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ONLINE APPENDIX

Proof of Proposition 1

The argument is by backward induction. The functions X7, Q7_1 and mp_4
are uniquely defined. The first step at which multiple equilibria can arise is in
the selection of by when constructing the bond issuance function By (by_1, sT).
However, when 0 = 1, the bond issuance function By does not affect the
construction of the repayment function X7_; and of the pricing function Qr_o,
as repayment only depends on the maximum of the function Q7_ (bT, sT_l) br
and the term (1 — 6) Q71 (Br(by_1,s* 1), s" ") in (3) disappears when 6 = 1.

The same argument applies in all previous periods.

Proof of Proposition 4

In the case considered, the Laffer curve takes the form [1 — F ((1+7r)b—m)]|b
(omitting time subscripts and dependence on s to simplify notation). The

slope of the Laffer curve is
1-F((1+nrb—m)—(A+r)f((1+r)b—m)d

which has the same sign of

f((1+7r)b—m)

L) s o= m)

So if f/ (1 — F) is monotone non-decreasing, the derivative can only change

sign once.



Proof of Lemma 1

Since Q1 (br) is non-increasing in by, we need to show that
(1—=0") by > (1—0)br_. (22)

Using (10) we have

14

(1 — 5/) b{'[‘fl = r+ 0 + (1 — (5’) Qr-1 (b})

(r+0+1—-0)Qr_1(b}))br_1

and inequality (22) follows from the fact that the right-hand side is decreasing

in §".

More on boundary conditions in Section 5.1

Let v = ¢b denote the value of debt. Multiplying both sides of (12) by b,
substituting
mbzz+q<i)—|—5b>,

and rearranging, yields
(r+N)gb=2+AU(b)b+gb+qgh=2z+ AV (b)b+ 0.

Suppose b is large enough that z = z and ¥ (b)b = ¢E[Z]. Then we can
characterize the dynamics of (g, b) for b large enough by studying the following
ODEs in (g, v)

(r+d+X)q=kr+ I E[Z] + g,
(r+)\)v:2+%)\ng[Z]+i),



with terminal conditions

Proof of Lemma 2
Using steady-state conditions, the Jacobian can be written as

I{*h/(b) . 6 _@
— q q

AV (b)) rAo+N |

A necessary and sufficient condition for a saddle is a negative determinant
of J, i.e., Ji1Jog < JioJo1. Since Jio < 0 and Joy > 0, this is equivalent to
—J11/J12 < —J91/J22, which means that the b = 0 locus is downward sloping
and steeper than the ¢ = 0 locus. Condition (16) then follows.

Proof of Proposition 5

Consider the functions on the right-hand sides of (13) and (14), which are both
continuous for b > 0. If there is a saddle-path stable steady state at b, the
second function is steeper, from Lemma 2, and so is below the first function at
b’ + € for some € > 0. Taking limits for b — oo the the second function yields
q — k/§ and the first yields

K+ AU (E)

<l‘€
r+90+ A 6’

where the inequality can be proved using ¥ (E) < 1 and k = r 4 . Therefore,
the second function is above the first for some 0" large enough. The interme-

diate value theorem implies that a second steady state exists in (V' + €,b").



Proof of Proposition 6

Consider the path that solves our ODE system going backwards in time, start-
ing on the saddle path converging to the low-debt steady state, at some value
of b =V + €. Given a small enough ¢ > 0 the saddle path must lie above
the ¢ = 0 locus. Moreover, between b and b” the ¢ = 0 locus lies strictly
above the b = 0 locus. Therefore, the path can never cross the ¢ = 0 locus
because along the path b < 0 and G > 0. Therefore, it is possible to solve the
ODE backwards until b approaches b” from below. This implies that for all
b(0) < 1" we can select a path with b < 0 and b — ¥'. Consider next the path
that solves the ODE going backwards starting at <IA), (j). By construction the

point <l;, cj) must lie in the region of the phase diagram below both the b = 0

locus and the ¢ = 0 locus (to see this notice that at the definition of b implies
that b > 0 at (i), cj) and the constancy of ¢b implies ¢ < 0). If b < V" the
path with ¢b = ¥ is an equilibrium for all initial conditions in [l;, 00), so the
interesting case is b > V. In this case, we can solve backward the ODE. As
long as b > b” the b = 0 locus lies strictly above the ¢ = 0 locus. Therefore,
the path can never cross the ¢ = 0 locus, because along the path b > 0 and
G < 0. Therefore, it is possible to solve the ODE backwards until b approaches
b" from above. This implies that for all b(0) > b” we can select a path with
b>0and b — .

Turning to multiplicity, consider the first path constructed above. As we
approach b” two possibilities arise. Either ¢ remains bounded away from its
steady state value ¢” or ¢ converges to ¢”. In the first case, b is bounded above
by a negative value, so we must cross b” and can extend the solution in some
interval [b”,0” 4 €). In this case, we have multiple equilibria because for some
b > b we can select both an equilibrium path with b < 0 and an equilibrium
path with b > 0. In the second case, the path converges to the steady state
(", ¢") along a monotone path with b < 0. However, if the local dynamics
near (0", ¢") are characterized by a spiral, we reach a contradiction (since the
path must cross the arms of the spiral and then convergence can no longer be

monotone).



Proof of Proposition 9

To prove the proposition, we construct an equilibrium which implements the
desired outcome. The equilibrium pricing function satisfies Q (d, ¢"~!) = ¢* for
any history (d',¢"™!) with ¢! = {¢*, ..., ¢*}. The strategy of the government
is to issue b* — (1 — 0) b_ — Zézo d; and consume after any history with ¢"~! =
{¢*,...,q*}. The government strategy is optimal following any history with
¢t = {q*,...,q"} because the maximum utility the government can reach

following any future deviation is
max u (G+q (b—(1=09)b_) — rb_) + W (b)

and issuing b* reaches the maximum by construction. The pricing function sat-
isfy rational expectations because the government will reach a total stock of
debt b* independently of the past history. It is not difficult to complete the de-
scription of the equilibrium constructing continuation strategies after histories
with ¢! # {q¢*, ..., ¢*}. However, given the atomistic nature of investors, these
off-equilibrium paths are irrelevant for the borrower’s maximization problem.
The resulting equilibrium play is that the government issues b* in the first

auction and no further auction takes place.

Example for Section 7

Consider the economy in Section 7. The optimality condition for the maxi-

mization problem in Proposition 9 can be written as follows

qu (G+q(b—(1—-08)b_) —rb_) = 1 fﬁr/:) U' (max{Y —rb,nY'})dH (Y).

To construct an example with multiple equilibria, we consider a simple case
in which the utility function u (¢) = Ac — $Bc? and U (¢) = logc. We use the

following parameters

=095 ¢=0.7 n=08,



Figure 15: An example for the microfounded model of Section 7

A=3, B=-27, logY ~N(0.1+log(r/(1—mn)),0.2),

setting r = % — 1.

Define the functions

B
1-p

J(b) = 7“/:) U' (max{Y —rb,nY'})dH (Y),
and

CH)=5+Q0)(b—(1—06)b) — kb_.

Equilibria can be found solving the equation v’ (C (b)) = J (b) /Q (b). The solid
blue line in Figure 15 represents the pairs (C (b),J (b) /Q (b)) for b € [1,1.5].
The red dashed line represents the marginal utility of consumption in the first
subperiod ' (¢) choosing the parameters of u’ (¢) so that it crosses the blue
line more than once. It can be shown that the middle point at which the two
lines cross does not satisfy second order conditions for a maximum. It can also
be shown that the other two points identify global optima, so they represent
two equilibria.

The interpretation of the two equilibria is as follows. There is a low debt
equilibrium in which the country defaults with low probability, the future
marginal cost of debt J (b) is high and so is the price @ (b). There is a high
debt equilibrium in which the country defaults with high probability and the



future marginal cost of debt J (b) and the price of debt @ (b) are both low. The
ratio J (b) /@ (D) is higher in the first equilibrium. This reflects the presence of
recovery which limits the reduction in @) (b) in the low b equilibrium. Therefore,
the marginal incentive to reduce debt is higher in the low debt equilibrium,
which is reflected in a lower value of c.

Here, we have chosen an example in which c¢ is fairly sensitive to the dif-
ferent equilibria to emphasize the novel forces that arise in a fully optimizing
setup. However, it is also easy to construct examples that are closer to the
two-period model of Section 4.2, by making the function u’ (¢) be very steep

near some ¢ that delivers a given primary surplus y — ¢.



	Introduction
	Model
	Equilibrium
	Multiplicity, selection and timing assumptions

	Short-term debt
	Stable equilibrium selection
	Rollover crises

	Long-term debt
	A two-stage process for the primary surplus
	Maturity and multiplicity
	Back to the bond price function

	Debt dynamics
	Boundary conditions
	Convergence to a steady state
	Convergence to default

	Multiple Markov equilibria
	A slow moving crisis
	Regions
	Sunspots
	Back to the debt Laffer curve

	Optimizing government
	Markov equilibria
	An example

	Microfoundations
	Conclusions



