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We describe in detail data sources in Section A, derivations in Section B, computational
procedures in Section C, and supplementary results in Section D.

A Data

We detail the data sources used in our manuscript.

A.1 Historical Cross-country Panels

Output and Consumption

The Barro-Ursúa (2008) historical cross-country panel of real per capita output and con-
sumption is obtained from Robert Barro’s Web site. Their panel ends in 2009, and we
extend it through 2013. In particular, we construct real per capita gross domestic product
(GDP) growth with two series fromWorld Development Indicators (WDI) at the World Bank
(http://data.worldbank.org/data-catalog/world-development-indicators), real GDP growth
(code: NY.GDP.MKTP.KD.ZG), gGDP, and the population growth (code: SP.POP.GROW),
gPOP. Both growth rate series are in annual percent. We take 2006 as the base year and set
the GDP index, Y2006, as 100. For year t after 2006, we calculate its GDP index as:

Yt = 100×

∏t
2006(1 + gGDP/100)∏t
2006(1 + gPOP/100)

. (A1)

Analogously, we construct real per capita consumption growth from two WDI
series, annual percent growth of household final consumption expenditure (code:
NE.CON.PRVT.KD.ZG) and the population growth (code: SP.POP.GROW). WDI revises
its published data retrospectively. To be consistent, we update the output and consumption
series from 2006 onward, as opposed to 2009, when the original Barro-Ursúa panel ends.

Asset Prices

We compile our cross-country panel of real stock market returns and real interest rates from
Global Financial Data (GFD) and the Dimson, Marsh, and Staunton (DMS, 2002) dataset
updated through 2013. We purchase the DMS dataset from Morningstar.

In constructing our cross-country panel, we search the GFD database for countries with
total return indexes going back to at least early 1930s. We then supplement the GFD data
with the DMS database. For a given country, the starting year of the sample for real stock
returns often differs from that for real interest rates. In such cases, we take the common
sample period for stocks and bills. We have only managed to verify dividend yields data
for four countries from GFD, but the series are not adjusted for inflation. As such, we opt
not to use the Barro-Ursúa (2009) data of asset prices. In any event, the basic asset pricing
moments in our cross-country panel are relatively close to theirs.

Table A1 reports descriptive statistics of real stock and bill returns across countries.
Both raw and leverage-adjusted financial moments are reported. Following Barro (2006), we
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Table A1 : Properties of Asset Prices

Results are based on a cross-country panel of real stock market returns and real interest rates drawn

from GFD and the DMS dataset updated through 2013. “Start” is the starting year of the sample

for a given country (all country samples end in 2013). E[R̃], σ
R̃
, and E[R̃ − Rf ] are the average

stock market returns, the stock market volatility, and the equity premium, respectively, without

adjusting for financial leverage. E[R − Rf ] and σR are the equity premium and the stock market

volatility, respectively, after adjusting for leverage. E[Rf ] is the mean interest rate, and σRf is the

interest rate volatility. All moments are in annual percent.

Start E[R̃] σ
R̃

E[Rf ] σRf E[R̃−Rf ] E[R−Rf ] σR

Australia 1876 9.81 16.68 1.24 5.28 8.57 6.08 12.34
Austria 1901 6.36 38.04 −2.44 24.55 8.79 6.24 31.19
Belgium 1901 6.34 26.21 1.34 14.67 5 3.55 20.82
Canada 1901 7.16 17.79 1.7 5.73 5.46 3.88 13.14
Denmark 1901 8.15 23.05 3.49 13.09 4.66 3.31 18.28
Finland 1901 9.57 30.65 0.32 11.47 9.25 6.57 23.01
France 1896 6.34 26.18 −1.58 10.58 7.92 5.62 19.54
Germany 1870 5.26 31.9 −1.21 16.53 6.47 4.59 25.56
Ireland 1901 7.45 25.53 1.63 12.08 5.82 4.13 20.13
Italy 1901 5.57 28.78 −0.85 12.6 6.42 4.56 21.76
Japan 1901 9.1 30.24 −0.56 13.51 9.66 6.86 23.36
Netherlands 1901 8.14 24.8 1.9 13.22 6.24 4.43 19.48
New Zealand 1901 8.32 25.74 2.42 14.76 5.9 4.19 21.21
Norway 1901 8.47 30.04 2.22 13.08 6.25 4.44 23.31
South Africa 1901 9.78 29.78 1.14 15.39 8.63 6.13 24.09
Spain 1901 6.92 28.25 2.05 18.42 4.86 3.45 23.69
Sweden 1901 8.36 21.49 1.24 6.91 7.12 5.06 15.71
Switzerland 1901 7.3 20.9 2.29 12.07 5.01 3.56 16.57
United Kingdom 1801 6.32 16.39 2.67 6.96 3.66 2.6 12.6
United States 1836 8.16 19.3 1.78 5.53 6.38 4.53 14.14

Average 7.64 25.59 1.04 12.32 6.6 4.69 20

calculate the leverage-adjusted equity premium as E[R−Rf ] = (1−ω)E[R̃−Rf ], in which ω
is leverage, defined as the market value of debt/(the market value of debt + the market value

of equity), and E[R̃−Rf ] is the equity premium without adjusting for leverage. The leverage-

adjusted stock market volatility, σR, is the standard deviation of (1−ω)R̃t+ωRf
t . We set ω =

0.29, which is the mean leverage ratio across 39 countries in Fan, Titman, and Twite (2012).

It should be noted that although standard in the literature (Barro 2006, Section III; see
also Kaltenbrunner and Lochstoer 2010), the leverage adjustment procedure is crude. How-
ever, this simple procedure allows one to abstract from modeling sovereign default risk, which
is an important topic of its own. In any event, accounting for long-term (and defaultable)
debt would reduce the equity premium in the data. As such, our procedure raises the hurdle
on the model to match the equity premium. However, to the extent that bond returns are
more volatile than bill rates, our procedure likely understates the leverage-adjusted volatility.
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A.2 The Long U.S. Sample

Output, Profits, Prices, and Investment

To measure the profits-to-output ratio, we obtain output (gross domestic product) data
from National Income and Product Accounts (NIPA) Table 1.1.6, and profits data from
NIPA Table 1.12 row 13 (corporate profits with inventory valuation adjustment and capi-
tal consumption adjustment). We use the implicit price deflator of gross domestic product
(NIPA Table 1.1.9) to deflate profits. The sample is annual from 1929 to 2013. To calcu-
late the relative volatility of profits to output, we detrend annual real profits and output as
HP-filtered proportional deviations from the mean with a smoothing parameter of 100.

To calculate investment moments, we obtain the series for the real U.S. gross private
domestic investment from NIPA Table 1.1.6. The sample is annual from 1929 to 2013.

Unemployment and Vacancy Rates

Following Petrosky-Nadeau and Zhang (2013), we construct the series of monthly unemploy-
ment rates in the U.S. from April 1929 to December 2013 by drawing from NBER macrohis-
tory files (chapter 8: Income and employment) and Federal Reserve Economic Data (FRED)
at Federal Reserve Bank of St. Louis. We concatenate four U.S. unemployment series:

• The seasonally adjusted unemployment rates from April 1929 to February 1940 (NBER
data series m08292a, FRED series id: M0892AUSM156SNBR, National Industrial
Conference Board, by G. H. Moore Business Cycle Indicators, vol. II, p. 35 and p. 123).

• The seasonally adjusted unemployment rates from March 1940 to December 1946
(NBER data series m08292b, FRED series id: M0892BUSM156SNBR. U.S. Bureau of
the Census, Current Population Reports, Labor Force series P-50, no. 2, 13, and 19).

• The seasonally adjusted unemployment rates from January 1947 to December 1947. To
construct this series, we first obtain the monthly unemployment rates (not seasonally
adjusted) from January 1947 to December 1966 (NBER data series m08292c, FRED
series id: M0892CUSM156NNBR. Source: Employment and Earnings and Monthly
Report on the Labor Force, vol. 13, no. 9, March 1967). We pass the monthly series
from 1947 to 1966 through the X-12-ARIMA seasonal adjustment program from the
U.S. Census Bureau, and take the adjusted series from January to December of 1947.

• The seasonally adjusted civilian unemployment rates from January 1948 to December
2013 from Bureau of Labor Statistics (FRED series id: UNRATE).

Following Owyang, Ramey, and Zubairy (2013), we adjust the pre-1948 unemployment
rates. We use the monthly unemployment rates from January 1930 to December 1947 to
interpolate annual unemployment rates data from Weir (1992) using the Denton (1971) pro-
portional interpolation procedure. In addition, we scale the nine monthly unemployment
rates from April to December 1929 so that their average matches the annual unemployment
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rate for 1929 reported in Weir. We cannot apply the Denton procedure on the nine monthly
observations because the procedure requires the complete data for 12 months in a given year.

Following Petrosky-Nadeau and Zhang (2013), we construct the monthly vacancy rates in
the U.S. from April 1929 to December 2013 by drawing from four series of U.S. job openings:

• The Metropolitan Life Insurance company (MetLife) help-wanted advertising index
in newspaper from April 1929 to August 1960. The series (not seasonally adjusted)
is obtained from the NBER macrohistory files (series id: m08082a, FRED series id:
M0882AUSM349NNBR). The NBER scales the series to average 100 over the 1947–
1949 period. To seasonally adjust the series, we pass the raw series through the X-12-
ARIMA program from the U.S. Census Bureau.

• The help-wanted advertising index from the Conference Board, seasonally adjusted,
from January 1951 to July 2006. The series is scaled to average 100 in 1987.

• The composite print and online help-wanted index from Barnichon (2010). The series,
ranging from January 1995 to December 2012, is from Regis Barnichon’s Web site.

• The seasonally adjusted job openings series (total nonfarm, level in thousands) from the
Job Openings and Labor Turnover Survey (JOLTS) released by Bureau of Labor Statis-
tics. The series from December 2000 to December 2013 are from FRED (id: JTSJOL).

To make the different series comparable in units, we scale the Conference Board index
(multiply the index by 2.08) so that its value for January 1960 equals the MetLife index
value for the same month. We use the Conference Board index until December 1994 and
the Barnichon index thereafter. Because these two series have the same unit, we scale the
Barnichon index in the same way as we scale the Conference Board index to concatenate
with the MetLife series. We scale the JOLTS series (multiply by 0.0195) so that its value in
December 2000 equals the Barnichon index value for the same month. We use the JOLTS
series (scaled by 2.08×0.0195 = 0.04) after December 2000 in the overall help-wanted index.

To convert the help-wanted index into vacancy rates, we construct a labor force series.
We obtain the civilian labor force over 16 years of age in thousands of persons from FRED
(series id: CLF16OV). The (seasonally adjusted) series is based on Current Employment
Statistics released by Bureau of Labor Statistics. The sample is from January 1948 to De-
cember 2013. To construct the labor force series for the period from April 1929 to December
1947, we obtain the annual observations of total population from the U.S. Census. We form
a monthly series by linearly interpolating two adjacent annual observations across the 12
months in question. We multiply the total population estimates by the fraction of the pop-
ulation over 16 years of age in 1948 and the average labor force participation rate in 1948.
The implicit assumption is that both rates are largely constant from 1929 to 1947. The last
step in constructing the vacancy rate series is to divide the overall help-wanted index by the
labor force series, while rescaling the resulting series to a known estimate of the job vacancy
rate. In particular, we multiply the resulting series by 13.47 so that the series averages to
2.05% in 1965, which is the vacancy rate documented by Zagorsky (1998, Table A1).
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Figure A1 : The U.S. Monthly Unemployment and Vacancy Rates, April

1929–December 2013

Figure A1 plots the long time series of the U.S. monthly unemployment and vacancy rates.
In particular, the vacancy rate experienced large declines during the Great Depression. The
vacancy rate dropped from 2% in September 1929 to 0.44% in March 1933, representing a
steep decline of 78%. The vacancy rate went through another, steeper decline from the mid
to late 1940s, due to the demobilization of World War II.

A.3 Postwar U.S. Data

To calculate the wage elasticity to labor productivity, we measure wages as labor share times
labor productivity (real output per job) in the nonfarm business sector from Bureau of Labor
Statistics, following Hagedorn and Manovskii (2008). The sample is quarterly from 1947 to
2013. As in Hagedorn and Manovskii, we detrend wages and labor productivity with log
deviations from the HP-trend with a smoothing parameter of 1,600.

To calculate net payout moments in the data, we measure the net payout as net dividends
of nonfinancial corporate business (Table F.102, series FA106121075.Q) minus net increase
in corporate equities of nonfinancial business (Table F.101, series FA103164103.Q) from Fi-
nancial Accounts of the Federal Reserve Board, following Jermann and Quadrini (2012). The
sample is quarterly from the fourth quarter of 1951 to the fourth quarter of 2013. We use
implicit price deflator for gross domestic product (NIPA Table 1.1.9) to deflate net payout.
We detrend real net payout, gross domestic product, and consumption as HP-filtered pro-
portional deviations from the mean with a smoothing parameter of 1,600. We do not take
logs because the net payout can be negative in the data.
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B Derivations

B.1 Wages

We derive equilibrium wages under recursive utility. The case with log utility is similar (and
more standard). Let η ∈ (0, 1) denote the relative bargaining weight of the worker, JNt the
marginal value of an employed worker to the representative family, JUt the marginal value
of an unemployed worker to the representative family, φt the marginal utility of the repre-
sentative family, SNt the marginal value of an employed worker to the representative firm,
and SV t the marginal value of an unfilled vacancy to the representative firm.

A worker-firm match turns an unemployed worker into an employed worker for the repre-
sentative household as well as an unfilled vacancy into a filled vacancy (an employed worker)
for the firm. As such, we can define the total surplus from the Nash bargain as:

Λt ≡
JNt − JUt

φt
+ SNt − SV t. (B1)

The equilibrium wage is determined via the Nash worker-firm bargain:

max
{Wt}

(
JNt − JUt

φt

)η

(SNt − SV t)
1−η , (B2)

The outcome of maximizing equation (B2) is the surplus-sharing rule:

JNt − JUt
φt

= ηΛt = η

(
JNt − JUt

φt
+ SNt − SV t

)
. (B3)

As such, the worker receives a fraction of η of the total surplus from the wage bargain. In
what follows, we derive the equilibrium wage from the sharing rule in equation (B3).

Workers

To derive JNt and JUt, we need to specify the details of the representative household’s prob-
lem. Tradeable assets consist of risky shares and a risk-free bond. Let Rf

t+1 denote the
risk-free interest rate, which is known at the beginning of period t, Πt the household’s
financial wealth, χt the fraction of the household’s wealth invested in the risky shares,
RΠ
t+1 ≡ χtRt+1 + (1 − χt)R

f
t+1 the return on wealth, and Tt the taxes raised by the gov-

ernment. The household’s budget constraint is given by:

Πt+1

RΠ
t+1

= Πt − Ct +WtNt + Utb− Tt. (B4)

The household’s dividends income, Dt, is included in the current financial wealth, Πt.

Let φt denote the Lagrange multiplier for the household’s budget constraint (B4). The
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household’s maximization problem is given by:

Jt =

[
(1− β)C

1− 1

ψ

t + β
[
Et

(
J1−γ
t+1

)] 1−1/ψ
1−γ

] 1

1−1/ψ

− φt

(
Πt+1

RΠ
t+1

− Πt + Ct −WtNt − Utb+ Tt

)
,

(B5)
The first-order condition for consumption yields:

φt = (1− β)C
− 1

ψ

t

[
(1− β)C

1− 1

ψ

t + β
[
Et

(
J1−γ
t+1

)] 1−1/ψ
1−γ

] 1

1−1/ψ
−1

, (B6)

which gives the marginal utility of consumption.

Recalling Nt+1 = (1− s)Nt + f(θt)Ut and Ut+1 = sNt + (1− f(θt))Ut, we differentiate Jt
in equation (B5) with respect to Nt:

JNt = φtWt +
1

1− 1
ψ

[
(1− β)C

1− 1

ψ

t + β
[
Et

(
J1−γ
t+1

)] 1−1/ψ
1−γ

] 1

1−1/ψ
−1

×
1 − 1

ψ

1 − γ
β
[
Et

(
J1−γ
t+1

)] 1−1/ψ
1−γ

−1
Et

[
(1− γ)J−γ

t+1[(1− s)JNt+1 + sJUt+1]
]
. (B7)

Dividing both sides by φt:

JNt
φt

= Wt +
β

(1− β)C
− 1

ψ

t


 1
[
Et

(
J1−γ
t+1

)] 1

1−γ




1

ψ
−γ

Et

[
J−γ
t+1[(1− s)JNt+1 + sJUt+1]

]
. (B8)

Dividing and multiplying by φt+1:

JNt
φt

= Wt + Et


β

(
Ct+1

Ct

)− 1

ψ



 Jt+1

[
Et

(
J1−γ
t+1

)] 1

1−γ





1

ψ
−γ [

(1− s)
JNt+1

φt+1

+ s
JUt+1

φt+1

]



= Wt + Et

[
Mt+1

[
(1− s)

JNt+1

φt+1

+ s
JUt+1

φt+1

]]
. (B9)

Similarly, differentiating Jt in equation (B5) with respect to Ut yields:

JUt = φtb+
1

1− 1
ψ

[
(1− β)C

1− 1

ψ

t + β
[
Et

(
J1−γ
t+1

)] 1−1/ψ
1−γ

] 1

1−1/ψ
−1

×
1− 1

ψ

1− γ
β
[
Et

(
J1−γ
t+1

)] 1−1/ψ
1−γ

−1
Et

[
(1− γ)J−γ

t+1[f(θt)JNt+1 + (1− f(θt))JUt+1]
]
.(B10)
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Dividing both sides by φt:

JUt
φt

= b+
β

(1− β)C
− 1

ψ

t


 1
[
Et

(
J1−γ
t+1

)] 1

1−γ




1

ψ
−γ

Et

[
J−γ
t+1[f(θt)JNt+1 + (1− f(θt))JUt+1]

]
.

(B11)
Dividing and multiplying by φt+1:

JUt
φt

= b+ Et


β

(
Ct+1

Ct

)− 1

ψ



 Jt+1

[
Et

(
J1−γ
t+1

)] 1

1−γ





1

ψ
−γ [

f(θt)
JNt+1

φt+1

+ (1− f(θt))
JUt+1

φt+1

]



= b+ Et

[
Mt+1

[
f(θt)

JNt+1

φt+1

+ (1− f(θt))
JUt+1

φt+1

]]
. (B12)

The Firm

Start by rewriting the infinite-horizon value-maximization problem of the firm recursively as:

St = XtNt −WtNt − κtVt + λtq(θt)Vt + Et[Mt+1St+1], (B13)

subject to Nt+1 = (1− s)Nt + q(θt)Vt. The first-order condition with respect to Vt says:

SV t = −κt + λtq(θt) + Et[Mt+1SNt+1q(θt)] = 0. (B14)

Equivalently,
κ0

q(θt)
+ κ1 − λt = Et[Mt+1SNt+1]. (B15)

In addition, differentiating St with respect to Nt yields:

SNt = Xt −Wt + (1− s)Et[Mt+1SNt+1]. (B16)

Combining the last two equations yields the job creation condition.

The Wage Equation

From equations (B9), (B12), and (B16), the total surplus of the worker-firm relationship is:

Λt = Wt + Et

[
Mt+1

[
(1− s)

JNt+1

φt+1

+ s
JUt+1

φt+1

]]
− b

−Et

[
Mt+1

[
f(θt)

JNt+1

φt+1

+ (1− f(θt))
JUt+1

φt+1

]]
+Xt −Wt + (1− s)Et[Mt+1SNt+1]

= Xt − b+ (1− s)Et

[
Mt+1

(
JNt+1 − JUt+1

φt+1

+ SNt+1

)]
− f(θt)Et

[
Mt+1

JNt+1 − JUt+1

φt+1

]

= Xt − b+ (1− s)Et [Mt+1Λt+1]− ηf(θt)Et [Mt+1Λt+1] , (B17)

8



in which the last equality follows from the definition of Λt and the surplus sharing rule (B3).

The sharing rule implies SNt = (1− η)Λt, which, combined with equation (B16), yields:

(1− η)Λt = Xt −Wt + (1− η)(1− s)Et [Mt+1Λt+1] . (B18)

Combining equations (B17) and (B18) yields:

Xt −Wt + (1− η)(1− s)Et [Mt+1Λt+1] = (1− η)(Xt − b) + (1− η)(1− s)Et [Mt+1Λt+1]

−(1 − η)ηf(θt)Et [Mt+1Λt+1]

Xt −Wt = (1− η)(Xt − b)− (1− η)ηf(θt)Et [Mt+1Λt+1]

Wt = ηXt + (1− η)b+ (1− η)ηf(θt)Et [Mt+1Λt+1] .

Using equations (B3) and (B15) to simplify further:

Wt = ηXt + (1− η)b+ ηf(θt)Et [Mt+1SNt+1] (B19)

= ηXt + (1− η)b+ ηf(θt)

[
κ0

q(θt)
+ κ1 − λt

]
. (B20)

Using the Kuhn-Tucker conditions, when Vt > 0, then λt = 0, and equation (B20) reduces
to the equilibrium wage equation because f(θt) = θtq(θt). On the other hand, when the
nonnegativity constraint is binding, λt > 0, but Vt = 0 means θt = 0 and f(θt) = 0. Equation
(B20) reduces to Wt = ηXt+ (1− η)b. Because θt = 0, the wage equation continues to hold.

Acceptable Wages

More generally, any wages between the workers’ and firm’s reservation wages would be ac-
ceptable (Hall 2005). Workers would want to work when wages are no less than their reser-
vation wage, denoted, W t, which is the wage rate that sets the workers’ surplus to zero in the
worker-firm match. In particular, setting JNt in equation (B9) to JUt in equation (B12) yields:

W t = b+ Et

[
Mt+1(1− f(θt)− s)

JUt+1 − JNt+1

φt+1

]
. (B21)

On the other hand, a variable wage rate must also be lower than the highest wage that the
firm is willing to pay, W t, the firm’s reservation wage that sets the firm’s surplus to zero. In
particular, combining equations (B15) and (B16) and setting SNt to zero yield:

W t = Xt + (1− s)

[
κ0

q(θt)
+ κ1 − λt

]
. (B22)

9



Home Production

With home production, the marginal value of an unemployed worker to the household is:

JUt =
∂ log(Ct)

∂Cht

∂Cht
∂Ut

+ φtb+ βEt [f(θt)JNt+1 + (1− f(θt))JUt+1] . (B23)

It follows that:

JUt
φt

= Xh

(
1− a

a

)(
Cmt
Cht

)1−e

+ b+ βEt [f(θt)JNt+1 + (1− f(θt))JUt+1] . (B24)

The wage equation under home production then follows from the same derivations in Ap-
pendix B.1, after redefining b as Xh ((1− a)/a) (Cmt/Cht)

1−e + b.

Capital

In the capital model, the derivation of wages is analogous. The firm’s problem becomes:

St = Yt −WtNt − It − κtVt + λtq(θt)Vt + Et[Mt+1St+1], (B25)

The marginal product of labor becomes (1− α)Yt/Nt, and the rest of the proof follows.

B.2 The Stock Return

We derive the stock return per Liu, Whited, and Zhang (2009). Rewrite the firm’s problem:

St = max
{Vt+τ ,Nt+τ+1}∞τ=0

Et




∞∑

τ=0

Mt+τ




Xt+τNt+τ −Wt+τNt+τ − κt+τVt+τ

−µt+τ [Nt+τ+1 − (1− s)Nt+τ

−Vt+τq(θt+τ )] + λt+τq(θt+τ )Vt+τ







 , (B26)

in which µt is the Lagrange multiplier on the employment accumulation equation, and λt is
the Lagrange multiplier on the V -constraint on job creation. The first-order conditions with
respect to Vt and Nt+1 in maximizing the market value of equity are given by, respectively:

µt =
κ0

q(θt)
+ κ1 − λt, (B27)

µt = Et

[
Mt+1

[
Xt+1 −Wt+1 + (1− s)µt+1

]]
. (B28)

Define dividends asDt ≡ XtNt−WtNt−κtVt and the ex-dividend equity value as Pt ≡ St−Dt.
Expanding St yields:

Pt +XtNt −WtNt − κtVt = St = XtNt −WtNt − κtVt + λtq(θt)Vt

−µt [Nt+1 − (1− s)Nt − Vtq(θt)] + EtMt+1 [Xt+1Nt+1 −Wt+1Nt+1 − κt+1Vt+1

−µt+1 [Nt+2 − (1− s)Nt+1 − Vt+1q(θt+1)] + λt+1q(θt+1)Vt+1

]
+ . . . (B29)

10



Recursively substituting equations (B27) and (B28) yields:

Pt +XtNt −WtNt − κtVt = XtNt −WtNt + µt(1− s)Nt. (B30)

Using equation (B27) to simplify further:

Pt = κtVt + µt(1− s)Nt = µt[(1− s)Nt + q(θt)Vt] + λtq(θt)Vt = µtNt+1, (B31)

in which the last equality follows from the Kuhn-Tucker condition.

To the derive the stock return, we expand:

Rt+1 =
St+1

St −Dt
=

µt+1Nt+2 +Xt+1Nt+1 −Wt+1Nt+1 − κt+1Vt+1

µtNt+1

=
Xt+1 −Wt+1 − κt+1Vt+1/Nt+1 + µt+1 [(1− s) + q(θt+1)Vt+1/Nt+1]

µt

=
Xt+1 −Wt+1 + (1− s)µt+1

µt
+

µt+1q(θt+1)Vt+1 − κt+1Vt+1

µtNt+1

=
Xt+1 −Wt+1 + (1− s)µt+1

µt
, (B32)

in which the last equality follows because the Kuhn-Tucker condition implies:

µt+1q(θt+1)Vt+1 − κt+1Vt+1 = −λt+1q(θt+1)Vt+1 = 0. (B33)

C Computation

We detail our computational procedures for solving the baseline model and its extensions.

C.1 The Baseline Model

We exploit a convenient mapping from the conditional expectation function, Et, defined as:

E(Nt, xt) ≡ Et

[
Mt+1

[
Xt+1 −Wt+1 + (1− s)

[
κ0

q(θt+1)
+ κ1 − λ(Nt+1, xt+1)

]]]
, (C1)

to policy and multiplier functions to eliminate the need to parameterize the multiplier sep-
arately. After obtaining Et, we first calculate q̃(θt) = κ0/ (Et − κ1) . If q̃(θt) < 1, the Vt ≥ 0
constraint is not binding, we set λt = 0 and q(θt) = q̃(θt). We then solve θt = q−1(q̃(θt)),
in which q−1(·) is the inverse function of q(θt), and Vt = θt(1 − Nt). If q̃(θt) ≥ 1, the Vt
nonnegativity constraint is binding, we set Vt = 0, θt = 0, q(θt) = 1, and λt = κ0 + κ1 − Et.
We then perform the following set of substitutions:

Ut = 1−Nt (C2)

Nt+1 = (1− s)Nt + q(θt)V (Nt, xt) (C3)

11



xt+1 = ρxt + σǫt+1 (C4)

C(Nt, xt) = exp(xt)Nt − [κ0 + κ1q(θt)]V (Nt, xt) (C5)

Wt = η [exp(xt) + [κ0 + κ1q(θt)] θt] + (1− η)b (C6)

We approximate the xt process with the discrete state space method of Rouwenhorst
(1995) with 17 grid points.1 This 17-point grid is large enough to cover the values of xt
within four unconditional standard deviations from its unconditional mean. Specifically, the
Rouwenhorst grid is symmetric around the long-run mean of xt. The grid is also even-spaced,
with the distance between any two adjacent grid points, dx, given by:

dx ≡ 2σ/
√
(1− ρ2)(nx − 1), (C7)

in which ρ is the persistence, σ the conditional volatility of xt, and nx = 17. We still need
to construct the transition matrix, Π, in which the (i, j) element, Πij , is the probability of
xt+1 = xj conditional on xt = xi. To this end, we set p = (ρ+ 1)/2, and:

Π(3) ≡




p2 2p(1− p) (1− p)2

p(1− p) p2 + (1− p)2 p(1− p)
(1− p)2 2p(1− p) p2


 , (C8)

which is the transition matrix for nx = 3. To obtain Π(17), we use the following recursion:

p

[
Π(nx) 0

0′ 0

]
+ (1− p)

[
0 Π(nx)

0 0′

]
+ (1− p)

[
0′ 0

Π(nx) 0

]
+ p

[
0 0′

0 Π(nx)

]
, (C9)

in which 0 is a nx×1 column vector of zeros. We then divide all but the top and bottom rows
by two to ensure that the conditional probabilities sum up to one in the resulting transition
matrix, Π(nx+1). See Rouwenhorst (p. 306–307 and p. 325–329) for more details.

We set the minimum value of Nt to be 0.05 and the maximum value to be 0.99. We use
cubic splines with 75 basis functions on the N space to approximate E(Nt, xt) on each grid
point of xt. We use extensively the approximation took kit in the CompEcon Toolbox in
Matlab of Miranda and Fackler (2002). To obtain an initial guess, we use the second-order
perturbation solution via Dynare. To solve the projection system of nonlinear equations, we
use Matlab’s fsolve that implements the Trust-Region-Reflective algorithm.

Solving the nonlinear model takes a lot of care, otherwise the projection algorithm would
not converge. Unlike the value function, iterating on the first-order conditions is typically
not a contraction mapping. We use the idea of homotopy continuation methods (Judd 1998,
p. 179) extensively to ensure convergence for a wide range of parameter values. When we
solve the model with a new set of parameters, we set the lower bound of Nt to be 0.4 to
alleviate the burden of nonlinearity on the nonlinear solver. After obtaining the model’s
solution, we then apply homotopy to gradually reduce the lower bound to 0.05.

1Kopecky and Suen (2010) show that the Rouwenhorst (1995) method is more reliable and accurate
than other methods in approximating highly persistent first-order autoregressive processes in the stochastic
growth model. Petrosky-Nadeau and Zhang (2017) demonstrate similar results in the search model.
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Figure C1 : Et Errors, The Baseline and Home Production Models

Panel A: The baseline model Panel B: Home production
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Panel A of Figure C1 reports the error in the E functional equation (C1) (Et minus the
right-hand-side). The error, in the magnitude of 10−14, is extremely small, suggesting that
our algorithm does an accurate job in solving the competitive equilibrium. Petrosky-Nadeau
and Zhang (2017) contain more technical details on our global algorithm.

C.2 Home Production

The conditional expectation function remains equation (C1). In addition to equation (C2)–
(C4), we perform several substitutions that are specific to the home production model:

Cm(Nt, xt) = exp(xt)Nt − [κ0 + κ1q(θt)]V (Nt, xt) (C10)

Ch(Nt, xt) = Xh(1−Nt) (C11)

Wt = η [exp(xt) + [κ0 + κ1q(θt)] θt]

+(1− η)

[
Xh

(
1− a

a

)(
Cmt
Cht

)1−e

+ b

]
(C12)

We continue to discretize the xt process with 17 grid points per Rouwenhorst (1995).
We use cubic splines with 50 basis functions on the Nt space, [0.35, 0.99]. We obtain an
initial guess from the second-order perturbation solution via Dynare on a smaller grid of Nt,
[0.8, 0.99], and then gradually reduce the minimum Nt to 0.35 via homotopy. Panel B of
Figure C1 reports the errors from our projection solution to the home production model.
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C.3 Capital

In the extended model with capital, the state space consists of employment, capital, and pro-
ductivity, (Nt, Kt, xt). The goal is to solve for the optimal vacancy function, V (Nt, Kt, xt),
the multiplier function, λ(Nt, Kt, xt), and the optimal investment function, I(Nt, Kt, xt),
from the following two functional equations:

1

a2

(
I(Nt, Kt, xt)

Kt

)1/ν

= Et

[
Mt+1

[
α
Y (Nt+1, Kt+1, xt+1)

K(Nt+1, Kt+1, xt+1)

+
1

a2

(
I(Nt+1, Kt+1, xt+1)

K(Nt+1, Kt+1, xt+1)

)1/ν

(1− δ + a1) +
1

ν − 1

(
I(Nt+1, Kt+1, xt+1)

K(Nt+1, Kt+1, xt+1)

)]]
(C13)

κt
q(θt)

− λ(Nt, Kt, xt) = Et

[
Mt+1

[
(1− α)

Y (Nt+1, Kt+1, xt+1)

Nt+1

−Wt+1

+ (1− s)

[
κt+1

q(θt+1)
− λ(Nt+1, Kt+1, xt+1)

]]]
, (C14)

Also, V (Nt, Kt, xt) and λ(Nt, Kt, xt) must satisfy the Kuhn-Tucker conditions.

An advantage of the installation function is that optimal investment is always posi-
tive. When investment goes to zero, the marginal benefit of investment, ∂Φ(It, Kt)/∂It =
a2(It/Kt)

−1/ν , goes to infinity. As such, there is no need to impose the It ≥ 0 constraint,
and we approximate I(Nt, Kt, xt) directly. For the intertemporal job creation condition in
equation (C14), we use the Christiano-Fisher (2000) parameterized expectations method by
approximating the conditional expectation (the right-hand-side).

We discretize xt via the Rouwenhorst (1995) method with 17 grid points. We use cubic
splines with 10 basis functions on the Nt space, [0.65, 0.99], and 10 basis functions on the Kt

space, [15, 40]. The deterministic steady state capital is 32.5. We use the tensor product of
Nt and Kt, and approximate I(Nt, Kt, xt) and E(Nt, Kt, xt) on each grid point of xt. To solve
the resulting system of nonlinear equations, we again use Matlab’s fsolve that implements
the Trust-Region-Reflective algorithm. Figure C2 shows that the errors of the two functional
equations from the projection algorithm are extremely small. Petrosky-Nadeau and Zhang
(2017) report more technical details of solving the extended model with capital.

C.4 Recursive Utility

In this extended model, the state space consists of employment and productivity, (Nt, xt).
The goal is to solve for the optimal vacancy function, V (Nt, xt), the multiplier function,
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Figure C2 : Errors, The Extended Model with Capital

Panel A: The Et error Panel B: The Et error
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Panel C: The investment Euler
equation error

Panel D: The investment Euler
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Figure C3 : Errors, The Recursive Utility Model

Panel A: The Jt error Panel B: The Et error
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λ(Nt, xt), and an indirect utility function, J(Nt, xt), from two functional equations:

J(Nt, xt) =

[
(1− β)C(Nt, xt)

1− 1

ψ + β
(
Et

[
J(Nt+1, xt+1)

1−γ
]) 1−1/ψ

1−γ

] 1

1−1/ψ

(C15)

κ0

q(θt)
+ κ1 − λ(Nt, xt) = Et

[
Mt+1

[
Xt+1 −Wt+1 + (1− s)

[
κ0

q(θt+1)
+ κ1 − λ(Nt+1, xt+1)

]]]
,

(C16)

in which

Mt+1 = β

[
C(Nt+1, xt+1)

C(Nt, xt)

]− 1

ψ

[
J(Nt+1, xt+1)

Et[J(Nt+1, xt+1)1−γ]
1

1−γ

] 1

ψ
−γ

. (C17)

Also, V (Nt, xt) and λ(Nt, xt) must satisfy the Kuhn-Tucker conditions.

We use the Christiano-Fisher (2000) parameterized expectations method by approximat-
ing the right-hand-side of equation (C16). We discretize xt via the Rouwenhorst (1995)
method with 17 grid points. We use cubic splines with 50 basis functions on the Nt space,
[0.05, 0.99], to approximate J(Nt, xt) and E(Nt, xt) on each grid point of xt. To solve the sys-
tem of nonlinear equations, we again use Matlab’s fsolve that implements the Trust-Region-
Reflective algorithm. Figure C3 shows that the errors from the algorithm are extremely small.
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D Supplementary Results

D.1 An Alternative Calibration

Table D1 reports the detailed results from the alternative calibration, in which we rescale
the volatility of productivity shocks, σ, in the baseline model and its extentions to target
the real output growth volatility of 4.3% per annum in the historical U.S. sample from 1790
to 2013. All the other model parameters are unchanged. The table shows that despite the
lower output volatility than 5.6% in the Barro-Ursua (2008) cross-country panel, the disaster
dynamics that arise endogenously within the models remain substantial.

D.2 Additional Results from the Recursive Utility Model

Comparative Statics

Table D2 reports additional comparative statics for the recursive utility model by varying
labor market parameters. We observe that labor market dynamics and disaster dynamics
are tightly connected with asset pricing dynamics. Reducing the value of unemployment
volatilities, b, from 0.85 to 0.825 lowers the unemployment volatility from 25.7% to 8.2%,
and the equity premium from 4.5% per annum to 0.6%. The output disaster probability falls
from 4.5% to 2.6%, and size from 23.9% to 15.4%.

Lowering the separation rate and removing the fixed costs of vacancy both serve to reduce
the unemployment volatility, disaster probabilities and size, as well as the equity premium.
Intuitively, a lower separation rate means that jobs are destructed at a lower rate, and all
else equal, the economy can create enough jobs to dampen disaster dynamics, reducing the
equity premium. Removing the fixed costs of vacancy weakens the downward rigidity of the
marginal costs of hiring, allowing the economy to create more jobs in bad times. As such,
disaster dynamics are dampened, and the equity premium lowered. Reducing the curvature
of the matching function, ι, makes the labor market more frictional in matching vacancies
with unemployed workers. Because job creation flows are hampered, the disaster dynamics
are strengthened, and the equity premium increased. Finally, increasing the workers’ bar-
gaining power, η, from 0.04 to 0.05 raises the unemployment rate as well as the output and
consumption volatilities. The disaster dynamics are also strengthened. However, the equity
premium falls slightly, as the wage elasticity of productivity rises from 0.54 to 0.6.

Time-varying Risk and Risk Premiums

Table D3 reports long-horizon regressions of stock market excess returns and consumption
growth on log price-to-consumption. We do not use log price-to-dividend because dividends
can be negative in the model. Consistent with Beeler and Campbell (2012), stock prices fore-
cast excess returns, but not consumption growth, both in the historical (1836–2013) annual
U.S. sample and in the postwar quarterly U.S. sample.2

2Stock returns, interest rates, and S&P composite index series are from Global Financial Data. For the
historical sample, the real consumption data are from Barro and Ursua (2008) extended through 2013. For
the postwar sample, real consumption is real per capita nondurables plus services from NIPA Table 7.1.
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Table D1 : Quantitative Results, An Alternative Calibration

In model columns, BL is the baseline model, HP the home production model, CA the capital

model, and RU the recursive utility model. We rescale the volatility of productivity shocks, σ, to

be 0.00925, 0.012, 0.012, and 0.00875 in BL, HP, CA, and RU, respectively, to match the output

growth volatility of 4.3% per annum in the 1790–2013 U.S. sample. All the other parameters are

identical to those reported in the main text. All the model results are based on 10,000 simulations.

σY , σC , and σI are the volatilities, SY , SC , and SI skewness, KY , KC , and KI kurtosis, and ρYi , ρ
C
i

and ρIi ith-order autocorrelations of log output, consumption, and investment growth, respectively.

ProbY , SizeY , and DurY and ProbC , SizeC , and DurC are the probability, size, and duration of

output and consumption disasters, respectively. E[U ], SU , and KU are the mean, skewness, and

kurtosis of monthly unemployment rates, respectively, and σU is the quarterly volatility. σY , σC , σI ,

E[U ], and σU are in percent. E[R − Rf ] is the equity premium, E[Rf ] the risk-free rate, σR the

stock market volatility, and σRf the interest rate volatility, all in percent per annum.

BL HP CA RU BL HP CA RU

σY 4.25 4.28 4.25 4.3 σC 3.61 3.71 3.06 3.68
SY 0.65 0.1 0.11 0.69 SC 0.69 0.14 0.09 0.72
KY 10.77 4.26 4.38 12.62 KC 12.29 4.86 5 14.26
ρY
1

0.2 0.15 0.19 0.17 ρC
1

0.2 0.16 0.21 0.16
ρY2 −0.12 −0.13 −0.09 −0.14 ρC2 −0.13 −0.13 −0.07 −0.15
ρY3 −0.12 −0.1 −0.07 −0.12 ρC3 −0.12 −0.1 −0.06 −0.12
ρY
4

−0.1 −0.08 −0.06 −0.09 ρC
4

−0.1 −0.08 −0.06 −0.09
ProbY 4 7.52 7.17 3.38 ProbC 2.14 5.39 3.7 1.76
SizeY 19.62 16.65 17.45 20.7 SizeC 22.29 16.11 16.31 24.54
DurY 4.57 3.98 4.15 4.65 DurC 5.02 4.26 4.84 5.05

σI 5.88 E[U ] 5.83 6.23 6.79 5.7
SI 0.23 σU 18.71 14.81 18.77 19.41
KI 4.94 SU 3.29 2.18 2.58 3.46
ρI1 0.17 KU 17.75 9.05 11.3 19.92
ρI
2

−0.11 E[R−Rf ] 1.78
ρI
3

−0.09 E[Rf ] 2.82
ρI
4

−0.08 σR 14.32
σRf 1.22
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Table D2 : Additional Comparative Statics, Recursive Utility

RU is the benchmark calibration. The remaining columns report six comparative statics: (i, ii)

b = 0.825 and b = 0.4 are for the value of unemployment activities set to 0.825 and 0.4, respectively;

(iii) s = 0.035 is for the job separation rate set to 0.035; (iv) κt = 0.7 is for the proportional unit

costs of vacancy κ0 = 0.7 and the fixed unit costs κ1 = 0; (v) ι = 1.1 is for the elasticity of the

matching function set to 1.1; and (vi) η = 0.05 is for the workers’ bargaining weight set to 0.05.

In each experiment, all the other parameters are identical to those in the benchmark calibration.

The results are based on 10,000 simulated samples. σY and σC denote the volatilities, SY and

SC skewness, KY and KC kurtosis, and ρYi and ρCi the ith-order autocorrelations of log output

and consumption growth, respectively. ProbY , SizeY , and DurY are the probability, size, and

duration of output disasters, respectively, and ProbC , SizeC , and DurC are analogously defined

for consumption disasters. E[U ], SU , and KU are the mean, skewness, and kurtosis of monthly

unemployment rates, respectively, and σU is the quarterly unemployment volatility. σY , σC , σI ,

E[U ], and σU are in percent. E[R − Rf ] is the equity premium, E[Rf ] the risk-free rate, σR the

stock market volatility, and σRf the interest rate volatility, all in percent per annum.

RU b b s κt ι η RU b b s κt ι η
0.825 0.4 0.035 0.7 1.1 0.05 0.825 0.4 0.035 0.7 1.1 0.05

σY 5.67 2.98 2.47 4.67 3.77 5.77 5.86 σC 5.05 2.24 2.04 4.08 3.01 5.14 5.34
SY 0.87 0.17 0 0.8 0.48 0.88 0.84 SC 0.88 0.2 0 0.8 0.51 0.89 0.85
KY 15.47 5.53 3.36 14.07 9.85 15.2 14.85 KC 17.09 6.25 3.36 15.52 10.94 16.83 16
ρY1 0.21 0.14 0.14 0.17 0.14 0.21 0.23 ρC1 0.19 0.14 0.14 0.16 0.13 0.2 0.22
ρY
2

−0.14 −0.13 −0.12 −0.15 −0.14 −0.14 −0.13 ρC
2

−0.15 −0.13 −0.12 −0.15 −0.15 −0.15 −0.14
ρY
3

−0.13 −0.1 −0.1 −0.12 −0.11 −0.13 −0.13 ρC
3

−0.13 −0.1 −0.1 −0.12 −0.11 −0.13 −0.13
ρY4 −0.1 −0.08 −0.08 −0.09 −0.08 −0.1 −0.11 ρC4 −0.1 −0.08 −0.08 −0.09 −0.08 −0.1 −0.11
ProbY 4.49 2.58 1.82 3.68 3.14 4.83 4.95 ProbC 2.51 1.06 1.03 1.94 1.35 2.73 3.13
SizeY 23.92 15.39 13.35 21.48 18.19 23.71 23.83 SizeC 28.86 15.32 12.14 25.72 20.84 28.21 27.32
DurY 4.46 4.8 4.93 4.6 4.68 4.42 4.41 DurC 4.84 5.45 5.35 5.02 5.26 4.81 4.74

E[U ] 6.26 4.86 3.97 5.06 5.39 6.7 6.66 E[R−Rf ] 4.45 0.64 0.23 2.67 1.32 4.57 4.33
σU 25.67 8.16 0.12 23.24 13.8 24.99 25.81 E[Rf ] 2.58 2.88 2.86 2.75 2.87 2.59 2.5
SU 3.66 2.63 0.3 3.76 3.12 3.48 3.47 σR 15.79 13.66 4.68 15.94 16.97 15.61 14.59
KU 20.71 14.58 2.84 22.91 18.99 19.03 18.65 σRf 1.64 0.63 0.16 1.3 0.98 1.67 1.65
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Table D3 : Predicting Excess Returns and Consumption growth with the Log

Price-to-Consumption Ratio

The long-horizon predictive regression of excess returns is
∑H

h=1 log(1 + Rt+h) − log(1 + Rf
t+h) =

αR + βR log(Pt/Ct) + ǫRt+h, in which H is the forecast horizon, Rt the real stock market return, Rf

the real interest rate, Pt the real stock market index, and Ct real consumption. Excess returns in the

data are adjusted for financial leverage. The long-horizon predictive regression of log consumption

growth is
∑H

h=1 log(Ct+h/Ct) = αC + βC log(Pt/Ct) + ǫCt+h. log(Pt/Ct) is standardized to have

a mean of zero and a variance of unity. H ranges from one year (1y) to five years (5y), and

from one quarter (1q) to 20 quarters (20q). The t-statistics are Newey-West (1987) adjusted for

heteroscedasticity and autocorrelations of 2(H − 1) lags. The slopes and the R2s are in percent.

The model moments are averaged across 10,000 simulations.

H 1y 2y 3y 4y 5y 1q 4q 8q 12q 16q 20q

U.S. annual data, 1836–2013 U.S. quarterly data, 1947q2–2013q4

βR −3.68 −7.64 −10.43 −13.66 −16.65 −0.74 −3.39 −6.78 −9.69 −12.18 −15.03
tR −4.54 −5.49 −5.2 −5.57 −6.43 −2.31 −2.75 −2.94 −3.24 −3.36 −3.68
R2

R 8.1 17.09 23.65 31.31 38.97 1.75 8.06 16.64 24.56 30.67 36.69

βC 0.46 0.21 0.05 −0.10 −0.15 0.06 0.07 −0.05 −0.16 −0.24 −0.34
tC 1.69 0.43 0.07 −0.10 −0.13 1.66 0.40 −0.13 −0.27 −0.31 −0.34
R2

C 1.48 0.15 0.01 0.02 0.03 1.23 0.27 0.05 0.31 0.51 0.77

Recursive utility Recursive utility

βR −1.91 −3.44 −4.71 −5.75 −6.62 −0.74 −2.72 −4.89 −6.68 −8.20 −9.49
tR −1.83 −2.17 −2.24 −2.28 −2.31 −1.65 −2.04 −2.19 −2.38 −2.60 −2.82
R2

R 2.04 3.49 4.65 5.59 6.35 1.17 4.14 7.35 9.96 12.14 13.97

βC −0.67 −1.68 −2.69 −3.62 −4.42 −0.00 −0.56 −1.53 −2.51 −3.41 −4.19
tC −2.19 −2.82 −3.37 −3.83 −4.19 −1.11 −2.14 −2.98 −3.65 −4.24 −4.76
R2

C 7.62 11.95 16.28 20.1 23.32 2.56 8.54 16.09 22.43 27.63 31.82

In particular, in the historical sample, the negative slopes for the log price-to-consumption
ratio across 1- to 5-year horizon are all more than 4.5 standard errors from zero, and the
R2 rises monotonically from 8.1% to 39%. The postwar evidence is similar, although the t-
statistics for the slopes are somewhat smaller. In contrast, the consumption growth is largely
unpredictable. None of the slopes are significant at the 5% level. The R2 starts at 1.5% in
the 1-year horizon, but quickly fades to zero afterward. The postwar evidence is similar.

The model predicts time-varying risk premiums. The price-to-consumption slopes are all
negatively, and mostly significant, but the amount of predictability is weaker in the model
than in the data. In the annual frequency, the R2 rises from 2% to only 6.4% (39% in the
data), and in the quarterly frequency, the R2 goes from 1.2% to 14% (36.7% in the data).
More important, the model overstates the predictability of consumption growth. The slopes
are all negative, and mostly significant. The annual R2 ranges from 7.6% to 23.3%, and the
quarterly R2 from 2.6% to 31.8%. In contrast, R2 never exceeds 2% in the data.

Table D4 reports long-horizon regressions of volatilities of excess returns and consump-
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Table D4 : Predicting Volatilities of Stock Market Excess Returns and Consumption

Growth with the Log Price-to-Consumption Ratio

For a given H, the excess return volatility is σRt,t+H−1 =
∑H−1

h=0 |ǫRt+h|, in which ǫRt+h is the h-period-

ahead residual from the first-order autoregression on excess returns, log(1 +Rt+1)− log(1+Rf
t+1).

Excess returns in the data are adjusted for financial leverage. The long-horizon predictive regression

of the excess return volatility is log σRt+1,t+H = αR+βR log(Pt/Ct)+uRt+h. The consumption growth

volatility is σCt,t+H−1 =
∑H−1

h=0 |ǫCt+h|, in which ǫCt+h is the h-period-ahead residual from the first-

order autoregression on consumption growth, log(Ct+1/Ct). The long-horizon predictive regression

of the consumption growth volatility is log σCt+1,t+H = αC + βC log(Pt/Ct) + uCt+h. log(Pt/Ct) is

standardized to have a mean of zero and a variance of unity. For annual data, H ranges from one

(1y) to five years (5y), and for quarterly data, from one (1q) to 20 quarters (20q). The t-statistics

are Newey-West (1987) adjusted for heteroscedasticity and autocorrelations of 2(H − 1) lags. The

slopes and the R2s are in percent. The model moments are averaged across 10,000 simulations.

H 1y 2y 3y 4y 5y 1q 4q 8q 12q 16q 20q

U.S. annual data, 1836–2013 U.S. quarterly data, 1947q2–2013q4

βR −8.36 0.09 −1.12 −1.31 −0.13 −10.79 −1.23 3.19 5.08 5.55 5.56
tR −0.96 0.01 −0.24 −0.31 −0.03 −1.74 −0.21 0.53 0.92 1.06 1.11
R2

R 0.44 0.00 0.04 0.07 0.00 0.93 0.05 0.55 2.07 3.45 4.47

βC −6.48 −7.85 −6.88 −5.75 −4.79 −15.87 −14.10 −13.04 −12.41 −11.25 −10.17
tC −0.72 −0.96 −0.82 −0.63 −0.50 −2.51 −2.16 −1.68 −1.50 −1.35 −1.24
R2

C 0.32 0.86 0.98 0.88 0.70 2.18 6.19 8.33 9.33 9.49 9.83

Recursive utility Recursive utility

βR −3.05 −3.28 −3.10 −2.86 −2.63 −2.16 −3.52 −3.55 −3.27 −2.94 −2.62
tR −0.40 −0.57 −0.61 −0.61 −0.59 −0.27 −0.43 −0.54 −0.58 −0.58 −0.57
R2

R 0.61 1.02 1.56 2.06 2.46 0.87 1.26 2.60 4.14 5.27 6.09

βC −34.78 −33.27 −31.51 −29.80 −28.16 −29.42 −24.86 −22.45 −20.75 −19.15 −17.66
tC −3.52 −4.01 −3.71 −3.51 −3.34 −2.33 −1.81 −2.19 −2.41 −2.47 −2.47
R2

C 8.05 14.85 18.24 19.56 19.70 3.11 5.35 11.00 16.07 18.21 18.74

tion growth on the log price-to-consumption ratio. Neither volatility appears predictable in
the historical data, but the consumption volatility seems at least somewhat predictable in
the postwar data. The slopes are all negative, and significant in short horizons up to four
quarters. The R2 rises from 2.2% at the 1-quarter to 9.8% at the 20-quarter horizon.

The model is largely consistent with the lack of predictability for the excess return volatil-
ity. However, the model overstates the predictability of the consumption volatility. In the
quarterly frequency, the slopes are all negative, and mostly significant. The R2 rises from
3.1% at the 1-quarter to 18.7% at the 20-quarter horizon (9.8% in the data).

Finally, we have also calculated the conditional equity premium and stock market volatil-
ities across normal and disaster states in the model. The equity premium is 6.5% in output
disasters, 7.5% in consumption disasters, and 3.7% in normal times. These moments are
largely consistent with predictive regressions, which show that the model underestimates the
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amount of return predictability in the data. In addition, the stock market volatility is 16%
in both output and consumption disasters, and 15.2% in normal times. These moments are
also consistent with the lack of predictability of the stock market volatility in the model.

D.3 Leisure in the Utility Function

In this subsection, we modify the baseline model by incorporating leisure into the utility func-
tion. In particular, the household’s utility becomes log(Ct+hUt), in which h > 0 is a constant.
This utility is the logarithmic form of the general Greenwood, Hercowitz, and Huffman (1988)
preferences. The stochastic discount factor becomes Mt+1 = β((Ct + hUt)/(Ct+1 + hUt+1)).
Going through similar steps as in Section B.1 yields the equilibrium wage:

Wt = η(Xt + κtθt) + (1− η)z, (D1)

in which z ≡ b+h is the flow value of unemployment activities. The rest of the leisure model,
including the intertemporal job creation condition, remains identical to the baseline model.

We set b = 0.5 and h = 0.35, or z = 0.85, to ease comparison with the baseline model. We
also rescale the volatility of productivity shocks, σ, to 0.0095 to align the output volatility
in the leisure model, 5.5% per annum, with that in the data, 5.6%, as well as that in the
baseline model, 5.3%. Table D5 shows that the results from the leisure model are largely
comparable with those from the baseline model. The output disaster probability is 4.4%,
which is somewhat lower than 5% in the baseline model, but the average size and duration are
both close. For consumption disasters, the probability is 2.4%, which is somewhat lower than
2.9% in the baseline model, but the average size is 27%, which is slightly higher than 25.6%
in the baseline model. We also report two comparative statics, (i) b = 0.45 and h = 0.4; as
well as (ii) b = 0.4 and h = 0.45. The results seem insensitive to the parameter changes.
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Table D5 : Quantitative Results, Leisure in the Utility

BL is the baseline model. The other columns report the results from the leisure model, in which

we rescale the volatility of productivity shocks, σ, to be 0.0095. We vary b from 0.5, 0.45, to 0.4,

and correspondingly h from 0.35, 0.4, to 0.45. All the other parameters are identical to those in

the baseline model. σY and σC are the volatilities, SY and SC , KY and KC kurtosis, and ρYi
and ρCi ith-order autocorrelations of log output and consumption growth, respectively. ProbY ,

SizeY , and DurY and ProbC , SizeC , and DurC are the probability, size, and duration of output

and consumption disasters, respectively. E[U ], SU , and KU are the mean, skewness, and kurtosis

of monthly unemployment rates, respectively, and σU is the quarterly volatility. σY , σC , σI , E[U ],

and σU are in percent. The results are based on 10,000 simulations.

BL Leisure BL Leisure

b 0.85 0.5 0.45 0.4 b 0.85 0.5 0.45 0.4
h 0 0.35 0.4 0.45 h 0 0.35 0.4 0.45
σ 0.01 0.0095 0.0095 0.0095 σ 0.01 0.0095 0.0095 0.0095

σY 5.31 5.5 5.53 5.68 σC 4.65 4.91 4.95 5.11
SY 0.85 0.85 0.83 0.81 SC 0.91 0.86 0.85 0.82
KY 12.8 15.83 16 16.61 KC 14.4 17.02 17.31 17.81
ρY
1

0.24 0.18 0.17 0.16 ρC
1

0.23 0.16 0.16 0.15
ρY
2

−0.11 −0.16 −0.16 −0.16 ρC
2

−0.12 −0.18 −0.17 −0.17
ρY3 −0.12 −0.13 −0.13 −0.13 ρC3 −0.12 −0.13 −0.13 −0.13
ρY
4

−0.11 −0.1 −0.09 −0.09 ρC
4

−0.11 −0.09 −0.09 −0.09
ProbY 5.04 4.37 4.38 4.39 ProbC 2.86 2.41 2.42 2.43
SizeY 22.22 22.7 22.98 23.18 SizeC 25.64 27.01 27.51 27.83
DurY 4.44 4.47 4.46 4.45 DurC 4.91 4.88 4.86 4.84

E[U ] 6.28 6 5.97 6 SU 3.52 3.63 3.66 3.7
σU 23.41 24.15 24.51 25.38 KU 19.18 21.09 21.59 22.01
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