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Appendix D. Details of Bayesian algorithm.

For any numerical value of A we can calculate ζ∗i (A) and τ
∗
i (A) using equations (7) and (6)

from which we can calculate the log of the target

q(A) = log(p(A)) + (T/2) log
�
det

�
AΩ̂TA

′
��

(D1)

−
�n

i=1κ
∗
i log[(2/T )τ

∗
i (A)] +

�n

i=1κi log τi(A).

We can improve the efficiency of the algorithm by using information about the shape of this

function calculated as follows. Collect elements of A that are not known with certainty in

an (nα × 1) vector α, and find the value α̂ that maximizes (D1) numerically. This value α̂

offers a reasonable guess for the posterior mean of α, while the matrix of second derivatives

(again obtained numerically) gives an idea of the curvature of the posterior distribution:

Λ̂ = −
∂2q(A(α))

∂α∂α′

����
α=α̂

.

We then use this guess to inform a random-walk Metropolis Hastings algorithm to generate

candidate draws of α from the posterior distribution, as follows. As a result of step ℓ we have

generated a value of α(ℓ). For step ℓ+ 1 we generate

α̃
(ℓ+1) = α(ℓ) + ξ

�
Q̂−1

�′
vt

for vt an (nα × 1) vector of Student t variables with 2 degrees of freedom, Q̂ the Cholesky

factor of Λ̂ (namely Q̂Q̂
′
= Λ̂ with Q̂ lower triangular), and ξ a tuning scalar to be de-

scribed shortly. If q(A(α̃(ℓ+1))) < q(A(α(ℓ))), we set α(ℓ+1) = α
(ℓ) with probability 1 −

exp
�
q(A(α̃(ℓ+1)))− q(A(α(ℓ)))

�
; otherwise, we set α(ℓ+1) = α̃

(ℓ+1). The parameter ξ is

chosen so that about 30 percent of the newly generated α̃(ℓ+1) get retained. The algo-

rithm can be started by setting α(1) = α̂, and the values after the first D burn-in draws

{α(D+1),α(D+2), ...,α(D+N)} represent a sample of size N drawn from the posterior distribu-

tion p(α|YT ); in our applications we have used D = N = 106.

For each of these N final values for α(ℓ) we further generate δ
(ℓ)
ii ∼ Γ(κ

∗
i , τ

∗
i (A(α

(ℓ)))) for
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i = 1, ..., n and take D(ℓ) to be a diagonal matrix whose row i, column i element is given by

1/δ
(ℓ)
ii . From these we also generate b

(ℓ)
i ∼ N(m∗

i (A(α
(ℓ))), d

(ℓ)
ii M

∗
i ) for i = 1, ..., n and take

B(ℓ) the matrix whose ith row is given by b
(ℓ)′
i . The triple {A(α(ℓ)),D(ℓ),B(ℓ)}D+Nℓ=D+1 then

represents a sample of size N drawn from the posterior distribution p(A,D,B|YT ).

Appendix E. Data sources.

The data sets used in the original studies by Kilian (2009) and Kilian and Murphy (2012) are

available from the public data archives of the Journal of the European Economic Association

(http://onlinelibrary.wiley.com/doi/10.1111/j.1542-4774.2012.01080.x/suppinfo) and we used

these exact same data for the statistical analysis reported in Sections II.A and II.B. We also

reconstructed these data sets from the original sources ourselves as part of the process of

assembling extended time series as described below.

Monthly world oil production data measured in thousands of barrels of oil per day were

obtained from the U.S. Energy Information Administration’s (EIA) Monthly Energy Review

for the period January 1973 to December 2016. Monthly data for global production of crude

oil for the period 1958:M1 to 1972:M12 were collected from the weekly Oil and Gas Journal

(issue of the first week of each month) as in Baumeister and Peersman (2013b).

The nominal spot oil price for West Texas Intermediate (WTI) was retrieved from the Fed-

eral Reserve Economic Data (FRED) database maintained by the St. Louis Fed (OILPRICE).

Prior to 1982 this equals the posted price. This series was discontinued in July 2013. From Au-

gust 2013 onwards data are obtained from the EIA website (http://www.eia.gov/dnav/pet/hist/

LeafHandler.ashx?n=pet&s=rwtc&f=m). To deflate the nominal spot oil price, we use the

U.S. consumer price index (CPIAUCSL: consumer price index for all urban consumers: all

items, index 1982-1984 = 100) which was taken from the FRED database.

For the extended data set our measure for global economic activity is the industrial pro-

duction index for OECD countries and six major non-member economies (Brazil, China, In-

dia, Indonesia, the Russian Federation and South Africa) obtained from the OECD Main

Economic Indicators (MEI) database in 2011. The index covers the period 1958:M1 to

2011:M10 and was subsequently discontinued. To extend the data set after October 2011,

we applied the same methodology used by the OCED. Specifically, we use OECD indus-

trial production and industrial production for the individual non-member countries which

are available in the MEI database and apply the weights reported by the OECD to ag-

gregate those series into a single index. The source of the weights data is the Interna-

tional Monetary Fund’s World Economic Outlook (WEO) database. The weights are up-

dated on a yearly basis and a link to a document containing the weights can be found at

http://www.oecd.org/std/compositeleadingindicatorsclifrequentlyaskedquestionsfaqs.htm#11.

Monthly U.S. crude oil stocks in millions of barrels (which include the Strategic Petro-
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leum Reserve) are available from EIA for the entire period 1958:M1-2016:M12. We obtain an

estimate for global stocks as in Kilian and Murphy (2012) by multiplying the U.S. crude oil

inventories by the ratio of OECD inventories of crude petroleum and petroleum products to

U.S. inventories of petroleum and petroleum products. Given that OECD petroleum inven-

tories only start in January 1988, we assume that the ratio before January 1988 is the same

as in January 1988. To calculate our proxy for ∆it, the change in OECD inventories as a

fraction of last period’s oil production, we convert the production data into millions of barrels

per month by multiplying the million barrels of crude oil produced per day by 30.

Appendix F. Adapting the algorithms in Baumeister and

Hamilton (2015) to allow for measurement error.

Rewriting (34) in the form of (1). The variance matrix for the structural shocks in (34)

is given by

D̃ =E(ũtũ
′
t) =






d∗11 0 0 0

0 d∗22 0 0

0 0 d∗33 + χ
−2σ2e −χ−1σ2e

0 0 −χ−1σ2e χ2d∗44 + σ
2
e





. (F1)

It’s not hard to see that ΓD̃Γ
′
= D is diagonal for

Γ =






1 0 0 0

0 1 0 0

0 0 1 0

0 0 ρ 1






(F2)

with ρ given by (37). Thus if we premultiply (34) by Γ we arrive at a system in the form of

(1) for which A = ΓÃ, B = ΓB̃, and

ut = Γũt =






u∗1t
u∗2t

u∗3t − χ
−1et

χu∗4t + ρu
∗
3t + (1− ρ/χ)et






(F3)

whose variance matrix we denoteD = diag(d11, d22, d33, d44). This is exactly in the form of the

general class of models discussed in Section I with the elements of the matrix A determined

by θA = (αqp, αyp, βqy, βqp, χ, ψ1, ψ3, ρ)
′. Given a prior distribution for these parameters, we

can then draw from the posterior distribution p(θA,D,B|YT ) as described in Appendix D.

Given a draw from p(θA,D,B|YT ) we immediately have a draw for Ã = Γ
−1
A, B̃ = Γ

−1
B,
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and D̃ = Γ
−1
D(Γ−1)′. The lower-right (2× 2) block of the last equation is



d̃33 d̃34

d̃43 d̃44

�

=



1 0

−ρ 1

�

d33 0

0 d44

�

1 −ρ

0 1

�

=



d33 −ρd33

−ρd33 d44 + ρ
2d33

�

. (F4)

Historical decompositions. Recall ǫt = Ã
−1ũt for ũt defined in (36). Taking expecta-

tions of both sides conditional on the data and on a draw of the parameters, the following

equation holds exactly for every t,

ǫt = Ã
−1






u∗1t
u∗2t

E(u∗3t|ũt,θA,D)− χ
−1E(et|ũt,θA,D)

χE(u∗4t|ũt,θA,D)+E(et|ũt,θA,D)





, (F5)

where





E(u∗3t|ũt,θA,D)

E(u∗4t|ũt,θA,D)

E(et|ũt,θA,D)




 =





E(u∗3t|ũ3t, ũ4t,θA,D)

E(u∗4t|ũ3t, ũ4t,θA,D)

E(et|ũ3t, ũ4t,θA,D)






= E










u∗3tũ3t u∗3tũ4t

u∗4tũ3t u∗4tũ4t

etũ3t etũ4t






�������
θA,D






�

E

�

ũ23t ũ3tũ4t

ũ4tũ3t ũ24t

������
θA,D

��−1 

ũ3t

ũ4t

�

. (F6)

The second matrix in (F6) is known from (F4) while the first matrix can be calculated

from the equations

ũ3t = u
∗
3t − χ

−1et

ũ4t = χu
∗
4t + et

and the fact that the three disturbances u∗3t, u
∗
4t, and et are mutually uncorrelated:

E(ũ3tu
∗
4t) = E(ũ4tu

∗
3t) = 0 (F7)

E(ũ3tet) = −χ
−1σ2e = E(ũ3tũ4t) (F8)

E(ũ4tet) = σ
2
e = −χE(ũ3tũ4t) (F9)

E(ũ3tu
∗
3t) = E(ũ3t)(ũ3t + χ

−1et) = E(ũ
2
3t) + χ

−1E(ũ3tũ4t) (F10)

χE(ũ4tu
∗
4t) = E(ũ4t)(ũ4t − et) = E(ũ

2
4t) + χE(ũ3tũ4t). (F11)
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Collecting (F7)-(F11) into a matrix equation,

E










u∗3tũ3t u∗3tũ4t

u∗4tũ3t u∗4tũ4t

etũ3t etũ4t






�������
θA,D




 =





d̃33 + χ

−1d̃34 0

0 (d̃44 + χd̃34)/χ

d̃34 −χd̃34






=





d33(1− ρ/χ) 0

0 d44+ρ(ρ−χ)d33
χ

−ρd33 ρχd33




 (F12)

where the last equation follows from (F4). Substituting (F4) and (F12) into (F6),





E(u∗3t|ũt,θA,D)

E(u∗4t|ũt,θA,D)

E(et|ũt,θA,D)




 =





d33(1−

ρ

χ
) 0

0 d44+ρ(ρ−χ)d33
χ

−ρd33 ρχd33








d33 −ρd33

−ρd33 d44 + ρ
2d33

�−1 

ũ3t

ũ4t

�

=





h33 h34

h43 h44

he3 he4








ũ3t

ũ4t

�

(F13)

Historical decompositions can thus be calculated as follows. The value of yt can be written

as the r-period-ahead forecast plus a known function of the forecast errors between t− r and

t:

yt = ŷt|t−r +
�r−1

s=0Ψsǫt−s. (F14)

We have inferred values for ũt for each date from ũt = Ãyt − B̃xt−1. Hence

yt = ŷt|t−r +
�r−1

s=0ΨsÃ
−1






u∗1,t−s
u∗2,t−s

û∗3,t−s − χ
−1êt−s

χû∗4,t−s+êt−s






where (u∗1t, u
∗
2t)

′ = (ũ1t, ũ2t)
′ and the vector (û∗3t, û

∗
4t, êt)

′ is calculated from (F13). With this

expression we can calculate the contribution of each of the shocks (u∗1, u
∗
2, u

∗
3, u

∗
4, e) to the

historical value of yt. For example, the historical contribution of inventory demand shocks

(u∗4t) to yt is found from
�r−1

s=0ΨsÃ
−1h4∗t−s for h

4∗
t = (0, 0, 0, χ(h43ũ3t + h44ũ4t))

′,while the

contribution of measurement error is

�r−1
s=0ΨsÃ

−1het−s (F15)

for het = (0, 0,−χ
−1(he3ũ3t + he4ũ4t), he3ũ3t + he4ũ4t)

′.
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