ONLINE APPENDIX FOR

“Fiscal Rules and Discretion in a World Economy”

Marina Halac and Pierre Yared

In this Online Appendix, we provide proofs for the results in Section IV of the
paper. Since several of our claims are for the case of log preferences, we begin by
restating our problem under this preference structure.

B1. Log Preferences

Take U(g) = log(g) and W (x) = dlog(r + z) for § > 0. Equations (1) and (6)
imply

(B1) o' (0.R) = 5755 (T+%)’
(B2) r+af (0,R) = Hf‘SB(SR( + ).

Equivalently, letting s/ (§) = 5555 + /3 5 be type 0’s savings rate under full flexibility,

we have
¢ (0,R) = (1 sl (9)) (T n %) .

For a given rule §* € [0, ], the aggregate savings rate in the economy is

o [T B8 0B
S0 )_/9 Wf(@)dGqL/e* s O

The coordinated program in (11) can be written as

Zf(é?log (9+55> + dlog (9+55>> f(0)dd

(B3) 0?61%}:%] +9‘£ (0 log ) + dlog <9*+ﬂ5>> f(0)do

—log( S (0*)) — dlog (S (6%))

The uncoordinated program in (7), on the other hand, reduces to the first two
lines of (B3).

As explained in the paper, the difference between the optimal coordinated fiscal
rule and the optimal uncoordinated fiscal rule can be expressed as a function of the
redistributive and disciplining effects of the interest rate. Under log preferences,
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the sum of these two effects is

1—6R(6)
R(0) (L+R(07))

(B4) p+A=

Equation (B4) is the same as equation (15) but allowing for any § > 0. This
equation shows that the redistributive effect of the interest rate dominates the
disciplining effect if and only if R(0) < 1/§. As discussed in the paper, the
redistributive effect is stronger on the margin when interest rates are low.3¢

B2.  Proof of Proposition 3

The first part of the proposition follows from the arguments in the text. We
prove the second part by example. Take log preferences. Analogous to the expres-
sions in Section B1 above, given cutoffs #* € [0, 0] and 0** € [0, 0*], the aggregate
savings rate in the economy is

Y LA " Bs 7 86
S (67,0 )_/9 mf(@)d0+ . mf(a)dm 5 0*+65f(0)d9,

and the coordinated program can be written as

9**

o) ot
(B5) max +9£ (0 log <9+ﬁ5) +dlog (Lﬁ)) 1@

6*€[0,0],0%*€[0,6%]

+9J’: <Glog (%) +510g(
—log (1 — S (6*,60)) — dlog

))
(5 (6"

Take 6 = 1 and F(6) to be exponential with parameter 0.0785 and set [0, 6]
given by [0.05,2]. The parameter and truncation we choose ensure that E [0] = 1.
For a range of 3, Figure B1 depicts the cutoff 8 in the optimal uncoordinated
rule and the cutoffs 6 and 6* in the optimal coordinated rule, as a function of
B. Recall that 6;* < # always holds. Hence, as shown in the figure, we find that
there exist (U(-), W(-), F(0), 7, 3) such that 6} > 6, 0 > 0, and 6;* > 6 > 6;:*.

B3.  Proof of Proposition 4

To prove the first part of the proposition, we follow analogous steps as in the
proof of Proposition 2 for the case of § < §. We show that setting a coordinated
cutoff #* = @ is not optimal. Note that by Proposition 2, if ¢ = 0, then 6* = 0

36The relevant threshold for R(6}) depends on § because a reduction in § has a similar effect as a
reduction in R(6}): all types shift spending to the present when ¢ declines.
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is indeed not optimal. Moreover, since the objective function of the coordinated
problem is continuous in * and 1, it follows that for ¥ = €, ¢ > 0 arbitrarily
small, 0* = 6 is not optimal either. Therefore, given 8 < , there exists 1) € (0,1)
such that if ¢ < v, then 6% > 6% and 6% > 6.

To prove the second part of the proposition, take log preferences and assume 67
is a unique and interior global optimum with 6} > ;. We consider the program
that solves for the optimal coordinated fiscal rule taking into account that a
fraction v of governments choose 6. Analogous to the analysis in Section Bl
above, given a rule 0* > 0, the aggregate savings rate in the economy is (we
allow here for any 0 > 0; the statement of Proposition 4 takes § = 1):

0* 0
SO0 = (1-v) ( | o [ effﬁéf(e)de)

(B0 o ( [ [ Wéw).

Note that dS(0*,1)/dy > 0 for 6 < 6*. The coordinated program, taking the
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heterogeneity into account, can be written as

¢ j(@log<9+ﬁ5>+5log< ))f
1-v| %
i (0108 (58) + 5108 (55)) £ 010

max
0*€[0,0]

<010g (ﬁ%é) + dlog (9+B(5)) (0) db

f
<910g (9*%5) + dlog (9*+55))
—log (1 — S (6*,¢)) — dlog (S (6%, %)) )

+1p
_|_

5
:*%w\m\;&

subject to (9).

The first-order condition, assuming an interior optimum, is
(B7)

o _
0/(; - 99129 1 (6) do— (/: @ f‘;é)zf( )d ) <1—Sl(9:,w) —55(9;@) _o.

Since 0 is the unique global optimum, we can determine its comparative statics
with respect to ¢ by implicit differentiation of (B7). Since the program is locally
concave, the derivative of the left-hand side of (B7) with respect to 6% is negative.
If we can establish that the derivative of the left-hand side of (B7) with respect
to 1 is negative, then this implies that 6 is locally decreasing in 1. We find that
this is indeed the case: the derivative of the left-hand side of (B7) with respect

to v is

(7 B ds (67,1) 1 1
</9: (0% +55)2f(9)d9> dip <(1 — S (6,9))° +6(S <0z,w>>2) =0

where we have taken into account that dS (6%,4) /dy > 0 since 67 < 6%.

B4. Proof of Proposition 5

To prove the first part of the proposition, we follow the same steps as in the
proof of Proposition 2 for the case of 8 < ¢, taking into account that (4) is now
replaced by (16). Suppose L < 0. Then note that any rule with 6% € [0}.0] is
weakly dominated by a rule with 6% = 6, as an increase in 8} to § changes the
allocation only through its positive effect on the interest rate, and this improves
welfare given L < 0. Therefore, to prove the first part of the proposition for
L <0, it suffices to show that 6 = 0 is not optimal. This is what we prove next.
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Note that R’ (0*) continues to satisfy (A2), and it satisfies (A9) when 6* =
6. The first-order condition of the coordinated problem must therefore satisfy
equation (A8). If #* = @, then ¢/ (§*,R) = 7 + L and z/ (0*, R) = —RL, so that
(A8) becomes

_R'(8) (/: W (xf (0*,3)) £(8) d@) L.

Recall that R’ (6) > 0. Thus, if L < 0, the expression above is strictly positive,
implying that 6* = @ is not optimal as an increase in 6* would increase welfare.
If instead L = 0, then by the proof of Proposition 2, 8* = @ is not optimal either.
Hence, given 5 < 0, we obtain % > 67 and 6} > 6§ for L < 0.

Finally, since the objective function of the coordinated problem is continuous
in 0* and L, it follows that for L = ¢, € > 0 arbitrarily small, the result holds as
well. Therefore, given 3 < 0, there exists L > 0 such that if L < L, then 6 > 0%
and 07 > 0.

To prove the second part of the proposition, we consider the problem under log
preferences as in Section B1, but with (4) now replaced by (16). The program in
(B3) becomes (we allow here for any 6 > 0; the statement of Proposition 5 takes
0=1):

(9 log (ﬁ) +log (#‘;5)) £(0)do

(9 log (9‘1—55) +dlog (#5&)) £(8)do
“log(1— 5 (6%)) — 6log (S (6°) + L/7)

The first-order condition, assuming an interior optimum, is
(B8)

9 _
/ <; ) 99125) o </06 w—/idﬁéf WQ) <1 - ;w*) g <9*>1+ L/T> -

*
c

max.
0*€[0,0] +

5=
¥ — \cb%q;

Since by assumption 6 is the unique global optimum given L, we can determine
its comparative statics with respect to L by implicit differentiation of (B8). Since
the program is locally concave, the derivative of the left-hand side of (B8) with
respect to 0} is negative. If we can establish that the derivative of the left-hand
side of (B8) with respect to L is negative, then this implies that 6 is locally
decreasing in L. We find that this is indeed the case: the derivative of the left-
hand side of (B8) with respect to L is

N b/
(/9 (0: + 6o)° (9)‘”) (5@ z7) <°
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B5.  Proof of Proposition 6

Define ;. as the optimal uncoordinated rule for country group ¢ with pa-
rameters {f;, 3}, and let 7 be the optimal coordinated rule for both country
groups, given {fn, BN, fs, Bs,¥}. The first part of the proposition (8 > j3) fol-
lows from analogous reasoning as in the proof of the first part of Proposition 2:
if B¢ = By =1, then

(B9) Yo < min{vyn, Yust-

To prove the second part of the proposition (5 < f3), take 5; < 8, for i = N, S.
By Proposition 1, 8}, < 0, for i = N, S, implying i’:z < ~. Note that any rule
7% < 7 would yield the same allocation and hence the same welfare as a rule
4% = 5. Therefore, to prove the proposition, it suffices to show that v* = v is not
optimal. To prove this, consider a fiscal rule v* = ~ with associated interest rate

R = R(~*). Welfare under this rule is given by (18). The first derivative with
respect to v* is

F (v R) [
W/(e MU’ <gf (V*,R)) — RW’ (xf (7*’R))) h(v)dy
" dof
F A0 (g 0y 0 4 o ) — R (09 3 RO )
+ [ gm0 U (of (7% R) = RW' (af (v, R))) h (7) dy
;

N R'w*)( W@ (0 R) (= of (1 R) h(3) iy )

+ LW (@ (v, R)) (7 — g/ (v, R)) h(v) dy

The rest of the proof proceeds in the same way as the proof of our main result
for homogeneous countries in Proposition 2 and is thus omitted.

B6. Infinite Horizon

Consider an infinite horizon version of our model, with periods ¢ € {0, 1,...,T},
T — o0, and discount factor § € (0,1). The government’s welfare at ¢ before the
realization of its type 6, is

(B10) E 0:U (g) + Y 6%00 kU (gesr)
k=1
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The government’s welfare at ¢ after the realization of 6;, when choosing spending
gt, 1s

(B11) 0.U (g¢) + BE

> 650, 4U (gm)] :

k=1

Spending g; satisfies the government’s dynamic budget constraint:

(B12) g+ —r gy,
Ry

where x; is the level of assets with which the government enters period ¢ and
we set x9g = 0. The sum of total assets across all governments must be zero
in each period. We assume that 6; is i.i.d. across countries and time with an
expected value E [6;] = 1. Because there are no aggregate shocks, it follows that
the sequence of interest rates {R;},~ is deterministic, with Ry = 1. We focus
on fiscal rules at ¢ which depend only on payoff-relevant variables: z; and the
sequence of future interest rates { Ry }re.>7 We can then define

(B13) Wii (@41) =E

> 850, U <gt+k>]

k=1

as the continuation welfare at ¢ + 1 associated with assets z;y; and the continu-
ation sequence of interest rates and fiscal rules. Taking this continuation welfare
as given, a fiscal rule at t can be represented as a cutoff type 6*, where the gov-
ernment has full flexibility if 8, < 8* and no flexibility if ; > 6*. An individual
government’s optimal choice of fiscal rule is analogous to that in the two-period
setting:

PROPOSITION 7:  In an infinite horizon economy with i.i.d. shocks, the optimal
uncoordinated fiscal rule is a time-invariant cutoff 0 satisfying (9).

PROOF:

Given a deterministic sequence of interest rates, an uncoordinated fiscal rule
can be represented as a cutoff sequence 6 (¢,z;), which depends on time ¢ and
the assets x; with which a government enters the period. The dependence of
the rule on time captures the fact that time indexes the future path of interest
rates. Moreover, with some abuse of notation, we can let g/ (04, t,2¢) correspond
to type 6;’s flexible level of spending given time ¢ and assets x;. The government’s

37If countries do not coordinate their rules, then rules of this form are optimal under i.i.d. shocks. See
Halac and Yared (2014) for a discussion.
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uncoordinated problem can be written recursively as:

HZ(t"’Et)
| (809" (Brst,20)) + Wera () (61,8, 0))) £(60)d6,
max 3 ¢
Git,wt 0,9 * *
eI (00! 0 (1)t w0) + Waa (a0 (t,20) 1 20))) £(00)dB,
GZ(trxt)

subject to (B12) and
g/ (01, t, 1) = arg max {6:U(g) + Wesr (Bea (T + 20 — 9))}-

Standard arguments imply that W;, is a concave and continuously differentiable
function of ;1. Hence, this problem is isomorphic to that of the two-period
model, and by Proposition 1 the optimal choice of 8} (¢, ;) satisfies (9).

We next study the implications of a time-invariant coordinated rule 6* for the
interest rate.

LEMMA 3: Consider an infinite horizon economy with i.i.d. shocks and U(g;) =
log(g:). If all countries are subject to a time-invariant rule 8* in each period, the

interest rate Ry is constant over time and satisfies
(B14)

o B 7 B
Rt:R(G*):[/e BT =0) pgygpy [ PO/ LZ0) f(9)d9]

-1

0+ 36/ (1—9) gr 0%+ 86/ (1 —6)
PROOF:
Under log preferences, (B10) can be written as
(B15)
1)
l:@t log (1 — s¢) + log (st) + Z 5" (9t+k log (1 — s¢yk) + T log (sH_k)) + x (0, t,2¢) ,

where s; is a savings rate satisfying

(e.)
gt = (1 —s¢) T+Z

A
k=1 H RtH

and, using the above expression, x (0,1, z;) satisfies

_ gt d gt — &
(B16) x (01,t, 1) = Oy log (1 = St) T s log ( ) +kz 1-35 log (Ry+k) -
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Analogously, (B11) can be written as
(B17)

Oilog (1 — s)+p {

o0

)
Z <9t+k log (1 — st4) + 13 log (5t+k))

k=1

10g St —|—E

=5 }+wt (7¢),

where w (z;) satisfies

gt o gt > ok
Y o), ).

Denote the flexible savings rate in period t by

B4
6 + B0’

w (x¢) = b log <1

s (6) =

which is a function of 6, and does not depend on future interest rates or current
assets. Now consider a time-invariant fiscal rule 8* in a T-period economy. The
analog of (B17) in a finite horizon setting implies that at date 7' — 1, a country
chooses its flexible savings rate if 671 < 6* and the flexible savings rate that
would correspond to type 68* if 67_1 > 6*. Tt then follows by backward induction
that s (6;,t,2;) = max {s/ (6;),s7 (6*)} at each t € {0,...,T — 1}. Taking the
limit of the T-period economy as T' — oo, the global resource constraint at ¢ can
therefore be written as

/9* Y a f (6;) df EOO
o O +po)(1—0) Y /9*9*+55/(1—5) i Tk -0
k ll:llRt—i-l

where we have taken into account that savings rates are independent of assets
and the sum of assets across countries is zero in each period. The fact that this
equation holds for all periods ¢ implies (B14).

Consider now the class of rules 6* (¢) which are possibly time-varying but apply
to all countries symmetrically, independently of their assets. We show that there
is an optimal coordinated fiscal rule within this class which is time-invariant.
Moreover, this rule satisfies our results in Proposition 2.

PROPOSITION 8: Consider an infinite horizon economy with i.i.d. shocks and
Ul(gt) = log(gt), and take fiscal rules that apply symmetrically to all countries.
There exists an optimal coordinated fiscal rule 0 that is time-invariant. Moreover,
there exist B, € [0,1], B > 3, such that if 3 > B, then 0% < 07, whereas if B < 3,

then 07 > 0;, and 0} > 0.

PROOF:



Using the same arguments as in the proof of Lemma 3, s (6;, ¢, z;) = max {s/ (6;) , s/ (6* (¢))}
under a rule 0* (t). Define

e |70 B8/ (1-0) b B/ (1-0)
S () = [/9 srsrass! O+ [ masrasy’ O

Because savings rates are independent of assets, we can write the global resource
constraint at ¢ as

t—1 t oo
(B18)  (1-5(6* (1)) (H S (0" <m>>> (H Rm> T+Z
m=0 m=0 =1

k
[T Ri
=1
where Ry = 1. Substituting (B18) in (B16) yields
X(00,0.0) = ~fplog (1 -5 (6° 0))) ~ +=log (S (0" (0))
. t * - 6t * 5
—;5 log (1 — S (67 (1)) — ; —log (S (0 (1)) + <90 + 15) log 7.

Given (B15), we can write welfare at date 0 as a function of the rule 6* (¢) as

6* (1) 86/(1—5)
0 , fg (9 log <9+55(/()15)> + 25 log (W(;?) f(0)do
t _
Z + Jir oy (9108 (7rriidsy ) + = 25 log (5= LSi7cis; ) ) £ (6) o
—log (1 —S(0*(t)) — f& log (S (6% (t))) + log T

Note that the term in the bracket is the same for every ¢, which implies that there
exists a solution with a time-invariant cutoff 6* (t) = 6. Moreover, this bracket
is identical to the two-period program in (B3) except that J is replaced with > 5
(and there is the last term which is a constant). The results therefore follow from
Proposition 2.
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