylor 2023

Variation in the multiplier by horizon and stance

Time varying estimates of the multiplier

STATA example: Usual LPIV

kob_example.do

Response of real GDP to 1pp fiscal consolidation

90% error bands

STATA example: Choosing two dates kob_example.do

Response of real GDP to 1pp fiscal consolidation

STATA example: Monetary offset kob_example.do

Response of real GDP to 1pp fiscal consolidation

90% error bands

PANEL DATA APPLICATIONS

DIFFERENCES-IN-DIFFERENCES WITH LPS Dube, Girardi, Jordà and Taylor

D-i-D with multiple treated groups & treatment periods

 TWFE implementation of DiD (static or distributed lags) can be severely biased.

Estimate is an average with possibly negative weights. Bad!

- LP-DiD = local projections + clean controls (Cengiz et al 2019)
 - No negative weights. Good!
 - Simple reweighting to recover ATT

Background

Difference-in-Differences (DiD)

2x2 Setting

Staggered Setting

(Visual examples from Goodman-Bacon, 2021)

The conventional (until recently) DiD estimator: TWFE

let $P_t = 1$ for post, 0 for pre; $A_i = 1$ for treated, 0 for control.

Static TWFE

$$y_{it} = \alpha_i + \delta_t + \beta^{TWFE} D_{it} + \epsilon_{it}; \quad D_{it} = P_t \times A_i$$

Event-study (distributed lags) TWFE

$$y_{it} = \alpha_i + \delta_t + \sum_{m=-Q}^{M} \beta_m^{TWFE} D_{it-m} + \epsilon_{it}$$

• OK in the 2x2 setting, or when treatment occurs at the same time.

Biased even under parallel trends with staggered treatment, if treatment effects are dynamic and heterogeneous.

The problems with TWFE in the staggered setting

- TWFE as weighted-average of 2x2 comparisons (Goodman-Bacon 2021)
 - 1 Newly treated vs Never treated;
 - 2 Newly treated vs Not-yet treated;
 - 3 Newly treated vs Earlier treated.

The problems with TWFE in the staggered setting

 TWFE as a weighted-average of cell-specific ATTs (de Chaisemartin & D'Haultfoeuille 2020)

$$E\left[\hat{\beta}^{TWFE}\right] = E\left[\sum_{(g,t):D_{gt}=1} \frac{N_{g,t}}{N_1} \mathbf{w}_{g,t} \Delta_{g,t}\right]$$

 \rightarrow Weights can be negative!

LP-DiD Estimator

No Covariates, Outcome Lags

$$y_{i,t+k} - y_{i,t-1} = \begin{array}{c} \beta^{k \ LP - DiD} \Delta D_{it} \\ + \delta_t^k \\ + e_{it}^k; \end{array}$$
 treatment indicator for $k = 0, \dots, K$.

restricting the sample to observations that are either:

treatment $\Delta D_{it} = 1$, clean control $\Delta D_{i,t+h} = 0$ for $h = -H, \dots, k$.

Key advantage of LP over distributed lags TWFE formulation of DiD: differencing is in outcomes, not treatments.

LP-DiD Estimator

restricting the sample to observations that are either:

treatment
$$\Delta D_{it} = 1$$
,clean control $\Delta D_{i,t+h} = 0$ for $h = -H, \dots, k$.

An equivalent specification to implement LP-DiD

Instead can use dummies to rule out unclean controls

$$\begin{aligned} y_{i,t+k} - y_{i,t-1} &= & \beta^{k \ LP - DiD} \Delta D_{it} \\ &+ \theta^{k} U C_{i,t} \\ &+ \sum_{p=1}^{P} \gamma_{0,p}^{k} (1 + \rho_{0,p}^{k} U C_{i,t}) \ \Delta y_{i,t-p} \\ &+ \sum_{m=1}^{M} \sum_{p=0}^{P} \gamma_{m,p}^{k} (1 + \rho_{m,p}^{k} U C_{i,t}) \Delta x_{m,i,t-p} \\ &+ \delta_{t}^{k} (1 + \phi_{t}^{k} U C_{i,t}) \\ &+ e_{it}^{k}; \end{aligned}$$

} treatment indicator
} UC indicator
} outcome lags × UC
} covariates × UC
} time effects × UC
for k = 0,...,K.

- *UC_{it}* =1 if previously treated.
- With absorbing treatment, $UC_{it} = \sum_{j=-H(j\neq 0)}^{k} \Delta D_{i,t+j}$

Simulation Evidence

■ N=500 units; T=50 time periods.

DGP: $Y_{0it} = \rho Y_{0,i,t-1} + \lambda_i + \gamma_t + \epsilon_{it}; \quad -1 < \rho < 1; \quad \lambda_i, \gamma_t, \epsilon_{it} \sim N(0, 25)$

Binary staggered treatment.

■ TE grows in time for 20 periods, and is stronger for early adopters.

- 1 Exogenous treatment
 - o Units randomly assigned to 10 groups of size N/10
 - o One group never treated; others treated at au = 11, 13, 15 . . . , 27.
- 2 Endogenous treatment
 - o Probability of treatment depends on past outcome dynamics.
 - o Negative shocks increase probability of treatment.
 - o Parallel trends holds only conditional on outcome lag.

Simulation Evidence

Average estimates and 95% and 5% percentiles from 200 replications.

Simulation Evidence

endogenous treatment scenario

Average estimates and 95% and 5% percentiles from 200 replications.

Banking Deregulation and the Labor Share

1970-1996: staggered introduction of (inter-state & intra-state) banking deregulation in US states.

-- % of States that deregulated intra-state branching

- Leblebicioglu & Weinberger (2020) use static & event-study TWFE to estimate effects on the labor share.
- Negative effect of *inter-state* banking deregulation (\approx -1p.p.).
- No effect of *intra-state* branching deregulation.

TWFE estimates

negative effect from inter-stateno effect from intra-state

• Inter-state Banking • Intra-state Branching

Forbidden comparisons in the TWFE specification

- TWFE uses 'forbidden' comparisons: earlier liberalizers are controls for later liberalizers.
- Use Goodman-Bacon (2021) decomposition to assess their influence.
- Contribution of unclean comparisons to TWFE estimates:
 - o 36% for inter-state banking deregulation;
 - o 70% for intra-state branching deregulation.

Effect of banking deregulation on the labor share LP-DiD estimates

(a) Inter-state banking deregulation

(b) Intra-state branching deregulation

- LP-DiD avoids unclean comparisons & allows controlling for y lags.
- Negative effect of inter-state branking deregulation is confirmed.
- But also intra-state branching deregulation has negative effect.