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Course Topics 
 

1. Time series refresher (MW)  
2. Heteroskedasticity and autocorrelation consistent/robust (HAC, HAR) 

standard errors (JS) 
3. Dynamic causal effects (JS) 
4. Weak instruments/weak identification in IV and GMM (JS) 
5. Dynamic factor models and prediction with large datasets  (MW) 
6. Low-frequency analysis of economic time series (MW) 
 
(Data + Examples in (2)-(6), but not today.) 
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Lecture Outline: Time series refresher 
 
  

26 concepts 
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Time Series Basics (and notation) 
 

(References: Hayashi (2000), Hamilton (1994), Brockwell and Davis 
(1991)… , lots of other books) 
 
1.  {Yt}:  a sequence of random variables 
 
2.  Stochastic Process: The probability law governing {Yt} 
 
3.  Realization: One draw from the process, {yt} 
 
 
4. Strict Stationarity: The process is strictly stationary if the probability 
distribution of  is identical to the probability distribution of 

 for all t, t, and k. (Thus, all joint distributions are time 
invariant.)  
 

  (Yt ,Yt+1,...,Yt+k )

  (Yτ ,Yτ+1,...,Yτ+k )
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5. Autocovariances:   
 
6. Autocorrelations:   
 
7. Covariance Stationarity: The process is covariance stationary if  µt = 
E(Yt) =µ and gt,k = gk for all t and k. 
 

  γ t ,k = cov(Yt ,Yt+k )

  ρt ,k = cor(Yt ,Yt+k )
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8. White noise: A process is called white noise if it is covariance 
stationary and µ = 0 and gk = 0 for k ≠ 0. 
 

9. Martingale: Yt follows a martingale process if E(Yt+1 | Ft) = Yt, where Ft 
 Ft+1 is the time t information set.  

 
10. Martingale Difference Process: Yt follows a martingale difference 
process if E(Yt+1 | Ft) = 0. {Yt} is called a martingale difference sequence 
or “mds.” 
 

⊆
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11. The Lag Operator: “L” lags the elements of a sequence by one period.  
Lyt = yt−1, L2 yt = yt−2,. If b denotes a constant, then bLYt = L(bYt) = bYt−1. 
 

 

12.  Linear filter (moving averages):  Let {cj} denote a sequence of 
constants and  
c(L) =  c−rL−r + c−r+1L−r+1 + … + c0 + c1L + … + csLs  

denote a polynomial in L. Note that Xt = c(L)Yt =  is a moving 
average of Yt. c(L) is sometimes called a linear filter (for reasons discussed 
below) and X is called a filtered version of Y. 
 

 
c jYt− jj=−r

s∑
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(notational simplification: E(Yt) = 0) 

 
13. AR(p) process: f(L)Yt = ht where f(L) = (1 − f1L − … − fpLp) and ht 
is unpredictable given lags of Y.  
 
 
Alternatively: Yt = f1Yt-1 + f2Yt-2 + … + fpYt-p + ht 
 
Jargon: ht is the 1-period ahead forecast error in Yt, where the forecasts are 
constructed using lagged values of Yt. In the AR model h is sometimes 
called an "innovation" or (from concept 18 below) a "Wold" error or a 
"fundamental" error.  
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14. MA(q) process: Yt = q(L)ht where q(L) = (1 − q1L − … − qqLq) and ht 
is white noise.  
 
Alternatively: Yt = ht - q1ht-1 - q2ht-2 - … - qqht-q 
 
Note: If ht can be recovered from current and past values of Yt, then the 
MA process is said to be 'invertible'. (Algebra shows that invertibility 
follows when the roots of the MA polynomial, q(z), are greater than 1 in 
absolute value.)  
 
When the process is invertible, ht is the 1-period ahead forecast error in Yt, 
where the forecasts are constructed using lagged values of Yt. In this case 
the h errors are 'fundamental' or 'Wold' errors like their AR counterparts. 
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15. ARMA(p,q): f(L)Yt = q(L)ht. 
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16. Minimum mean squared error prediction.  Suppose Y is a scalar and X 
is a vector. You observe X = x; what is a good guess of the value of Y?   
Let yprediction = g(x) denote the predicted value of Y, with prediction error e 
= Y - yprediction, and m.s.p.e. = E(e2).  
 
Result: the minimum m.s.p.e. predictor is E(Y | X = x). 
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17. Linear minimum mean square error prediction.   
 
      If (X, Y) are jointly normally distributed, E(Y | X) is linear. 
 
     E(Y | X) = a + b ¢X    with b =   and a = µY - b 'µX. 

 

with mspe = var(Y | X) = .   
 
This yields the best (minimum mspe) linear predictor of Y given X 
(even when Y and X are not normally distributed.)  This is sometimes 
written as the 'projection' if Y onto X (and a constant). 
 

Σ XX
−1 Σ XY

σ e
2    = ΣYY − ΣYXΣ XX

−1 Σ XY( )
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18. Wold decomposition theorem (e.g., Brockwell and Davis (1991)) 
Suppose Yt is generated by a “linearly indeterministic” covariance 
stationary process. Then Yt  can be represented as  

Yt = ht + c1ht−1 + c2ht−2 + … ,  

where ht  is white noise with variance , , and  

ht = Yt – Proj(Yt | Yt-1), where Yt-1 = (Yt-1, Yt-2, … )  

 

Notice that ht is a function of Yt and lags of Yt;  it is said to be 
“fundamental”. 

 

 σε
2

  i=1

∞∑ ci
2 < ∞
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19. Multiperiod prediction: Predict the value of Yt+h given (Yt, Yt-1, … ) 
(set E(Y) = 0 for notational convenience.) 

 

Best linear predictor:  = Proj(Yt+h|Yt) = bh(L)Yt    ('Direct forecast') 

(note: need to estimate bh(L) for all h of interest) 

Iterated formulae:   

       Proj(Yt+1| Yt) = b1(L)Yt 

       Proj(Yt+2|Yt+1,Yt) = b1(L)Yt+1 = b1,0Yt+1 + b1,1Yt + b1,2Yt-1 + … 

       Proj(Yt+2| Yt) = b1,0 Proj(Yt+1|Yt) + b1,1Yt + b1,2Yt-1 + … 

      Proj(Yt+3| Yt) = b1,0 Proj(Yt+2|Yt) + b1,1Proj(Yt+1|Yt) + b1,2Yt-1 + … 

      etc. 

 

     (note: only need to estimate b1(L), can be used for any h). 

Yt+h
Predictor
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20.  Vector processes: 

 

Univariate AR(1): Yt = fYt-1 + ht 

 

Vector AR(1) (VAR(1)): Yt = FYt-1 + ht       (Yt is n×1, F is n × n, ht is n × 1) 

 

VAR(p):  Yt = FYt-1 + F2Yt-2 + … + FpYt-p + ht 

 

or  (I - F1L - F2L2 - … FpLp)Yt = ht 

 

or F(L)Yt = ht 
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21. Invert AR to get MA 

AR(1): Yt = fYt-1 + ht  ⇒     

(1 - fL)Yt = ht ⇒ Yt = (1 - fL)-1ht 

f(L)Yt =ht ⇒ Yt = f(L)-1ht 

 

AR(p): f(L)Yt =ht ⇒ Yt = f(L)-1ht 

 

VAR(p): F(L)Yt =ht ⇒ Yt = F(L)-1ht 

 

or Yt = C(L)ht = ht - C1ht-1 - C2ht-2  - …           with C(L) = F(L)-1 

 

Jargon:   is called an "impulse response" 

Yt = φ
tη0 + φ iηt−i

i=0

t−1

∑ = φ iηt−i
i=0

∞

∑

∂Yi,t+h / ∂η j ,t = Ch,ij
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22. The autocovariance generating function for a covariance stationary 

process is given by , so the autocovariances are given by 

the coefficients on the argument zj.  

 

With Y represented as Yt = c(L)ht, the ACGF is g(z) = c(z)c(z-1)¢.  

Example: For the scalar MA(1) model Yt = (1 - c1L)ht 

g0 = (1 +  ), g-1 = g1 = - c1, and gk = 0 for |k| > 1. Thus  

 

 

  
γ (z) = γ j z

j
j=−∞

∞∑

ση
2

ση
2

  c1
2 ση

2

γ (z) = γ j z
j

j=−∞

∞∑
= γ −1z

−1 + γ 0z
0 + γ 1z

1

=ση
2 −c1z

−1 + (1+ c1
2 )− c1z( )

=ση
2(1− c1z)(1− c1z

−1)
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23. Spectral Representation Theorem (e.g, Brockwell and Davis (1991)):  Suppose 
Yt  is a scalar discrete time covariance stationary zero mean process, then 
there exists an orthogonal-increment process Z(w) such that  

 

(i) Var(Z(w)) = F(w)  

 

and  

(ii) Yt =  

 

where F is the spectral distribution function of the process. (The spectral 
density, S(w), is the density associated with F.) 

This is a useful decomposition, and we’ll spend some time discussing it. 

  
eitω dZ(ω )

−π

π

∫



AEA 2019 Continuing Education: Time Series Econometrics (1), page 19 

 

20

40

60

80

100

120

140

160

180

200

220

1960 1970 1980 1990 2000 2010

T
h

o
u

s
a

n
d

s
	o

f	
U

n
it
s

New	Private	Housing	Units	Authorized	by	Building	Permits

Shaded	areas	indicate	U.S.	recessions Source:	U.S.	Bureau	of	the	Census myf.red/g/muwf



AEA 2019 Continuing Education: Time Series Econometrics (1), page 20 

 

Some questions 
 

1. How important are the “seasonal” or “business cycle” components in 
Yt?  

 

2. Can we measure the variability at a particular frequency? Frequency 0 
(long-run) will be particularly important as that is what HAC/HAR 
Covariance matrices are all about. 

 

3. Can we isolate/eliminate the “seasonal” (“business-cycle”) component? 
(Ex-Post vs. Real Time). 
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  Spectral representation of a covariance stationary stochastic process 
 

Deterministic processes: 

(a)  Yt = cos(wt),  strictly periodic with period = ,  

      Y0 = 1 
      amplitude = 1. 
 

(b) Yt = a×cos(wt) + b×sin(wt) ,  strictly period with period = ,  

     Y0 = a 

     amplitude =  
 

 
2π
ω

 
2π
ω

  a2 + b2
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Stochastic process:  

Yt = a×cos(wt) + b×sin(wt) , a and b are random variables, 0-mean, 

mutually uncorrelated, with common variance s2. 

 

2nd - moments : 

E(Yt) = 0  

Var(Yt) = s2×{cos2(wt) + sin2(wt) } = s2 

 

 

  

Cov(Yt ,Yt−k ) =σ 2{cos(ωt)cos(ω (t − k))+ sin(ωt)sin(ω (t − k))}

=σ 2 cos(ωk)
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Stochastic process with more components:  

Yt = , {aj,bj} are uncorrelated 0-mean random 

variables, with Var(aj) = Var(bj) =  

2nd - moments : 

E(Yt) = 0  

Var(Yt) =             (Decomposition of variance) 

Cov(YtYt−k) =       (Decomposition of auto-covariances) 

 

  
{aj cos(ω jt)+ bj sin(ω jt)}

j=1

n

∑

  σ j
2

  
σ j

2

j=1

n

∑

  
σ j

2 cos(ω jk)
j=1

n

∑
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Stochastic Process with even more components: 
 

                   
 
da(w) and db(w):  random variables, 0-mean, mutually uncorrelated, 
uncorrelated across frequency, with common variance that depends on 
frequency.  This variance function, say S(w),  is called the spectrum. 

  
Yt = cos(ωt)da(ω )

0

π

∫ + sin(ωt)db(ω )
0

π

∫
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.. Digression: A convenient change of notation: 
 

Yt = a×cos(wt) + b×sin(wt)  

           

 

where i =  and eiw = cos(w) + i×sin(w), Z =  and  is the 

complex conjugate of Z. 

  

= 1
2

eiω (a − ib)+ 1
2

e− iω (a + ib)

= eiωZ + e− iωZ

 −1
  
1
2

(a − ib)  Z
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Similarly  

 

     

where dZ(w) = (da(w) − idb(w)) for w ≥ 0 and  for w > 

0. 
Because da and db have mean zero, so does dZ. Denote the variance of 
dZ(w) as Var(dZ(w)) = E(dZ(w) )=S(w)dw, and using the 
assumption that da and db are uncorrelated across frequency E(dZ(w)

)=0 for w ≠ w′. 

  
Yt = cos(ωt)da(ω )

0

π

∫ + sin(ωt)db(ω )
0

π

∫

  

= 1
2

eiωt (da(ω )− i db(ω ))
0

π

∫ + 1
2

e− iωt (da(ω )+ i db(ω ))
0

π

∫

= eiωt dZ(ω )
−π

π

∫

 
1
2   dZ(−ω ) = dZ(ω )

  dZ(ω )

  dZ(ω )'
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Second moments of Y: 

E(Yt) =  

gk = E(YtYt−k) =  

                                       

 

where the last equality follows from S(w) = S(-w).

 

Setting k = 0,  g0 = Var(Yt) =  

… End of Digression 

  
E eiωt dZ(ω )

−π

π

∫
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= eiωt E(dZ(ω ))

−π

π

∫ = 0

  
E(YtYt−k ) = E eiωt dZ(ω )

−π

π

∫ e− iω (t−k ) dZ(ω )
−π

π

∫
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

  

= eiωte− iω (t−k )E(dZ(ω )dZ(ω ))
−π

π

∫

= eiωk S(ω )dω
−π

π

∫ = 2 cos(ωk)S(ω )dω
0

π

∫

  
S(ω )dω

−π

π

∫



AEA 2019 Continuing Education: Time Series Econometrics (1), page 28 

 

Summarizing  

1. S(w)dw can be interpreted as the variance of the cyclical component of  
Y corresponding to the frequency w. The period of this component is 
period = 2p/w.  

 
 

2. S(w) ≥ 0 (it is a variance) 
 

 
3. S(w) = S(−w). Because of this symmetry, plots of the spectrum are 

presented for frequencies 0 ≤ w ≤ p. 
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Example: The Spectrum of Building Permits 
 

 
Most of the mass in the spectrum is concentrated around the seven peaks evident in the plot. (These peaks are 
sufficiently large that spectrum is plotted on a log scale.) The first peak occurs at frequency w = 0.07 
corresponding to a period of 90 months.  The other peaks occur at frequencies 2p/12, 4p/12, 6p/12, 8p/12, 
10p/12, and p.  These are peaks for the seasonal frequencies: the first corresponds to a period of 12 months, and 
the others are the seasonal “harmonics” 6, 4, 3, 2.4, 2 months. (These harmonics are necessary to reproduce an 
arbitrary − not necessary sinusoidal − seasonal pattern.)  

0
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4. gk =  can be inverted to yield 
 

 

 

5.  From (4):  
 

with z = e-iw. Thus, S(w) is easily computed from ACGF. 

  
eiωk S(ω )dω

−π

π

∫ = 2 cos(ωk)S(ω )dω
0

π

∫

  
S(ω ) = 1

2π
e− iωkγ k

k=−∞

∞

∑ = 1
2π

γ 0 + 2 γ k cos(ωk)
k=1

∞

∑⎧
⎨
⎩

⎫
⎬
⎭

S(ω ) = 1
2π

e− iωkγ k
k=−∞

∞

∑ = 1
2π

zkγ k
k=−∞

∞

∑ = (2π )−1γ (z)
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24. "Long-Run Variance” and sampling variability in the sample mean. 
 

 
The long-run variance is S(0), the variance of the 0-frequency (or ∞-period 
component).  
 

Since , then S(0) = .  

 
This plays an important role in statistical inference because (except for the 
factor 2p) it is the large-sample variance of the sample mean. 

 
 

  
S(ω ) = 1

2π
e− iωkγ k

k=−∞

∞

∑
  

1
2π

γ ke
− ik 0

k=−∞

∞

∑ = 1
2π

γ k
k=−∞

∞

∑
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Suppose Yt is stationary with autocovariances li. Then  

 

 

If the autocovariances satisfy    (jargon: they are “1-summable”) then  

   
 

 

var(T −1/2 Yt )
t=1

T

∑

= 1
T
{Tγ 0 + (T −1)(γ 1 + γ −1)+ (T − 2)(γ 2 + γ −2 )+ ...1(γ T−1 + γ 1−T )}

= γ j
j=−T+1

T−1

∑ − 1
T

j(γ j + γ − j )
j=1

T−1

∑

j |γ j |j=1
∞∑

var(T −1/2 Yt )
t=1

T

∑ → γ j
j=−∞

∞

∑ = 2πS(0)
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3 Estimators for  : 

 

(1)  

 

(2) if Yt = µ + c(L)ht then l(z) = s2c(z)c(z-1) and = g(1) = s2c(1)2 . 

 
with c(L) = q(L)/f(L) (Yt ~ ARMA), then   
 

 
 
(3) 'spectral estimators' based on low-frequency weighted averages of Y. 
(JS) 

γ j
j=−∞

∞

∑

γ̂ j
j=−k

k

∑

γ j
j=−∞

∞

∑

γ j
j=−∞

∞

∑ =σ 2 θ (1)2

φ(1)2
=σ 2 (1−θ1 − ...−θq )

2

(1−φ1 − ...−φ p )
2
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25. Recursive prediction, signal extraction and the Kalman filter. 
 
Linear Gaussian Model 

yt = Hst + et 

st = Fst–1 + ht 

           
 

Applications: 
• Unobserved component models (s is serially correlated part of y) 
• Factor Models (many y’s, few s’s) 
• TVP Regression models (H = Ht = xt, st = bt) 
• Extensions: (many) 

 

  

ε t

ηt

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

~ iidN 0
0

⎛

⎝⎜
⎞

⎠⎟
,

Σε 0

0 Ση

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
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Recall  that if   
 

,   

 
then (a|b) ~ N(µa|b, Sa|b) 
 
where µa|b = µa + Sab (b − µb) and Sa|b = Saa − Sab Sba. 

 
Interpreting  a and b appropriately yields the Kalman Filter  and Kalman 
Smoother. 

  

a
b

⎛

⎝⎜
⎞

⎠⎟
~ N

µa

µb

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

,
Σaa Σab

Σba Σbb

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

  Σbb
−1

  Σbb
−1
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Model: yt = Hst + et,  st = Fst–1 + ht,  

 
Let st/k = E(st | y1:k), Pt/k = Var(st | y1:k),  
µt/t–1 = E(yt |y1:t–1), St/t-1 = Var(yt|y1:t–1).  
 
Deriving Kalman Filter:  
Starting point: st−1 | y1:t–1 ~ N(st−1/t−1, Pt−1/t−1). Then  
 

  

 
interpreting st as “a” and yt as “b” yields the Kalman Filter. 

  

ε t

ηt

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

~ iidN 0
0

⎛

⎝⎜
⎞

⎠⎟
,

Σε 0

0 Ση

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

  

st

yt

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

| y1:t−1 ~ N
st /t−1

yt /t−1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

,
Pt /t−1 Pt /t−1H '

HPt /t−1 HPt /t−1H '+ Σε

⎛

⎝
⎜
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⎞

⎠
⎟
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
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Model: yt = Hst + et,  st = Fst–1 + ht,  and  

 

Details of KF : 
 (i) st/t–1 = Fst–1/t–1 

(ii) Pt/t–1 = FPt–1/t–1F´ + Sh,  

(iii) µt/t–1 = Hst/t–1,  

(iv) St/t–1 = HPt/t–1H´ + Se 

(v) Kt = Pt/t−1H′  

(vi) st/t = st/t−1 + Kt(yt − µt/t−1) 
(vii) Pt/t = (I – Kt)Pt/t−1.  

  

ε t

ηt

⎛

⎝
⎜
⎜

⎞

⎠
⎟
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~ iidN 0
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Σε 0
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The density of Y1:T is f(Y1:T) = f(YT|Y1:T-1)f(Y1:T-1) =   

 
so the log-likelihood is  
 

L(Y1:T) = constant  

 
The Kalman Smoother (for st|T and Pt|T) is derived in analogous fashion 
(see Anderson and Moore (2012 ), or Hamilton (1990).) 

f ( yt | y1:t−1)
t=2

T

∏ f ( y1)

  
−0.5 ln |Σt|t−1 |+( yt − µt|t−1) 'Σt|t−1

−1 ( yt − µt /t−1){ }
t=1

T

∑
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26. Recursive prediction, signal extraction, a more general formulation. 

 

Models and objects of interest 

General Model (Nonlinear, non-Gaussian state-space model) 

 

yt = H(st, et) 

st = F(st–1, ht) 

et and ht  ~ i.i.d. 

 

Jargon: This is sometimes called a "hidden Markov model" because st is 
"hidden" by the measurement error et. 
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Example 1: Linear Gaussian Model 

 

yt = Hst + et 

 

st = Fst–1 + ht 

 

           
 

 
 

 

 

  

ε t

ηt

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

~ iidN 0
0

⎛

⎝⎜
⎞

⎠⎟
,

Σε 0

0 Ση

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
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Example 2:  Hamilton Regime-Switching Model 

 

yt = µ(st) + s(st)et 

 

st = 0 or 1 with P(st = i | st–1 = j) = pij 

  

      (using st = F(st−1,ht) notation:  

 

          st = 1(ht ≤ p10 + (p11−p10)st−1), where h ~ U[0,1]) 
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Example 3:  Stochastic volatility model 

 

 

 

st = µ + f(st–1 – µ)  + ht 

   

with, say, et ~ iid(0,1) and   

the model for y is   

 

  

  

yt = e
stε t

 e
st =σ t

	    yt | st ∼ N (0,σt
2)
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Some things you might want to calculate 

 

Notation: y1:t = (y1, y2, … , yt),   s1:t =  (s1, s2, … , st),  

                f( . | . ) a generic density function. 

 

A. Prediction and Likelihood 

(i) f(st | y1:t-1) 

(ii) f(yt | y1:t-1) … Note f(y1:T) =  is  the likelihood  

 

B. Filtering: f(st | y1:t) 

 

C. Smoothing: f(st | y1:T). 

  

  
f ( yt | y1:t−1)

t=1

T

∏
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2. General Formulae  (Kitagawa (1987)) 

 

Model: yt = H(st, et),  st = F(st–1, ht), e and h  ~ iid  
 

A. Prediction  of st and yt given Yt−1. 

 

(i)           

  

 

 

  

f (st | y1:t−1) = f (st ,st−1 | y1:t−1)dst−1∫
= f (st | st−1, y1:t−1) f (st−1 | y1:t−1)dst−1∫
= f (st | st−1) f (st−1 | y1:t−1)dst−1∫
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(ii)             (“t” component of likelihood) 

 

 

  

  

f ( yt | y1;t−1) = f ( yt ,st | y1:t−1)dst∫
= f ( yt | st , y1:t−1) f (st | y1:t−1)dst∫
= f ( yt | st ) f (st | y1:t−1)dst∫
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B. Filtering 

 

       

 

 

  

f (st | y1:t ) = f (st | yt , y1:t−1)

=
f ( yt | st , y1:t−1) f (st | y1:t−1)

f ( yt | y1:t−1)

=
f ( yt | st ) f (st | y1:t−1)

f ( yt | y1:t−1)
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C. Smoothing 

 

  

  

f (st | y1:T ) = f (st ,st+1 | y1:T )dst+1∫

= f (st | st+1, y1:T ) f (st+1 | y1:T )dst+1∫

= f (st | st+1, y1:t ) f (st+1 | y1:T )dst+1∫

=
f (st+1 | st ) f (st | y1:t )

f (st+1 | y1:t )
⎡

⎣
⎢

⎤

⎦
⎥∫ f (st+1 | y1:T )dst+1

= f (st | y1:t ) f (st+1 | st )
f (st+1 | y1:T )
f (st+1 | y1:t )

dst+1∫
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Solving these integral equations depends on the structure of the problem. 

 

Easy: Linear and normal (Kalman filter) 

 

Pretty Easy:  Hamilton model 

 

yt = µ(st) + s(st)et 

  

st = 0 or 1 with P(st = i | st–1 = j) = pij 

 

(simple recursive formulae for likelihood and filter – exercise: 
work this out). 
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Harder: Stochastic volatility  

                         

st = µ + f(st–1 – µ)  + ht 

 

… 

 

Numerical methods are used to evaluate the required integrals: Importance 
sampling, MCMC and Particle Filtering.

yt = e
stε t
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References for Lecture 1 
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The Heteroskedasticity- and Autocorrelation Robust Inference (HAR) 

problem 

 

 

      Shoot, my error term is  

serially correlated! 
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The HAR problem 

 

 

 

     Guess I need to use Newey-West SEs. 
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The HAR problem 

 

 

 

     Guess I need to use Newey-West SEs. 

• what truncation parameter S should I use? 
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The HAR problem 

 

 

 

     Guess I need to use Newey-West SEs. 

• what truncation parameter S should I use? 

• what critical value? 
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The HAR problem 

 

 

 

     Guess I need to use Newey-West SEs. 

• what truncation parameter S should I use? 

• what critical value? 

• what about all those hard papers by 

Vogelsang, Müller, Sun, and others*? 

  

 

 

 

 

 
  

*Kiefer, Vogelsang, Bunzel (2000), Velasco and Robinson (2001), Kiefer and Vogelsang (2002, 

2005), Jansson (2004), Phillips (2005), Müller (2007, 2014), Sun, Phillips, & Jin (2008), Ibragimov 

and Müller (2010), Sun (2011, 2013, 2014a, 2014b), Gonçalves & Vogelsang (2011), Zhang and 

Shao (2013), Pötscher and Preinerstorfer (2016, 2017),… 
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The HAR problem 

 

 

 

     Guess I need to use Newey-West SEs. 

• what truncation parameter S should I use? 

• what critical value? 

• what about all those hard papers by 

Vogelsang, Müller, Sun, and others*? 

• nobody uses them anyway… 
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The HAR problem 

 

 

 

     Guess I need to use Newey-West SEs. 

• what truncation parameter S should I use? 

• what critical value? 

• what about all those hard papers by 

Vogelsang, Müller, Sun, and others*? 

• nobody uses them anyway… 

and the referees never complain… 
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The HAR problem 

 

 
 

Guess I’ll just use NW with ±1.96 and S = 
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The HAR problem 

 

 
 

Guess I’ll just use NW with ±1.96 and S = 
  

      4(T/100)2/9   or     0.75T1/3 
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The HAR problem 

 

 
 

Guess I’ll just use NW with ±1.96 and S = 
  

      4(T/100)2/9   or     0.75T1/3 

 

 
 

   

hmm… they give the same answer… 

must be OK… 
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20 years of research says: Bad idea. 

Rejection rates of HAR tests with nominal level 5% (b = S/T) 

 

yt = β0 + β1xt + ut, xt & ut Gaussian AR(1), ρx = ρu = 0.71/2, T = 200  

 
 

Estimator Truncation 

rule for b 

Critical values Null 

imposed? 

ρ = 0.3 ρ = 0.5 ρ = 0.7 

NW 0.75T-2/3 N(0,1) No 0.079 0.105 0.164 

       

NW 1.3T-1/2 fixed-b 

(nonstandard) 

No 0.067 0.080 0.107 

EWP 1.95T-2/3 fixed-b (tν) No 0.063 0.074 0.100 

       

NW 1.3T-1/2 fixed-b 

(nonstandard) 

Yes 0.057 0.062 0.073 

EWP 1.95T-2/3 fixed-b (tν) Yes 0.052 0.056 0.066 

       

Theoretical bound based on Edgeworth expansions for the Gaussian location model 

NW 1.3T-1/2 fixed-b 

(nonstandard) 

No 0.054 0.058 0.067 

EWP 1.95T-2/3 fixed-b (tν) No 0.052 0.056 0.073 
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Outline 
 

HAC = Heteroskedasticity- and Autocorrelation-Consistent 

HAR = Heteroskedasticity- and Autocorrelation-Robust 

 

1) The HAR Problem and the long-run variance matrix Ω 

2) PSD estimators of Ω 

3) From MSE to size and power 

4) Fixed-b critical values 

5) Size-power tradeoff  

6) Choice of kernel and bandwidth 

7) Monte Carlo results 

8) Summary 
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1) The HAR Problem 

 

The task: valid inference on β when Xt and ut are possibly serially correlated: 

 

Yt = Xtʹβ + ut, E(ut|Xt) = 0, t = 1,…, T  

 

Asymptotic distribution of OLS estimator: 

ˆ( )T    = 

1

1 1

1 1T T

t t t t

t t

X X X u
T T



 

   
   
   
    

 

Assume throughout that WLLN and CLT hold:  

1

1 T

t t

t

X X
T 

  
p

  ΣXX  and 
1

1 T

t t

t

X u
T 


d

  N(0, Ω),  

so   ˆ( )T    
d

   1 10, XX XXN     . 

 

ΣXX is easy to estimate, but what is Ω and how should it be estimated? 
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Some OLS situations in which HAR SEs are needed 

 

Distributed lag regressions:  Yt = α + β(L)Xt + ut   where  1| , ,... 0t t tE u X X    

 

Multiperiod asset returns:  ln(Pt+h/Pt)  = α +βXt + ( )h

t hu  , e.g. Xt = dividend yieldt 

 

Multiperiod-ahead forecasts:  yt+h = α +βXt + γ(L)Yt + ( )h

t hu   

 

Local projections:    yt+h = α +βXt + γ´Wt + ( )h

t hu  , Wt = control variables 

 

• In all these cases, ut and Xt are serially correlated and the regression 

exogeneity condition holds or is assumed to hold, i.e. 

 1| , ,... 0t t tE u X X    (weak exogeneity: past, or past and present) 

 

• GLS can’t be used in any of these settings because Xt is weakly exogeneous 

but not strictly exogenous, i.e. 

 1 1| ... , , ,... 0t t t tE u X X X      (past, present, and future)  
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Ω: The Long-Run Variance of Xtut 

 

Let Zt = Xtut. Note that EZt = 0 (because E(ut|Xt) = 0). Suppose Zt is second order 

stationary.  Then 

T  = 
1

1
var

T

t

t

Z
T 

 
 
 

  = 

2

1

1 T

t

t

E Z
T 

 
 
 

  

   =  
1 1

1 T T

t s

t s

E Z Z
T  

  

   = 
1 1

1 T T

t s

t sT


 

  (Zt is second order stationary) 

   =  
1

( 1)

1 T

t s

j T

T j
T





 

   (adding along the diagonals) 

   = 
1

( 1)

1
T

j

j T

j

T



 

 
  

 
  → j

j





  

so 

   Ω = j

j





  = 2πSZ(0)   (recall that SZ(ω) = 
1

2

i j

j

j

e 








 ) 
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Standard approach (Newey-West/Andrews): 3 elements 

 

1) Bartlett kernel (triangle weight function)  

Newey-West estimator: declining average of sample autocovariances 

 ˆ ˆ ,   where  ( ) 1 | |
S

NW

j

j S

j
k k u u

S

 
     

 
   (Bartlett kernel) 

where  ˆ
j  = 

1

1 ˆ ˆ
T

t t j

t

Z Z
T





  , where ˆ
tZ  = Xt ˆ

tu . 

 

2) Truncation parameter: Andrews (1991) minimum MSE 

• Andrews truncation parameter: S = ST = .75T1/3 (e.g. Stock and Watson, 

Introduction to Econometrics, 4th edition, equation (16.17)). 

• Expressed as a fraction of the sample size: b = S/T = 0.75T-2/3 

 

3) Critical values: Normal/chi-squared  

First order asymptotics imply that ˆ pNW  so that (0,1)dt N .  
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What’s new? A lot. 

 

1) Bartlett kernel, or maybe equal-weighted periodogram 

Equal-weighted periodogram is the simple average of the first B/2 

periodogram ordinates (details later) 

 

2) Truncation parameter: Balance size-power tradeoff for HAR test  

To reduce size distortions, use a larger truncation parameter: 

b = 1.3T1/2  (Proposed rule for NW kernel) 

 

3) Critical values: Fixed b  

• The larger bandwidth induces sampling variability in ̂  

• This sampling variability is resolved (to higher order asymptotically) by 

using fixed-b asymptotics (Kiefer-Vogelsang (2005)) – fixed b supposes 

that S increases proportionally to T, i.e. explicitly treats S as large. 

• For the EWP estimator, fixed-b critical values are tB (scalar case) 
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2) PSD Estimators of Ω 
 

Estimation of Ω = j

j





 is hard: the sum needs truncation. 

• Sum-of-covariances kernel estimator:   ˆ sc  = ˆ
S

j

j S

j
k

S

 
 

 
   

• Weighted periodogram estimator:  ˆ wp  = 
1

ˆ ˆ

( 1)

2 ( / ) (2 / )
T

ZZ
j T

K j B I j T 


 

  

where IZZ(ω) = 
1

( ) ( )
2

Z Zd d 



 and dZ(ω) = 

1

1 T
i t

t

t

Z e
T





  

 

Time domain/frequency domain duality: 

o All sum-of-covariances estimators have a kernel representation and vice 

versa (frequency domain/time domain duality). 

o Small b ↔ large B (for EWP, b = B-1) 

o PSD theorem: kernel estimators are psd w.p. 1 if & only if their 

frequency domain weights are nonnegative (KT(l) ≥ 0 for all l) 
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3) From MSE to size and power 

 

ˆ SC  = ˆ
S

j

j S

j
k

S

 
 

 
  

 

Overarching questions: What kernel k? What value of S, given k? 

 

Historical approach: minimize MSE( ˆ SC ) (delivers S = 0.75T1/3) 

• Early history of spectral estimation, applied to the HAR problem: 

Grenander (1951), Parzen (1969), Epanechnikov (1969); Brillinger (1975), Priestley 

(1981); Andrews (1991)  

 

Problems with the NW/Andrews paradigm: Early MCs  

• Den Haan & Levin 1994 
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From MSE to size and power, ctd. 

 

New view of HAR inference: focus on size and power 

 

• Size control through fixed-b critical values.  

Kiefer-Vogelsang-Bunzel (2000), Kiefer-Vogelsang (2005), Sun (2014) 

 

• Study size and power using Edgeworth expansions in the Gaussian location 

model. 

Velasco and Robinson (2001), Jansson (2004), Sun, Phillips, Jin (2008), Sun 

(2013, 2014a, b), Lazarus, Lewis, & Stock (2018), Lazarus, Lewis, Stock, & 

Watson (2018) (with discussion, JBES) 
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4) Fixed-b critical values 
 

It is easiest to understand fixed-b critical values by looking at the Equal 

Weighted Periodogram (EWP) estimator in the scalar case. 

 ˆ EWP  = 
/2

ˆ ˆ

1

1
2 (2 / )

/ 2

B

ZZ
j

I j T
B

 


  = 

2
/2

2 /

1 1

1 1

/ 2

B T
i jt T

t

j t

Z e
B T



 

   

=  
2

/2

1 1

1 1
cos(2 / ) sin(2 / )

/ 2

B T

t

j t

Z jt T i jt T
B T

 
 

   

≈ 

2 2
/2 /2

1 1 1 1

1 1 1
2 cos(2 / ) 2 sin(2 / )

B T B T

t t

j t j t

Z jt T Z jt T
B T T

 
   

     
    

     
     

 2 /d

B B   

so  
2

(0,1)
~

ˆ /

dEWP

B
EWP

B

Z N
t t

B
 


  for B fixed. 

Recall that for EWP, b = B-1; so fixed B is fixed b. So, (*) is the fixed B 

distribution of the EWP test statistic. 

• This result dates to Brillinger (1975, exercise 5.13.25). 
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General fixed-b distribution 

 

Recall that time-domain kernels can be represented in the frequency domain. 

This motivates the general fixed-b distribution (e.g. Sun (2014)), 

 

1

ˆ

dSC

SC

j jj

Z z
t

w 




 
 

,      (**) 

 

where z ~ N(0,1) and ξj i.i.d. 2

1 , and z ⊥ { ξj} [(**) is exact for Z Gaussian] 

• There is a time-domain representation in terms of weighted Brownian 

Bridges – more frequently used in papers, but less intuitive than (**). 

• The distribution (**) is t-like and can be approximated by tν, where 

  ν =  
1

2 ( )b k x dx




   = Tukey’s (1949) approximate degrees-of-freedom 

• For EWP, 2 ( )k x dx


  = 1 and ν = B = b-1. 
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5) Size-power tradeoff 
 

Setup & theory: Notation 

 

• Spectral curvature: 

( ) 1

(2)

| |  (scalar case)

( ) / (0)

q q

j

j

z z

j

S S










  

  


 

AR(1) case:  ω(1) = 
22 / (1 )         ω(2) = 

22 / (1 )  .  

 

• Parzen characteristic exponent (q) and generalized derivative: 

k(q)(0) = 0

1 ( )
lim

| |
x q

k x

x



, where k = kernel  

q = Parzen characteristic exponent = max q: k(q)(0) <  

 

• The Edgeworth expressions are derived for the Gaussian location model – but 

they are a guide (we hope) to non-Gaussian location and regression. 
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Sketch of asymptotic expansion of size distortion 

 

For details see Velasco and Robinson (2001), Sun, Phillips, and Jin (2008) 

 

Consider the Gaussian location model, yt = β + ut, ut stationary, Gaussian 

 

Then Zt = Xtut = ut so the test statistic is, WT = 
 

2
1/2

1

ˆ

T

tT Z




.  

The probability of 2-sided rejection under the null thus is, 

 

Pr[|t| < c] = 
 

2
1/2

1
Pr

ˆ

T

tT Z
c

 
 


 
  


 

where c is the asymptotic critical value (3.84 for a 5% test). The size distortion is 

obtained by expanding this probability… 
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Under Gaussianity, 
1/2

1

T

tT Z

  and ̂  are asymptotically independent. Now 

Pr[WT < c] = 
 

2
1/2

1
Pr

ˆ

T

tT Z
c

 
 


 
  


 = 

 
2

1/2

1
ˆ

Pr

T

tT Z
c

 
 

  
 
 


 

= 
 

2
1/2

1
ˆ

ˆPr

T

tT Z
E c

  
  

        


 

 
ˆ

E F c
  
  

   

, where F = chi-squared c.d.f 

= 

2
ˆ ˆ1

( ) ( ) ( ) ...
2

E F c cF c cF c
       

       
      

 

so the size distortion approximation is, 

Pr[WT < c] – F(c)  
2

ˆ ˆ( ) 1 var( )
( ) ( )

2

bias
cF c cF c

 
 

 
+ smaller terms 
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Expressions for bias and variance for small b 

Bias. Use frequency domain representation, scalar case – for time-domain kernel 

with two derivatives at origin (QS, EWP, not Bartlett): 
2

2 /

1 1

1

2

1
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1

2
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1ˆ ˆ
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   

 

 
  

 

           
   

 
    

 

   
     

   

 
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


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   

  
  


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Expressions for bias and variance for small b, ctd. 

 

Variance. 

 

2

2 /

1 1

2

2 2 /

1 1

2 2 2

2

1

1
1 2 2 1 2 2

0
1

1ˆ ˆvar( ) var
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var / 2
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j
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M

j
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M









 



 



 



  
    

   

  
        

 
  

 

  
     

  

 

 



   
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Rejection rate expansion, bias, and variance: summary 

Pr[WT < c] – F(c)  
2

ˆ ˆ( ) 1 var( )
( ) ( )

2

bias
cF c cF c

 
 

 
 + smaller terms 

 
1

2 (2) 2 2 2

2 0

ˆ( )
1 2 ( )

bias
u K u du M T  

 
   

1
2 1

2 0

ˆvar( )
( )K u duM 


   

 

Comments 

1) Controlling size (using normal critical values) places more emphasis on 

bias reduction than minimizing MSE → larger S (larger b/ smaller B) 

2) The second term, 
2

ˆ1 var( )
( )

2
cF c





, depends on b and the kernel, but not on 

the time series properties of z. This term thus can be used to provide a 

higher-order correction to the critical values. 

• In i.i.d. normal means, this term approximates t critical values 

• In the HAR problem, Jansson (2004) showed that using fixed-b critical 

values eliminate this term. 
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The size-power tradeoff 

 

Intuition: Using larger S reduces bias, but it increases variance of ˆ SC . 

• Bias results in size distortion: the estimator, and thus the test statistic, is 

centered at the wrong place 

• Variance results in power loss – like using t-inference with a small d.f. 

 

Kiefer and 

Vogelsang (2005) 

speculated that 

there must be a 

way to use the 

Edgeworth 

expansions to 

construct a size-

power tradeoff 

using fixed-b 

critical values. 
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They were right! 

 
Size-power tradeoff, NW, AR(1), ρu = 0.7, T = 200. 

 

Key insight: using fixed-b critical values: 

• Size depends on the bias 

• Power loss depends on the variance (e.g., t degrees of freedom, or ν) 

o Here, power = size-adjusted power (as usual) 
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The tradeoff is obtained using Edgeworth expansion … 

 

Note: the expressions for bias and variance used here use the time-domain kernel, 

where 1( ) (2 ) ( ) i uK k u e du 


 


    

Under null: 
*

0Pr ( )T mF c b    =  ( ) ( )( ) (0)( ) ( ) ( )q q q q

m m mG k bT o b o bT          

 

The use of fixed-b critical values has eliminated the leading term in ν-1 

 

Size adjusted critical value:  

, ( )m Tc b  = ( ) ( )

,( ) 1 (0)( ) ( )q q q

m m T mc b d k bT c b        

where 

ν  =  
1

2 ( )b k x dx




  = Tukey equivalent d.f. 

*

TF    = HAR F statistic testing the m restrictions, R = r0, in “F” form  

( )mc b  = fixed-b asymptotic critical value for level  test using *

TF  

2,m
G


 = noncentral chi-squared cdf with m df & noncentrality parm δ2 

m

    = chi-squared m critical value for test of level  
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Under a standardized local alternative δ: 

 

*Pr ( )T mF c b

    =  2,
[1 ( )]mm

G 


   Power of oracle test against δ 

2

( ) ( )

,
( ) (0)( )q q q

m mm
G k bT 


      Bias term inherited from size distortion 

 under null, eliminated by using  

 size-adjusted critical values 

 2

2 1

( 2),

1
( )

2
m mm

G  


    


    Power loss from using t-like inference 

         

 ( ) ( ) (log / )qo b o bT O T T    

 

• Size adjusted critical value:  

, ( )m Tc b  = ( ) ( )

,( ) 1 (0)( ) ( )q q q

m m T mc b d k bT c b        

• Power difference between two tests (“1” and “2”) with same second-order 

size depends only on 1 1

1 2    . 
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Size/power tradeoff for given kernel 

 

Size distortion: 

(1) ΔS = *

0Pr ( )T mF c b    -   2

( ) ( )

,
( ) (0)( )q q q

m mm
G k bT 


      

 

Maximum (size-adjusted) power loss: 

(2) 
max

p  = maxδ 2

*

,,
[1 ( )] Pr ( )m T m Tm

G F c b

 


        2

2 1

( 2),

1
max ( )

2
m mm

G 

   


 
 

 

 

Because ν =  
1

2 ( )b k x dx




  (1) and (2) are parametric equations in b that map 

out the size/size-adjusted power tradeoff for a given kernel/implied mean kernel: 

 
1/q

p S     
1/ 1/

( ) 2 ( ) 1

, , (0) ( )
q q

q q

m qa k k x dx T 






 
   . 
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6) Choice of kernel and bandwidth 
 

For a given kernel, the tradeoff is,  

 
1/q

p S     
1/ 1/

( ) 2 ( ) 1

, , (0) ( )
q q

q q

m qa k k x dx T 






 
    

 

• q = 2 dominates q = 1: 
1/2

2/3

, 1
,

, 2
p S

T q

T q





 
   



 

• So, the frontier is given by the psd kernel that maximizes 
(2) 2(0) ( )k k x dx



  

• This is the classic problem solved by the QS kernel, for which 

(2) 2(0) ( )k k x dx


  = 3 10 / 25 .  

• For m = 1,  
1,.05,2a  = .2825, so for 5% tests of a single restriction,  

1/q

p S    
(2) 13 10

0.2825
25

T


 
 = (2) 10.3368 T    
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Achieving the frontier, tν fixed-b inference 

 

• Lazarus, Lewis, and Stock show that the EWP test achieves the frontier for 

tests with exact tν fixed-b asymptotic critical values  

• For EWP, 2 ( )k x


  = 1 and 
(2) (0)k  = / 6  , so 

p S    
(2) 10.2825

6
T


 

 = (2) 10.3624 T   

 

LLS summary, in pictures: 
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Frontier for psd kernel tests 

 
• Vertical axis: T2/3ΔP 

• Horizontal axis: T2/3ΔS/ω(2)  

• Overall frontier solid, the fixed-b t and F frontier dashed  

• These frontiers are universal: this figure covers all T & all stationary zt 
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Theoretical size-power tradeoff, AR(1), ρz = 0.7, T = 200 

 

x axis: S     = |rejection rate| – 0.05 = size distortion 

y axis: 
max

P  = maximum power loss, compared to oracle (Ω known) test with same 

second-order size 

Gaussian location model 

 
` 
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Theoretical size-power tradeoff, AR(1), ρz = 0.7, T = 200 

 

x axis: S     = |rejection rate| – 0.05 = size distortion 

y axis: 
max

P  = maximum power loss, compared to oracle (Ω known) test with same 

second-order size 

Gaussian location model: 

 

  1/1/max ( ) 2 ( ) 1 1

, , (0) ( ) ( )
qq q q

P S m qa k k x dx T o T 


 


    ` 
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…and for QS (Epanechnikov) kernel 
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…and for Equal-weighted periodogram (EWP) kernel 
 

/2

ˆˆ ˆ

1

2
/ˆ (2 ) 2 (0)

B

zz z
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j

P j T
B

I S


 
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    
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Summary: Asymptotic frontiers and NW tradeoff  

LLS (2017) summary: 

• QS achieves the LLS asymptotic frontier: 

           
(2)0.3368

  P S
T

    

• EWP achieves the frontier for tests with t 

fixed-b critical values: 

                      
(2)0.3624

  P S
T

    

• NW is asymptotically dominated (but not 

in finite samples) 
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How about finite sample performance? T = 200, AR(1), 0.7  

KVB 

S = 0.75T1/3 
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Bandwidth rule? 

 

Choosing a bandwidth entails choosing a point on the tradeoff curve, for a given 

kernel. 

 

To make this choice, you need to make a decision – how in fact do you trade off 

size v. power loss? 

 

LLSW propose minimizing the loss function, 

 

      
22 max(1 )S PLoss       . 

 

with κ = 0.9 (most concerned about size) 

and ρ = 0.7 (a large degree of persistence for most problems – Local projections,  

   multistep ahead forecasts, distributed lags) 
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LLS propose using quadratic size/power loss to choose a point on the curve 

Loss-minimizing NW rule: b = 1.3T-1/3 
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… for both NW and EWP 

NW Loss-minimizing rule: b = 1.3T-1/2 

EWP Loss-minimizing rule: b = 1.95T-2/3 
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How do they perform in finite samples? (open stars = MC) 

EWP Loss-minimizing rule: b = 1.95T-2/3 

NW Loss-minimizing rule: b = 1.3T-1/2 
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7) Monte Carlo Results 
 

LLSW Monte Carlo study with parametric models and data-based models 

(generate data from a DFM) 

 

Main findings: 

• In the location model 

o The approximations are good for QS and EWP, and OK for NW 

o Departures from normality change the location and shape of the frontier, 

but not by a lot (heavy tails result in a more favorable tradeoff…) 

 

• In the regression model 

o The Edgeworth approximation to the frontier deteriorates substantially: 

the finite-sample frontier is less favorable than the asymptotic means-

case frontier 

o Still, the qualitative findings go through: 

▪ NW, EWP have similar size distortions and crossing tradeoffs 

▪ The larger-S rules and fixed-b critical values improve size  
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MC results, regression: different rules, restricted/unrestricted 

 

Rejection rates of HAR tests with nominal level 5% (b = S/T) 

yt = β0 + β1xt + ut, xt & ut Gaussian AR(1), ρx = ρu = 0.71/2, T = 200  
Estimator Truncation 

rule for b 

Critical values Null 

imposed? 

ρ = 0.3 ρ = 0.5 ρ = 0.7 

NW 0.75T-2/3 N(0,1) No 0.079 0.105 0.164 

       

NW 1.3T-1/2 fixed-b 

(nonstandard) 

No 0.067 0.080 0.107 

EWP 1.95T-2/3 fixed-b (tν) No 0.063 0.074 0.100 

       

NW 1.3T-1/2 fixed-b 

(nonstandard) 

Yes 0.057 0.062 0.073 

EWP 1.95T-2/3 fixed-b (tν) Yes 0.052 0.056 0.066 

       

Theoretical bound based on Edgeworth expansions for the Gaussian location model 

NW 1.3T-1/2 fixed-b 

(nonstandard) 

No 0.054 0.058 0.067 

EWP 1.95T-2/3 fixed-b (tν) No 0.052 0.056 0.073 

Note: xt and ut are independent Gaussian AR(1)’s, single regressor. 
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8) Summary 
 

Topics not covered here: 

• Tests based on orthogonal series estimators (these include split sample or 

“batch means estimator” tests) 

o However these are covered in LLS and shown to be dominated by the EWP. 

• Tests that are not psd (e.g. flat-top kernels) 

• Tests that do not have known fixed-b asymptotic distributions 

• Tests with data-dependent rules for S 

• Tests with feasible size-adjusted critical values  

o However LLSW looked at these and found that they worked poorly in MCs 

• Bootstrap tests 

o However current theory shows they are asymptotically equivalent to using fixed-

b critical values. 
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Summary of current state of knowledge: 

• Gaussian location model is well understood  

• Regression model has some open puzzles 

• Still, theory and MC results strongly point towards: 

o Larger bandwidths 

o Fixed-b critical values 

o NW kernel works well in typical sample sizes, with S = 1.3T1/2  

• Software: fixed-b critical values are available for NW from Vogelsang’s 

web site – hopefully will get into STATA at some point... 
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Related literature  

 
• Classic spectral estimation: Tukey (1949), Parzen (1957), Grenander & Rosenblatt 

(1957), Brillinger (1975), Priestley (1981) 

• Classic econometrics papers: Newey-West (1987), Andrews (1991) 

• VAR-HAC: Parzen, Berk (1974), den Han and Levin (1994) 

• Fixed-b: Kiefer, Vogelsang, Bunzel (2000), Kiefer and Vogelsang (2002, 2005) 

• Small-b Edgeworth expansions: Velasco and Robinson (2001), Jansson (2004), Sun, 

Phillips, & Jin (2008), Sun (2014) 

• Batch means estimator: Blackman & Tukey (1958), Conway, Johnson, & Maxwell 

(1959), Ibragimov and Müller (2010) 

• Orthogonal series: Grenander & Rosenblatt (1957), Foley & Goldsman (1988), 

Phillips (2005), Sun (2011, 2013) 

• Higher-order kernels (not psd): Politis (2011) 

• Bootstrap: Gonçalves & Vogelsang (2011), Zhang and Shao (2013)  

• Recent survey: Müller (2014) 
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Three real-world questions that economists are paid to answer 

 

1. The President has criticized the Fed for its interest rate increases. What is the 

effect of a 25 bp increase in the FF rate, vs. keeping the FF rate constant, on 

price inflation, GDP growth, employment, and stock prices? 

 

2. What is (will be) the effect of the TCJA on GDP growth, employment, the 

deficit, and wage and price inflation? 

 

3. In its RIA justifying EPA’s Aug, 2018 rollback of the 2023-2027 CAFÉ fuel 

economy standards (the SAFE rule), EPA cited the safety hazards of fuel 

economy standards: fuel economy standards will increase the price of cars, 

so drivers will purchase fewer new cars, and thus drive older, less safe cars 

for longer, thereby increasing traffic fatalities. What is the effect of a 

permanent increase in new car prices by (say) 1% on new vehicle sales? 
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Common theme: The answer to each question is a dynamic causal effect 

 

Let Yj,t be a variable of interest (inflation, the deficit, new vehicle sales)  

ε1,t be an unexpected policy-induced change (“shock”) (a monetary policy 

shock to the FF rate, the JTCA “shock” to tax rates, the increase in new 

vehicle prices from an inward shift of the auto supply curve) 

2: ,m t  = all other shocks/unexpected developments (m might be large!!)   

 

Four flavors of dynamic causal effects 

1. Potential outcomes:     , 1 , 1, 1, 2: ,1, 0( ), 0h j j t h t s m tY s t         

 , 1, 1, 2: ,0, 0( ), 0j t h t s m tY s t         

2. Ceteris paribus (nonstochastic):  

1, 2: ,

,

, 1

1, ( ),s m t

j t h

h j

t s t

Y

 







 


, h = 1, 2, 3,…. 

3. Conditional expectations:   , 1 , 1, 1, 2: ,| 1, 0( ), 0h j t j t h t s m tE Y s t         

              , 1, 1, 2: ,| 0, 0( ), 0t j t h t s m tE Y s t        

4. Conditional expectations with independent shocks: 

   , 1 , 1, , 1,| 1 | 0h j t j t h t t j t h tE Y E Y         
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Terminology 

 

Conditional expectations with independent shocks: 

   , 1 , 1, , 1,| 1 | 0h j t j t h t t j t h tE Y E Y         

 

• , 1h j  is the h-period dynamic causal effect of ε1,t on Yj,t 

• 0, 1j  is the (causal) impact effect of ε1,t on Yj,t 

• , 1{ }, 0,1,2,...h j h   is the impulse response function of Yj,t to ε1,t  

 

Recent literature on dynamic causal effects from primitives 

Lechner (2009), Angrist, Jordà, and Kuersteiner (2017), Jordà, Schularick, and Taylor 

(2017), Bojinov and Shephard (2017) 
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Refresher on potential outcomes 
Textbook references: Imbens (2014); Angrist & Pischke (2009), Stock & Watson (2018b) 

 

Yi(1) = outcome if treatment received 

Yi(0) = outcome if treatment not received 

Yi = observed outcome 

Xi = treatment (binary) 

 

From potential outcomes to regression:  

Yi = Yi(1)Xi + Yi(0)(1-Xi) 

     = EYi(0) +  [Yi(1) – Yi(0)]Xi + [Yi(0) - EYi(0)] 

     = α + βiXi + ui 

where 

ui = no-treatment baseline for individual i 

βi = Yi(1) – Yi(0) = treatment effect for individual i 

Eβi = E[Yi(1) – Yi(0)] = average treatment effect (ATE) 

 

The OLS estimand is the ATE if:    

Xi ⊥ (Yi(0), Yi(1)) (random assignment of treatment) 

    Xi ⊥ ui   ( E(uiXi) = 0) 
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Dynamic causal effects with linearity and independent (uncorrelated) shocks 
 

Linearity:    
1 1

( )
n m

t t tY L 
 

   

    
( 1)1 1

1, 1 2: , 2: , 1, 1( ) ( ) ( )
n mn n

t t m t m t t t tL L L u  
  

       

 

Linearity + stationarity  

• Potential outcomes analog: homogeneous treatment effects 
1 1

( )
n m

t tY L 
 

   

 

Linearity + stationarity + independence [uncorrelatedness] of shocks: 

• Potential outcomes analog: treatment randomly or as-if randomly assigned 

 

Structural Moving Average 
1 1

( )
n m

t tY L 
 

  , E(εtεt´) = diagonal, E(εtεt´) = 0, t ≠ s  

  

Singling out first shock, putting ε2:m,t in the error term 
1 1

1 1( )
n n

t t tY L u
 

    where {ε1t} ⊥ {ut}   1 1 1| , ,... 0t t tE u       

  



         3-8 

 

Estimation of DCEs When the Shock is Observed 

 

Henceforth, we assume linearity + stationarity + uncorrelated shocks 

• If ε1,t is observed, estimating the DCE is a straightforward regression 

problem, aside from the technical difficulty of infinitely many lags 

• The regression can be implemented as a single regression or as separate 

regressions, one for each horizon: 
 

Three variants: 

(a) 
1 1

1 1( )
n n

t t tY L u
 

    with  1 1 1| , ,... 0t t tE u       

(b) ( )

, , 1 1 ,

h

j t h h j t j t hY u    , h = 1,… 

(c) ( )

, , 1 1 1 ,( ) h

j t h h j t t j t hY L Y u        (additional variables to get smaller SEs) 

 

Technical notes: 

• All three directly trace their roots to the four flavors of DCE 

• (a) is a distributed lag regression 

• (c) is also called a “direct” forecasting regression 

• All three require HAR SEs (in general) 
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Estimation of DCEs: case of an observed shock, ctd. 

 
( )

, , 1 1 1 ,( ) h

j t h h j t t j t hY L Y u        (additional variables to get smaller SEs) 

 

• The measured shock approach has been popular in the monetary shock 

literature, where the monetary policy shock is measured as the surprise change 

in an interest rate around announcement window (press conference window) 
o Kuttner (2001) 

o Cochrane and Piazessi (2002) aggregates daily Eurodollar rate changes after 

FOMC announcements to a monthly shock series 

o Faust, Swanson, and Wright (2003, 2004) estimate monetary policy shock 

estimate from futures markets 

o Bernanke and Kuttner (2005) 

 

• The conditional mean independence condition provides a framework for 

evaluating the internal validity of the regression: 

   ( ) ( )

, 1, 1 2 , 1 2| , , ,... | , ,...h h

j t h t t t j t h t tE u Y Y E u Y Y       

which will hold if ε1t is in fact a structural shock (but is it, in a given 

application)  
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Estimation of DCEs When the Shock is Unobserved 

 

Two estimation methods: 

• Multiple equation: Structural VARs (SVARs)  

• Single equation: direct multistep regressions (called Local projections in this 

literature) 

 

Two identification frameworks: 

• Internal identification – restrictions on coefficients 

• External identification – external instruments 

 

Remainder of this lecture: 

• Will go through the estimation methods and identification frameworks (four 

cases) 

• The literature treats the identification requirements of the two methods as 

different. A major theme of this lecture is that, in general, they are not. 
o References: Stock & Watson (2018), Plagborg-Møller and Wolf (2018) 
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Outline 

 

Part A 

1. Dynamic causal effects: Overview 

a. Definition and conceptual framework 

b. Estimation when the shock is observed 

c. Identification and estimation when the shock is unobserved 

2. Multivariate methods with internal identification: SVARs 

 

Part B 

3. Single equation methods with internal identification: LP 

4. Multivariate methods with external instruments: SVAR-IV 

5. Single-equation methods with external instruments: LP-IV 

6. Summary 
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SVARs with Internal Identification: Setup and Maintained Assumptions 

 

Assumptions:  Linearity + stationarity + uncorrelated shocks + invertibility 

 

Structural MA: (L)t tY    

 

VAR:   A(L)Yt = vt,  where vt = Yt – Proj(Yt|Yt-1, Yt-2,…)  = Wold errors  

 

Invertibility: t = Proj(t | Yt, Yt 1, …) 

 

 which implies: 
0t t   , where m = n (i.e., # ε’s = # Y’s) and 1

0

  exists 

 

SVAR IRFs: -1

0(L) (L)t t tY A C    , where C(L) = A(L)-1 

 

so    , 1 0, 1h i h iC           (*) 

 

The expression (*) is the payoff of SVARs! 

Under the SVAR assumptions, if you can estimate the impact effect Θ0,1, you 

can estimate the entire dynamic effect for all the variables in the system 
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Invertibility – what does it mean? 

 

Invertibility is a critical assumption in getting the SVAR payoff (*) 

 

Digression: Proof that invertibility implies that 1

0

  exists 

 

Start with the structural MA: (L)t tY    

 

From the definition of the innovation, 

 

 

 

1 2

1 2

0 1 21

0

Proj | , ,...

(L) Proj (L) | , ,...       (structural MA)

Proj | , ,...       (rearranging)

      (using definition of invertibility)

t t t t t

t t t t

t i t i t i t ti

t

Y Y Y Y

Y Y

Y Y



 

  



 

 



   

 

   

      

 


  

so, 

   

 

 

1 1

0 0 1

0

Proj | , ,... Proj | , ,...      (follows from defintion of innovations)

Proj | , ,...      (from above)

Proj |      (  serially uncorrelated)

t t t t t t

t t t

t t t

Y Y   

  

  

 





  

 

  

from which it follows that 1

0

  exists 
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Invertibility as no OVB 

 

Invertibility can be interpreted as “no omitted variables” (Fernández-Villaverde 

et al (2007)): 

 

 

 

 

1 2 1 2 1 2 1 2

1

1 2 1 0 1

1 2

Proj( | , ,..., , ,...) Proj | , ,..., , ,...

Proj | , ,...        ( =  by invertibility)

Proj( | , ,...)        

t t t t t t t t t t

t t t t t

t t t

Y Y Y Y

Y

Y Y Y

     

   

       



   

 



 



 

 

This is a very strong condition! If you were a forecaster and could download the 

true shock history, would you do so? 

 

Invertibility references  

Lippi and Reichlin (1993, 1994), Sims and Zha (2006b), Fernandez-Villaverde, 

Rubio-Ramirez, Sargent, and Watson (2007), Hansen and Sargent (2007), E. Sims 

(2012), Blanchard, L’Huillier, and Lorenzoni (2012), Forni and Gambetti (2012), 

and Gourieroux and Monfort (2014), Plagborg-Møller (2016), Plagborg-Møller and 

Wolf (2018a, 2018b), Miranda-Aggripino and Ricco(2018), Stock and Watson 

(2018) 
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The SVAR identification problem 

 

Assumptions:  Linearity + stationarity + uncorrelated shocks + invertibility 

 

VAR:      A(L)Yt = vt,  

 

SVAR IRFs:    1

0 0A(L) C(L) ( ) , so   t t t t j jY L C           

 

and in particular:   , 1 0, 1h i h iC     

 

The SVAR identification problem under the assumption of invertibility is the 

requirement that 0, 1i (first column of Θ0) be identified, or (if one is interested in 

IRFs for all shocks) that Θ0 be identified. 
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The SVAR identification problem, ctd 

 

System identification. In general, the SVAR is fully identified if  

 

Θ0ν Θ0 = ,  where  = diagonal       

 

can be solved for the unknown elements of R and .. Recall that Σu is identified. 

• There are n(n+1)/2 distinct equations in the matrix equation above, so the 

order condition says that you can estimate (at most) k(k+1)/2 parameters.   

• Normalization of the scale of ε delivers n parameters 

o Unit standard deviation normalization:  = I 

o Unit effect normalization: Θ0,ii = 1 

• So we need n2 – n(n+1)/2 = n(n–1)/2 restrictions on Θ0.   

• If n = 2, then n(n–1)/2 = 1, which is delivered by imposing a single 

restriction (commonly, that Θ0 is lower or upper triangular). 

• This ignores rank conditions, which can matter.  
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SVAR Identification by Short Run Restrictions 

 

Example: Dynamic effect of new vehicle prices on sales.  

• In its August 2018 Proposed Regulatory Impact Analysis of the SAFE rule 

(CAFÉ rollback), NHTSA modeled the effect of a one-time permanent 

change in the price level on new vehicle sales.  

• Here, the DCE is just a time path of elasticities 

• NHTSA variables: 

 

qt = log(Salest) (Sales = number of vehicles sold) 

pt = log(average vehicle price) 

Empt = log(Payroll Employmentt) 

GDPt = GDP growth (percent at annual rate, SA)  
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SVAR Identification by short run restrictions, ctd. 

 

Let Wt = Empt, GDPt. Three modeling options: 

 

Distributed lag (DL):   ( ) ( )t qp t t tq L p L W u      

exogeneity reqm’t:      1 1 1| , ,..., , ,... | , ,...t t t t t t t tE u p p W W E u W W     

       (conditional weak exogeneity) 

 

Autoregressive DL (ADL):  1( ) ( ) ( )t t t t tq L q L p L W u        

 where       
1

( ) 1 ( ) ( )qp L L L 


    

exogeneity reqm’t:     1 1 1 1| , , ,..., , ,... | , ,...t t t t t t t t tE u p p p W W E u W W     

       (conditional strict exogeneity) 

 

Both conditional weak exogeneity and conditional strict exogeneity are strong 

assumptions in this application – effectively they say that car dealerships don’t 

hold sales if they have excess inventories, and don’t raise prices if they see or 

expect strong demand. 
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SVAR Identification by short run restrictions, ctd. 

 

SVAR:       Yt = A(L)Yt-1 + νt 

 q equation:     0, 0, 1( ) p

t qp t qW t t tq p W L Y       (*) 

exogeneity reqm’t:       1 2 1 2| , , , ,... | l , ,... 0q q

t t t t t t t tE p W Y Y E Y Y       

       (contemporaneous conditional exogeneity) 

       (contemporaneous conditional mean independence) 

 

• In words: dealers can cut prices based on last quarter’s sales but not on 

unexpected current-quarter demand surges or drops, except as related to 

overall economic conditions. 

• This is a weaker requirement than for the DL and ADL models 

 

Rewrite as a VAR: First, rewrite (*) in terms of innovations:  

 1Proj |p

t t t tp p Y     

so (*) becomes 

0, 0,

q p W p

t qp t qW t t        
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SVAR Identification by short run restrictions, ctd. 

 

In VAR notation,    1 2| , , , ,... 0q

t t t t tE p W Y Y     

is        | , 0q p W

t t tE      

This implies that  ,p W

t t   don’t depend on 
q

t , so 
q

t  is ordered last: 

 

0,

0, 0,

0, 0, 0,

0 0

0

W W

t WW t

p p

t pW pp t

q q

t qW qp qq t

 

 

 

    
    

      
          

  

 

Normalization? The ADL, DL equations use the unit effect normalization: 

 

0,

0, 0,

1 0 0

1 0

1

W W

t t

p p

t pW t

q q

t qW qp t

 

 

 

    
    

     
         
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SVAR Identification by short run restrictions, ctd. 

 

SVAR sales model:   A(L)Yt = νt 

Identification of 0, p  (column of impulse effects of a price shock): 

       0,

0, 0,

1 0 0

1 0

1

W W

t t

p p

t pW t

q q

t qW qp t

 

 

 

    
    

     
         

 

 

SVAR IRFs:    1

0 0A(L) C(L) ( ) , so   t t t t j jY L C          

 

and in particular:   , 0,h p h pC     

 

• Note: the ordering of W, p is arbitrary – get the same results for IRF for q.  

• In this model, we have identified the price and quantity shocks, not the 

separate employment and GDP shocks 
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Identification by Long Run Restrictions 

 

This approach identifies Θ by imposing restrictions on the long run effect of one 

or more ’s on one or more Y’s. 

 

Reduced form VAR:     A(L)Yt = νt 

Structural VAR:      νt = Θ0t 

 

Long-run effect of ε on Y:    Yt = C(1)Θ0t 

 

Typical long-run restriction:    ε1t has no long-run effect on Yj,t 

This imposes zero restrictions on C(1)Θ0 and thus restrictions on Θ0  

 

Digression: A(1)–1 = C(1) is the long-run effect on Yt of νt; this can be seen using 

the Beveridge-Nelson decomposition, 

    
1

t

s

s

Y


  = C(1) 
1

t

s

s




  + C*(L)t, where *

iC  = 
1

j

j i

C


 

  
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Comments: 

• If the zero restrictions on C(1)Θ0 make C(1)Θ0 lower triangular and the unit 

standard deviation normalization is used (so Σε = I), then C(1)Θ0 is the 

Cholesky factorization of  = A(1)-1ΣνA(1)-1, so Θ0 = A(1)Chol(Ω). 

• Blanchard-Quah (1989) had 2 variables (unemployment and output), with the 

restriction that the demand shock has no long-run effect on the 

unemployment rate.  This imposed a single zero restriction, which is all that 

is needed for system identification when k = 2. 

• King, Plosser, Stock, and Watson (1991) work through system and partial 

identification (identifying the effect of only some shocks), things are 

analogous to the partial identification using short-run timing. 

• This approach was at the center of a debate about whether technology shocks 

lead to a short-run decline in hours, based on long-run restrictions (Galí 

(1999), Christiano, Eichenbaum, and Vigfusson (2004, 2006), Erceg, 

Guerrieri, and Gust (2005), Chari, Kehoe, and McGrattan (2007), Francis and 

Ramey (2005), Kehoe (2006), and Fernald (2007)) 

• The theoretical grounding of long-run restrictions is often questionable; for a 

case in favor of this approach, see Giannone, Lenza, and Primiceri (2014) 
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Long run restrictions, ctd. 

 

In this literature,  is estimated using the VAR-HAC estimator, 

VAR-HAC estimator of :       ̂  = 1 1

ˆ
ˆ ˆˆ(1) (1)A A

    

Estimator of Θ0 under unit std. dev. normalization:  0
ˆˆ ˆ(1)A Chol      

 

Comments: 

• This confronts the problem of estimating the LRV so not surprisingly 

encounters sampling distribution problems. 

• A recurring theme is the sensitivity of the results to apparently minor 

specification changes, in Chari, Kehoe, and McGrattan’s (2007) example 

results are sensitive to the lag length.  It is unlikely that ˆ
u  is sensitive to 

specification changes, but ˆ(1)A  is much more difficult to estimate. 

• These observations are closely linked to the critiques by Faust and Leeper 

(1997), Pagan and Robertson (1998), Sarte (1997), Cooley and Dwyer (1998), 

Watson (2006), and Gospodinov (2008), which are essentially weak instrument 

concerns. 
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Identification from Heteroskedasticity 

 

Simplest case: Discrete break in heteroskedasticity at a known date 

Suppose: 

(a) The structural shock variance breaks at date s: ,1 before, ,2 after. 

(b) Θ0 doesn’t change between variance regimes. 

(c) Adopt the unit effect normalization. 

 

First period:  Θ0u,1 Θ0 = ,1  k(k+1)/2 equations, k2 unknowns 

Second period:  Θ0u,2 Θ0 = ,2  k(k+1)/2 equations, k more unknowns 

 

Number of equations = k(k+1)/2 + k(k+1)/2 = k(k+1) 

Number of unknowns = k2 – k + k + k = k(k+1) 

 

Rigobon (2003), Rigobon and Sack (2003, 2004) 

ARCH version by Sentana and Fiorentini (2001) 

General time-varying cond’l variances or stoch. volatility: Lewis (2018) 
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Identification from Heteroskedasticity, ctd. 

 

Comments: 

1. There is a rank condition here too – for example, identification will not be 

achieved if ,1 and ,2 are proportional. 

2. The break date need not be known as long as it can be estimated consistently 

3. Different intuition: suppose only one structural shock is homoskedastic.  Then 

find the linear combination without any heteroskedasticity! 

4. Major generalization: Lewis (2018) – don’t need to identify regimes or the 

volatility process (!) 

5. But, some cautionary notes: 

a. Θ0 must remain constant despite change in   

b. Shocks are identified only up to order – i.e. they are not “named”. Lewis’s 

(2018) result implies that with time-varying variances, SVARs are 

generically identified up to the names of the shocks. 

c. Strong identification will come from large differences in variances 

 

Example: Wright (2012), Monetary Policy at ZLB  
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Identification by Sign Restrictions 

 

Consider restrictions of the form:  a monetary policy shock… 

• does not decrease the FF rate for months 1,…,6 

• does not increase inflation for months 6,..,12 

These are restrictions on the sign of elements of Θ(L). 

 

Sign restrictions can be used to set-identify Θ(L).  Let Θ denote the set of Θ(L)’s 

that satisfy the restriction. There are currently three ways to handle sign 

restrictions:  

1. Faust’s (1998) quadratic programming method 

2. Uhlig’s (2005) Bayesian method 

3. Uhlig’s (2005) penalty function method 

 

I will describe #2, which is the most popular method (the first steps are the same 

as #3; #1 has only been used a few times) 
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Sign restrictions, ctd. 

 

It is useful to rewrite the identification problem after normalizing by a Cholesky 

factorization (and setting  = I): 

 

SVAR identification:     Θ0νΘ0 =  

Normalize  = I; then     ν = Θ0
–1 Θ0

–1= ` 1

cR QQ 1

cR  

 

Where 1

cR  = Chol(ν) and Q is a nn orthonormal matrix so QQʹ = I. Then 

 

Structural errors:   ut = 1

cR Qεt 

Structural IRF:    Θ(L) = C(L) 1

cR Q 

 

Let Θ denote the set of acceptable IRFs (IRFs that satisfy the sign restrictions)
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Sign restrictions, ctd. 

Structural IRF:    Θ (L) = C(L) 1

cR Q 

 

Uhlig’s algorithm (slightly modified): 

(i)   Draw Q  randomly from the space of orthonormal matrices 

(ii) Compute the IRF ( )L  = Θ(L) = C(L) 1

cR  Q   

(iii) If ( )L   Θ, discard this trial Q  and go to (i).  Otherwise, if  

( )L   Θ, retain Q  then go to (i) 

(iv) Compute the posterior (using a prior on A(L) and ν, plus the 

retained Q’s) and conduct Bayesian inference, e.g. compute 

posterior mean (integrate over A(L), ν, and the retained Q’s), 

compute credible sets (Bayesian confidence sets), etc. 

 

This algorithm implements Bayes inference using a prior proportional to 

(A(L), ν)1( ( )L   Θ)(Q) 

where (Q) is the distribution from which Q is drawn. 
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Sign restrictions, n = 2 example 

 

Consider a n = 2 VAR: A(L)Yt = ut and structural IRF  

 

Θ(L) = 
11 12

21 22

( ) ( )

( ) ( )

L L

L L

  
 
  

 = A(L)-1 1

cR Q. 

 

The sign restriction is Θ21,I  0, I = 1,…, 4 (shock 1 has a positive effect on 

variable 2 for the first 4 quarters). 

 

Suppose the population reduced form VAR is A(L)Yt = ut where 

 

A(L) = 

1

1

1

2

(1 ) 0

0 (1 )

L

L









 
 

 
  and Σν = I so 1

cR  = I. 

 

What does set-identified Bayesian inference look like for this problem, in a large 

sample?  

• With point-identified inference and nondogmatic priors, it looks like 

frequentist inference (Bernstein-von Mises theorem) 
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Sign restrictions, n = 2 example, ctd. 

 

Step 1: use n =2 to characterize Q 

 

In the n = 2 case, the restriction QQʹ = I implies that there is only one free 

parameter in Q, so that all orthonormal Q can be written, 

 

Q = 
cos sin

sin cos

 

 

 
 
 

 [check: 
cos sin

sin cos

 

 

 
 
 

cos sin

sin cos

 

 

 
  

 = I] 

 

• The standard method, used here, is to draw Q by drawing θ ~ U[0,2π]  

• The main point of this example is that the uniform prior on θ ends up being 

informative for what matters, D(L), so much so that the prior induced a 

Bayesian posterior coverage region strictly inside the identified set. 

 

Step 2:  Condition for checking whether Q is retained: 

21
ˆ ( )L  = 

1 1

21

ˆ ˆ( ) cA L R Q  
 

  0 for first 4 lags 
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Sign restrictions, n = 2 example, ctd. 

 

Step 3: In a very large sample, A(L) and Σn will be essentially known (WLLN), 

so that  

 

1 1ˆ ˆ( ) cA L R Q    

1

1

1

2

1 0 cos sin(1 ) 0

0 1 sin cos0 (1 )

L

L

 

 





    
   

    
  

= 

1 1

1 1

1 1

2 2

(1 ) cos (1 ) sin

(1 ) sin (1 ) cos

L L

L L

   

   

 

 

   
 

  
 

 

so    
21

ˆ ( )L  = 
1 1

21

ˆ ˆ( ) cA L R Q  
 

  (1-α2L)-1sinθ 

 

Thus the step, keep Q if 21,
ˆ

i   0, i = 1,…,4 reduces to keep Q if sinθ  0, which 

is equivalent to 0  θ  π. 

 

Thus, in large samples the posterior of 
21

ˆ ( )L  is  (1-α2L)-1sinθ, for θ ~ U[0,π]. 
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Sign restrictions, n = 2 example, ctd. 

Characterization of posterior 

A draw from the posterior (for a retained θ is):    Θ21(L) = (1-α2L)-1sinθ 

 

Posterior mean for D21,i:  E[Θ21,i] =  2 siniE     

=  2 sini E    

    = 2

0

1
sini d



  


  

= 2

0
( cos )

i





  = 
2

2 i


  .637 2

i  

 

Posterior distribution: drop scaling by 2

i  and focus on sinθ part 

 

Pr[sinθ  x] = Pr[θ  Sin-1(x)] for θ ~ U[0,π/2] 

 

     = 2Sin-1(x)/π 

So the pdf of x is:  fX(x) = 12
Sin ( )

d
x

dx 

   = 
2

2

1 x 
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So the posterior of 21,
ˆ

iD  is: p( 21,
ˆ

i |Y)   2
2

2

1

i

x


 
 

  

67% posterior probability interval with equal mass in each tail: 

Lower cutoff:  

Pr[sinθ  x] = 1/6 → xlower = sin(π/12) = .259 

Pr[sinθ  x] = 5/6 → xupper = sin(5π/12) = .966 

 

so 67% posterior coverage interval is [.259 2

i , .966 2

i ], with mean .637 2

i  

 

What’s wrong with this picture? 

• Posterior coverage interval: [.259 2

i , .966 2

i ], with mean .637 2

i  

• Identified set is [0, 2

i ] 

• What is the frequentist confidence interval here? 

• Why don’t Bayesian and frequentist coincide? 
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Recent references on sign-restriction VARs: 

Baumeister and Hamilton (ECMA, 2015) 

Fry and Pagan (2011) 

Kilian and Murphy (JEEA, 2012)  

Moon and Schorfheide (ECMA, 2012) 

Moon, Schorfheide, and Granziera (QE, 2018) 

Giacomini and Kitagawa (ms, 2015) 
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Outline 

 

Part A 

1. Dynamic causal effects: Overview 

a. Definition and conceptual framework 

b. Estimation when the shock is observed 

c. Identification and estimation when the shock is unobserved 

2. Multivariate methods with internal identification: SVARs 

 

Part B 

3. Single equation methods with internal identification: LP 

4. Multivariate methods with external instruments: SVAR-IV 

5. Single-equation methods with external instruments: LP-IV 

6. Summary  
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Local Projections 

 

Local projections estimate the dynamic causal effect of interest one equation at a 

time. The term “local projections” dates to Jordà (2005)  

 

Some useful notation: {.} = linear combination of the variables in brackets 

 

Algebra leading to LP regression: 

 

Linearity + stationarity + independence [uncorrelatedness] of shocks: 

• Potential outcomes analog: treatment randomly or as-if randomly assigned 

 

Start with Structural Moving Average: 
1 1

( )
n m

t tY L 
 

  , E(εtεt´) = diagonal, E(εtεt´) = 0, t ≠ s  

  

Single out first shock, putting ε2:m,t in the error term 
1 1

1 1 2: , 2: , 1( ) { , ,...}
n n

t t n t n tY L   
 

     
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DL:   
1 1

1 1 2: , 2: , 1( ) { , ,...}
n n

t t n t n tY L   
 

    

 

This DL can be implemented as separate regressions, one for each horizon: 

, , 1 1 1 2: , 1{ ,..., , , ,...}j t h h j t t h t n t tY           , h = 1,2,… 

 

Lagged Y’s can be added to get smaller SEs: 

, , 1 1 1 1 2: ,( ) { ,..., , }j t h h j t t t h t n tY L Y                 (*) 

 

(*) is the LP regression for ε1t observed. 

 

Local projections when ε1t is not observed: 

 

, , 1 1 1 1 2: ,( ) { ,..., , }j t h h j t t t h t n tY L Y                 (*) 

 

Must use some assumptions/restrictions to identify ε1,t and thus , 1h j  
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Local projections when ε1t is not observed: Timing restrictions 

 

, , 1 1 1 1 2: ,( ) { ,..., , }j t h h j t t t h t n tY L Y                (*) 

 

LP with timing restrictions 

 

New car sales example:  0,

0, 0,

1 0 0

1 0

1

W W

t t

p p

t pW t

q q

t qW qp t

 

 

 

    
    

     
         

 

 

so        Proj |p p p W

t t t t       

Denote the error ( )

1 2: , ,{ ,..., , } h

t h t n t j t hu      so the LP equation becomes, 

  ( )

, , 1 1 ,

( )

, 1 1 ,

( )

, 1 1 ,

Proj | ( )

( )

( )

p p W h

j t h h j t t t t j t h

p W h

h j t t t j t h

h

h j t t t j t h

Y L Y u

L Y u

p W L Y u

   

   

 

  

 

 

     
 

    

    

 

which is estimated separately at every horizon. 
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LP vs. SVAR 

 

Purported pros and cons of LP vs. IV 

 

Claimed pros and cons of LP regression (claims from various papers): 

Pros of LP  

• Can model nonlinearities 

• Doesn’t make lag length assumptions for full VAR 

• Doesn’t require invertibility 

• Robust to misspecification 

 

Cons of LP  

• Less efficient asymptotically if the VAR restrictions are correct 

• Provides non-smooth IRFs (the horizons aren’t tied together) (see 

Smoothness constraints (Barnichon-Brownless (2016), Plagborg-Møller (2016), 

Miranda-Agrippino and Ricco (2017)) 
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LP vs. SVAR, ctd 

 
( )

, , 1 1 ,( ) h

j t h h j t t t j t hY p W L Y u   
      

 

This derivation started with the SVAR and derived the LP. Is the LP method 

more generally applicable? 

 

Consider the special case of h = 0 (impact effect): 

, 0, 1 1 ,( )j t j t j t t j tY p W L Y u  
      

or 

, 0, 1 ,

p W

j t j t j t j tu         

The conditional mean independence condition for this impact regression is: 

   , ,| , |p W W

j t t t j t tE u E u     

 
Reference: Kim and Kilian (2011), Plagborg-Møller and Wolf (2018b) 
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Outline 

 

Part A 

1. Dynamic causal effects: Overview 

a. Definition and conceptual framework 

b. Estimation when the shock is observed 

c. Identification and estimation when the shock is unobserved 

2. Multivariate methods with internal identification: SVARs 

 

Part B 

3. Single equation methods with internal identification: LP 

4. Multivariate methods with external instruments: SVAR-IV 

5. Single-equation methods with external instruments: LP-IV 

6. Summary 
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Identification by External Instruments: SVAR-IV 

 

The external instrument approach entails finding some external information 

(outside the model) that is relevant (correlated with the shock of interest) and 

exogenous (uncorrelated with the other shocks). 

 

Example 1: The Cochrane- Piazessi (2002) shock (ZCP) measures the part of the 

monetary policy shock revealed around a FOMC announcement – but not the 

shock revealed at other times. If CP’s identification is sound, ZCP  r

t  but 

(i) corr( r

t ,ZCP)  0 (relevance) 

(ii) corr(other shocks, ZCP) = 0 (exogeneity) 
 

Example 2: Romer and Romer (1989, 2004, 2008); Ramey and Shapiro (1998); 

Ramey (2009) use the narrative approach to identify moments at which 

fiscal/monetary shocks occur. If identification is sound, ZRR  r

t  but 

(i) corr( r

t ,ZRR)  0 (relevance) 

(ii) corr(other shocks, ZRR) = 0 (exogeneity) 
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Some empirical papers that can be reinterpreted as external instruments 

 

• Monetary shock: Cochrane and Piazzesi (2002), Faust, Swanson, and Wright 

(2003. 2004), Romer and Romer (2004), Bernanke and Kuttner (2005), 

Gürkaynak, Sack, and Swanson (2005) 

 

• Fiscal shock: Romer and Romer (2010), Fisher and Peters (2010), Ramey (2011) 

 

• Uncertainty shock: Bloom (2009), Baker, Bloom, and Davis (2011), 

Bekaert, Hoerova, and Lo Duca (2010), Bachman, Elstner, and Sims 

(2010) 

 

• Liquidity shocks: Gilchrist and Zakrajšek’s (2011), Bassett, Chosak, Driscoll, 

and Zakrajšek’s (2011) 

 

• Oil shock: Hamilton (1996, 2003), Kilian (2008a), Ramey and Vine (2010) 
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SVAR-IV 

 

VAR:   1 0(L) ,     t t t t tY A Y        

 

Suppose you have an instrument Zt which is correlated with ε1t and uncorrelated 

with other shocks; specifically, Zt satisfies, 

 

Condition SVAR-IV 

(i) 
1 0t tE Z      (relevance) 

(ii) 2: , 0n t tE Z     (exogeneity w.r.t. other current shocks) 

 

Then 

   
0,111

0 0 0

0,2: ,10,2: ,1
2: ,

0

t t

t t t t

nn
n t t

Z
E Z E Z E

Z

 
 



        
                    

. 

 

so, with a single instrument, 
 
 

2: ,

0,2: ,1

1,

n t t

n

t t

E Z

E Z




   and 

2: ,1

0,2: ,1

1,1

ˆ

T

n t tSVAR IV t

n T

t tt

Z

Z





 



 



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IV interpretation:  , 0, 1 1, 0, 2 2, 0, ,...
Y Yi t i t i t in n t         

            0, 1 1, 2: ,{ }   (using unit effect normalization)
Yi t n t      

or 
      , 0, 1 1, 1 2: ,(L) { }

Yi t i t i t n tY Y Y        

 

SVAR-IV estimator:  1

,1 0,1
ˆ ˆ ˆˆ ˆC ,   C(L) A(L)SVAR IV SVAR IV

h h

       

 

Strong instrument asymptotics and inference 

• Conventional delta method and IV formulas go through 

• One implementation is the parametric bootstrap, where a time series 

process for Zt is estimated, see Stock and Watson (2018) 

  

Weak instrument asymptotics and inference 

(Montiel Olea, Stock, and Watson (2018)) Weak IV asymptotic setup. Obtain 

weak instrument distribution, conduct robust inference 

  



         3-47 

 

SVAR-IV, ctd. 

 

Example: New car sales 

 

Recall the estimation equations:  0, 1( ) p

t pW t p t tp W L Y      

0, 0, 1( ) q

t qp t pW t q t tq p W L Y       

 

• The critique of this specification is that it requires auto dealers not to hold a 

clearance event if sales are weak this quarter – the dealer needs to wait until 

next quarter to hold the sale.  

• Technically, the condition is  | , 0q p W

t t tE       

• If this condition fails, then pt is correlated with q

t , which is in the error term. 

 

Instead, if there is an instrument for new car prices that satisfies Condition 

SVAR-IV (correlated with price shock, uncorrelated with other shocks), then Θ0,p 

can be estimated using the instrument.  
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Outline 

 

Part A 

1. Dynamic causal effects: Overview 

a. Definition and conceptual framework 

b. Estimation when the shock is observed 

c. Identification and estimation when the shock is unobserved 

2. Multivariate methods with internal identification: SVARs 

 

Part B 

3. Single equation methods with internal identification: LP 

4. Multivariate methods with external instruments: SVAR-IV 

5. Single-equation methods with external instruments: LP-IV 

6. Summary 
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Single-equation IV estimation: LP-IV 

 

Start with the basic LP regression for h-period effect of shock 1 on variable j: 

, , 1 1, 1 2: , 1 2{ ,..., , , , ,...}i t h h i t t h t n t t tY


                   (*) 

 

With the unit effect normalization 1, 1, 2: ,{ }t t n t    , so (*) can be written, 

, , 1 1 1 2: , 1 2{ ,..., , , , ,...}j t h h j t t h t n t t tY


                 (**) 

 

In general, ν1t is correlated with the error term in (**) (simultaneous equations 

bias). But suppose you have an instrument Zt that satisfies: 

 

Condition LP-IV (Mertens’ conditions) 

 (i)  1, 0t tE Z       (relevance) 

(ii)  2: , 0n t tE Z      (contemporaneous exogeneity) 

(iii)   0t j tE Z 
    for j ≠ 0 (lag & lead exogeneity). 

 

Then , 1h j  in (**) can be estimated using Zt as an IV (with HAR SEs). 
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LP-IV, ctd. 

 

IV estimation of:  , , 1 1 1 2: ,{..., , }j t h h j t t n tY        

 

IV estimator:    
,1

, 1

11

ˆ

T

j t h tLP IV t
h j T

t tt

Y Z

Z

 



 



 

 

Interpretation: Regress inflation 4 quarters hence on the FF rate, using the MP 

surprise as an instrument 

 

Relation between SVAR-IV and LP-IV 

SVAR-IV and LP-IV produce identical impact effects, but differ for h ≥ 1: 

h = 0:   2: ,0,1 0,11

1,1

1

ˆ ˆTLP IV SVAR IV
n t tt

T

t tt

Z

Z





 





 
 

    
  
 





 

 

h ≥ 1:   1

,1 0,1
ˆ ˆ ˆˆ ˆC ,   C(L) A(L)SVAR IV SVAR IV

h h

       
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LP-IV with controls 

 

Condition LP-IV(iii) is (very) strong, not even satisfied in the Gertler-Karadi 

application, however it might be satisfied after including some control variables. 

 

Notation: tx  = xt   Proj(xt | Wt) 

 

LP-IV regression with controls:  , , 1 1, ,

h

i t h h i t h t i t hY Y W u 

 
     

 

Conditions for instrument validity with controls: 

 

Condition LP-IV  

(i)    1, 0t tE Z      

(ii)   2: , 0n t tE Z     

(iii)   0t j tE Z  


   for j ≠ 0. 
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LP-IV with controls, ctd 

 

, , 1 1, ,

h

i t h h i t h t i t hY Y W u 

 
     

 

Condition LP-IV (iii)   0t j tE Z  


   for j ≠ 0. 

What are the controls? 

• Specific controls: Gertler-Karadi construction of Z induced MA(1) structure: 

Zt = δ1ε1,t + δ1ε1,t-1  

so Wt = (Zt-1, Zt-2,…) and tZ   = δ1ε1,t  

 

• Generic controls: if Zt depends on ε1,t and εt-1, εt-2,… 

Wt = (Yt-1, Yt-2,…) (lagged observable macro variables) 

Wt = (Ft-1, Ft-2,…) (lagged estimated factors – like FAVAR, but single-

equation) 
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SVAR-IV vs. LP-IV 

 

The purported pros and cons of SVAR-IV vs, LP-IV parallel those of SVAR vs. 

LP (e.g., LP-IV purportedly does not require correct specification of the VAR, 

LP-IV does not require invertibility, LP-IV is valid under nonlinearities). 

 

However, there is a strong equivalency result available which basically says that 

in general, if lagged Y’s are required as controlled variables for an instrument to 

be valid, then Conditions SVAR-IV and LP-IV⊥ are equivalent.  
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Invertibility and assumptions LP-IV, LP-IV, and SVAR-IV, 

 

 LP-IV LP-IV SVAR-IV 

 
, , 1 1,

h

i t h h i t t hY Y u     
, , 1 1, ,

h

i t h h i t h t i t hY Y W u 

 
     

1

1

 , ,

(L)

 ( | )

t t

t t t

t

tProj

Y A Y

Y Y



  

 

 


 

(i)  1, 0t tE Z      1, 0t tE Z       1 0t tE Z     

(ii)  2: , 0n t tE Z     2: , 0n t tE Z      2: , 0n t tE Z    

(iii)   0t j tE Z 
    for j ≠ 0   0t j tE Z  


   for j ≠ 0  

 

Equivalence result (Stock & Watson (2018)) 

In LP-IV, let Wt = (Yt-1, Yt-2,…), and let Z denote the set of stochastic 

processes (candidate instruments) that satisfies LP-IV (i), (ii), and (iii) for j 

>0. Then: 

(a) Condition SVAR-IV is satisfied 

(b) LP-IV is satisfied for all Z  Z if and only if invertibility holds. 

 

i.e. LP-IV = SVAR-IV + invertibility 
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Sketch of proof 

 

In LP-IV, let Wt = (Yt-1, Yt-2,…), and let Z denote the set of stochastic processes 

(candidate instruments) that satisfies LP-IV (i), (ii), and (iii) for j >0. Then: 

(a) Condition SVAR-IV is satisfied 

(b) LP-IV is satisfied for all Z  Z if and only if invertibility holds. 

 

(a) This is immediate because      1 2Proj( | , ,...)t t t t t t t t tE Z E Z Z Y Y E Z   

 
      

(b)  Invertibility implies LP-IV(iii):  

Under invertibility  1 2Proj | , ,...t j t t t jY Y      so

 1 2Proj | , ,...t j t j t j t tY Y  

       = 0 so  t j tE Z  

  = 0.  

LP-IV(iii) implies invertibility: 

Consider AR(1) instrument case,  1 2 1Z =Proj | , ,...t t t t t t tZ           , 

where ζt satisfies LP-IV(iii). If LP-IV(iii) is satisfied, then 

     1 1 1 1 1 1 10 t t t t t t tE Z E E     


    

    
       
  

 

so  1 1 1 1 2Proj | , ,... 0t t t t tY Y  

       . 
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Hausman-type test for invertibility 

 

Suppose an instrument satisfies LP-IV, or LP-IV with specific controls (not 

generic controls). Then SVAR-IV is satisfied. 

 

If invertibility holds, then SVAR-IV is more efficient 

 

Hausman-type test statistic: ˆ ˆ ˆ ˆˆ( ) ( )LP IV SVAR IV LP IV SVAR IVT V 1 , h > 1 

 

Idea that invertible and noninvertible IRFs can be close to each other (Beaudry et 

al (2015), Plagbog-Møller (2016)) suggest the null and local alternative, 

 
1/2

,1 0,1h h hC T d     

 

Under the local alternative, ˆ ˆ N( , )dLP IV SVAR IVT d V   

Variance matrix computed by parametric bootstrap 
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Forecast error variance decompositions and historical decompositions 

 

FEVD is fraction of h-step ahead forecast error for variable i that is explained by 

shock 1. 

 

1

1
2 2

, 1

0
, 1

, 1var | , ,...

h

k i

k
h i

i t h t t

FEVD
Y



 





 






 

• This answers: How important is shock 1? 

• Computing this requires identification of 
1

2

  and  , 1var | , ,...i t h t tY     in 

addition to SIRF.  

• Sufficient condition is invertibility and identification of 0,1: 

 1 1

1, 0,1 0,1 0,1, where  t t                

 1

1
2 1

0,1 0,1 


     

and     , 1 , 1var | , ,... var | , ,...i t h t t i t h t tY Y Y Y      

[First line:   1

1
1 1 2

0,1 0,1 0 0 1 1, /t t t te       


              ] 

• Estimation: Gorodnichenko and Lee (2017) 

• Bounds: Plagborg-Møller and Wolf (2017)  
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SVAR-IV and LP-IV Example: Gertler-Karadi (2015) 

 

Yt = (ΔlnIPt, ΔlnCPIt, 1Yr  Treasury ratet, EBPt) 

 

EBPt = Gilchrist-Zakrajšek (2012) Excess Bond Premium 

 

   zt = “Announcement surprise”  

= change in 4-week Fed Funds Futures around FOMC announcement  

    windows 

 

Sample period: 1990m1-2012m6 (monthly) 

 

SVAR-IV:   GK specification: 12 lag VAR 

 

LP-IV:    Wt = Yt-1,…, Yt-4, zt-1,…, zt-4 
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Gertler-Karadi example, ctd. 

 

Cumulative IRFs: SVAR-IV with 1 SE bands 
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Gertler-Karadi example, ctd. 

Cumulative IRFs: LP-IV with 1 SE bands 

W = 4 lags of Y, z 
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Gertler-Karadi example, ctd. 

 

Cumulative IRFs: SVAR-IV and LP-IV and 1 SE bands (parametric bootstrap) 
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Gertler-Karadi example, ctd. 

Test statistics by horizon by variable: entries are t-statistics ˆ/T hV   
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Gertler-Karadi example, ctd. 

 

LP-IV 68% bands: 1 SE and Anderson-Rubin Confidence Interval 
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Gertler-Karadi example, ctd. 

 

Cumulative IRFs: SVAR-IV and LP-IV and 1 SE bands (parametric bootstrap) 
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Gertler-Karadi example, ctd. 

 

 

Table 2: Tests for VAR Invertibility (p-values) 

 
 1Year 

Rate 
ln(IP) ln(CPI) GZ EBP 

VAR-LP difference (lags 
0,6,12,24) 

0.95 0.55 0.75 0.26 

VAR Z-GC test 0.16 0.09 0.38 0.97 

Notes: The first row is the bootstrap p-value for the test of the null 

hypothesis that IV-LP and IV-SVAR causal effects are same for h = 0, 6, 12, 

and 24 (test for invertibility). The second row shows p-values for the F-

statistic testing the null hypothesis that the coefficients on four lags of Z are 

jointly equal to zero in each of the VAR equations. 
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SVAR-IV Empirical Application #2: Stock-Watson (BPEA, 2012) 

Dynamic factor model identified by external instruments: 

• U.S., quarterly, 1959-2011Q2, 200 time series 

• Almost all series analyzed in changes or growth rates 

• All series detrended by local demeaning – approximately 15 year centered 

moving average: 

 
Quarterly GDP growth (a.r.)   Quarterly productivity growth 

Trend:    3.7%  2.5%         2.3%  1.8%  2.2%  
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Instruments 

 

1. Oil Shocks 

a. Hamilton (2003) net oil price increases 

b. Killian (2008) OPEC supply shortfalls 

c. Ramey-Vine (2010) innovations in adjusted gasoline prices 

 

2.  Monetary Policy 

a. Romer and Romer (2004) policy 

b. Smets-Wouters (2007) monetary policy shock 

c. Sims-Zha (2007) MS-VAR-based shock 

d. Gürkaynak, Sack, and Swanson (2005), FF futures market 

 

3. Productivity 

   a. Fernald (2009) adjusted productivity 

   b. Gali (200x) long-run shock to labor productivity 

   c. Smets-Wouters (2007) productivity shock  
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Instruments, ctd. 

 

4.  Uncertainty 

  a. VIX/Bloom (2009) 

  b. Baker, Bloom, and Davis (2009) Policy Uncertainty 

 

5. Liquidity/risk 

  a. Spread: Gilchrist-Zakrajšek (2011) excess bond premium  

  b. Bank loan supply: Bassett, Chosak, Driscoll, Zakrajšek (2011)  

c. TED Spread 

 

6. Fiscal Policy 

  a. Ramey (2011) spending news  

     b. Fisher-Peters (2010) excess returns gov. defense contractors 

  c. Romer and Romer (2010) “all exogenous” tax changes. 
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“First stage”: F1: regression of Zt on ut, F2: regression of u1t on Zt 

 
 

Structural Shock F1 F2 

1. Oil   

   Hamilton  2.9 15.7 

   Killian  1.1 1.6 

   Ramey-Vine 1.8 0.6 

2.  Monetary policy   
   Romer and Romer 4.5 21.4 

   Smets-Wouters  9.0 5.3 

   Sims-Zha  6.5 32.5 

   GSS 0.6 0.1 

3.  Productivity   

   Fernald TFP 14.5 59.6 
   Smets-Wouters 7.0 32.3 

   

   

Structural Shock F1 F2 

4.  Uncertainty   
   Fin Unc (VIX) 43.2 239.6 

   Pol Unc (BBD) 12.5 73.1 

5.  Liquidity/risk F1 F2 

   GZ EBP Spread 4.5 23.8 

   TED Spread  12.3 61.1 

   BCDZ Bank Loan  4.4 4.2 

6.  Fiscal policy   

   Ramey Spending 0.5 1.0 
   Fisher-Peters 
Spending 

1.3 0.1 

   Romer-Romer 
Taxes 

0.5 2.1 
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Correlations among selected structural shocks 

OilKilian oil – Kilian (2009) 

MRR  monetary policy – Romer and Romer (2004) 

MSZ  monetary policy – Sims-Zha (2006) 

PF  productivity – Fernald (2009) 

UB  Uncertainty – VIX/Bloom (2009) 

UBBD uncertainty (policy) – Baker, Bloom, and Davis (2012) 

LGZ  liquidity/risk – Gilchrist-Zakrajšek (2011) excess bond premium 

LBCDZ liquidity/risk – BCDZ (2011) SLOOS shock 

FR  fiscal policy – Ramey (2011) federal spending 

FRR  fiscal policy – Romer-Romer (2010) federal tax 

  

 OK MRR MSZ PF UB UBBD SGZ BBCDZ FR FRR 

OK 1.00            

MRR 0.65   1.00           

MSZ 0.35   0.93   1.00          
PF 0.30   0.20   0.06   1.00         

UB -0.37   -0.39   -0.29   0.19   1.00        

UBBD 0.11   -0.17   -0.22   -0.06   0.78   1.00       

LGZ -0.42   -0.41   -0.24   0.07   0.92   0.66   1.00      

LBCDZ 0.22   0.56   0.55   -0.09   -0.69   -0.54   -0.73   1.00   

FR -0.64   -0.84   -0.72   -0.17   0.26   -0.08   0.40   -0.13   1.00    

FRR 0.15   0.77   0.88   0.18   0.01   -0.10   0.02   0.19   -0.45   1.00 
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Selected literature on external instruments 
 

SVAR-IV 

Stock (2008), Stock and Watson (2012), Montiel Olea, Stock and Watson (2018), 

Mertens and Ravn (2013, 2014), Gertler and Karadi (2015), Caldera and Kamps 

(2017), Lumsford (2015), Carriero, Momtaz, Theodoridis, and Theophilopoulou 

(2015), Jentsch and Lunsford (2016), … 

 

Local-projections (LP-IV) 

Jordà, Schularick, and Taylor (2015), Ramey and Zubairy (2017), Ramey (2016), 

Mertens (2015), Fieldhouse, Mertens, Ravn (2017), Mertens (2015) lecture notes, 

Fieldhouse, Mertens, Ravn (2017), Plagborg-Møller and Wolf (2017), 

Gorodnichenko and Lee (2017) 
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Outline 

 

Part A 

1. Dynamic causal effects: Overview 

a. Definition and conceptual framework 

b. Estimation when the shock is observed 

c. Identification and estimation when the shock is unobserved 

2. Multivariate methods with internal identification: SVARs 

 

Part B 

3. Single equation methods with internal identification: LP 

4. Multivariate methods with external instruments: SVAR-IV 

5. Single-equation methods with external instruments: LP-IV 

6. Summary  
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Summary 

 

1. Within the context of SVAR identification using internal restrictions 

(requiring invertibility), recent work has focused on inference with sign 

restrictions and on identification by heteroskedasticity. 

a. In the case of sign restrictions, the standard Bayesian algorithm produces 

results that are troubling from both a Bayesian and frequentist 

perspective, in which informative priors are imposed through a nonlinear 

transformation of flat priors on the space of orthonormal matrices. 

b. In the case of identification by heteroskedasticity, such identification 

seems to be generic, if there is heteroskedasticity (e.g., ARCH or 

stochastic volatility), without knowing the driving process. The shocks 

are then identified up to their “name”. 

 

2. Otherwise, recent work on identification and estimation of dynamic causal 

effects methods have focused on bringing the rigor of the microeconometric 

identification revolution to macroeconomics. 
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Summary, ctd. 

 

3. One branch is formulating shocks and dynamic causal effects from the 

perspective of potential outcomes and experimental treatments. 

 

4. Another branch, which has already produced a substantial number of papers, 

is using IV methods to identify and to estimate dynamic causal effects. 

 

5. At the heart of these new IV methods (SVAR-IV and LP-IV) is finding 

external information – an instrument that is correlated with the shock of 

interest, but not other shocks. 

 

6. LP and LP-IV initially appear to require weaker assumptions than SVAR and 

SVAR-IV, but this is not the case. Outside of the measured shock case, 

identification by timing or by instrument conditions in general requires 

invertibility for the LP conditioning set to deliver conditional mean 

independence. But if invertibility holds, SVAR and SVAR-IV are valid and 

are more efficient asymptotically. 
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Overview and Summary 

 

Topic: IV regression with a single included endogenous regressor, control 

variables, and non-homoskedastic errors. 

• This covers heteroskedasticity, HAC, cluster, etc. 

• We assume that consistent robust SEs exist for the reduced form & first stage 

regressions (Note: This means HAC, not HAR! old bandwidth rule.) 

• Early literature (through ~2006): homoskedastic case 

• This lecture focuses on weak instruments in the non-homoskedastic case (i.e., 

the relevant case). 

 

Outline 

1. So what? 

2. Detecting weak instruments 

3. Estimation (brief) 

4. Weak-instrument robust inference 

5. Extensions 
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1. So What?  

So what? (1) Theory 

An instrumental variable is weak if its correlation with the included 

endogenous regressor is “small”. 

• “small” depends on the inference problem at hand, and on the sample size 

 

With weak instruments, TSLS is biased towards OLS, and TSLS tests have 

the wrong size.  

 

Distribution of the TSLS 

t-statistic (Nelson-Startz 

(1990a,b)) 

• Dark line = irrelevant 

instruments 

• dashed light line = strong 

instruments  

• intermediate cases = weak 

instruments 
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So what? (2) Simulation 

 

DGP: 8 AER papers 2014-2018  
(Sample: 17 that use IV; 16 with a single X; 8 in simulation sample) 

 

Median of TSLS t-statistic under the null 
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So what? (3) Practice  

 

Histogram of first-stage Fs in AER papers (108 specifications), 2014-2018 

 

• The first-stage F tests the 

hypothesis that the first-stage 

coefficients are zero. 

• Of the 17 papers, all but 1 report 

first-stage Fs for at least one 

specification; the histogram is of 

the 108 specifications that report 

a first-stage F (72 of which are 

<50 and are in the plot).  

• Great that 

authors/editors/referees are 

aware of the potential 

importance of weak instruments, 

as evidence by nearly all papers reporting first stages Fs! 

• The spike at F = 10 is “interesting” 
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2. Detecting Weak Instruments 

 

It is convenient to have a way to decide if instruments are strong (TSLS “works”) 

or weak (use weak-instrument robust methods). 

 

The standard method is “the” first-stage F. Candidates: 

FN – nonrobust 

FR – robust (HR, HAC, cluster), also called Kleibergen-Paap (2006) 

FE – Effective first-stage F statistic of Montiel Olea and Plueger (2013) 

 

• There are other candidates too, but they are not used in practice (and should 

not be); these include Hahn-Hausman (2002), Shea’s (1997) partial R2 

 

• Multivariate extension (multiple included endogenous regressors): the Cragg-

Donald statistic and its robustified counterpart, Kleibergen-Paap.  
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Detecting weak instruments in practice 

 

Reported first-stage F’s: what authors say they use 

 
Candidates:  FN – nonrobust 

FR – robust (HR, HAC, cluster), also called Kleibergen-Paap (2006) 

FE – Effective first-stage F statistic of Montiel Olea and Plueger (2013) 
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Detecting weak instruments in practice, ctd 

 

Actual first-stage F’s: what authors actually use 

 
Candidates:  FN – nonrobust 

FR – robust (HR, HAC, cluster), also called Kleibergen-Paap (2006) 

FE – Effective first-stage F statistic of Montiel Olea and Plueger (2013) 
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Our recommendations (1 included endogenous regressor) 

• Do:  

o Use the Montiel Olea-Pflueger (2013) effective first-stage F statistic 

FEff = FN × correction factor for non-homoskedasticity 

o Report FEff 

o Compare FEff to MOP critical values (weakivtest.ado), or to 10. 

o If FEff ≥ MOP critical value, or ≥ 10 for rule-of-thumb method, use TSLS 

inference; else use weak-instrument robust inference. 

 

• Don’t  

o use/report p-values of test of π = 0 (null of irrelevant instruments) 

o use/report nonrobust first stage F (FN) 

o use/report usual robust first-stage F (except OK for k = 1 where FR = FEff) 

o use/report Kleibergen-Paap (2006) statistic (same thing). 

o compare HR/HAC/Kleibergen-Paap to Stock-Yogo critical values 

o reject a paper because FEff < 10!  

Instead, tell the authors to use weak-IV robust inference. 
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Notation and Review of IV Regression 
 

IV regression model with a single endogenous regressor and k instruments 

1i i i iY X W         (Structural equation) (1) 

2i i i iX Z W V        (First stage)    (2) 

 

where W includes the constant. Substitute (2) into (1): 

 

3i i i iY Z W U         (Reduced form)   (3) 

 

where δ = πβ and 
i i iU V    . 

 

• OLS is in general inconsistent: 
2

ˆ pOLS X

X


 


  .  

• β can be estimated by IV using the k instruments Z. 

• By Frisch-Waugh, you can eliminate W by regressing Y, X, Z against W and 

using the residuals. This applies to everything we cover in the linear model 

so we drop W henceforth.  
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Setup:  
i i iY X           (Structural equation) (1) 

i i iX Z V         (First stage)    (2) 

,    i i iY Z U     , ε = U – βV.  (Reduced form)   (3) 
__________________________________________________________________________________________________________________________________________________________________________________ 

 

The two conditions for instrument validity 

(i) Relevance:   cov(Z,X) ≠ 0  or π ≠ 0 (general k) 

(ii) Exogeneity:  cov(Z,ε) = 0  

 

The IV estimator when k = 1 (Wright 1926) 

  
cov( , ) cov( , ) cov( , ) cov( , )

cov( , )        by (i)

Z Y Z X Z X Z

Z X

   



   


 

so 

    
cov( , )

        by (ii)
cov( , )

Z Y

Z X
   

IV estimator: 

    

1

1

1

1

ˆ
ˆ

ˆ

n

i iIV i

n

i ii

n Z Y

n Z X














 



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Setup:  
i i iY X           (Structural equation) (1) 

i i iX Z V         (First stage)    (2) 

,    i i iY Z U     , ε = U – βV.  (Reduced form)   (3) 
__________________________________________________________________________________________________________________________________________________________________________________ 

 

k > 1: Two stage least squares (TSLS) 
1

1

1 2

1

1

1

ˆ
ˆ ˆ,      where  predicted value from first stage

ˆ

 

ˆ ˆˆ ˆ,          where  
ˆˆ ˆ

n

i iTSLS i
in

ii

nZZ
ZZ i ii

ZZ

n X Y
X

n X

Q
Q n Z Z

Q



 

 













 

  


  


 









-1

-1

X Z(Z Z) Z Y

X Z(Z Z) Z X
 

The weak instruments problem is a “divide by zero” problem  

• cov(Z,X) is nearly zero; or π is nearly zero; or 

• ˆˆ ˆ
ZZQ   is noisy 

• Weak IV is a subset of weak identification (Stock-Wright 2000, Nelson-

Starts 2006, Andrews-Cheng 2012) 
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Statistics for measuring instrument strength  

 

Non-robust:    
2

ˆˆ ˆ

ˆ

N ZZ

V

Q
F n

k

 




   

Robust:    
1ˆˆ ˆRF

k

 
  

MOP Effective F: 

   
2

1/2 1/2 1/2 1/2

ˆ ˆˆ ˆ

ˆ ˆˆ ˆ ˆ ˆ

Eff NVZZ

ZZ ZZ

kQ
F F

tr Q tr Q   

 
 

    
 

 

compare to TSLS: 
ˆ ˆˆˆ
ˆˆ ˆ

TSLS ZZ

ZZ

Q

Q

 


 





 

 

Intuition 

• FN measures the right thing (
ZZQ  ), but gets the SEs wrong  

• FR measures the wrong thing (
1

  ), but gets the SEs right 

• FEff measures the right thing and gets SEs right “on average” 
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Distributional assumptions  
 

Setup:  
i i iX Z V         (First stage)    (2) 

,    i i iY Z U     , ε = U – βV.  (Reduced form)   (3) 
 

CLT: 
 
 

 *

ˆ

0, ,
ˆ

d
n

N

n

 

 

 
  
  

 Σ* is HR/HAC/Cluster (henceforth, “HR”) 

 

(i) CLT limit holds exactly: 1 *
ˆ

, ,   where  
ˆ

N n
 

 






       

                 
 

(ii) Reduced form variance & moment matrices are all known: Σ, QZZ 

 

A lot is going on here! 

• HR/HAC/cluster variance estimators are consistent 

• 1950s-1970s finite-sample normal (fixed Z’s) literature 
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A lot is going on here, ctd 

 

From   
 
 

 *

ˆ

0,
ˆ

d
n

N

n

 

 

 
  
  

 

to   1 *
ˆ

, ,   where  
ˆ

N n
 

 






       

                 
 

 

• Weak IV asymptotics (Staiger-Stock 1997): /C n  . 

    

     

      *

1 1

* 1

* 1 2

;

ˆ ˆˆ ˆ ˆ ˆ/

ˆˆ ˆ

ˆˆ ˆ

R

d

k C C

kF n n n

n n n n

n C n C


 





   

     

    

 








   


     


      

  

• Limit experiment interpretation (Hirano-Porter 2015) 

• Uniformity (D. Andrews-Cheng 2012) 
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Homework problem 

Let k = 2 and 2
ˆ

ZZQ I . Suppose 

2 2

2 2

0
/

0

U UV

UV V

n
  

  

   
     

  
. 

1) Let   * 1/2 ˆ dn z     . Show that: 

a)  1/2 1/2 2 2 2( ) /ZZ Vtr Q n         . 

b)    
2 22 2

1 ,1 2 ,2

1

2

NF z z        
 

  

c)    
1

2

RF z z      

d) 
   

2 22 2

1 ,1 2 ,2

2 2

Eff
z z

F
    

 





  



 

2) Adopt the weak instrument nesting π = n-1/2C, where C1, C2 ≠ 0. Show that as 
2  : 

a)  “bias” of   2ˆ ˆ= plimTSLS OLS

V V         

b) pNF    
c) pRF    

d) 
2

1

dEffF    

3) Discuss 
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Work out the details for k = 1 first.  

Preliminaries: 

(a) Use distributional assumption (i) 

   1 *
ˆ

, ,   where  
ˆ

N n
 

 






       

                 
 

 to write, 

ˆ

ˆ





  

  

 

 
, where  0,N

  

  





     
    

     
 

(b) Connect to the structural regression: 

       ˆ ˆ

,   where    

   

   

           

    

           

  

-1
(Z Z) Z ε

  

(c) Standardize: 

  1/2

1/2

ˆ ~ z

z

  

  

   



   

 
, where 

1/2

    and  
1

~ 0,
1

z
N

z









    
    

    
  

(d) Project & orthogonalize: 

z z     , where 
2~ (0,1 ),   vN z     ,         
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What parameter governs departures from usual asymptotics (k = 1)? 

 

  

1/2

1/2

ˆ
ˆ

ˆ

ˆˆ ˆ( )
ˆ   add and subtract 

ˆ

   use representations in (a) and (b)

standardize using representation in (c)

  

IV

z

z

z

z z





 

 

  

   






  







 







 



 


 


 
   

  

    
     

      
using projection (d)

 

     “bias”      “noise” 

 

Parameter measuring instrument strength (k = 1) is 
2 2

    
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“Bias” part of IV representation 

 

ˆ IV z

z

 

 

 


 
   

  
, where 

1/2

    

 

Instrument strength depends on λ2 

• Strong instruments: 2 , usual asymptotic distribution 

• Irrelevant instruments: π = 0 so λ = 0:  
1/2

1/2
ˆ IV

z

 

  


 

  
    

  
 ~ Cauchy centered at 






 

o In homoskedastic case,  2
ˆplim OLSV

V

 




 




  


 

• In the homoskedastic case, λ2 = the concentration parameter (old Edgeworth 

expansion/finite sample distribution literature) 
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Instrument strength, k = 1, ctd. 

 

How big does λ need to be? A “bias” heuristic:  

 

2

2 2

ˆ

/

1 /

1
1 ...

IVE z
E

z

z
E

z

z z z
E E



  





  

 







   




  




    
          

    

 

 

• For bias, relative to unidentified case, to be <0.1, need λ2 > 10. 

• But we don’t know λ! So, we need a statistic with a distribution that depends 

on λ, which we can use to back out an estimate/test/rule of thumb. 

• This is the Nagar (1959) expansion for the bias 

• How do the three candidate first-stage Fs fare? 
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Distributions of the three first-stage Fs, k = 1 

First note that, when k = 1, FR = FEff: 

 
2

1/2 1/2

ˆˆ ˆ ˆ

ˆˆˆ ˆ

Eff RZZ

ZZ

Q
F F

tr Q  

  
  

 
 

Distributions 

2

2
2 2

1;

ˆ
, ( )

ˆ
Eff R

vF F z





   


 

*2
2

2 22

ˆˆ ˆ ˆ
( )

ˆˆ ˆ

N ZZ

V V ZZV ZZ

Q
F n z

QnQ




  


 

 
     

 

Implications 

FR, FEff can be used for inference about λ2 when k = 1 

• Estimation:  
2 2 1eff

VEF E z     , so 2ˆ 1EffF    

• Testing: H0: “bias” ≤ 0.1. Reject H0 if FEff > critical value.  

• Rule of thumb: Feff < 10 will detect weak IVs with probability that increases 

as λ2 gets smaller 
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Implications, ctd. 
*

2

2
( )N

V

V ZZ

F z
Q





   

 
2

,Eff R

VF F z   

 

FN is misleading in the HR case. 

• Suppose 
*

  is large (i.e., first stage HR SEs are a lot bigger than NR SEs) 

2

* *
2 2

2 2 1;
( )N

V

V ZZ V ZZ

F z
Q Q

 


 

 

 
    

where λ2 = π2/Σππ. For 
*

  large, 2 0  , and 
*

2

12
~N

V ZZ

F
Q

 



   

i.e., Instruments are in the limit irrelevant – but 
NF  . 

 

In the k = 1 case, FR = FEff. These differ in the k > 1 case, where FEff is preferred. 
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Homework problem 

Let k = 2 and 2
ˆ

ZZQ I . Suppose 

2 2

2 2

0
/

0

U UV

UV V

n
  

  

   
     

  
. 

1) Show that: 

a)  1/2 1/2 2 2 2( ) /ZZ Vtr Q n         . 

b)    
2 22 2

1 ,1 2 ,2

1

2

NF z z        
 

 

c)    
1

2

RF z z      

d) 
   

2 22 2

1 ,1 2 ,2

2 2

Eff
z z

F
    

 





  



 

2) Adopt the weak instrument nesting π = n-1/2C, where C1, C2 ≠ 0. Show that as 
2  : 

a)  “bias” of   2ˆ ˆ~ = plimTSLS OLS

V V        

b) pNF    
c) pRF    

d) 
2

1

dEffF    

3) Discuss 
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Homework problem solution 

Let k = 2 and 2
ˆ

ZZQ I . Suppose 

2 2

2 2

0
/

0

U UV

UV V

n
  

  

   
     

  
 and π1, π2 ≠ 0 

1(a)  Direct calculation:  1/2 1/2 2 2 2( ) /ZZ Vtr Q n         

1(b)-(d): We have already done the work to get the expressions below following 

“~”, and the final expressions come from substitution of QZZ and Σ: 

   

   

1/2 1/2

2 2

2 22 2

1 ,1 2 ,2

ˆˆˆ ˆ
(b)       

1

2

zzN zz

V V

z n Q zn Q
F

k k

z z

   

 

  

 

   

    
 

    
 

 

   
   

1ˆˆ ˆ 1
(c)       

2

V VR z z
F z z

k k


 

  
 

         

 
   

 
   

1/2 1/2

1/2 1/2 1/2 1/2

2 22 2

1 ,1 2 ,2

2 2

ˆˆˆ ˆ
(d)       

ˆˆ ˆ

zzEff ZZ

ZZ ZZ

z Q zQ
F

tr Q tr Q

z z

   

   

 

  

   

 





    
 

    

  



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Homework problem solution, ctd. 

 

2) Adopt the weak instrument nesting π = n-1/2C, where C1, C2 ≠ 0. Show that as 
2  : 

a) “bias” of   2ˆ ˆ~ plimTSLS OLS

V V         

Last part first:   2 2ˆplim OLS

X X V V          because π = n1/2C. 

Next obtain the expression (several tedious steps), 

“Bias” part  
( )ˆ

( ) ( )

TSLS z HRz

z H z

 

 


 

 


 

 
  

 where 

2

1/2 1/2 2

2

0
/

0
ZZ VH Q n 






 
     

 
 and 

1/2 1/2

22

V

V

R I
  





       . 

  For the weak instrument nesting, 
/12

2

1/2 2

2

11

1/2 1

2

0
/

0

/0
/

/0

V

V

V

V

n

C
n

C




   



 
 

 









  
     

  

  
    
   
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Homework problem solution, ctd. 

 

Now substitute these expressions for λ, H, and R into the “bias” part: 

 

 

2

2

22

2

1 1

1 ,1 ,1 2 ,2 ,2

2 1 2 2

1 ,1 2 ,2

1

2

0
( )

0ˆ
0

( ) ( )
0

( / ) ( / )

( / ) ( / )

1 ( )

TSLS V

V

V V V

V V V

V
p

V

z z

z z

C z z C z z

C z C z

O

 



 

    

 






 
 


 



      

    










 





 
  
  

 
  
 

    
  

    

 
   

 
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Homework problem solution, ctd. 

Remaining parts by substitution and taking limits: 

   

   

2 22 2

1 ,1 2 ,2

22 1 2 2

1 ,1 2 ,2 1

1
(b)       

2

1 1
/ / ( )

2 2

N

V V p

F z z

C z C z O

 

 

   

      





    
 

     
  

 

   

   
2 21

1 ,1 2 ,2

2
22

2

1
(c)       

2

1
/ /

2

1
( )

2

R

V V

p

V

F z z

C z C z

C
O

 

 

 

   

 




  

    
  

  

 

2 2

,1 2 1 2

,1 12 2 2 2

( )
(d)       ( ) ~

N
pEff

p

z OF
F z O





 
 

   



 


   

 
 

 

3) Discuss  



 4-28 

OK, use FEff – but what cutoff? 

   
1/2 1/2

1/2 1/2
,   where   

( )

Eff ZZ

ZZ

Q
F z H z H

tr Q

 
 

 

 
    
 

 

  ~ weighted average of noncentral χ2’s – depends on full matrix H,  

0 ≤ eigenvalues (H) ≤ 1 

Scalar case: Just use Stock-Yogo (2005) critical values 

Hierarchy of options: overidentified case 

1. Testing approach: test null of H   ≥ some threshold (e.g. 10% bias) 

a) (MOP Monte Carlo method) Given Ĥ , compute cutoff Ĥ  ; critical value 

by simulation 

b) (MOP Paitnik-Nagar method) Approximate weighted average of noncentral 

χ2’s by noncentral χ2; compute cutoff value of H   using Nagar 

approximation to the bias, with some maximal allowable bias. Implemented in 

weakivtest.ado. 

c) (MOP simple method) Pick a maximal allowable bias (or size distortion) and 

use their “simple” critical values (based on noncentral χ2 bounding 

distribution). These are simple, but conservative. 

2. Consistent sequence approach: “Weak” if FEff < 
n  , 

n   (but what is 
n ?) 

3. Rule-of-thumb approach: “Weak” if FEff < 10  
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k=1 case, additional comments about FEff and FR 

ˆ IV z

z

 

 

 


 
   

  
, where 

1/2

    

0

1/2
2

ˆ

ˆ( )
1 2

IV
IV

IV

z
t

SE
z z

z z



 

 

 




 


 

    
     

      

, where 
 

1/2



 





 

  

      R EffF F z z       

 

• By maximizing over ρ you can find worst case size distortion for usual IV t-

stat testing β0. This depends on λ, which can be estimated from FR = FEff. 

• These are the same expressions, with different definition of λ, as in 

homoskedastic case (special to k = 1) 

• Critical values for k = 1 – two choices: 

• Nagar bias ≤ 10%: 23 (5% critical value from 2

2

1; 0



) (MOP) 

• Maximum tIV size distortion of 0.10: 16.4; of 0.15: 9.0 

• But with k = 1 there are fully robust methods that are easy and have very 

strong theoretical properties (AR) (Lecture 3).  
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Detecting weak instruments with multiple included endogenous regressors 

 

Methods are based on multivariate F: Cragg-Donald statistic and robust variants 

• Nonrobust:  

o Minimum eigenvalue of Cragg-Donald statistic, Stock-Yogo (2005) 

critical values  

o Sanderson-Windmeijer (2016)  

• HR: Main method used is Kleibergen-Paap statistic, which is HR Cragg-

Donald. 

o But recall that this doesn’t work (theory) for 1 X, and having multiple X’s 

doesn’t improve things. 

• MOP Effective F: Hasn’t been developed yet for the case of multiple 

included endogenous regressors. 

 

More work is needed…. 
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What if you want to use efficient 2-step GMM, not TSLS? 

 

Everything above is tailored to TSLS! 

• Suppose that, if you have strong instruments, you use efficient 2-step GMM: 
1

1

ˆˆˆˆ
ˆˆ ˆ

GMM 



 


 









 , where  

2
(1)

1

1ˆ ˆ
n

i i i

i

Z Z
n

 


     

where 
(1)

î  is the residual from a first-stage estimate of β, e.g. TSLS. 

 

• Things get complicated because the first step (TSLS) isn’t consistent with 

weak instruments. 

o ˆ
 converges in distribution to a random limit 

o If 
  were known (infeasible), 

 

   

1/2 1/2

1/2 1 1/2

ˆGMM z z

z z

   

    


 

 





  
 

     
 

In general none of the F’s discussed so far get at the right object, 
1/2 1 1/2 1/2 1 1/2/ ( )tr              . (And this is “right” only if Σεε is known.) 
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3. Estimation 
 

What have we learned/state of knowledge: k = 1 

• There does not exist an unbiased or asymptotically-unbiased IV estimator 

(folk theorem; Hirano and Porter 2015). 

• Only one moment condition, so weighting (HR) isn’t an issue 

• LIML=TSLS=IV doesn’t have moments… 

• Fuller seems to have advantage over IV in terms of “bias” (location) in 

simulations (e.g., Hahn, Hausman, Kuersteiner (2004), I. Andrews and 

Armstrong 2017) (so should k-class). 

• If you know a-priori the sign of π, then unbiased, strong-instrument efficient 

estimation is possible (I. Andrews and Armstrong 2017) 
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Estimation, ctd. 

 

What have we learned/state of knowledge: k > 1 

• There does not exist an unbiased or asymptotically-unbiased IV estimator 

(folk theorem; Hirano and Porter 2015). 

• The IV estimators that were developed in the 60s-90s (LIML, k-class, double 

k-class, JIVE, Fuller) are special to the homoskedastic case, and in general 

lose their good properties in the HR case 

• Different IV estimators place different weights on the moments, and thus in 

general have different LATEs 

• With heterogeneity, the LIML estimand (Fuller too?) can be outside the 

convex hull of the LATEs of the individual instruments (Kolesár 2013) 

• For GMM applications estimating a structural parameter (e.g. New 

Keynesian Phillips Curve, etc.), the LATE concerns don’t apply, however 

when the moment conditions are nonlinear in θ, things get difficult. 

• If you know a-priori the sign of π, then unbiased estimation is possible (I. 

Andrews and Armstrong 2017)  
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4. Weak-Instrument Robust Inference 

 

OK – now what should you do if you have weak instruments? 

Wrong answer: reject the paper. 

 

Negative result: 

Confidence intervals of the form ˆ ˆ   in general won’t work  

• Dufour (1997): if β is unidentified (irrelevant instrument), the confidence 

interval must be infinite with probability 95% 

• We need a different approach 

 

Instead, the weak IV-robust literature constructs confidence intervals by 

inverting tests 

• Under H0: β = β0, a correctly-sized test rejects only 5% of the time. 

• Thus, the acceptance region of a 5% test contains the true value of β in 95% 

of all draws. 
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The Anderson-Rubin Statistic 

Setup:  
i i iY X           (Structural equation) (1) 

i i iX Z V         (First stage)    (2) 

,    i i iY Z U     , ε = U – βV.  (Reduced form)   (3) 

 

Under the null, 
0i i iY X    , so from the instrument exogeneity condition, 

   0 0i i i i iE Y X Z E Z       

 

To test this, run the regression,  

0 0i i i ixY X Z e       .   

 

The HR (HAC) F-statistic is, 

 

       

1

0 1 0 1

1 11

0 0 0

ˆˆ ˆ( ) ( )

ˆ' ( ) '

AR N

N Y X Z Z Z Z Z Z Y X

   

  



 

 

    
  

 

where  0 1
ˆ ˆ( ) var   , computed under β = β0 (HR, cluster, HAR, etc)  
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The Anderson-Rubin Confidence Interval 

 

Algorithm 

1. Pick a value of β0 and run the regression, 
0 0i i i ixY X Z e        using 

HR/HAR/Cluster SEs.   

2. Reject if 1

0 1 0 1
ˆˆ ˆ( ) ( )AR N       

3. If AR(β0) <
2

;.05k   (k = # instruments) then retain that value of β0 

4. Repeat for another value of β0 (grid of β0) 

 

The set of retained values is the acceptance region of the test = 95% AR 

confidence interval for β. 

 

Some strange properties of the AR interval 

• Can be a closed interval, two open intervals, the real line, or empty in the 

homoskedastic case – and more complicated forms in the HR/HAC case. 

• In the overidentified case (only), if one or more of the exogeneity conditions 

doesn’t hold, it can be incorrectly small (rejecting the overid condition, not β 

≠ β0).   
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Optimality of AR in Just-Identified Models 

 

• In just-identified case with single endogenous regressor, AR is optimal 

o 101 out of 230 specifications in our AER sample are just-identified with 

a single endogenous regressor 

• Moreira (2009) shows that AR test uniformly most powerful unbiased 

• AR equivalent to two-sided t-test when instruments are strong 

• In just-identified settings, strong case for using AR CS 

o Optimal among CS robust to weak instruments 

o No loss of power relative to t-test if instruments strong 

 

Is it a problem that the AR interval is longer than the usual IV interval? 

• Not in the exactly identified case.  

• The two intervals will be the same if the instruments are strong, but if they 

are weak, the usual IV interval can be too short and in the wrong place. 
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Over-Identified Models 

 

• With over-identification, AR is inefficient under strong instruments (“too 

many degrees of freedom being tested”) 

• In the homoskedastic case, Moreira’s (2003) conditional likelihood ratio 

(CLR) test is essentially optimal (Andrews, Moreira, and Stock (2006)). No 

(single) way to generalize this to the HR/HAR case. 

• The problem of optimal testing in the HR case is hard, with recent progress 

by Moreira and Moreira (2015), Montiel Olea (2017), and Moreira and 

Ridder (2018a) 

• The tests currently in use are functions of HR/HAR AR and LM statistics.  

• These tests can work well in some designs (I. Andrews (2016)) but can work 

poorly in others (Moreira and Ridder (2018b)).  

o Even under homoskedasticity, the LM statistic has non-monotonic power 

• For now: use HR/HAR AR statistic or I. Andrews (2016) linear combination 

test with plug-in weight function. Work on improving these is ongoing. 
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In the homoskedastic case, CLR has desirable properties, but LM does not 
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Simulations from a sample of AER papers 

 

• Sample: All AER IV excluding P&P 2014-2018 that provide enough 

information to estimate the variance matrix of ˆ ˆ( , )   (i.e. papers with 

replication data, + 1) 

• 124 specifications from 18 papers. 

• All specifications we examine here have a single endogenous regressor 

 

The following slides provide a taste of the MC results 
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Median of distribution of t-statistic 
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Size of t-statistic (fraction of |t| > 1.96 under the null) 
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Size of 2-step method (robust if FEff < 10, conventional otherwise) 
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Size of screening method based on first stage F (reject if FEff < 10) 
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Size of AR statistic 
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5. Summary 
 

1. Conventional t-test based confidence intervals can under-cover true parameter 

value, and be centered in the wrong place, when instruments are weak. 

 

2. The MOP Effective First-stage F provides a guide to bias – but screening 

applications (rejecting papers) using the first-stage F can induced size 

distortions. 

 

3. In the exactly identified case, use HR/HAR AR (strong optimality) 

 

4. In the overidentified case, use pretest based on MOP FEff , with either AR or 

I. Andrews (2016) confidence intervals if FEff < 10 (or, use a MOP critical 

value). 
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Part 1: Dynamic factor models  
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Historical Evolution of DFMs 
 
 
I. Factor Analysis 
 
• Spearman (1904) 

 
• Lawley (1940), Joreskög (1967) … Lawley and Maxwell (1971) 
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Spearman's problem: 
 

Data:  Xij,  i = 1, … , N (individuals)   
 
           and j = 1, … n (measurements for each individual) 
 
 

 and SXX = cov(Xi) 

 
 
How can we measure 'intelligence'? 
 

Xi =

Xi1
Xi2
!
Xin

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
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Factor Model 
 

 
Xij = lj fi + eij  or  j = 1, … , n 

 
 
 

Xi = lfi + ei   
(All measurements for individual i) 

 
 
 

SXX =  ll' + See with See diagonal 
 
 

σ f
2



 AEA Continuing Education 2019, Lecture 5, page 8 

Xi = lfi + ei 
 

SXX =  ll' + See with See diagonal 
 

Issues: 
 

(1) Estimation of parameters ( , l, )   (Lawley: Gaussian MLE) 
 
(2) Estimation of fi | Xi, ( , l, ):  'reverse regression' 
 

(Xi | fi) ~ N(lfi, See 
)  and  fi ~ N(0, ) 

⇒ fi | Xi ~ N(b 'Xi ,  )  

with  b =   

  

σ f
2

σ f
2 σ ei

2

σ f
2 σ ei

2

σ f
2

σ f |X
2

Σ XX
−1 Σ Xf = σ f

2λλ '+ Σee( )−1λσ f
2

σ f |X
2 =σ f

2 −σ f
2λ ' σ f

2λλ '+ Σee( )−1λσ f
2
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Historical Evolution of DFMs: 
 

2a:  Replace covariance matrices with spectral density matrices. (Geweke 
(1977), Sargent and Sims (1977), Brillinger (1975)). 

 
 

Xi = lfi + ei 
 

SXX =  ll' + See with See diagonal 
 

becomes  
 

Xt = l(L)ft + et 
 

SXX(w) =  l(e-iw)l(eiw)' + See(w) with See(w) diagonal 

σ f
2

s f
2 (ω )
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Sargent and Sims  used various subsets of 14 variables: long rate, short  
rate,  GNP, prices, wages, money supply, government purchases, 
government deficit, unemployment rate, residential construction, 
inventories, plant and equip investment, consumption, corporate profits.   
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Xt = l(L)ft + et 
 

SXX(w) =  l(e-iw)(eiw)l' + See(w) with See(w) diagonal 
 

Issues: 
 

(1) Estimation of parameters ( , l(e-iw),  See(w))  (Local Gaussian 
MLE, frequency by frequency) 
 
(2) Estimation of f (w) | X(w):  can use 'reverse regression' 

 
 

New issues:  Converting frequency domain back to time domain. 
Leads/lags. Constraints across frequencies.  
 
 

s f
2 (ω )

s f
2 (ω )
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2b: Use linear state-space models:  (e.g., Engle and Watson (1981)) 
 

Xt = l(L)ft + et  and f(L)ft = ht 
 

  

 

  

Xt = λ0  λ1  ! λk( )
ft
ft−1
!
ft−k

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

+ et

ft
ft−1
!
ft−k

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=

φ1 φ2 ! φk+1
1 0 ! 0
" "

1 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
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⎥
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ft−2
#
ft−k−1

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

+

1
0
#
0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

ηt



 AEA Continuing Education 2019, Lecture 5, page 15 

or  
 

Xt = L Ft + et 
Ft = FFt-1 + Ght  

 
(More generally F equation can be VAR(p): F(L)Ft = Ght ) 

 
Issues: 

(1) Estimation of parameters (L, , F, See)   (Gaussian MLE using 
prediction-error decomposition from Kalman filter) 
 

(2) Estimation of ft | :  'reverse regression' computed using Kalman 

smoother. 
 
New issues: 
(a) State-space modeling afforded lots of flexibility. 
(b) MLE hard when Xt is high dimensional. (Quah and Sargent (1993)) 

ση
2

X j{ }
j=1

T
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Example: “Improving GDP Measurement: A Measurement-Error 
Perspective” Aruoba, Diebold, Nalewaik, Schorfheide, Song (2016) 

S.B. Aruoba et al. / Journal of Econometrics 191 (2016) 384–397 387

Fig. 1. GDP and unemployment data. GDPE and GDPI are in growth rates and Ut is in changes. All are measured in annualized percent.

3. Data and estimation

We intentionallyworkwith a stationary system in growth rates,
because we believe that measurement errors are best modeled as
iid in growth rates rather than in levels, due to BEA’s devoting
maximal attention to estimating the ‘‘best change’’. 11 In its above-
cited ‘‘Concepts and Methods . . .’’ document, for example, the BEA
emphasizes that:

Best change provides the most accurate measure of the period-
to-period movement in an economic statistic using the best
available source data. In an annual revision of the NIPAs,
data from the annual surveys of manufacturing and trade
are generally incorporated into the estimates on a best-
change basis. In the current quarterly estimates, most of the
components are estimated on a best-change basis from the
annual levels established at the most recent annual revision.

The monthly source data used to estimate GDPE (such as retail
sales) and GDPI (such as nonfarm payroll employment) are
generally produced on a best-change basis aswell, using a so-called
‘‘link-relative estimator’’. This estimator computes growth rates
using firms in the sample in both the current and previousmonths,
in contrast to a best-level estimator, which would generally use all
the firms in the sample in the currentmonth regardless of whether
or not theywere in the sample in the previousmonth. For example,
for retail sales the BEA notes that12:

11 For example, see ‘‘Concepts and Methods in the U.S. National Income and
Product Accounts’’, available at http://www.bea.gov/national/pdf/methodology/
chapters1-4.pdf.
12 See http://www.census.gov/retail/marts/how_surveys_are_collected.html.

Advance sales estimates for the most detailed industries are
computed using a type of ratio estimator known as the link-
relative estimator. For each detailed industry, we compute a
ratio of current-to-previous month weighted sales using data
from units for which we have obtained usable responses for
both the current and previous month.

Indeed the BEA produces estimates on a best-level basis only at
5-year benchmarks. These best-level benchmark revisions should
drive only the very-low frequency variation in GDPE , and thus
probablymatter very little for the quarterly growth rates estimated
on a best-change basis.

3.1. Descriptive statistics

We show time-series plots of the ‘‘raw’’ GDPE and GDPI data
in Fig. 1, and we show summary statistics for the raw series in
the top panel of Table 1. Not captured in the table but also true
is that the raw data are highly correlated; the simple correla-
tions are corr(GDPE,GDPI) = 0.85, corr(GDPE,U) = �0.67, and
corr(GDPI ,U) = �0.73. Median GDPI growth is a bit higher than
that of GDPE , and GDPI growth is noticeably more persistent than
that of GDPE . Related, GDPI also has smaller AR(1) innovation vari-
ance and greater predictability as measured by the predictive R

2.
Fig. 1 also depicts the sample paths of changes in the unemploy-
ment rate, whichwe use to estimate the 3-equationmodel, and the
discrepancy between the growth ratesGDPE andGDPI . According to
our state-space models, the discrepancy equals the measurement
error difference ✏Et �✏It . Themean of the discrepancy series is zero,
and its variance is approximately 30% of the variance of GDPE . The
first-order autoregressive coefficient is slightly negative, but the R2

associated with an AR(1) regression is only about 4%.
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GDPt = a + rGDPt-1 + eGt 

 

  (identification issues) 
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GDPIt
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⎢
⎢
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⎥
⎥
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⎢
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⎥
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Results:  
 

 
 

388 S.B. Aruoba et al. / Journal of Econometrics 191 (2016) 384–397

Table 1
Descriptive statistics for various GDP series.

x̄ 50% �̂ Sk ⇢̂1 ⇢̂2 ⇢̂3 ⇢̂4 Q12 �̂e R
2

V̂e

GDPE 3.03 3.04 3.49 �0.31 .33 .27 .08 .09 47.07 3.28 .06 12.12
GDPI 3.02 3.39 3.40 �0.55 .47 .27 .22 .08 81.60 2.99 .12 11.43

GDPM 2-eqn, ⌃ diag 3.02 3.22 3.00 �0.56 .56 .34 .21 .09 108.25 2.48 .18 8.92
GDPM 2-eqn, ⌃ block 3.02 3.35 2.64 �0.64 .70 .45 .28 .13 170.08 1.89 .29 6.90
GDPM 2-eqn, ⇣ = 0.65 3.02 3.32 2.61 �0.64 .67 .43 .27 .12 157.56 1.92 .26 6.73
GDPM 2-eqn, ⇣ = 0.75 3.02 3.30 2.77 �0.63 .65 .41 .26 .11 148.23 2.08 .25 7.60
GDPM 2-eqn, ⇣ = 0.80 3.02 3.29 2.87 �0.62 .64 .39 .25 .11 141.14 2.19 .24 8.16
GDPM 2-eqn, ⇣ = 0.85 3.02 3.31 2.89 �0.64 .66 .41 .28 .12 153.27 2.15 .25 8.29
GDPM 2-eqn, ⇣ = 0.95 3.02 3.26 3.02 �0.64 .66 .40 .28 .12 149.61 2.27 .25 9.07
GDPM 2-eqn, ⇣ = 1.05 3.01 3.22 3.12 �0.65 .67 .40 .28 .12 155.60 2.30 .26 9.69
GDPM 2-eqn, ⇣ = 1.15 3.04 3.34 3.07 �0.67 .76 .47 .31 .15 201.15 1.99 .35 9.46
GDPM 3-eqn 3.02 3.37 3.02 �1.14 .63 .37 .21 .03 141.79 2.33 .23 9.03

GDPF 3.02 3.29 3.30 �0.51 .46 .29 .19 .07 78.28 2.92 .12 10.80

Notes: The sample period is 1960Q1–2011Q4. In the top panel we show statistics for the raw data. In the middle panel we show statistics for various posterior-median
measurement-error-based (‘‘M ’’) estimates of true GDP , where all estimates are smoothed extractions. In the bottom panel we show statistics for the forecast-error-based
estimate of true GDP produced by Aruoba et al. (2012), GDPF . x̄, 50%, �̂ and Sk are sample mean, median, standard deviation and skewness, respectively, and ⇢̂⌧ is a sample
autocorrelation at a displacement of ⌧ quarters. Q12 is the Ljung–Box serial correlation test statistic calculated using ⇢̂1, . . . , ⇢̂12. R2 = 1�

�̂ 2
e

�̂ 2 , where �̂e denotes the estimated

disturbance standard deviation from a fitted AR(1) model, is a predictive R
2. V̂e is the unconditional variance implied by a fitted AR(1) model, V̂e =

�̂ 2
e

1�⇢̂2 .

3.2. Estimation

Bayesian estimation involves parameter estimation and latent
state smoothing. First, we generate draws from the posterior dis-
tribution of themodel parameters using a Random-WalkMetropo-
lis–Hastings algorithm. Next, we apply the simulation smoother
of Durbin and Koopman (2001) to obtain draws of the latent
states conditional on the parameters. See (online) Appendix C for
details.

Here we present and discuss estimation results for our various
models. In Table 2 we show details of parameter prior and
posterior distributions, as well as statistics describing the overall
posterior and likelihood, for various 2-equation models, and in
Table 3 we provide the same information for the 3-equation
model.

The complete estimation information in the tables can be
difficult to absorb fully, however, so here we briefly present
aspects of the results in a more revealing way. For the 2-equation
models, the parameters to be estimated are those in the transition
equation and those in the covariance matrix ⌃ , which includes
variances and covariances of both transition and measurement
shocks. Hencewe simply display the estimated transition equation
and the estimated ⌃ matrices. For the 3-equation model, we also
need to estimate a factor loading in the measurement equation,
so we display the estimated measurement equation as well. Below
each posterior median parameter estimate, we show the posterior
interquartile range in brackets.

For the 2-equation model with ⌃ diagonal, we have

GDPt = 3.07
[2.81,3.33]

(1 � 0.53) + 0.53
[0.48,0.57]

GDPt�1 + ✏Gt , (10)

⌃ =

2

664

6.90
[6.39,7.44]

0 0

0 2.32
[2.12,2.55]

0

0 0 1.68
[1.52,1.85]

3

775 . (11)

For the 2-equation model with ⌃ block-diagonal, we have

GDPt = 3.06
[2.77,3.34]

(1 � 0.62) + 0.62
[0.57,0.68]

GDPt�1 + ✏Gt , (12)

⌃ =

2

664

5.17
[4.39,5.95]

0 0

0 3.86
[3.34,4.48]

1.43
[0.96,1.95]

0 1.43
[0.96,1.95]

2.70
[2.25,3.22]

3

775 . (13)

For the 2-equation model with benchmark ⇣ = 0.80, we have

GDPt = 3.08
[2.79,3.35]

(1 � 0.57) + 0.57
[0.51,0.62]

GDPt�1 + ✏Gt , (14)

⌃ =

2

664

7.09
[6.54,7.70]

�0.69
[�1.15,�0.29]

�0.38
[�0.74,�0.04]

�0.69
[�1.15,�0.29]

3.90
[3.14,4.77]

1.29
[0.80,1.85]

�0.38
[�0.74,�0.04]

1.29
[0.80,1.85]

2.36
[1.98,2.82]

3

775 . (15)

Finally, for the 3-equation model, we have

2

4
GDPEt

GDPIt

Ut

3

5 =

2

64
0
0

1.62
[1.53,1.71]

3

75 +

2

64
1
1

�0.52
[�0.55,�0.50]

3

75GDPt +

2

4
✏Et
✏It
✏Ut

3

5 (16)

GDPt = 2.78
[2.60,2.95]

(1 � 0.58) + 0.58
[0.54,0.63]

GDPt�1 + ✏Gt , (17)
2

664

✏Gt
✏Et
✏It
✏Ut

3

775

⇠ N

0

BBBBB@

2

664

0
0
0
0

3

775 ,

2

666664

6.96
[6.73,7.35]

�1.10
[�1.27,�0.84]

�0.82
[�1.03,�0.59]

1.46
[1.27,1.66]

�1.10
[�1.27,�0.84]

4.57
[4.17,4.79]

1.95
[1.70,2.12]

0

�0.82
[�1.03,�0.59]

1.95
[1.70,2.12]

3.07
[2.54,3.27]

0

1.46
[1.27,1.66]

0 0 0.59
[0.50,0.71]

3

777775

1

CCCCCA
.

(18)

Many aspects of the results are noteworthy; here we simply
mention a few. First, every posterior interval in every model
reported above excludes zero. Hence the diagonal and block
diagonal models do not appear satisfactory.

Second, the ⌃ estimates are qualitatively similar across
specifications. Covariances are always negative, as per our con-
jecture based on the counter-cyclicality in the statistical discrep-
ancy (GDPE � GDPI ) documented by Fixler and Nalewaik (2009)
and Nalewaik (2010). Shock variances always satisfy �̂ 2

GG
> �̂ 2

EE
>

�̂ 2
II
.
Finally, GDPM is highly serially correlated across all specifica-

tions (⇢ ⇡ .6), much more so than the current ‘‘consensus’’ based
on GDPE (⇢ ⇡ .3).We shall havemore to say about these and other
results in Section 4.
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Fig. 3. GDP sample paths, 1960Q1–2011Q4. In each panel we show the sample path of GDPM (light color) together with posterior interquartile range with shading and we show one of the competitor series (dark color). For
GDPM we use our benchmark estimate from the 2-equation model with ⇣ = 0.80.
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Figure 4: GDP Sample Paths, 2007Q1-2009Q4

Notes: In each panel we show the sample path of GDPM in red together with a light-red posterior in-

terquartile range, and we show one of the competitor series in black. For GDPM we use our benchmark

estimate from the 2-equation model with ⇣ = 0.80.

(2012).

First consider Figure 5. Across measurement-error models M , GDPM is robustly more

serially correlated than both GDPE and GDPI , and it also has a smaller innovation variance.

Hence most of our models achieve closely-matching unconditional variances, but they are

composed of very di↵erent underlying (�2, ⇢) values from those corresponding to GDPE.

GDPM has smaller shock volatility, but much more shock persistence – roughly double that

of GDPE (⇢ of roughly 0.60 for GDPM vs. 0.30 for GDPE).

Now consider Table 1. The various GDPM series are all less volatile than each of GDPE,

GDPI and GDPF , and a bit more skewed left. Most noticeably, the GDPM series are much

more strongly serially correlated than the GDPE, GDPI and GDPF series, and with smaller

innovation variances. This translates into much higher predictive R2’s for GDPM . Indeed

GDPM is twice as predictable as GDPI or GDPF , which in turn are twice as predictable as

GDPE.

18
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Historical Evolution of DFMs: 
 

3. Large-n approximations. Connor and Korajczyk (1986), Chamberlain and 
Rothschild (1983), Forni and Reichlin (1998), Stock and Watson (2002), … 

 
Large n … from curse to blessing: An example following Forni and 
Reichlin (1998).   Suppose ft is scalar and l(L) = l (“no lags in the factor 
loadings”), so  
 

Xit = lift + eit   for i = 1, … n 
 

Then:     =  =  

 
If the errors eit have limited dependence across series, then as n gets large, 

  ft 

Large n lets us recover ft up to a scale factor. 
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A “least squares” reason to use the sample mean.   
 
Consider 
 

  subject to  = 1 

Yields:   

 

(Other normalizations:  = 1) 

  

min{ ft },{λi } (Xit − λi ft )
2

i,t
∑ l

f̂t =
1
n

Xit
i=1

n

∑

T −1 ft
2

t=1

T

∑
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Multivariate Problem:  Xit = li'Ft + eit, where li' is ith row of L. 
  

  subject  = G (diagonal, with gi ≥ gi+1) 

 
Yields:  as the principal components (PC) of Xt,  (i.e., the linear 
combinations of Xt  with the largest variance).  
 
Odds and ends: 

Missing data 
Weighted least squares 
… 

 
 

min{ ft },{λi } (Xit − λi 'Ft )
2

i,t
∑ T −1 FtFt '

t=1

T

∑

F̂t
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More generally  
 
Xt = l(L)ft + et  and f(L)ft = ht  ⇒ Xt = L Ft + et   and F(L)Ft = Ght 
 
So Principal Components (PC) can be used to estimate F in DFM. 
 
A simple 2-step estimation problem:  
 
(1) Estimate Ft by PC 
 
(2) Estimate li and var(eit) from regression of Xit onto . 
 
(3) Estimate dynamic equation for F using VAR with  replacing F. 
 

F̂t

F̂t
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Some results about these simple 2-step estimators when n and T are large: 
 
Results for the exact static factor model: 

Connor and Korajczyk (1986): consistency in the exact static FM with T 
fixed, n → ∞. 
 

Selected results for the approximate DFM: Xt = LFt + et 
Typical conditions (Stock-Watson (2002), Bai-Ng (2002, 2006)): 

(a)   SF  (stationary factors) 

(b) L¢L/n ® (or ) SL   Full rank factor loadings 
(c) eit are weakly dependent over time and across series  
(d) F, e are uncorrelated at all leads and lags  

 
 

1

1 T

t t
i
F F
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¢å
p
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Selected results for the approximate DFM, ctd. 
 
Stock and Watson (2002) 

o consistency in the approximate DFM, n, T → ∞.  
o justify using  as a regressor (no errors-in-variable bias. etc.) 
o oracle property for forecasts 

 
Bai and Ng (2006)  

o N2/T ® ¥  
o asymptotic normality of PC estimator of the common component 

at rate min(n1/2, T1/2) in approximate DFM. These can be used to 
compute confidence sets for Ft. 

o Similar results are rates for the two estimators of L, F, See and Shh. 
  

t̂F
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Historical Evolution of DFMs: 
 

An issue in PC estimates of DFMs: Ft is estimated using averages of 
Xt. This ignores information in leads and lags of X that would be 
utilized using optimal estimator (Kalman smoother). 
 
 
4. Hybrid estimators:  Use PCs to get first-round estimates of  L, F, 
See and Shh, then use Kalman smoother to get estimates of F, or do 
MLE using these as initial guesses of parameters.  (Doz, Giannone, 
Reichlin (2011, 2012).) 
 



 AEA Continuing Education 2019, Lecture 5, page 28 

Example: Nowcasting (Good reference: Banbura, Giannoni, Modugno, 
and Reichlin (2013).) 
 
 

• Problem: yt is a variable of interest (e.g., GDP growth rate in quarter t). 
It is available with a lag (say in t+1 or t+2). Xt is a vector of variables 
that are measured during period t (and perhaps earlier). How do you 
guess the value of yt given the X data that has been revealed. 

 
• ‘Solution’: Suppose  denotes the information known at time t1. Then 

best guess of yt is E(yt| ). 
o But how do you compute E(yt| )? 
o How do you update the estimate as another element of Xt is 

revealed? 
 

Xt1
Xt1

Xt1
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Giannone, Reichlin, et al modeling approach: 
 

 

 
F(L)Ft = ht 

 
• E(yt| ) = ly´E(Ft | )  
• E(Ft | ) computed by Kalman filter 

 
(Lots of details left out) 
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Historical Evolution of DFMs: 
 

Issue:  Many parameters in DFM. Shrinkage might be useful. 
 
5. Bayes estimators (Kim and Nelson (1998), Otrok and Whiteman (1998), … ) 
 
                       Xt = L Ft + et   and F(L)Ft =  Ght 
 
Model is particularly amenable to MCMC methods: 
 
(i)   (L, See, F, Shh | {Xt, Ft}):  Linear regression problem 
 
(ii)  ({Ft} | {Xt}, L, See, F, Shh): Linear signal extraction problem 
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Xt = L Ft + et   and F(L)Ft = Ght 
 

Generalizations (see SW HOM paper for references): 
 
(1) Serial correlation in e 
 
(2) Additional regressors in either equation 
 
(3) Constraints on L ('sparsity') 
 
(4) (Limited) cross-correlation between elements of e.  
 
(5) Non-linearities and non-Gaussian evolution.  
 Examples: Markov Switching in F, etc. 
 
(6) Robustness to various types of instability. 
 
… many more. 
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A 207-Variable Macro Dataset for the U.S. 

 

 
 

6.1 Data and Preliminary Transformations
The data are quarterly observations on 207 time series, consisting of real activity variables,

prices, productivity and earnings, interest rates and spreads, money and credit, asset and

wealth variables, oil market variables, and variables representing international activity.

The series are listed by category in Table 1, and a full list is given in the Data Appendix.

Data originally available monthly were converted to quarterly by temporal averaging.

Real activity variables and several other variables are seasonally adjusted. The dataset

updates and extends the dataset used in Stock and Watson (2012a); the main extension

is that the dataset used here includes Kilian’s (2009) international activity measure and

data on oil market, which are used in the analysis in the next section of the effects of

oil market shocks on the economy. The full span of the dataset is 1959Q1-2014Q4. Only

145 of the 207 series are available for this full period.

From this full dataset, a subset was formed using the 86 real activity variables in the first

four categories in Table 1; this dataset will be referred to as the “real activity dataset.” Of

the real activity variables, 75 are available over the full sample.

The dataset is described in detail in the Data Appendix.

6.1.1 Preliminary Transformations and Detrending
The data were subject to four preliminary transformations. First, the DFM framework

summarized in Section 2 and the associated theory assumes that the variables are

second-order stationary. For this reason, each series was transformed to be approximately

Table 1 Quarterly time series in the full dataset

Category
Number
of series

Number of series used
for factor estimation

(1) NIPA 20 12
(2) Industrial production 11 7
(3) Employment and unemployment 45 30
(4) Orders, inventories, and sales 10 9
(5) Housing starts and permits 8 6
(6) Prices 37 24
(7) Productivity and labor earnings 10 5
(8) Interest rates 18 10
(9) Money and credit 12 6
(10) International 9 9
(11) Asset prices, wealth, and household balance

sheets
15 10

(12) Other 2 2
(13) Oil market variables 10 9

Total 207 139

Notes: The real activity dataset consists of the variables in the categories 1–4.

479Factor Models and Structural Vector Autoregressions
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Table A.1: Data Series 

 
 Name Description Sample Period T O F 
 (1) NIPA 

 
1   GDP Real Gross Domestic Product 3 Decimal 1959:Q1-2014:Q4 5 0 0  
2   Consumption Real Personal Consumption Expenditures 1959:Q1-2014:Q4 5 0 0  
3   Cons:Dur Real Personal Consumption Expenditures: Durable Goods Quantity Index 1959:Q1-2014:Q4 5 0 1  
4   Cons:Svc Real Personal Consumption Expenditures: Services Quantity Index 1959:Q1-2014:Q4 5 0 1  
5   Cons:NonDur Real Personal Consumption Expenditures: Nondurable Goods Quantity Index 1959:Q1-2014:Q4 5 0 1  
6   Investment Real Gross Private Domestic Investment 3 Decimal 1959:Q1-2014:Q4 5 0 0  
7   FixedInv Real Private Fixed Investment Quantity Index 1959:Q1-2014:Q4 5 0 0  
8   Inv:Equip Real Nonresidential Investment: Equipment Quantity Idenx 1959:Q1-2014:Q4 5 0 1  
9   FixInv:NonRes Real Private Nonresidential Fixed Investment Quantity Index 1959:Q1-2014:Q4 5 0 1  
10  FixedInv:Res Real Private Residential Fixed Investment Quantity Index 1959:Q1-2014:Q4 5 0 1  
11  Ch. Inv/GDP Change in Inventories /GDP 1959:Q1-2014:Q4 1 0 1  
12  Gov.Spending Real Government Consumption Expenditures & Gross Investment 3 Decimal 1959:Q1-2014:Q4 5 0 0  
13  Gov:Fed Real Federal Consumption Expenditures Quantity Index 1959:Q1-2014:Q4 5 0 1  
14  Real_Gov Receipts Government Current Receipts (Nominal) Defl by GDP Deflator 1959:Q1-2014:Q3 5 0 1  
15  Gov:State&Local Real State & Local Consumption Expenditures Quantity Index 1959:Q1-2014:Q4 5 0 1  
16  Exports Real Exports of Goods & Services 3 Decimal 1959:Q1-2014:Q4 5 0 1  
17  Imports Real Imports of Goods & Services 3 Decimal 1959:Q1-2014:Q4 5 0 1  
18  Disp-Income Real Disposable Personal Income 1959:Q1-2014:Q4 5 0 0  
19  Ouput:NFB Nonfarm Business Sector: Output 1959:Q1-2014:Q4 5 0 0  
20  Output:Bus Business Sector: Output 1959:Q1-2014:Q4 5 0 0  
 (2) Industrial Production 

 
21  IP: Total index IP: Total index 1959:Q1-2014:Q4 5 0 0  
22  IP: Final products Industrial Production: Final Products (Market Group) 1959:Q1-2014:Q4 5 0 0  
23  IP: Consumer goods IP: Consumer goods 1959:Q1-2014:Q4 5 0 0  
24  IP: Materials Industrial Production: Materials 1959:Q1-2014:Q4 5 0 0  
25  IP: Dur gds materials Industrial Production: Durable Materials 1959:Q1-2014:Q4 5 0 1  
26  IP: Nondur gds materials Industrial Production: nondurable Materials 1959:Q1-2014:Q4 5 0 1  
27  IP: Dur Cons. Goods Industrial Production: Durable Consumer Goods 1959:Q1-2014:Q4 5 0 1  
28  IP: Auto  IP: Automotive products 1959:Q1-2014:Q4 5 0 1  
29  IP:NonDur Cons God Industrial Production: Nondurable Consumer Goods 1959:Q1-2014:Q4 5 0 1  
30  IP: Bus Equip Industrial Production: Business Equipment 1959:Q1-2014:Q4 5 0 1  
31  Capu Tot Capacity Utilization: Total Industry 1967:Q1-2014:Q4 1 0 1  
 (3) Employment and Unemployment 

 
32  Emp:Nonfarm Total Nonfarm Payrolls: All Employees 1959:Q1-2014:Q4 5 0 0  
33  Emp: Private All Employees: Total Private Industries 1959:Q1-2014:Q4 5 0 0  
34  Emp: mfg All Employees:  Manufacturing 1959:Q1-2014:Q4 5 0 0  
35  Emp:Services All Employees: Service-Providing Industries 1959:Q1-2014:Q4 5 0 0  
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36  Emp:Goods All Employees: Goods-Producing Industries 1959:Q1-2014:Q4 5 0 0  
37  Emp: DurGoods All Employees: Durable Goods Manufacturing 1959:Q1-2014:Q4 5 0 1  
38  Emp: Nondur Goods All Employees: Nondurable Goods Manufacturing 1959:Q1-2014:Q4 5 0 0  
39  Emp: Const All Employees: Construction 1959:Q1-2014:Q4 5 0 1  
40  Emp: Edu&Health All Employees: Education & Health Services 1959:Q1-2014:Q4 5 0 1  
41  Emp: Finance All Employees: Financial Activities 1959:Q1-2014:Q4 5 0 1  
42  Emp: Infor All Employees: Information Services 1959:Q1-2014:Q4 5 1 1  
43  Emp: Bus Serv All Employees: Professional & Business Services 1959:Q1-2014:Q4 5 0 1  
44  Emp:Leisure All Employees: Leisure & Hospitality 1959:Q1-2014:Q4 5 0 1  
45  Emp:OtherSvcs All Employees: Other Services 1959:Q1-2014:Q4 5 0 1  
46  Emp: Mining/NatRes All Employees: Natural Resources & Mining 1959:Q1-2014:Q4 5 1 1  
47  Emp:Trade&Trans All Employees: Trade  Transportation & Utilities 1959:Q1-2014:Q4 5 0 1  
48  Emp: Gov All Employees: Government 1959:Q1-2014:Q4 5 0 0  
49  Emp:Retail All Employees: Retail Trade 1959:Q1-2014:Q4 5 0 1  
50  Emp:Wholesal All Employees: Wholesale Trade 1959:Q1-2014:Q4 5 0 1  
51  Emp: Gov(Fed) Employment Federal Government 1959:Q1-2014:Q4 5 2 1  
52  Emp: Gov (State) Employment State government 1959:Q1-2014:Q4 5 0 1  
53  Emp: Gov (Local) Employment Local government 1959:Q1-2014:Q4 5 0 1  
54  Emp: Total (HHSurve) Emp Total (Household Survey) 1959:Q1-2014:Q4 5 0 0  
55  LF Part Rate LaborForce Participation Rate (16 Over) SA 1959:Q1-2014:Q4 2 0 0  
56  Unemp Rate Urate 1959:Q1-2014:Q4 2 0 0  
57  Urate_ST Urate Short Term (< 27 weeks) 1959:Q1-2014:Q4 2 0 0  
58  Urate_LT Urate Long Term (>= 27 weeks) 1959:Q1-2014:Q4 2 0 0  
59  Urate: Age16-19 Unemployment Rate - 16-19 yrs 1959:Q1-2014:Q4 2 0 1  
60  Urate:Age>20 Men Unemployment Rate - 20 yrs. & over  Men 1959:Q1-2014:Q4 2 0 1  
61  Urate: Age>20 Women Unemployment Rate - 20 yrs. & over  Women 1959:Q1-2014:Q4 2 0 1  
62  U: Dur<5wks Number Unemployed for Less than 5 Weeks 1959:Q1-2014:Q4 5 0 1  
63  U:Dur5-14wks Number Unemployed for 5-14 Weeks 1959:Q1-2014:Q4 5 0 1  
64  U:dur>15-26wks Civilians Unemployed for 15-26 Weeks 1959:Q1-2014:Q4 5 0 1  
65  U: Dur>27wks Number Unemployed for 27 Weeks & over 1959:Q1-2014:Q4 5 0 1  
66  U: Job losers Unemployment Level - Job Losers 1967:Q1-2014:Q4 5 0 1  
67  U: LF Reenty Unemployment Level - Reentrants to Labor Force 1967:Q1-2014:Q4 5 1 1  
68  U: Job Leavers Unemployment Level - Job Leavers 1967:Q1-2014:Q4 5 0 1  
69  U: New Entrants Unemployment Level - New Entrants 1967:Q1-2014:Q4 5 1 1  
70  Emp:SlackWk Employment Level - Part-Time for Economic Reasons  All Industries 1959:Q1-2014:Q4 5 1 1  
71  EmpHrs:Bus Sec Business Sector: Hours of All Persons 1959:Q1-2014:Q4 5 0 0  
72  EmpHrs:nfb Nonfarm Business Sector: Hours of All Persons 1959:Q1-2014:Q4 5 0 0  
73  AWH Man Average Weekly Hours: Manufacturing 1959:Q1-2014:Q4 1 0 1  
74  AWH Privat Average Weekly Hours: Total Private Industry 1964:Q1-2014:Q4 2 0 1  
75  AWH Overtime Average Weekly Hours: Overtime: Manufacturing 1959:Q1-2014:Q4 2 0 1  
76  HelpWnted Index of Help-Wanted Advertising in Newspapers (Data truncated in 2000) 1959:Q1-1999:Q4 1 0 0  
 (4) Orders, Inventories, and Sales 

 
77  MT Sales Manufacturing and trade sales (mil. Chain 2005 $) 1959:Q1-2014:Q3 5 0 0  
78  Ret. Sale Sales of retail stores (mil. Chain 2000 $) 1959:Q1-2014:Q3 5 0 1  
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79  Orders (DurMfg) Mfrs' new orders durable goods industries (bil. chain 2000 $) 1959:Q1-2014:Q4 5 0 1  
80  Orders (Cons. Gds & 

Mat.) 
Mfrs' new orders  consumer goods and materials (mil. 1982 $) 1959:Q1-2014:Q4 5 0 1  

81  UnfOrders(DurGds) Mfrs' unfilled orders durable goods indus. (bil. chain 2000 $) 1959:Q1-2014:Q4 5 0 1  
82  Orders(NonDefCap) Mfrs' new orders  nondefense capital goods (mil. 1982 $) 1959:Q1-2014:Q4 5 0 1  
83  VendPerf ISM Manufacturing: Supplier Deliveries Index© 1959:Q1-2014:Q4 1 0 1  
84  NAPM:INV ISM Manufacturing: Inventories Index© 1959:Q1-2014:Q4 1 0 1  
85  NAPM:ORD ISM Manufacturing: New Orders Index©; Index; 1959:Q1-2014:Q4 1 0 1  
86  MT Invent Manufacturing and trade inventories (bil. Chain 2005 $) 1959:Q1-2014:Q3 5 0 1  
 (5) Housing Starts and Permits 

 
87  Hstarts Housing Starts: Total: New Privately Owned Housing Units Started 1959:Q1-2014:Q3 5 0 0  
88  Hstarts >5units Privately Owned Housing Starts: 5-Unit Structures or More 1959:Q1-2014:Q3 5 0 0  
89  Hpermits New Private Housing Units Authorized by Building Permit 1960:Q1-2014:Q4 5 0 1  
90  Hstarts:MW Housing Starts in Midwest Census Region 1959:Q1-2014:Q3 5 0 1  
91  Hstarts:NE Housing Starts in Northeast Census Region 1959:Q1-2014:Q3 5 0 1  
92  Hstarts:S Housing Starts in South Census Region 1959:Q1-2014:Q3 5 0 1  
93  Hstarts:W Housing Starts in West Census Region 1959:Q1-2014:Q3 5 0 1  
94  Constr. Contracts Construction contracts (mil. sq. ft.)  (Copyright  McGraw-Hill) 1963:Q1-2014:Q4 4 0 1  
 (6) Prices  

 
95  PCED Personal Consumption Expenditures: Chain-type Price Index 1959:Q1-2014:Q4 6 0 0  
96  PCED_LFE Personal Consumption Expenditures: Chain-type Price Index Less Food and Energy 1959:Q1-2014:Q4 6 0 0  
97  GDP Defl Gross Domestic Product: Chain-type Price Index 1959:Q1-2014:Q4 6 0 0  
98  GPDI Defl Gross Private Domestic Investment: Chain-type Price Index 1959:Q1-2014:Q4 6 0 1  
99  BusSec Defl Business Sector: Implicit Price Deflator 1959:Q1-2014:Q4 6 0 1  
100 PCED_Goods Goods 1959:Q1-2014:Q4 6 0 0  
101 PCED_DurGoods Durable goods 1959:Q1-2014:Q4 6 0 0  
102 PCED_NDurGoods Nondurable goods 1959:Q1-2014:Q4 6 0 0  
103 PCED_Serv Services 1959:Q1-2014:Q4 6 0 0  
104 PCED_HouseholdServic

es 
Household consumption expenditures (for services) 1959:Q1-2014:Q4 6 0 0  

105 PCED_MotorVec Motor vehicles and parts 1959:Q1-2014:Q4 6 0 1  
106 PCED_DurHousehold Furnishings and durable household equipment 1959:Q1-2014:Q4 6 0 1  
107 PCED_Recreation Recreational goods and vehicles 1959:Q1-2014:Q4 6 0 1  
108 PCED_OthDurGds Other durable goods 1959:Q1-2014:Q4 6 0 1  
109 PCED_Food_Bev Food and beverages purchased for off-premises consumption 1959:Q1-2014:Q4 6 0 1  
110 PCED_Clothing Clothing and footwear 1959:Q1-2014:Q4 6 0 1  
111 PCED_Gas_Enrgy Gasoline and other energy goods 1959:Q1-2014:Q4 6 0 1  
112 PCED_OthNDurGds Other nondurable goods 1959:Q1-2014:Q4 6 0 1  
113 PCED_Housing-Utilities Housing and utilities 1959:Q1-2014:Q4 6 0 1  
114 PCED_HealthCare Health care 1959:Q1-2014:Q4 6 0 1  
115 PCED_TransSvg Transportation services 1959:Q1-2014:Q4 6 0 1  
116 PCED_RecServices Recreation services 1959:Q1-2014:Q4 6 0 1  
117 PCED_FoodServ_Acc. Food services and accommodations 1959:Q1-2014:Q4 6 0 1  
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118 PCED_FIRE Financial services and insurance 1959:Q1-2014:Q4 6 0 1  
119 PCED_OtherServices Other services 1959:Q1-2014:Q4 6 0 1  
120 CPI Consumer Price Index For All Urban Consumers: All Items 1959:Q1-2014:Q4 6 0 0  
121 CPI_LFE Consumer Price Index for All Urban Consumers: All Items Less Food & Energy 1959:Q1-2014:Q4 6 0 0  
122 PPI:FinGds Producer Price Index: Finished Goods 1959:Q1-2014:Q4 6 0 0  
123 PPI Producer Price Index: All Commodities 1959:Q1-2014:Q3 6 0 0  
124 PPI:FinConsGds Producer Price Index: Finished Consumer Goods 1959:Q1-2014:Q4 6 0 1  
125 PPI:FinConsGds (Food) Producer Price Index: Finished Consumer Foods 1959:Q1-2014:Q4 6 0 1  
126 PPI:IndCom Producer Price Index: Industrial Commodities 1959:Q1-2014:Q4 6 0 1  
127 PPI:IntMat Producer Price Index: Intermediate Materials: Supplies & Components 1959:Q1-2014:Q4 6 0 1  
128 Real_P:SensMat Index of Sensitive Matrerials Prices (Discontinued) Defl by PCE(LFE) Def 1959:Q1-2004:Q1 5 0 1  
129 Real_Commod: spot 

price 
Spot market price index:BLS & CRB: all commodities(1967=100) Defl by PCE(LFE) 1959:Q1-2009:Q1 5 0 0  

130 NAPM com price ISM Manufacturing: Prices Paid Index© 1959:Q1-2014:Q4 1 0 1  
131 Real_Price:NatGas PPI: Natural Gas Defl by PCE(LFE) 1967:Q1-2014:Q4 5 0 1  
 (7) Productivity and Earnings 

 
132 Real_AHE:PrivInd Average Hourly Earnings: Total Private Industries Defl by PCE(LFE) 1964:Q1-2014:Q4 5 0 0  
133 Real_AHE:Const Average Hourly Earnings: Construction Defl by PCE(LFE) 1959:Q1-2014:Q4 5 0 0  
134 Real_AHE:MFG Average Hourly Earnings: Manufacturing Defl by PCE(LFE) 1959:Q1-2014:Q4 5 0 0  
135 CPH:NFB Nonfarm Business Sector: Real Compensation Per Hour 1959:Q1-2014:Q4 5 0 1  
136 CPH:Bus Business Sector: Real Compensation Per Hour 1959:Q1-2014:Q4 5 0 1  
137 OPH:nfb Nonfarm Business Sector: Output Per Hour of All Persons 1959:Q1-2014:Q4 5 0 1  
138 OPH:Bus Business Sector: Output Per Hour of All Persons 1959:Q1-2014:Q4 5 0 0  
139 ULC:Bus Business Sector: Unit Labor Cost 1959:Q1-2014:Q4 5 0 0  
140 ULC:NFB Nonfarm Business Sector: Unit Labor Cost 1959:Q1-2014:Q4 5 0 1  
141 UNLPay:nfb Nonfarm Business Sector: Unit Nonlabor Payments 1959:Q1-2014:Q4 5 0 1  
 (8) Interest Rates 

 
142 FedFunds Effective Federal Funds Rate 1959:Q1-2014:Q4 2 0 1  
143 TB-3Mth 3-Month Treasury Bill: Secondary Market Rate 1959:Q1-2014:Q4 2 0 1  
144 TM-6MTH 6-Month Treasury Bill: Secondary Market Rate 1959:Q1-2014:Q4 2 0 0  
145 EuroDol3M 3-Month Eurodollar Deposit Rate (London) 1971:Q1-2014:Q4 2 0 0  
146 TB-1YR 1-Year Treasury Constant Maturity Rate 1959:Q1-2014:Q4 2 0 0  
147 TB-10YR 10-Year Treasury Constant Maturity Rate 1959:Q1-2014:Q4 2 0 0  
148 Mort-30Yr 30-Year Conventional Mortgage Rate 1971:Q2-2014:Q4 2 0 0  
149 AAA Bond Moody's Seasoned Aaa Corporate Bond Yield 1959:Q1-2014:Q4 2 0 0  
150 BAA Bond Moody's Seasoned Baa Corporate Bond Yield 1959:Q1-2014:Q4 2 0 0  
151 BAA_GS10 BAA-GS10 Spread 1959:Q1-2014:Q4 1 0 1  
152 MRTG_GS10 Mortg-GS10 Spread 1971:Q2-2014:Q4 1 0 1  
153 tb6m_tb3m tb6m-tb3m 1959:Q1-2014:Q4 1 0 1  
154 GS1_tb3m GS1_Tb3m 1959:Q1-2014:Q4 1 0 1  
155 GS10_tb3m GS10_Tb3m 1959:Q1-2014:Q4 1 0 1  
156 CP_Tbill Spread CP3FM-TB3MS 1959:Q1-2014:Q4 1 0 1  
157 Ted_spr MED3-TB3MS (Version of TED Spread) 1971:Q1-2014:Q4 1 0 1  
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158 gz_spread Gilchrist-Zakrajsek  Spread (Unadjusted) 1973:Q1-2012:Q4 1 0 0  
159 gz_ebp Gilchrist-Zakrajsek  Excess Bond Premium  1973:Q1-2012:Q4 1 0 1  
 (9) Money and Credit 

 
160 Real_mbase St. Louis Adjusted Monetary Base; Bil. of $; M; SA; Defl by PCE(LFE) 1959:Q1-2014:Q4 5 0 0  
161 Real_InsMMF Institutional Money Funds Defl by PCE(LFE)  1980:Q1-2014:Q4 5 0 0  
162 Real_m1 M1 Money Stock Defl by PCE(LFE)  1959:Q1-2014:Q4 5 0 0  
163 Real_m2 M2SL Defl by PCE(LFE)  1959:Q1-2014:Q4 5 0 0  
164 Real_mzm MZM Money Stock Defl by PCE(LFE)  1959:Q1-2014:Q4 5 0 0  
165 Real_C&Lloand Commercial and Industrial Loans at All Commercial Banks Defl by PCE(LFE)  1959:Q1-2014:Q4 5 0 1  
166 Real_ConsLoans Consumer (Individual) Loans at All Commercial Banks/ Outlier Code because of change in data in 

April 2010.  See FRB H8 Release Defl by PCE(LFE) 
1959:Q1-2014:Q4 5 1 1  

167 Real_NonRevCredit Total Nonrevolving Credit Outstanding Defl by PCE(LFE)  1959:Q1-2014:Q4 5 0 1  
168 Real_LoansRealEst Real Estate Loans at All Commercial Banks Defl by PCE(LFE)  1959:Q1-2014:Q4 5 0 1  
169 Real_RevolvCredit Total Revolving Credit Outstanding Defl by PCE(LFE)  1968:Q1-2014:Q4 5 1 1  
170 Real_ConsuCred Total Consumer Credit Outstanding Defl by PCE(LFE)  1959:Q1-2014:Q4 5 0 0  
171 FRBSLO_Consumers FRB Senior Loans Officer Opions. Net Percentage of Domestic Respondents Reporting Increased 

Willingness to Make Consumer Installment Loans (Fred from 1982:Q2 on Earlier is DB series) 
1970:Q1-2014:Q4 1 0 1  

 (10) International Variables 
 

172 Ex rate: major FRB Nominal Major Currencies Dollar Index (Linked to EXRUS in 1973:1)  1959:Q1-2014:Q4 5 0 1  
173 Ex rate: Euro U.S. / Euro Foreign Exchange Rate 1999:Q1-2014:Q4 5 0 1  
174 Ex rate: Switz Foreign exchange rate: Switzerland (Swiss franc per U.S.$) Fred  1971. EXRSW previous 1971:Q1-2014:Q4 5 0 1  
175 Ex rate: Japan Foreign exchange rate: Japan (yen per U.S.$)  Fred 1971- EXRJAN previous 1971:Q1-2014:Q4 5 0 1  
176 Ex rate: UK Foreign exchange rate: United Kingdom (cents per pound)  Fred 1971->  EXRUK Previous 1971:Q1-2014:Q4 5 0 1  
177 EX rate: Canada Foreign exchange rate: Canada (Canadian $ per U.S.$) Fred  1971 -> EXRCAN previous 1971:Q1-2014:Q4 5 0 1  
178 OECD GDP OECD: Gross Domestic Product by Expenditure in Constant Prices: Total Gross; Growth Rate 

(Quartely); Fred Series NAEXKP01O1Q657S 
1961:Q2-2013:Q4 1 0 1  

179 IP Europe OECD: Total Ind. Prod (excl Construction) Europe Growth Rate (Quarterly); Fred Series 
PRINTO01OEQ657S 

1960:Q2-2013:Q4 1 0 1  

180 Global Ec Activity Kilian's estimate of glaobal economic activity in industrial commodity markets (Kilian website) 1968:Q1-2014:Q4 1 0 1  
 (11) Asset Prices, Wealth, and Household Balance Sheets 

 
181 S&P 500 S&P's Common Stock Price Index: Composite (1941-43=10) 1959:Q1-2014:Q4 5 0 1  
182 Real_HHW:TA Households and nonprofit organizations; total assets (FoF) Seasonally Adjusted (RATS X11) Defl by 

PCE(LFE)  
1959:Q1-2014:Q3 5 0 0  

183 Real_HHW:TL Households and nonprofit organizations; total liabilities Seasonally Adjusted (RATS X11) Defl by 
PCE(LFE)  

1959:Q1-2014:Q3 5 0 1  

184 liab_PDI Liabilities Relative to Person Disp Income 1959:Q1-2014:Q3 5 0 0  
185 Real_HHW:W Households and nonprofit organizations; net worth (FoF) Seasonally Adjusted (RATS X11) Defl by 

PCE(LFE) 
1959:Q1-2014:Q3 5 0 1  

186 W_PDI Networth Relative to Personal Disp Income 1959:Q1-2014:Q3 1 0 0  
187 Real_HHW:TFA Households and nonprofit organizations; total financial assets  Seasonally Adjusted (RATS X11) 

Defl by PCE(LFE) 
1959:Q1-2014:Q3 5 0 0  

188 Real_HHW:TA_RE TotalAssets minus Real Estate Assets Defl by PCE(LFE)  1959:Q1-2014:Q3 5 0 1  
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189 Real_HHW:TNFA Households and nonprofit organizations; total nonfinancial assets (FoF) Seasonally Adjusted (RATS 
X11) Defl by PCE(LFE)  

1959:Q1-2014:Q3 5 0 0  

190 Real_HHW:RE Households and nonprofit organizations; real estate at market value Seasonally Adjusted (RATS 
X11) Defl by PCE(LFE)  

1959:Q1-2014:Q3 5 0 1  

191 DJIA Common Stock Prices: Dow Jones Industrial Average 1959:Q1-2014:Q4 5 0 1  
192 VXO VXO (Linked by N. Bloom) .. Average daily VIX from 2009 -> 1962:Q3-2014:Q4 1 0 1  
193 Real_Hprice:OFHEO House Price Index for the United States Defl by PCE(LFE)  1975:Q1-2014:Q4 5 0 1  
194 Real_CS_10 Case-Shiller 10 City Average Defl by PCE(LFE) 1987:Q1-2014:Q4 5 0 1  
195 Real_CS_20 Case-Shiller 20 City Average Defl by PCE(LFE)  2000:Q1-2014:Q4 5 0 1  
 (12) Other 
196 Cons. Expectations Consumer expectations NSA (Copyright  University of Michigan) 1959:Q1-2014:Q4 1 0 1  
197 PoilcyUncertainty Baker  Bloom  Davis Policy Uncertainty Index 1985:Q1-2014:Q4 2 0 1  
 (13) Oil Market Variables 

 
198 World Oil Production World Oil Production.1994:Q1 on from EIA (Crude Oil including Lease Condensate); Data prior to 

1994 from  From Baumeister and Peerlman (2013) 
1959:Q1-2014:Q3 5 0 0  

199 World Oil Production World Oil Production.1994:Q1 on from EIA (Crude Oil including Lease Condensate); Data prior to 
1994 from  From Baumeister and Peerlman (2013); Seasonally adjusted using RATS X11 (note 
seasonality before 1970) 

1959:Q1-2014:Q3 5 0 1  

200 IP: Energy Prds IP: Consumer Energy Products 1959:Q1-2014:Q4 5 0 1  
201 Petroleum Stocks U.S. Ending Stocks excluding SPR of Crude Oil and Petroleum Products (Thousand Barrels); SA 

using X11 in RATS 
1959:Q1-2014:Q4 5 0 1  

202 Real_Price:Oil PPI: Crude Petroleum Defl by PCE(LFE)  1959:Q1-2014:Q4 5 0 1  
203 Real_Crudeoil Price Crude Oil: West Texas Intermediate (WTI) - Cushing Oklahoma Defl by PCE(LFE)  1986:Q1-2014:Q4 5 0 1  
204 Real_CrudeOil Crude Oil Prices: Brent - Europe Defl by PCE(LFE) Def 1987:Q3-2014:Q4 5 0 1  
205 Real_Price Gasoline Conventional Gasoline Prices: New York Harbor  Regular Defl by PCE(LFE)  1986:Q3-2014:Q4 5 0 1  
206 Real_Refiners Acq. Cost 

(Imports) 
U.S. Crude Oil Imported Acquisition Cost by Refiners (Dollars per Barrel) Defl by PCE(LFE)  1974:Q1-2014:Q4 5 0 1  

207 Real_CPI Gasoline CPI Gasoline (NSA) BLS: CUUR0000SETB01 Defl by PCE(LFE)  1959:Q1-2014:Q4 5 0 1  
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Dealing with large datasets 
 

(1) Outliers 
 
(2) Non-stationarities and 'trends' 
 

Usual transformations  (logs, differences, spreads, etc.) 
 
Low-frequency 'demeaning' 
 

(3) Aggregates (139 vs. 207) 
 
(4) Estimate factors using standarized data ('weights' in weighted least 
squares).  [ ] 

 

min{Ft },{λi } (Xit − λi 'Ft )
2

i,t
∑
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Low-frequency 'demeaning' weights and sprectral gain 

 

 
Prescott filter, which places most of its weight on lags of!15 quarters. The biweight filter

estimates trends at multidecadal frequencies, whereas the Hodrick and Prescott trend

places considerable weight on fluctuations with periods less than a decade.

The biweight filter needs to be modified for observations near the beginning and end

of the sample. One approach would be to estimate a time series model for each series, use

forecasts from that model to pad the series at end points, and to apply the filter to this

Fig. 2 Lag weights and spectral gain of trend filters. Notes: The biweight filter uses a bandwidth
(truncation parameter) of 100 quarters. The bandpass filter is a 200-quarter low-pass filter
truncated after 100 leads and lags (Baxter and King, 1999). The moving average is equal-weighted
with 40 leads and lags. The Hodrick and Prescott (1997) filter uses 1600 as its tuning parameter.

482 Handbook of Macroeconomics
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How Many Factors? 
 

(1) Scree plot 
 
(2) Information criteria 
 
(3) Others 
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Least squares objective function for r factors: 
 
 

 

 
where Ft and li are r × 1 vectors. 
 
 
Scree plot: Marginal (trace) R2 for factor k: 
 

SSR(r) = min{Ft },{λi } (Xit − λi 'Ft )
2

i,t
∑
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Scree plot for 58 real variables 
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 Fig. 1 Detrended four-quarter growth rates of US GDP, industrial production, nonfarm employment,

andmanufacturing and trade sales (solid line), and the common component (fitted value) from a single-
factor DFM (dashed line). The factor is estimated using 58 US quarterly real activity variables. Variables
all measured in percentage points.
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of the fits for all series suggests that the factors beyond the first serve mainly to explain

movements in some of the disaggregate series.

In principle, there are at least three possible reasons why there might be more than

one factor among these real activity series.

The first possible reason is that there could be a single dynamic factor that manifests as

multiple static factors; in the terminology of Section 2, perhaps q¼1, r>1, and G in (7)

has fewer rows than columns. As discussed in Section 2, it is possible to estimate the num-

ber of dynamic factors given the number of static factors, and applying the Amengual and

Watson (2007) test to the real activity dataset, with three static factors, estimates that there

is a single dynamic factor. That said, the contribution to the traceR2 of possible additional

dynamic factors remains large in an economic sense, so the estimate of a single dynamic

factor is suggestive but not conclusive.

The second possible reason is that these series move in response to multiple struc-

tural shocks, and that their responses to those shocks are sufficiently different that the

innovations to their common components span the space of more than one aggregated

shock.

The third reason, discussed in Section 2, is that structural instability could lead to spu-

riously large numbers of static factors; for example, if there is a single factor in both the

first and second subsamples but a large break in the factor loadings, then the full-sample

PC would find two factors, one estimating the first-subsample factor (and being noise in

the second subsample), the other estimating the second-subsample factor.

Fig. 4 Four-quarter GDP growth (black) and its common component based on 1, 3, and 5 static factors:
real activity dataset.

486 Handbook of Macroeconomics
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Scree plot – Full data set (139 variables) 
 

blocks of Table 3 suggest that these higher factors, both static and dynamic, capture com-

mon innovations that are important for explaining some categories of series.

The scree plot in Fig. 6A and the statistics in Tables 2 and 3 point to a relatively small

number of factors—between 4 and 8 factors—describing a large amount of the variation

in these series. This said, a substantial amount of the variation remains, and it is germane

to ask whether that remaining variation is from idiosyncratic disturbances or whether

Fig. 6 (A) Scree plot for full dataset: full sample, pre-1984, and post-1984. (B) Cumulative R2 as a
function of the number of factors, 94-variable balanced panel.

489Factor Models and Structural Vector Autoregressions
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Information criteria:  Bai and Ng 
 
 
IC(r) = ln(SSR(r)) + r × g(sample size) 
 
 
Sample size: n and T 
 
 

  

 
 
 
Note: when n = T this is BNIC(r) = ln(SSR(r)) + r×2ln(T)/T. 
 

BNIC(r) = ln SSR(r)( )+ r × n+T
nT

⎛
⎝⎜

⎞
⎠⎟
ln min(n,T )( )
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Table 2 Statistics for estimating the number of static factors
(A) Real activity dataset (N558 disaggregates used for estimating factors)

Number of static factors Trace R2 Marginal trace R2 BN-ICp2 AH-ER

1 0.385 0.385 !0.398 3.739
2 0.489 0.103 !0.493 2.338
3 0.533 0.044 20.494 1.384
4 0.565 0.032 !0.475 1.059
5 0.595 0.030 !0.458 1.082

(B) Full dataset (N5139 disaggregates used for estimating factors)

Number of static factors Trace R2 Marginal trace R2 BN-ICp2 AH-ER

1 0.215 0.215 !0.183 2.662
2 0.296 0.081 !0.233 1.313
3 0.358 0.062 !0.266 1.540
4 0.398 0.040 20.271 1.368
5 0.427 0.029 !0.262 1.127
6 0.453 0.026 !0.249 1.064
7 0.478 0.024 !0.235 1.035
8 0.501 0.024 !0.223 1.151
9 0.522 0.021 !0.205 1.123
10 0.540 0.018 !0.185 1.057

(C) Amenguel-Watson estimate of number of dynamic factors: BN-ICpi values, full dataset (N5139)

No. of
dynamic
factors

Number of static factors

1 2 3 4 5 6 7 8 9 10

1 !0.098 !0.071 !0.072 !0.068 !0.069 !0.065 !0.064 !0.064 !0.064 !0.060
2 20.085 !0.089 !0.087 !0.089 !0.084 !0.084 !0.084 !0.085 !0.080
3 20.090 20.088 20.091 20.088 20.088 20.086 20.086 20.084
4 !0.077 !0.080 !0.075 !0.075 !0.073 !0.072 !0.069
5 !0.064 !0.060 !0.062 !0.057 !0.055 !0.052
6 !0.045 !0.043 !0.040 !0.037 !0.036
7 !0.024 !0.022 !0.020 !0.018
8 !0.002 0.000 0.003
9 0.021 0.023
10 0.044

Notes: BN-ICp2 denotes the Bai and Ng (2002) ICp2 information criterion. AH-ER denotes the Ahn and Horenstein (2013) ratio of (i+1)th to ith eigenvalues. The minimal
BN-ICp2 entry in each column, and themaximal Ahn–Horenstein ratio entry in each column, is the respective estimate of the number of factors and is shown in bold. In panel
C, the BN-ICp2 values are computed using the covariancematrix of the residuals from the regression of the variables onto lagged values of the column number of static factors,
estimated by principal components.
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What about many more factors?  

(Full 138-variable dataset) 

 
 

Is there useful information in additional factors? (For forecasting, maybe)
blocks of Table 3 suggest that these higher factors, both static and dynamic, capture com-

mon innovations that are important for explaining some categories of series.

The scree plot in Fig. 6A and the statistics in Tables 2 and 3 point to a relatively small

number of factors—between 4 and 8 factors—describing a large amount of the variation

in these series. This said, a substantial amount of the variation remains, and it is germane

to ask whether that remaining variation is from idiosyncratic disturbances or whether

Fig. 6 (A) Scree plot for full dataset: full sample, pre-1984, and post-1984. (B) Cumulative R2 as a
function of the number of factors, 94-variable balanced panel.

489Factor Models and Structural Vector Autoregressions
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Structural DFM or SFDM: SVAR analysis, but now using DFM 

 
 

SVAR problems that the DFM might solve: 
 
 

(a) Many variables, thus invertibility is more plausible. 
 
 
(b) Errors-in-variables, several indicators for same theoretical 
concept ('aggregate prices','oil prices', etc.) 
 
 
(c) Framework for computing IRFs from structural shocks to many 
variables. 
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Can't I just do a VAR?  .. No 
 

 
additionally has the ISMmanufacturing index, the oil price PPI, the corporate paper-90-day

treasury spread, and the 3 month–10 year treasury term spread. The eight variables in the

thirdVAR(VAR-C)were selectedusing a stepwiseprocedure toproduceahigh fit between

VARresiduals andthe innovations in theeight static factors (ie, the residuals in theVARwith

the eight static factors).This procedure led to theVAR-Cvariablesbeing the indexof IP, real

personal consumption expenditures, government spending, thePPI for industrial commod-

ities, unit labor costs for business, the S&P500, the 6 month–3 month term spread, and a

trade-weighted index of exchange rates.kk The final VAR, VAR-O, is used for the SVAR

analysis of the effect of oil shocks in Section 7 and is discussed there.

Table 5 Approximating the eight-factor DFM by a eight-variable VAR
Canonical correlation

1 2 3 4 5 6 7 8

(A) Innovations

VAR-A 0.76 0.64 0.6 0.49
VAR-B 0.83 0.67 0.59 0.56 0.37 0.33 0.18 0.01
VAR-C 0.86 0.81 0.78 0.76 0.73 0.58 0.43 0.35
VAR-O 0.83 0.80 0.69 0.56 0.50 0.26 0.16 0.02

(B) Variables and factors

VAR-A 0.97 0.85 0.79 0.57
VAR-B 0.97 0.95 0.89 0.83 0.61 0.43 0.26 0.10
VAR-C 0.98 0.93 0.90 0.87 0.79 0.78 0.57 0.41
VAR-O 0.98 0.96 0.88 0.84 0.72 0.39 0.18 0.02

Notes:All VARs contain four lags of all variables. The canonical correlations in panel A are between the VAR residuals and
the residuals of a VAR estimated for the eight static factors.
VAR-Awas chosen to be typical of four-variable VARs seen in empirical applications. Variables: GDP, total employment,
PCE inflation, and Fed funds rate.
VAR-B was chosen to be typical of eight-variable VARs seen in empirical applications. Variables: GDP, total employ-
ment, PCE inflation, Fed funds, ISM manufacturing index, real oil prices (PPI-oil), corporate paper-90-day treasury
spread, and 10 year–3 month treasury spread.
VAR-C variables were chosen by stepwise maximization of the canonical correlations between the VAR innovations and
the static factor innovations. Variables: industrial commodities PPI, stock returns (SP500), unit labor cost (NFB), exchange
rates, industrial production, Fed funds, labor compensation per hour (business), and total employment (private).
VAR-O variables: real oil prices (PPI-oil), global oil production, global commodity shipment index, GDP, total employ-
ment (private), PCE inflation, Fed funds rate, and trade-weighted US exchange rate index.
Entries are canonical correlations between (A) factor innovations and VAR residuals and (B) factors and observable
variables.

kk The variables in VAR-C were chosen from the 207 variables so that the ith variable maximizes the ith
canonical correlation between the residuals from the i-variable VAR and the residuals from the eight-
factor VAR. In the first step, the variable yielding the highest canonical correlation between its autore-

gressive residual and the factor VAR residuals was chosen. In the second step, the variable that maximized
the second canonical correlation among all 206 two-variable VAR residuals (given the first VAR variable)
and the factor VAR residuals was chosen. These steps continued until eight variables were chosen.
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The SDFM: 
 

 

 

 
 

where F(L) = I – F1L – … – FpLp, 
 

 
 

Xt = ΛF(L)-1GHεt + et 
 

IRFs: ΛF(L)-1GH  
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Three Normalizations 
 

1. LFt = LPP-1Ft for any matrix P.  Set P rows of L equal to rows of 
identity matrix.  Rearranging the order of the Xs this yields 
 

 

 
This 'names' the first factor as the X1 factor, the second factor as the X2 
factor and so forth.  Example:  X1,t is the logarithm of oil prices, then F1,t is 
called the oil price factor. 
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2. G = I (if q = r) or G1:q = Iq if q < r.     Recall 
 

Xt = l(L)ft + et  and f(L)ft = ht 
 

  

 

  

 
where ft and ht are q × 1. 
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3. The diagonal elements of H are unity. That is, e1t has a unit effect of F1,t 
and so forth.  Same as in SVAR. 
 
 
Putting these together: 
 
X1:q,t = Het + lags of et + et     
 
(Same 'unit-effect' normalization used in SVAR (JS), but only applied to 
the first q elements of Xt). 
 
F1:q,t = Het + lags of et 
 
etc. 
 
This means that everything in SVARs carry over here. 
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Additional flexibility in SDFM 
 

(1) Measurement error allowed:  With normalization, F follows SVAR, 
and  X = LF + e. 
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(2) Multiple measurements:  Example Oil prices 

 

Real oil price (Brent) 

A

B

Quarterly percent change in real oil price: four oil price series and the common component  

Fig. 7 Real oil price (2009 dollars) and its quarterly percent change.

497Factor Models and Structural Vector Autoregressions
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(3) "Factor Augmented" VAR ) (FAVAR)  (Bernanke, Boivin, Eliasz (2005)) 
 
Easily implemented in this framework: 
 

 

 

 
 

where  

, 
 

               ηt = Hεt. 
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Example: Macroeconomic Effects of Oil Supply Shocks 
 

2 Identifications: 
 
(1) Oil Price exogenous 

 

 

 

 

 
SVAR, FAVAR and SDFM versions 
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(2) Killian (2009) Identification  
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Empirical Results … see paper 
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Lecture 5: Part 2 
 

Prediction with large datasets 
 

Population Problem:  Y is a scalar, X is an n × 1 vector.  Predict Y given X. 
 

Population Solution: Use E(Y | X) 
 
Sample Problem: Given T in-sample observations on Y and X, how should 
 you predict an out-of-sample value for Y.  
 
Simplification: Suppose E(Y | X) is linear in X. How should you estimate 
the linear regression coefficients for the purposes of prediction? 
 
Sample Solution:  

(a) n/T is small … use OLS. 
(b) n/T not small … do NOT use OLS 
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Forecasting when n is large 
 

Imposing more structure: 
 
(1) X and Y  are related through a 'few' common factors. (Use version of 
DFM). 
 
(2) Regression coefficients are 'small'. (Use shrinkage) 
 
(3)  Many regressions coefficients are zero. (Impose 'sparsity') 
 
 
(Notation will use 1-period-ahead forecasts). 
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DFM Forecasting 
 

Forecasting setup:    Yt+1 = Ft¢a + et+1  
                                Xt  = LFt  + et 

                                F(L)Ft = Ght 
 
Implication: E(Yt+1 | Xt) = E(Ft |Xt)'a 
 

Use X to estimate F (say using  or Kalman Filter).   
 
When n is large,  is very close to F.  Thus, use  as if they were 
true values of F. 

Result (Stock-Watson (2002)):   
 
(Addition references in DFM section above).

  F̂ PC

  F̂ PC   F̂ PC

  ŷT+1 F̂ PC( )− ŷT+1 F( )→
ms

0
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Regression coefficients are 'small'. (Use shrinkage) 
 
Linear prediction problem:  Yt+1 = Xt¢b + et+1  
 
Simpler problem: Orthonormal regressors. 
 
Transform regressors as pt = HXt where H is chosen so that  
 

  = T-1P¢P = In.                (Note: This requires n ≤ T) 

 
Regression equation: Yt+1 = pt¢a + et+1 

 

OLS Estimator:   
 

so that   

  
T −1 pt pt '

t=1

T

∑

  α̂ = (P ' P)−1 P 'Y = T −1P 'Y

α̂ i = T
−1 pitYt+1
t=1

T

∑
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Note:  Suppose pt are strictly exogenous and et ~ iidN(0,s2). (This will 
motivate the estimators .. more discussion below). 
 
In this simple setting: 
 
(1)  are sufficient for a. 
 
(2)   
 

(3) MSFE:  

 
 
So we can think about analyzing n-independent normal random variables, 

, to construct estimators  that have small MSE - shrinkage can 
help achieve this.

 α̂

   α̂ −α( ) ∼ N 0,T −1σ 2In( )

   
E piT (α i − !α i )
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n
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2

+σ 2 ≈ n
T
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α̂ i  !α (α̂ i )
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Shrinkage:  Basic idea 
 
Consider two estimators:  (1)   ~ N(ai , T-1s2) 
 
                                          (2)   = ½  
 
MSE( ) = T-1s2 
 
MSE( ) = 0.25 × (T-1s2 + ai

2 )  
 
 
MSFE( ) =   

MSFE( ) = 0.25×  + s2 

 

How big is  ? 

α̂ i

 !α i α̂ i
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2
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n
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What is optimal amount (and form) of shrinkage? 
 

It depends on distribution of {ai}  
 
 
o Bayesian methods use priors for the distribution 

 
 

o Empirical Bayes methods estimate the distribution  
 



 AEA Continuing Education 2019, Lecture 5, page 72 

 
Examples:  L2 – Shrinkage 
 
Bayes:  Suppose ai  ~ iidN(0,T-1w2) 
             Then, with |ai ~ N(ai, T-1s2), 
 

  

 

so that ai|  ~   

 

MSE minimizing estimator conditional mean:   
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Empirical Bayes:  Requires estimates of s2 and w2 
 
If T-n is large, then s2 can be accurately estimated. 
 
If n is large, then w2 can be accurately estimated: 

       

       E(  ) = T-1(s2 + w2), so   

 
(Extensions to more general distributions, etc. in this prediction 
framework - see Zhang (2005), and Knox, Stock and Watson (2004) and 
references therein.)

α̂ i
2 ω̂ 2 = T

n
α̂ i
2

i=1

n

∑ −σ̂ 2
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Alternative Formulation: 
 
Write joint density of data and a as  
 

constant ×   

 
Which is proportional to posterior for a.  Because posterior is normal, 
mean = mode, so  can be found by maximizing posterior.  Equivalently 
by solving: 
 

   with l  = s2/w2 

 
This is called “Ridge Regression” 
 

exp −0.5 1
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In the original X – regressor model, the ridge estimator of  
 

  
 
and l can be determined by prior-knowledge, or estimated (empirical 
Bayes, cross-validation, etc.) 
 
(Note this estimator allows n > T.) 

 
!β Ridge = X 'X + λIn( )−1 (X 'Y )
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Relationship between Ridge and Principal components: 
 

Let Ft = RXt where R is n × n, RR' = R¢ R = In and  
 

 . 

 
Then yt = xt¢b + et = Ft¢f + et with f = Rb. 
 

Let .  Then algebra shows  .     

 
and    
 
But included PCs are those with large .  
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Other shrinkage methods (There are many, of course, that depend on the 
assumed distribution of the regressions coefficients). 
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Many regression coefficients are zero. 'Sparse' modeling 

 
Sparse models:  Many/most values of bi or ai are zero. 
 
Can be interpreted as shrinkage with lots of point mass at zero: 
 
Approaches: 
 
• Bayesian Model Averaging … (but can be computationally 

challenging … 2n models): Hoeting, Madigan, Raftery, and Volinsky 
(1999)) 
 

• Hard thresholds (AIC/BIC) or smoothed out using “Bagging”: 
(Breiman (1996), Bühlmann and Yu (2002); Inoue and Kilian (2008))  
 

• L1 penalization: Lasso (“Least Absolute Shrinkage and Selection 
Operator”): Tibshirani (1996) 
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Lasso:  (With orthonormal regressors) 

 

Ridge:   

 

Lasso:  

 

Equivalently:  
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min !α (α̂ i − !α i )
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FIGURE 14.3  The Lasso Estimator Minimizes the Sum of Squared Residuals Plus a Penalty  
That Is Linear in the Absolute Value of b

For a single regressor,  
(a) when the OLS esti-
mator is far from zero, 
the Lasso estimator 
shrinks it toward 0; (b) 
when the OLS estimator 
is close to 0, the Lasso 
estimator becomes 
exactly 0.
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Notes:  
 
 
• The solution yields sign( ) = sign( ) 

 
 

• Suppose  > 0. FOC … 2  + l = 0 
so solution is  

 
 

• Similarly for  < 0. 

 !α i α̂ i

α̂ i  (α̂ i − !α i )

 
!α i =

α̂ i − λ / 2 if (α̂ i − λ / 2) > 0
0 otherwise                       

⎧
⎨
⎪

⎩⎪

α̂ i
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Comments: 
 

(1) No closed form expression for estimator with non-orthogonal X, but 

efficient computational procedures using LARS (Efron, Johnstone, 

Hastie, and Tibshirani (2002), Hastie, Tibshirani, Friedman (2009)). 

 

(2) “Oracle” Results: Fan and Li (2001), Zhao and Yu (2006), Zou 

(2006), Leeb and Pötscher (2008), Bickel, Ritov, and Tsybakov (2009). 

 

(3) Nice overview for economists and economic research: Belloni, 

Chernozhukov, and Hansen (2014); application to choosing “controls” 

Belloni, Chernozhukov, and Hansen (2014b), and instruments  Belloni, 

Chen, Chernozhukov, and Hansen (2012). 
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(4) Bayes Interpretation: Park and Casella (2008) 

 

Suppose ai ~ iid  with f(ai) = constant ×   

Then posterior is  

 

constant ×  

 

The lasso estimator (with l = 2gs2) yields the posterior mode. 

But note mode ≠ mean  for this distribution. 

exp −γ α i( )
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Some empirical results from Giannone, Lenza and Primiceri (2018) 

 

Model:  yt = ut¢f + xt¢b + et 

 

Bayes estimation with diffuse prior for f and s2 = var(e) 

 

  

 

'shrinkage': g2 small and q large 

'sparse': g2 large and q small 

βi |σ 2 ,γ 2 ,q ~
N (0,σ 2γ 2 ) with probability q

0 with probability (1− q)

⎧
⎨
⎪

⎩⎪
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ECONOMIC PREDICTIONS WITH BIG DATA: THE ILLUSION OF SPARSITY 8

Table 1. Description of the datasets.

Dependent variable Possible predictors Sample

Macro 1 Monthly growth rate of
US industrial
production

130 lagged macroeconomic
indicators

659 monthly time-series
observations, from
February 1960 to
December 2014

Macro 2 Average growth rate of
GDP over the sample
1960-1985

60 socio-economic, institutional
and geographical
characteristics, measured at
pre-60s value

90 cross-sectional country
observations

Finance 1 US equity premium
(S&P 500)

16 lagged financial and
macroeconomic indicators

58 annual time-series
observations, from 1948 to
2015

Finance 2 Stock returns of US
firms

144 dummies classifying stock
as very low, low, high or very
high in terms of 36 lagged
characteristics

1400k panel observations
for an average of 2250
stocks over a span of 624
months, from July 1963 to
June 2015

Micro 1 Per-capita crime
(murder) rates

Effective abortion rate and 284
controls including possible
covariate of crime and their
transformations

576 panel observations for
48 US states over a span
of 144 months, from
January 1986 to
December 1997

Micro 2 Number of pro-plaintiff
eminent domain
decisions in a specific
circuit and in a specific
year

Characteristics of judicial
panels capturing aspects
related to gender, race, religion,
political affiliation, education
and professional history of the
judges, together with some
interactions among the latter,
for a total of 138 regressors

312 panel circuit/year
observations, from 1975 to
2008

3.2. Macro 2: The determinants of economic growth in a cross-section of coun-

tries. The seminal paper by Barro (1991) initiated a debate on the cross-country determi-

nants of long-term economic growth. Since then, the literature has proposed a wide range

of possible predictors of long-term growth, most of which have been collected in the dataset

constructed by Barro and Lee (1994). As in Belloni et al. (2011), we use this dataset to

explain the average growth rate of GDP between 1960 and 1985 across countries. The

database includes data for 90 countries and 60 potential predictors, corresponding to the
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ECONOMIC PREDICTIONS WITH BIG DATA: THE ILLUSION OF SPARSITY 12

Figure 4.1. Joint prior and posterior densities of q and log (�) in the
macro-1, macro-2 and finance-1 applications (best viewed in color).

artificially recover sparse model representations simply as a device to reduce estimation

error. Our findings indicate that these extreme strategies might perhaps be appropriate

only for our micro-1 application, given that its posterior in figure 4.2 is tightly concentrated

ECONOMIC PREDICTIONS WITH BIG DATA: THE ILLUSION OF SPARSITY 13

Figure 4.2. Joint prior and posterior densities of q and log (�) in the
finance-2, micro-1 and micro-2 applications (best viewed in color).

around extremely low values of q. More generally, however, our results suggest that the best

predictive models are those that optimally combine probability of inclusion and shrinkage.

4.2. Probability of inclusion and out-of-sample predictive accuracy. What is then

the appropriate probability of inclusion, considering that models with different sizes require

differential shrinkage? To answer this question, figure 4.3 plots the marginal posterior of

q, obtained by integrating out �2 from the joint posterior distribution of figures 4.1 and

4.2. Notice that the densities in figure 4.3 behave quite differently across applications. For
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Probability of variable inclusion as a function of q.

ECONOMIC PREDICTIONS WITH BIG DATA: THE ILLUSION OF SPARSITY 20

Figure 4.7. Heat map of the probabilities of inclusion of each predictor,
given q (left panels), and prior and posterior densities of q (right panels),
with a flat and tight prior on q in the macro-1 application (best viewed in
color).

probability of inclusion q. The top-right panel plots instead the posterior of q, along with

our baseline uniform prior. Observe that high-density values of q are mostly associated with

non-white regions in the heat map, confirming the main takeaway of section 4.3 about the

absence of clear sparsity patterns. However, a few stripes are very dark from top to bottom,

indicating that the corresponding regressors are always included in the model, regardless of

model size. When q is very low, these predictors are the only ones to be selected. Therefore,

if the posterior of q were concentrated on these very low values, contrary to our findings,

the results would be more consistent with the presence of sparsity.
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Four Economic Time Series and 'Low-frequency' (aka 'long-run') 
components 
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Some Questions:  
 
 
1. What is the long-run level ('mean') of a variable. 
 
 
2. How persistent are deviations from its mean or the effect of shocks? 
('halflife'). 
 
 
3. What is the long-run correlation between X and Y? (Or partial 
correlation given Z, regression coefficient, IV coefficient, … ) 
 
 
4. What can be said about the value of Y over the next 100 years? (What is 
the probability that YT+100years will be between two values a and b?) 
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Some background (and selected references): 
 
(1) Time trend regressions: Klein and Kosobud (1961), Grenander and Rosenblatt (1957) 

 
(2) Spectral regression: Hannan (1963), Engle (1974) 
 
(3) Spurious Regression: Yule (1926), Granger and Newbold (1974), Phillips(1986,1998) 
 
(4) I(0) analysis: JS lecture for detailed references 
 
(5) I(1) analysis: Dickey and Fuller (1979), Elliott-Rothenberg-Stock (1996), Engle and 

Granger (1987), Johansen (1988), …  
 
(6) Others: I(d), local-to-unity, …: Robinson (2003), Chan and Wei (1987), Elliott (1998) …  
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This lecture: A return to spectral (-like) methods (extended and simplified)  
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Outline of Method 
 

 
(1) Construct low-frequency components via regression onto deterministic 
low-frequency regressors (cosines, sines, etc.).   
 

(a) The estimated regression coefficients are low-frequency summaries 
of the sample data. 
 
(b) The estimated regression coefficients are (approximately) normally 
distributed. 

 
 
(2) Translate low-frequency questions in questions about the normal 
distribution characterizing the estimated regression coefficients. 
 
 
(3) Carry out 'normal' inference to answer questions. 
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(1) Construct low-frequency components via regression onto deterministic 
low-frequency regressors 
 

 
(Odds and Ends:   Time trend in list of low-frequency regressors)
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Low-Frequency Projections 
 
 
 

  

 
 
 
Notation, etc. 

x1:T =  +YTXT + residual  
 

  
 
 

xt = x1:T + 2cos jπ t −0.5
T

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

Regressor (period=2T / j )
! "### $###j=1

q

∑ X jT

OLS Coefficient
  

!
+  residual

x1:T lT

x̂1:T = x1:T lT +ΨT XT
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Large-sample normality 
 
 

Under a set of conditions:  T1/2XT ⇒ X ~ N(0, S) 
 
 
• Conditions: …  (1-L) xt = CT(L)et ('well-behaved', 'stationary', etc.) 

 
o (1-L) … allows x to be persistent and non-stationary. 

 
 
• S depends on the persistence in series: 

 
o x is I(0), S = s2I   (… JS lecture 2 on HAR) 

 
o x is I(1), S = s2DI(1) with DI(1), j  =  1/(jp)2 

 
o Generally S depends on spectrum of Dxt near frequency 0 
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Odds and ends:   
 
 

(1) Stationary processes:     

 
 
 

(2) Forecasting:    

 
 

T 1/2
x1:T − µ( )
XT

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
⇒ X ~ N (0,Σ)

T 1/2
xT+1:T+h − x 1:T( )

XT

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
⇒ X ~ N (0,Σ)
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Example: HAR inference about mean in I(0) model, 
 
 

Time series model:   xt = µ + ut where ut ~ I(0) 
 

 

                            

 
 
yields the approximation: 
 

                                 

T 1/2
x1:T − µ( )
XT

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
⇒Y ~ N (0,Σ) with Σ=σ 2I

x1:T
XT

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
~ N µ

0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,T −1σ 2I

⎛

⎝
⎜

⎞

⎠
⎟
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with         then         

 
 

Frequentist CI for µ  (JS Lecture 2):           ('HAR', Müller (2004), …, 

multivariate extensions, etc. )  (Notation: In JS lecture, this lecture's q was denoted by B.) 

 

Bayes (diffuse-prior) CS for µ :        

x1:T
XT

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
~ N µ

0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,T −1σ 2I

⎛

⎝
⎜

⎞

⎠
⎟

s2 = T
q

X jT
2

j=1

q

∑
T (x1:T − µ)

s
~ tq

x1:T ± tq,1−α /2 s
2 / T

x1:T ± tq,1−α /2 s
2 / T
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What is q ? 
 

 

  
Shortest period: 2T/q   …. Choosing q: 
 
(1) HAR I(0) inference:  how persistent are your data? (q ≈ 10 ?)  
(JS lecture .. used B for this lecture's q. Lots of discussion on choice of B.) 
 
(2) Defines 'long-run' question of interest: 

 
(a) Macro questions … periods longer than 10 years … sample size 70 
years .. q = 14. 
 
(b) PPP:  … periods longer than 20 years (?) .. sample size 220 years, 
q  = 22. 

xt = x1:T + 2cos jπ t −0.5
T

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

Regressor (period=2T / j )
! "### $###j=1

q

∑ X jT

OLS Coefficient
  

!
+  residual
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Limited information inference:  fixed q 

 
Four Examples 
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Example .. TFP .. inference about the mean 
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 = 1.24 
 
s2 = 14.8 
 
HAR-SE = s/T1/2 = 0.23 
 
q (= df = 'B' in JS lecture) = 14 
 

 
 
 Posterior percentiles  

Parameter 0.05 1/6 0.50 5/6 0.95 
µ 0.84 1.01 1.24 1.47 1.64 

 
 
 
In this example, Bayes and Frequentist inference coincide. More generally, in 
these 'small-sample' (q) problems they will differ. 

x1:T

x1:T ± tq,1−α /2 s
2 / T
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X ~ N(µ , S):   Bayes and Frequentist methods: µ = µ(q), S = S(q) 
 

Likelihood:  

 
 
Bayes:  q ~ fprior, then invert to find posterior f(q | X). (extensions to 
predictive distributions, etc.) 
 
 
Frequentist:   q = (q1, q2)   H0: q1 = q1,0 and H1: q1 ≠ q1,0 
 
A bit more complicated because of q2, but well-studied problem and many 
standard ways to handle. 
    
 
 
 

f (X |θ )∝ Σ(θ )
−1/2
e
−1
2
( X−µ(θ ))'Σ(θ )−1( X−µ(θ ))
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Questions:  
 
1. Long-run level ('mean') 
 
2. Long-run persistence ('half-life') 
 
3. Long-run correlation (correlation, linear regression, IV, etc.) 
 
4. Long-run predictions (point forecasts and uncertainty bands) 
 
 
 
 

Bayes inference examples follow 
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Inference about persistence parameters: 
 
T1/2XT ⇒ X ~ N(0, S), S  = s2W(q),  q is persistence parameter. 
 
(  not used. Diffuse prior for µ is stationary models, no well-defined limit in non-stationary models). 

 
Generic procedure:  
 

Gaussian likelihood:   

 
 
Specify prior for s2 and q 
 
 
Turn Bayes crank. (Koop (2003), Geweke (2005)) 

x1:T

f (XT |θ ,σ
2 )∝ σ 2Ω(θ )

−1/2
e
− T
2σ 2

XTΩ(θ )
−1 XT
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Digression:  Bayes analysis with discrete q.   
 
 
 
Suppose q ∈ {q1, q2, … qk) with P(q = qi) = pi. 
 
 
 

  

 

P(θ = θ i | X ) =
f (XT |θ i )pi
f (XT |θ j )pjj=1

k∑
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Example:   Local-level-persistence 
 
 
• Time series model:   xt = at + bt  where  at is I(0)  and  bt is I(1) 

 
 
• Parameters: long-run standard deviations sa and sDb 

 

• Standard Parameterization:  bt = b0 + (q/T) , where (a,e) are 

mutually uncorrelated I(0) processeses with LRV s2.   
 
 
• In this case S  = s2W(q) with W(q) = I + q DI(1)  

 

ei
i=1

t

∑
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Example: TFP (Shortest period = 10 years, q = 14) 

 

xt = at + bt,  bt = b0 + (q/T)  

 
Diffuse prior for s, ln(q) ~ U[ln(0.1), ln(500)];  ('equally-spaced grid'). 
 

 Posterior percentiles 
Parameter 0.05 1/6 0.50 5/6 0.95 

q 0.14 0.48 4.58 10.92 21.89 
s  = sa 2.076 2.573 3.332 4.258 5.089 

s q/T = sb 0.002 0.007 0.052 0.117 0.190 
q/T = sb/sa 0.000 0.002 0.016 0.038 0.077 

 

Standard deviation of change in bt over 10 years =  ≈ 0.33  

ei
i=1

t

∑

σ b 40
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Example:   AR-persistence 
 
 
• Time series model:  xt = µ + ut  where  ut = rut-1 + at, where r ≈ 1 and 

at ~ I(0) 
 
 
• Parameters: long-run standard deviations r and s  (= LR SD of a) 

 
 
• Standard Parameterization: r = (1 - q/T)  (q is local-to-unity 

parameter) 
 
 
• In this case S  = s2W(q) with W(q) LTU variance. 
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Example: Real Exchange Rate (Shortest period = 20 years, q = 22) 

 
xt = µ + ut  where  ut = rut-1 + at, r = (1 - q/T) 

 
Diffuse prior for s, ln(q) ~ U[ln(0.1), ln(500)];  ('equally-spaced grid'). 
 

 Posterior percentiles 
Parameter 0.05 1/6 0.50 5/6 0.95 

q 0.17 0.68 5.45 12.99 21.89 
r = (1-q/T) 0.90 0.94 0.98 1.00 1.00 
rhalf-life = 1/2 7.2 12.1 28.8 231.5 930.0 
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Example:   I(d)-persistence 
 
 

• Time series model:   xt = µ + ut with (1-L)d ut =  et  where et ~ I(0)  
 

 
• Parameters: d and s  (= LR SD of e) 

 
 
• Standard Parameterization: here q = d. (Limiting normality obtains for -0.5 < 

d < 1.5) 
 
 
• In this case S  = s2W(q) with W(q) fractional variance. 
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Example: Logarithm of daily SP500 realized volatility  
(Shortest period = 250 days, q = 37) 

 

 
xt = µ + ut with (1-L)d ut =  et  where et ~ I(0) 

 
Diffuse prior for s,  d ~ U[-0.4, 1.4];  ('equally-spaced grid'). 
 
 

 Posterior percentiles 
Parameter 0.05 1/6 0.50 5/6 0.95 
q = d 0.37 0.44 0.59 0.74 0.81 
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 Return to inference about long-run level ('mean') 
 
 
• xt = µ + ut 

 
o ut ~ I(0)   (done) 

 
o ut persistent, but stationary  (Not covered by JS HAR lecture) 

 
 

• xt = µt + ut 
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Example: Inference about mean when data are persistent 
 

 
• Time series model:   xt = µ + ut  where  ut = rut-1 + et, et ~ I(0) and r is 

close to 1. 
 
• Parameters: µ,  r ( = (1 - q/T)),  s  

 
• large-sample approximation 

 
 

                            

 
 
 

T 1/2
x1:T − µ( )
XT

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
~ N (0,σ 2Ω(θ ))
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Example: Unemployment rate (nsa), shortest period = 10 years, q = 14 

 
xt = µ + ut with ut = rut-1+ et  where et ~ I(0) and r = (1-q/T) 

 
Diffuse prior for µ and s, ln(q) ~ U[ln(0.1), ln(500)];  ('equally-spaced 
grid'). 

 Posterior percentiles 
Parameter 0.05 1/6 0.50 5/6 0.95 

µ 4.43 5.19 5.72 6.18 6.61 
r = (1-q/T) 0.51 0.71 0.93 0.98 1.00 

 
µ, I(0) 5.16 5.39 5.77 6.14 6.38 
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Example: Inference about time varying 'level' in local-level model 

 

• Time series model:   xt = at + bt,  bt = b0 + (q/T)  

 
• Question:  What the (low-frequency) value of bt | low-frequency of xt. 

(As in Kalman filter example) 
 
o xt → XT   and (at + bt) → AT + BT 

 
o what is the value of BT given XT (= AT + BT) 

 
 
• Parameters, same as LLM but now object of interest is predictive 

distribution:  f(BT | XT) 
 

 
 

ei
i=1

t

∑
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Example: TFP 
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Example: Inference about break in mean 
 

• Time series model:   xt = µt  + ut where ut ~ I(0) and µt = µ + 1(t > rT)×d  
 

• Parameters, s, µ, d and 0 < r < 1 
 

 
Mean shift induces a non-zero mean in projection coefficients, where 
mean depends on d and r. 
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xt = x1:T + 2cos jπ t −0.5
T

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

Regressor (period=2T / j )
! "### $###j=1

q

∑ X jT

OLS Coefficient
  

!
+  residual

T 1/2
x1:T
XT

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
−m(µ,δ ,r)

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
~ N (0,σ 2I )
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Example: TFP (Shortest period = 10 years, q = 14) 
 

 
 

xt = µt  + ut where ut ~ I(0) and µt = µ + 1(t > rT)×d 
 

 
Diffuse prior for s, µ, d; r ~ U(0,1) (discrete approximation) 

 

 



AEA Continuing Education 2019, Lecture 6, page  35 

Break date posterior 

 
 

 Posterior percentiles 
Parameter 0.05 1/6 0.50 5/6 0.95 

µpre 1.32 1.69 2.12 2.51 2.87 
µpost 0.40 0.62 0.86 1.10 1.30 

µpre - µpost 0.37 0.81 1.29 1.73 2.08 
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Questions:  
 
1. Long-run level ('mean') 
 
2. Long-run persistence ('halflife') 
 
3. Long-run correlation (correlation, linear regression, IV, etc.) 
 
4. Long-run predictions (point forecasts and uncertainty bands) 
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Two Series 
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Variances and Covariances 
 

 
 

 
 
 

 
Let 

 
 
 

x̂1:T = x1:T lT +ΨT XT

ŷ1:T = y1:T lT +ΨTYT

!xt = x̂t − x1:T
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Variances and Covariances 
 
 

 

 

 
YT are 'special':  T-1 YT'YT = Iq 
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Multivariate CLT: 
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Variances and Covariances 
 

 

 

The large-sample limit of this is   

 

 

 
Straightforward to do inference about W 
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Functions of W 
 
(1) Correlations, partial correlations 
 
(2) Linear regression coefficients 
 
(3) Linear IV 
 
 
Challenge:  How to parameterize 
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Example: 5 Macro Variables 
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 One-factor model 
 

 

 

 

 

ft ~ LLM:  ft = at + bt with bt = b0 +   
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Results:  Posterior Median and 68% credible sets 
 

 
Variable l R2(f) d 

GDP 1.00 ( 1.00, 1.00) 0.93 ( 0.68, 0.99) -0.22 (-0.35,-0.02) 
Cons 0.80 ( 0.71, 0.89) 0.87 ( 0.51, 0.98) 0.11 (-0.07, 0.25) 

Investment 1.41 ( 0.95, 1.88) 0.26 ( 0.03, 0.79) 0.04 (-0.22, 0.27) 
W 1.25 ( 1.14, 1.34) 0.70 ( 0.27, 0.95) -0.16 (-0.32, 0.07) 

TFP 0.60 ( 0.49, 0.71) 0.70 ( 0.52, 0.83) 0.12 (-0.06, 0.27) 
 
 

ft  process parameters 
Parameter Median and 68% credible set 

q 2.27 (0.34 10.92) 
q/T 0.010 (0.001 0.039) 

s × q/T 0.05 (0.01 0.15) 
 
 



AEA Continuing Education 2019, Lecture 6, page  48 

Low-frequency projection: Series and common component 
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Questions:  
 
1. Long-run level ('mean') 
 
2. Long-run persistence ('halflife') 
 
3. Long-run correlation (correlation, linear regression, IV, etc.) 
 
4. Long-run predictions (point forecasts and uncertainty bands) 
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Prediction: f(Y1 | Y2) 
 

T 1/2
xT+1:T+h − x 1:T( )

XT
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⎥
~ N (0,Σ)
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T = 70 years;  h = 35; h/T = 0.5 
 

 = 1.24; s2 = 14.8;  HAR-SE = s/T1/2 = 0.23;  q (= df) = 14 
 

I(0) prediction interval:   ;  68% interval:  0.84 to 1.64 

 
 
LLM prediction interval: 0.2 to 1.6 
 

x1:T

x1:T ± tq,1−α /2 s
2 / T × 1+ r −1
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A more ambitious prediction exercise: Annual Data 1915-2014 for 112 
countries 

(Merged: PWT 1950-2014 and Maddison 1915-1949 
countries with at least 50 years of post-1949 data and population > 3 million) 

 
• 97% of World GDP in 2014 and 96% of World Population 
• Unbalanced Panel (39-52 countries before 1950, 107 in 1950, 110 in 1952 and 112 in 

1960) 
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Data: GDP/Population for 112 countries 
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Long-Run Forecasting Problem 
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 or  
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Course Topics 

 
 

1. Time series refresher (MW)  

2. Heteroskedasticity and autocorrelation consistent/robust (HAC, HAR) 

standard errors (JS) 

3. Dynamic causal effects (JS) 

4. Weak instruments/weak identification in IV and GMM (JS) 

5. Dynamic factor models and prediction with large datasets  (MW) 

6. Low-frequency analysis of economic time series (MW) 
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