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A Cross country evidence

Figure A.1’s left panel displays informal sector’s size in Latin American countries,
which is measured as the share of employees not covered by social security.1 The right
panel shows the c.d.f. plot of informal sector’s size for 116 countries that have a GDP
per capita that is less or equal to half of USA’s. The size measure used in this graph is
informal sector’s share of GDP, which comes from La Porta and Shleifer (2008).

Table A.1: Regulatory costs

Entry Costs Labor tax (%)
# Procedures # Days

E. Asia & Pacific 7 37 10.7

E. Europe & C. Asia 6 16 21.7

L. A.C. 9 54 14.6

Mid. East & N. Africa 8 20 16.9

OECD high income 5 12 24

South Asia 7 23 7.7

Sub-Saharan Africa 8 37 13.5

Brazil 13 119 40.9

Source: Doing Business Initiative, 2010 (www.doingbusiness.org).

∗Department of Economics, University of Oxford, Manor Road Building, Manor Road, Oxford, OX1
3UQ (email: gabriel.ulyssea@economics.ox.ac.uk).

1The data come from the Socio-Economic Data Base for Latin America and the Caribbean (SED-
LAC), a joint initiative by the World Bank and Universidad Nacional de La Plata (available at
http://sedlac.econo.unlp.edu.ar/esp/ ).
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(a) Labor informality (Latin America)

(b) CDF of size measure (developing countries)

Figure A.1: Informal sector’s size

B Data appendix

As described in Section II.A, the two main data sets used in this paper are the ECINF
survey (Pesquisa de Economia Informal Urbana) and the Relacao Anual de Informacoes
Sociais (RAIS), an administrative data set from the Brazilian Ministry of Labor. In both
data sets, I exclude the public sector and agriculture. In RAIS, I exclude firms that
declare a wage bill equal to zero. Since the RAIS data set contains the universe of formal
firms, I use a 25% random sample from the original data set to decrease the computational
burden.

As for the ECINF, some additional filters were applied. Many of the observations
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regard self employed individuals, street vendors and other activities that do not correspond
to the standard definition of a firm. In order to obtain the most comparable unit of
analysis with the formal firms covered by the RAIS data set, I dropped the entrepreneurs
who declared to have another job, and who do not have a specific physical location outside
their household where their activity takes place. To avoid outliers, I trimmed the first
and 99th percentiles of log-revenues distribution.

C Additional Facts

Table C.1: Descriptive Statistics – Workers

Informal Formal

Mean SD Mean SD

Log(wage) 6.236 0.761 6.735 0.683

Share High Skill 0.355 0.479 0.504 0.500

Sectoral Composition
Retail 0.248 0.432 0.236 0.425
Construction 0.144 0.351 0.052 0.221
Manufacturing 0.174 0.379 0.278 0.448
Services 0.213 0.409 0.156 0.363

Age 31.8 11.4 33.4 10.4

Male 0.650 0.477 0.632 0.482

Notes: Data from National Household Survey (PNAD). In-
formal employees are defined as indicated in the text: those
employees who do not hold a formal labor contract, which in
Brazil is defined by having a booklet (carteira de trabalho).
High skilled workers are those with at least a high school de-
gree.

Table C.2: Formal and informal employment composition by firm size

Informal Workers (in %) Formal workers (in %)

Firm size (# employees)

0–5 35.8 6.6

6–10 11.7 7.2

11 or more 52.5 86.2

Source: Author’s own tabulations from the Monthly Employment Survey (PME) 2003.
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Figure C.1: Share of informal firms at the 4-digit industry level: Histogram

Note: The variable used is the share of informal firms measured at the 5-digit industry level. The figure shows
the histogram of this industry-specific measure of firm informality.

D Model with Homogeneous Workers

D.1 The cost function τi(`) and the detection probability

In this Subsection I argue that the cost function τi(·) can be directly obtained from a
formulation that explicitly accounts for a detection probability. In particular, one could
use an alternative formulation for the profit function described in Section III.A, as follows:

Πi (θ) = max
l
{[1− p (`)] θq(`)− w`}

where 0 < p (·) ≤ 1 is strictly increasing and convex.
The p (`) can be interpreted as the probability of being caught by government’s of-

ficials, in which case the informal firm looses all of its production.2 To obtain a direct
correspondence between this formulation and expression ??, one could parametrize the
labor distortion as τi (`) = 1

1−p(`) , so that as limp(`)→1 τi(`) =∞ and limp(`)→0 τi(`) = `.
Figure D.1 shows the probability of detection p (`) that corresponds to the function

τi (`) =
(

1 + `
bi

)
using the estimated value of bi as displayed in Table ??.

D.2 Productivity distributions in both sectors

The post-entry, unconditional productivity distribution in the informal and formal
sectors, respectively, is given by the following expressions:

2Alternatively, it can be thought as a probability of detection combined with a fine that is proportional
to firm’s revenues.
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Figure D.1: The detection probability that corresponds to the cost function τi(`)
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Note: The figure shows, for each firm’s size (measured as number of employees), the value of the probability of
detection given by τi (`) = `

1−p(`) .

fθi (x) =
1

G (νf )−G (νi)

∫ νf

νi

f (x|ν) dG(ν) (1)

fθf (x) =
1

1−G (νf )

∫ ∞
νf

f (x|ν) dG(ν)

where fθs is absolutely continuous and Fθs (·) denotes the corresponding c.d.f..
As mentioned above, firms can be surprised with a bad productivity draw. Those with

a θ < θs, where θs is such that πs
(
θs, w

)
= 0, will not produce and will leave immediately.

Hence, the effective productivity distribution among successful entrants is given by the
following expressions:

f̃θs (x) =


fθs (x)

1−Fθs(θs)
if x ≥ θs

0 if θ < θs
(2)

where s = i, f .

D.3 Uniqueness of Equilibrium

This section contains a simple argument to prove the uniqueness of equilibrium. The
key equilibrium conditions are given by the zero profit conditions, the free entry conditions
and the market clearing condition, respectively:
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πs
(
θ̄s, w

)
≡ Πs

(
θ̄s, w

)
− c̄ = 0 (3)

V e
i (νi, w) = Ei (4)

V e
f (νf , w) = V e

i (νf , w)− (Ei − Ef ) (5)
Li + Lf = L̄ (6)

where s = i, f and the free entry conditions assume that entry is positive in both sectors.
Fix a given wage. Given the assumptions made for the cost and production functions,

the functions πs (θ, w) are strictly increasing in θ and decreasing in w. Moreover, as c̄ > 0,
there is a θ > 0 such πs (θ, w) < 0. Thus, there is a unique θ̄s such that 3 holds. The
simple form of the value functions, Vs (θ, w) = max

{
0, πs(θ,w)

κs

}
, implies that they are

also continuous and strictly increasing in θ and decreasing in w. Combining this last
fact with the assumptions made about F (θ

∣∣ν), it follows that that there is an unique ν̄s,
s = i, f , such that free entry conditions hold, and that ν̄f > ν̄i. The latter follows from
the assumption that Ef > Ei. The unique entry thresholds pin down the mass of entrants
in both sectors: Mi = [G (νf )−G (νi)]M and Mf = [1−G (νf )]M . Given the mass of
entrants in each sector, and the unique thresholds θ̄s, the flow conditions in both sectors
[given by (??)] pin down the mass of firms in each sector, µs. The last condition to close
the equilibrium determination is the market clearing condition for the labor market, which
determines the equilibrium wage. Of course, if Ld ≡ Li + Lf > L̄ there is excess demand
and the wage will increase up until the point where Ld = L̄ (the symmetric argument is
true for excess supply). Because of the properties of the profit functions, the individual
labor demand functions `∗ (θ, w) are also continuous, single valued, and strictly increasing
in θ and decreasing in w. Thus, there is an unique wage such that Ld = L̄.

E Model with Heterogeneous Workers

Informal firm’s problem can be solved in two steps. The first solves the following cost
minimization problem:

min
l1,l2

w1l1 + w2l2

s.t. `i = [ηil
ρ
1 + (1− ηi) lρ2]

1
ρ

where the term τi (`i) is suppressed, as it is fixed once `i is fixed and it affects both factors
equally.

The first order conditions imply

l1
l2

=
(

(1− ηi)w1

ηiw2

) 1
ρ−1

(7)
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and substituting into the production function and solving for l1 and l2, one obtains

l1 =
(
w1

wi

) 1
ρ−1

(
`i

ηi
1
ρ−1

)
(8)

l2 =
(
w2

wi

) 1
ρ−1

(
`i

(1− ηi)
1
ρ−1

)
(9)

where wi =
[
ηi

(
w1
ηi

) ρ
ρ−1 + (1− ηi)

(
w2

(1−ηi)

) ρ
ρ−1

] ρ−1
ρ

.

Using the expressions for l1 and l2 one obtains the cost function for a given level of
output `i:

c(`i) = τi (`i) `iwi

Thus, one can write informal firm’s problem as

max
`i

θ (`i)
α − τi (`i) `iwi

The above problem pins down the `i, while the l1 and l2 are given by expressions (8)
and (9), respectively.

Formal Firms

As presented in Section III, formal firm’s profit maximization problem can be written
as follows:

Πf (θ,w) = max
l1,l2
{(1− τy) θ`α − C (l1, l2)} (10)

and

C (l1, l2) =



τf1 (l1)w1 + τf2 (l2)w2, for ls ≤ l̃s, s = 1, 2

τf1

(
l̃1

)
w1 + (1 + τw)w1

(
l1 − l̃1

)
+ τf2 (l2)w2, for l1 > l̃1, l2 ≤ l̃2

∑
s=1,2

{
τfs

(
l̃s

)
ws + (1 + τw)ws

(
ls − l̃s

)}
, for ls > l̃s, s = 1, 2

The problem for the firm that only hires informal workers is analogous to the informal
firm. For formal firms that hire some formal workers for both types, one can write:

maxl1f ,l2f (1− τy)θ`αf − (1 + τw) (w1l1f + w2l2f )−
∑

s=1,2 τfs

(
l̃s

)
ws

s.t. `f =
[
ηf

(
l1f + l̃1

)ρ
+ (1− ηf )

(
l2f + l̃2

)ρ] 1
ρ
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Again, one can solve this problem by solving the cost minimization problem first:

min
l1f ,l2f

w1l1f + w2l2f

s.t. `f =
[
ηf

(
l1f + l̃1

)ρ
+ (1− ηf )

(
l2f + l̃2

)ρ] 1
ρ

where the payroll tax is suppressed as it affects both factors equally.
From the FOC:

ηf
1− ηf

(
l̃1 + l1

l̃2 + l2

)ρ−1

=
w1

w2
(11)

Using this relationship and solving for l1f and substituting back into the production
function, one can obtain the following expressions:

l1f =
(
w1

wf

) 1
ρ−1 `f

ηf
− l̃1 (12)

l2f =
(
w2

wf

) 1
ρ−1 `f

(1− ηf )
− l̃2 (13)

where wf =

[
ηf

(
w1
ηf

) ρ
ρ−1 + (1− ηf )

(
w2

(1−ηf)

) ρ
ρ−1

] ρ−1
ρ

.

The profit maximization thus simplifies to:

max
`f

(1− τy)θ`αf − (1 + τw) `fwf

where l1f e l2f are given by (12) and (13), respectively.

F Estimation Appendix

F.1 Implementation Details

For the estimation, I consider S = 20 simulated data sets containing a mass of
M = 300, 000 potential entrants each. For each potential entrant, I draw a pre-entry
productivity parameter (ν) and a post entry productivity shock (ε). The stochastic com-
ponents of the model are drawn only once in the beginning of the procedure and are kept
fixed during the estimation.

The estimation procedure is done conditional on the observed wages for low and high
skill workers. In order to purge the variation that is due to differences in observables, I
estimate a log-wage regression with a dummy for high skill workers (at least completed
high school), dummies for male, 4-digit industry classification (164 dummies), state of
residence (26 dummies), holds a formal contract, white, age and age squared, tenure in
current job and tenure squared. To further minimize measurement error, I restrict the
sample to employees only (formal or informal), who are 18 to 69 years old, and who have
worked at least 20 hours in the reference week but at most 84 hours (which is the 99th
percentile). The lower bound of 20 hours aims at excluding interns who are still in school
and workers with very low attachment to the labor market. I use the estimated coefficients
to compute the adjusted wage for low and high skill workers. Of course, the goal is not
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to recover the returns to schooling but to obtain wage measures for low and high skill
workers that net out variation from workers’ observable characteristics and which are
more compatible with wages in the theoretical model.

Since each potential entrant has an individual pre-entry productivity parameter, it is
necessary to compute the expected value of entry conditional on each individual parameter.
To save on computational time, I use 111 equally spaced grid points for the productivity
space, where the maximum value in the productivity grid implies a firm size of more than
18,000 employees and is not binding. I compute a vector of transition probabilities for
each point in the grid in order to compute the expected post-entry values in each sector
for each potential entrant. For that, I use the method proposed by Tauchen (1986).

F.1.1 Smoothing the Policy Functions

One difficulty when estimating discrete choice models using simulation-based meth-
ods is that simulated choices, such as the decision to enter the formal sector, will be
a step function of the parameter vector (ϕ) given the random draws (ν and ε). Since
these discontinuities are inherited by the objective function, this also precludes the use of
derivative-based methods, which are faster and more accurate than derivative-free meth-
ods or random search algorithms (Bruins et al., 2015). To overcome these challenges, I
use the following smoothing function proposed by Bruins et al. (2015) to correct for the
choppiness of the policy functions (see also Keane and Smith, 2003):

h
(
Ṽ (ϕ),m, λ

)
=

Ṽm(ϕ)/λ
1 +

∑
k Ṽk(ϕ)/λ

where Ṽ (ϕ) is the set of net payoffs attached to the choices firms have. For example,
potential entrants can either enter the formal or informal sectors, or not enter at all; for
those that enter, the choices are to remain in their sector or to exit immediately. Ṽm(ϕ)
denotes the net payoff of the specific choice m (e.g. to enter the formal sector) and λ is
the smoothing parameter.

As the smoothing parameter λ goes to zero, h(·) goes to one if alternative m provides
the highest payoff, and zero otherwise. When choosing λ, one must consider two opposing
forces: bias and smoothness. Large values of λ are better to smooth the objective function
but can lead to biased estimates. Small values of λ reduce this bias but increase the
choppiness of the objective function (Keane and Smith, 2003). This latter effect can be
alleviated by choosing a large number of simulated data sets. As in Altonji et al. (2013),
I choose λ = 0.05 and, as mentioned above, S = 20.

F.2 Standard Errors

The estimator is given by

ϕ̂ = arg min
ϕ
Q (ϕ) =

{
gNS (ϕ)′ ŴgNS (ϕ)

}
where, as discussed in the text, gNS (ϕ) = m̂N − m̃S(ϕ), and I omit the conditioning
arguments for notational convenience.

The conditions for consistency are close to the ones for extremum estimators. In
fact, the substantive assumptions are exactly the same as in the GMM case, namely,
the GMM identification assumption, and the requirement that the parameter space is
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compact (see Newey and McFadden, 1994). The main difference thus lies on the type of
regularity conditions required to guarantee consistency. I follow the discussion in Duffie
and Singleton (1993), who provide conditions for both weak and strong consistency, which
are satisfied by the present model.3 The following assumptions are made for asymptotic
normality to hold: (i) ϕ0 and ϕ̂ are interior to the parameter space; (ii) the simulator used
to generate the simulated data is continuously differentiable w.r.t. ϕ in a neighborhood B
of ϕ0; and (iii) G0 ≡ E [∇ϕgNS (ϕ0)] exists, is finite and G′0WG0 is nonsingular, where
W is a positive semi-definite matrix.

The derivation of the asymptotic distribution is standard (e.g. Gourieroux and Mon-
fort, 1996), which gives the following expression:

√
N (ϕ̂− ϕ0) d−→ N

(
0,
(
G′0WG0

)−1 G′0WΣsWG0

(
G′0WG0

)−1
)

where Σs = ζΣ, ζ = limN→∞
(
1 + N

L

)
(Gourinchas and Parker, 2002); N is the number

of observations used to obtain the vector of moments, and L is the number of simulations.
The choice of the optimal weighting matrix implies that ŴN −→ Σ, where Σ =

E
[
g (ϕ0) g (ϕ0)′

]
is the GMM asymptotic variance-covariance matrix. Analogous to the

GMM estimator, the optimal weighting matrix is given by W ∗ = Σ−1
s , which therefore

reduces the asymptotic variance-covariance matrix to

Vs (W ∗) =
(
G′0Σ

−1
s G0

)−1

The actual variance-covariance is computed using the empirical counterpart of Σ, a
diagonal matrix with the empirical variances of the moments on the diagonal. Some of the
moments are obtained from simple means (such as the share of informal workers) and some
are obtained from regressions, which is a simple way to compute conditional means (such
as the share of informal firms by firm size). Following Adda et al. (2017), for the moments
that are based on regressions I use robust standard errors and for the moments that consist
of means I compute their variance using a bootstrap method with 500 replications. I have
experimented with bootstrapping some of the moments obtained through regressions and
the estimated standard errors are essentially the same, presenting differences only in the
fourth or fifth decimal place. For G0, I use its computational equivalent, which can be
obtained using standard numerical differentiation methods.

F.3 Identification

To further investigate whether the chosen moments allow me to identify all the pa-
rameters, I follow the analysis in Adda et al. (2017). The basic motivation is that if the
model is well-identified, the objective function should not be flat in the region around the
vector of estimated parameters. If the objective function is flat, then this is would raise
identification concerns, as this could reflect that, for example, the moments chosen are
irrelevant to identify the parameters of the model. To asses that, I compute the objective
function for each parameter at a value 1, 2 and 5 percent away from its estimated value
and compare it to the objective function evaluate at the estimated vector. The idea is
to evaluate how convex the objective function is at the estimated vector of parameters.

3Pakes and Polard (1989) provide the regularity conditions under which a broad class of simulation-
based estimators are both consistent and asymptotically normal,which includes the SMM estimator pro-
posed by McFadden (1989).
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As in Adda et al. (2017), I plot the percentage change in the objective function from
the percentage change in each of the parameters. Figure F.1 shows the results. As the
figure shows, there is enough variation in the objective function, which is reassuring of
the model’s identification.

Figure F.1: Sensitivity of the Objective Function

Note: The horizontal bars show the percentage change in the objective function with respect to one, two
and five percent changes in the given parameter of the model. The figure is truncated on the right at 3%.
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