
Online Appendix of the paper Walk on the Wild Side: Temporarily
Unstable Paths and Multiplicative Sunspots

By Guido Ascari and Paolo Bonomolo and Hedibert F. Lopes ∗

I. Implementation: The general solution

As in LS, we follow the approach of Sims (2002) and we write a general linear RE system
as:

(A1) Γ0yt = Γ1yt−1 + Ψεt + Πηt,

where yt is the vector of the n endogenous variables (including the expectations as in (2)), εt
is the vector of the h exogenous fundamental shocks, and ηt is the vector of the k ≤ n RE
forecast errors. For simplicity, we assume that Γ0 is invertible,1 so to write as in (12) :

(A2) yt = Γ∗1yt−1 + Ψ∗εt + Π∗ηt.

The multivariate case is a relatively straightforward extension of the simple case, so the
description follows similar steps as above, involving: (i) parameterizing the system using M
(now a matrix); (ii) introducing time variation in M, and (iii) imposing stability. As usual,
however, first we need to decouple the system through a variable transformation.
Partitioning. As in the main text, use Jordan decomposition to partition the system, and

define the vector of transformed variables ỹt = J−1yt. Let the ith element of ỹt be ỹit, the
ith element on the principal diagonal of Λ be λi and denote the ith row of J−1Π∗ and J−1Ψ∗

by
[
J−1Π∗

]
i

and
[
J−1Ψ∗

]
i
, respectively. The model can then be written as a collection of

AR(1) processes as in the univariate case: ỹit = λiỹit−1 +
[
J−1Ψ∗

]
i
εt +

[
J−1Π∗

]
i
ηt. Order

the eigenvalues (and the corresponding eigenvectors) in descending order, and partition the
system into two blocks of dimensions (n−k) and k, respectively. As explained in the main text,
we depart from Sims (2002) and LS because we partition the system as in (13), according
to the number of forward-looking variables/expectation errors, rather than the number of
explosive eigenvalues. Let m be the number of explosive eigenvalues (i.e., such that λi ≥ 1).
As usual, we assume that the number of explosive eigenvalues is smaller or equal to the number
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of forecast errors, to rule out instability. Hence, the first (n − k) rows only contain stable
eigenvalues, while the last k rows contain both (k −m) stable and m unstable eigenvalues.
Hence, we do not need to impose any stability condition on the first block of the system (13),
but we do need to do so on the second block of the system, i.e., (14).

Parameterization. Note that the system is decoupled, so it is just a collection of inde-
pendent AR(1) processes. Each row in (14) corresponds to our simple example above (2).
As for the case of the simple model, it is possible to parameterize the fundamental solutions,
i.e., where the expectation error is just a function of the structural shock, by modifying the
stability condition under determinacy. In matrix notation, the usual stability condition un-
der determinacy would be Jµ2 [Ψ∗εt + Π∗ηt] = 0, and, as in the simple case, we modify it to
(I +M)Jµ2Ψ∗εt = −Jµ2Π∗ηt, when we restrict the matrix M to be diagonal, with Mi being
the ith element on the principal diagonal of M . Hence:

(A3) ỹk,t = Λ2ỹk,t−1 + Jµ2Ψ∗εt − (I +M)Jµ2Ψ∗εt = Λ2ỹk,t−1 −MJµ2Ψ∗εt.

Iterate (A3) backward to find:

(A4) ỹk,t = −M
t−1∑
i=0

Λi2 (Jµ2Ψ∗) εt−i.

This expression corresponds to (4), and like (4), it exists assuming that we start from steady
state (there exists a time 0, such that ỹ−k,i = ε−i = η−i = 0,∀i ≥ 0). Moreover, some of the
solutions for ỹi,k,t in (A4) will be stable and some will be unstable, depending on the values
of the Mi’s and on the stability properties of the system, i.e., depending on the values of the
λ2,i’s, where λ2,i is the ith element on the principal diagonal of Λ2.

Time variation. Assume now that the Mi elements on the principal diagonal of the matrix
M are changing over time following independently distributed and uncorrelated stochastic
processes. Our proposed solution is then:

(A5) ỹk,t = −Mt

t−1∑
i=0

Λi2 (Jµ2Ψ∗) εt−i,

which corresponds to (6). Note that in each period t, the solution just depends on the current
realization of Mt. A solution pins down the expectations errors, actually Jµ2Π∗ηt. As in Sims
(2002), a solution pins down the expectations errors, actually Jµ2Π∗ηt. Plugging (A5) into
(14) yields:

(A6) Jµ2Π∗ηt = −(I +Mt)Jµ2Ψ∗εt − (Mt −Mt−1)
t−1∑
i=1

Λi2 (Jµ2Ψ∗) εt−i.

The RE condition implies Et−1 (Jµ2Π∗ηt) = 0, so that each Mi,t must be: 1) a martingale;
and 2) uncorrelated with εt. Once more, it is easy to recognize two particular solutions: 1)
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the forward-looking solution, given by Mt = 0 => ỹFk,t = 0 => ηt = − (Jµ2Π∗)−1 Jµ2Ψ∗εt,∀t;
and 2) the backward-looking solution, given by Mt = −I => ỹBk,t =

∑t−1
i=0 Λi2 (Jµ2Ψ∗) εt−i and

ηt = 0, ∀t. The forward-looking solution always exists and it is always (under our assumption)
a stable solution: it is the only stable one under determinacy (m = k), while it is one out
of many possible stable ones under indeterminacy (m < k). However, in this latter case,
the forward-looking solution is a special one given how we partition the system: it coincides
with the minimum state variable solution, because it delivers a solution which is just a linear
function of the state variables.

Then the solution to the system of disconnected difference equations (A3) can be writ-
ten recursively almost as in Blanchard (1979), but actually using only the backward-looking
variable ỹBk,t as:

(A7) ỹk,t = −Mt

t−1∑
i=0

Λi2 (Jµ2Ψ∗) εt−i = −Mtỹ
B
k,t

so that:

(A8) ỹBk,t = Λ2ỹ
B
k,t−1 + Jµ2Ψ∗εt

(A9) ỹk,t = −Mtỹ
B
k,t = −Mt

(
Λ2ỹ

B
k,t−1 + Jµ2Ψ∗εt

)
which are (15) and (16) in the main text.

Note that since: ỹBk,t =
∑t−1

i=0 Λi2 (Jµ2Ψ∗) εt−i = J−1Ψ∗εt +
∑t−1

i=1 Λi2 (Jµ2Ψ∗) εt−i, the expec-
tation error could be written as:

Jµ2Π∗ηt = −(I +Mt)Jµ2Ψ∗εt − (Mt −Mt−1)
t−1∑
i=1

Λi2 (Jµ2Ψ∗) εt−i

= −(I +Mt)Jµ2Ψ∗εt − (Mt −Mt−1)
(
ỹBk,t − Jµ2Ψ∗εt

)
= −(I +Mt−1)Jµ2Ψ∗εt − (Mt −Mt−1) ỹBk,t

which yields (17), assuming that the (kxk) matrix Jµ2Π∗ is invertible.

We discuss stability in the main text. Again, as in the simple model, and we impose stability
by allowing only particular processes for Mi,t’s.

Recompose the system and solve for original variables. Having solved for the
forward-looking variables, we now need to recompose the system from the original partition.
First, we need to substitute for Jµ1 [Ψ∗εt + Π∗ηt] into (13), given the ηt implied by our pro-
posed solution from (17). Substitute (A9) in the system (13), adding the auxiliary variable
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ỹBk,t:
ỹ(n−k),t

((n− k)× 1)
ỹk,t

(k × 1)
ỹBk,t

(k × 1)

 =


Λ1 0 0

((n− k)× (n− k)) ((n− k)× k) ((n− k)× k)
0 0 −MtΛ2

(k × (n− k)) (k × k) (k × k)
0 0 Λ2

(k × (n− k)) (k × k) (k × k)




ỹ(n−k),t−1

((n− k)× 1)
ỹk,t−1

(k × 1)
ỹBk,t−1

(k × 1)

+

+


Jµ1 [Ψ∗εt + Π∗ηt]

((n− k)× 1)
−MtJµ2Ψ∗εt

(k × 1)
Jµ2Ψ∗εt
(k × 1)


Then the problem is to pin down Jµ1Π∗ηt, but we know ηt, given our proposed solution from
(17), so:

Jµ1 [Ψ∗εt + Π∗ηt]

= Jµ1

[
Ψ∗εt + Π∗ (Jµ2Π∗)−1 [−(I +Mt−1)Jµ2Ψ∗εt − (Mt −Mt−1) ỹBk,t

]]
= Jµ1

[
Ψ∗ −Π∗ (Jµ2Π∗)−1 (I +Mt−1)Jµ2Ψ∗

]
εt − Jµ1Π∗ (Jµ2Π∗)−1 (Mt −Mt−1) ỹBk,t

Then given (A8), we can write:

Jµ1 [Ψ∗εt + Π∗ηt]

= Jµ1

[
Ψ∗ −Π∗ (Jµ2Π∗)−1 (I +Mt−1)Jµ2Ψ∗

]
εt +

− Jµ1Π∗ (Jµ2Π∗)−1 (Mt −Mt−1)
(
Λ2ỹ

B
k,t−1 + Jµ2Ψ∗εt

)
= Jµ1

[
Ψ∗ −Π∗ (Jµ2Π∗)−1 (I −Mt)Jµ2Ψ∗

]
εt − Jµ1Π∗ (Jµ2Π∗)−1 (Mt −Mt−1) Λ2ỹ

B
k,t−1

So we can write:

(A10) Jµ1 [Ψ∗εt + Π∗ηt] = Atεt −Bt,t−1ỹ
B
k,t−1,

where At is the (n− k)× l matrix and Bt,t−1 is a (n− k)× k matrix, respectively given by
(20) and (21) in the main text, that is:

At = Jµ1

[
Ψ∗ −Π∗ (Jµ2Π∗)−1 (I +Mt)Jµ2Ψ∗

]
;(A11)

Bt,t−1 = Jµ1Π∗ (Jµ2Π∗)−1 (Mt −Mt−1) Λ2(A12)
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The final system is therefore:

ỹ(n−k),t = Λ1ỹ(n−k),t−1 −Bt,t−1ỹ
B
k,t−1 +Atεt

ỹk,t = −MtΛ2ỹ
B
k,t−1 −MtJµ2Ψ∗εt

ỹB(n−k),t = Λ1ỹ
B
(n−k),t−1 + Jµ1Ψ∗εt

ỹBk,t = Λ2ỹ
B
k,t−1 + Jµ2Ψ∗εt,

which in matrix notation is:

(A13)


ỹ(n−k),t

ỹk,t
ỹB(n−k),t

ỹBk,t

 =


Λ1 0 0 −Bt,t−1

0 0 0 −MtΛ2

0 0 Λ1 0
0 0 0 Λ2


︸ ︷︷ ︸

G∗


ỹ(n−k),t−1

ỹk,t−1

ỹB(n−k),t−1

ỹBk,t−1

+


At

−MtJµ2Ψ∗

Jµ1Ψ∗

Jµ2Ψ∗


︸ ︷︷ ︸

H∗

εt.

Finally, to recover the original variables, use = ỹt = J−1yt to obtain (18) in the main text.

II. The econometric strategy

Regarding the structural parameters of the model, collected in the vector θ, as well as the
latent states, the inference is fully Bayesian. The time-varying characteristic of the latent
state Mt leads to a non-linear and analytically intractable non-Gaussian likelihood function
for the unknowns. This motivates the use of the Sequential Monte Carlo strategy described
below.

A. Preliminaries

The class of solutions we propose in equation (18), parametrized by the matrix Mt, has
state space representation (24) that we repeat below for convenience:

(A14)

{
Dt = c+ Flt + vt vt ∼ N (0,Σv)
lt = Gtlt−1 +Htεt εt ∼ N (0,Σε)

Dt is the vector with data at time t, and Dm:n is the set of observations from m to n for
m ≤ n. The parameters of the model are collected in the vector θ = (θ1, θ2), where we group
in θ1 all the parameters other than the variances and the covariances of the shocks, which are
in turn collected in the vector θ2. Finally, we assume that the dynamics of Mt are described
by a transition law:

(A15) Mt = f (Mt−1, ζt)

where ζt is a multiplicative sunspot shock. The properties of the stochastic process for Mt

are discussed in the paper.
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Our econometric strategy is based on sequential learning: suppose the posterior distribution
of the unknowns is approximated at time t− 1 by a set of particles {(lt−1,Mt−1, θ1, θ2)(i)}Ni=1

and associated weights {w(i)
t−1}Ni=1. Given the new observed data Dt, we want to generate

an updated set of particles {(lt,Mt, θ1, θ2)(i)}Ni=1 and weights {w(i)
t }Ni=1 that approximate the

posterior distribution:

(A16) p (lt,Mt, θ1, θ2|D1:t) .

The way we group the latent processes (distinguishing Mt from all other states lt) and the
parameters (dividing them in θ1 and θ2) has a specific reason: as a general principle of our
econometric strategy, we implement analytical computation whenever it is possible. To this
aim, note that given a value for Mt, the state space (A14) is linear and Gaussian: we can
compute the posterior distribution of the latent processes in lt analytically, using the Kalman
filter. Moreover, an analytical expression for the posterior distribution can also be derived for
some of the parameters that we collect in θ2. For DSGE models, this is typically the case for
the variances and covariances of the shocks, when the prior distributions are Inverse Gamma
or Inverse Wishart. Then, following Carvalho et al. (2010), we keep track of a set of sufficient
statistics collected in st that we will use to update the posterior distribution of θ2.

To approximate the posterior distribution of the parameters in θ1, we use the Liu and West
(2001) filter. Since this method uses mixtures of Normal distributions we make sure that all
the parameters have the right support, that is from −∞ to +∞. Then, we define a new vector
φ where each element of θ1 is appropriately transformed when needed. In the description of
the algorithm, we will add a time t subscript to this parameter, writing φt. This notation is
introduced simply to reinforce the notion that sequential inference regarding φ is performed
at time t, and it does not mean that the parameters are time-varying.

B. The particle filter

The algorithm we use is based on two main steps: an updating step, in which an appropriate
number of particles N is drawn from an importance distribution q (ϑt,Mt, θ1, θ2|D1:t), and a
re-weighting step in which the weights are computed as:

(A17) w
(i)
t =

p
(
l
(i)
t ,M

(i)
t , θ

(i)
1 , θ

(i)
2 |D1:t

)
q
(
l
(i)
t ,M

(i)
t , θ

(i)
1 , θ

(i)
2 |D1:t

) .

Step 1: Drawing from the importance distribution
Drawing from the importance distribution involves two sub-steps, following the schema in
Pitt and Shephard (1999): a resampling step in which we select “the most fit particles”, and
the actual propagation step in which these particles are updated.

Resampling. Once new data have arrived, we start selecting the particles with higher

predictive ability. We perform a resampling step using weights w̃
(i)
t proportional to:
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(A18) w̃
(i)
t ∝ w

(i)
t−1p

(
Dt|l(i)t−1, gM (M

(i)
t−1),m

(i)
t−1, θ

(i)
2

)
Following Pitt and Shephard (1999) and Liu and West (2001), the predictive likelihood

in equation (A18) is conditional on gM (M
(i)
t−1), that is a best guess of M i

t at time t − 1 like

E
(
Mt|M (i)

t−1

)
, and on mi

t−1 defined as:2

(A19) m
(i)
t−1 = aφ

(i)
t−1 + (1− a)φ̄t−1

where φ̄t−1 is the weighted sample mean of φ
(i)
t−1. Define also Vt−1 as the sample weighted

covariance matrix of φ
(i)
t−1, that we will use later. Then, given the state space (A14), the

predictive likelihood is a Normal distribution with mean f̂
(i)
t and variance Q̂

(i)
t where:

f̂
(i)
t = ĉ(i) + F̂ Ĝ

(i)
t−1l

(i)
t−1(A20)

Q̂
(i)
t = F̂

(
Ĝ

(i)
t−1C

(i)
t−1Ĝ

(i)′

t−1 + Ĥ
(i)
t−1Σ(i)

ε Ĥ
(i)′

t−1

)
F̂ ′(A21)

and C
(i)
t−1 is the variance of the latent process l

(i)
t−1. Note that the matrices F̂ , Ĝ

(i)
t−1 and Ĥ

(i)
t−1

and the vector ĉ(i) are functions of gM (M
(i)
t−1) and of the parameters in m

(i)
t−1.

At this point, we have a set of resampled particles that, for convenience, we accentuate with
a tilde: {(l̃t−1, M̃t−1, m̃t−1, θ̃2, s̃t−1, C̃t−1, f̃t, Q̃t)

(i)}Ni=1.

Propagation. The resampled particles are then propagated starting from the set of param-

eters φ
(i)
t . Following the schema of Liu and West (2001), we update this vector drawing its

new values from the normal distribution:

(A22) φ
(i)
t ∼ N

(
m̃

(i)
t−1, (1− a

2)Vt−1

)
.

Then, we proceed with the propagation of M
(i)
1,t from the distribution implied by its law of

motion (A15):

(A23) M
(i)
t ∼ p

(
Mt|M̃ (i)

t−1, φ
(i)
t , θ̃

(i)
2

)
Given M

(i)
t the state space (A14) becomes linear and Gaussian. We can draw l

(i)
t from its

2The parameter a in equation (A19), which accounts for the amount of shrinkage, is suggested to be set between
0.974 and 0.995 (see Liu and West, 2001, for details)
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posterior distribution:

(A24) l
(i)
t ∼ p

(
lt|l̃(i)t−1,M

(i)
t , φ

(i)
t , θ̃

(i)
2 , Dt

)
that is a Normal distribution with mean µ

(i)
t and variance C

(i)
t computed through the Kalman

filter recursion:

f
(i)
t = c(i) + FG

(i)
t l̃

(i)
t−1(A25)

Q
(i)
t = F

(
G

(i)
t C̃

(i)
t−1G

(i)′

t +H
(i)
t Σ̃(i)

ε H
(i)′

t

)
F ′(A26)

µ
(i)
t = G

(i)
t l̃

(i)
t−1 +

(
G

(i)
t C̃

(i)
t−1G

(i)′

t +H
(i)
t Σ̃(i)

ε H
(i)′

t

)
F ′
(
Q

(i)
t

)−1 (
Dt − f (i)

t

)
(A27)

C
(i)
t =

(
G

(i)
t C̃

(i)
t−1G

(i)′

t +H
(i)
t Σ̃(i)

ε H
(i)′

t

)
+

−
(
G

(i)
t C̃

(i)
t−1G

(i)′

t +H
(i)
t Σ̃(i)

ε H
(i)′

t

)
F ′
(
Q

(i)
t

)−1
F
(
G

(i)
t C̃

(i)
t−1G

(i)′

t +H
(i)
t Σ̃(i)

ε H
(i)′

t

)(A28)

Note that the matrices F , G
(i)
t and H

(i)
t , and the vector c(i) are functions of M

(i)
t and of

the updated parameters φ
(i)
t . Then, the mean and the covariance matrix of the predictive

distribution, respectively f
(i)
t and Q

(i)
t , are different from those defined in (A20) and (A21).

Finally, we propagate the vector θ
(i)
2 following the Particle Learning approach of Carvalho

et al. (2010). The latent processes l
(i)
t and M

(i)
t and the parameters φ

(i)
t are used to update

the set of sufficient statistics s
(i)
t .3 Hence, we can draw θ

(i)
2 from its posterior distribution:

(A29) θ
(i)
2 ∼ p

(
θ2|s(i)

t

)
We have drawn a new set of particles from the importance distribution obtained combining

equations (A18), (A22), (A23), (A24) and (A29).

Step 2: Re-weighting the particles

In order to approximate the target density, we need to compute the appropriate weight for
each particle, according to equation (A17).

Start from the joint posterior distribution (A16) which is proportional to:

(A30) p (lt,Mt, θ|D1:t) ∝ p (Dt|lt,Mt, θ) p
(
lt,Mt, θ|D1:(t−1)

)
,

3For example, if the variance of a shock is a priori distributed as an Inverse Gamma, to compute the conjugate
posterior we need the sum of the squared errors.
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where the second term on the right-hand side is written as

p
(
lt,Mt, θ|D1:(t−1)

)
=

=

∫
p
(
lt,Mt, θ|l1:(t−1),M1:(t−1)

)
p
(
l1:(t−1),M1:(t−1)|D1:(t−1)

)
dl1:(t−1)dM1:(t−1)

≈
N∑
i=1

w
(i)
t−1p

(
lt,Mt, θ|l(i)1:(t−1),M

(i)
1:(t−1)

)
.(A31)

Consequently, the posterior is approximated by

(A32) p (lt,Mt, θ|D1:t) ∝
N∑
i=1

w
(i)
t−1p (Dt|lt,Mt, θ) p

(
lt,Mt, θ|l(i)1:(t−1),M

(i)
1:(t−1)

)
.

Assuming that the latent processes are Markov chains, we can write the numerator in equation
(A17) as:

(A33) p
(
l
(i)
t ,M

(i)
t , θ(i)|D1:t

)
= w

(i)
t−1p

(
Dt|l(i)t ,M

(i)
t , θ(i)

)
p
(
l
(i)
t ,M

(i)
t , θ(i)|l(i)t−1,M

(i)
t−1

)
.

Following Carvalho et al. (2010), we compute the weights before propagating the parameters
in θ2. Taking this into account and combining equations (A18), (A22), (A23), (A24), (A29)
and (A33) in equation (A17), we get:4

(A34) w
(i)
t ∝

p
(
Dt|l(i)t ,M

(i)
t , θ

(i)
1 , θ̃

(i)
2

)
p
(
l
(i)
t |l̃

(i)
t−1,M

(i)
t , θ

(i)
1 , θ̃

(i)
2

)
p
(
Dt|l̃(i)t−1, gM (M̃

(i)
t−1), m̃

(i)
t−1, θ̃

(i)
2

)
p
(
l
(i)
t |l̃

(i)
t−1,M

(i)
t , θ

(i)
1 , θ̃

(i)
2 , Dt

)
Note that the density p

(
l
(i)
t |l̃

(i)
t−1,M

(i)
t , θ

(i)
1 , θ̃

(i)
2 , Dt

)
in the denominator can be rewritten as

(A35) p
(
l
(i)
t |l̃

(i)
t−1,M

(i)
t , θ

(i)
1 , θ̃

(i)
2 , Dt

)
=
p
(
Dt|l(i)t ,M

(i)
t , θ

(i)
1 , θ̃

(i)
2

)
p
(
l
(i)
t |l̃

(i)
t−1,M

(i)
t , θ

(i)
1 , θ̃

(i)
2

)
p
(
Dt|l̃(i)t−1,M

(i)
t , θ

(i)
1 , θ̃

(i)
2

)
Substituting this equation in (A34), we find that the weights to approximate the joint posterior
distribution at time t are:

(A36) w
(i)
t ∝

p
(
Dt|l̃(i)t−1,M

(i)
t , θ

(i)
1 , θ̃

(i)
2

)
p
(
Dt|l̃(i)t−1, gM (M̃

(i)
t−1), m̃

(i)
t−1, θ̃

(i)
2

) .
4The weights are expressed as ”proportional to” instead of ”equal to” because they need to be normalized such that

their sum is equal to one.



10 THE AMERICAN ECONOMIC REVIEW MONTH YEAR

At the numerator, we have the Normal distribution with mean f
(i)
t and covariance matrix Q

(i)
t

defined in equations (A25) and (A26). The distribution at the denominator is the Normal with

mean f̃
(i)
t and covariance matrix Q̃

(i)
t defined in (A20) and (A21), and resampled according

to weights w̃
(i)
t computed in (A18). Both densities are evaluated in Dt.

Equation (A36) is very intuitive: the weight of each particle is computed comparing two

predictive likelihoods. The particle i has a higher weight if, after propagation of M
(i)
t and

θ
(i)
1 , this leads to a higher improvement in predicting Dt.

Step 3 (optional): Resampling
The approximation of the posterior distribution obtained in the two steps described above
is good if the the particle weights in (A36) are Uniformly distributed. It is well known in
the literature that the variance of the distribution of the weights tends to increase over time
since a subset of particles will have higher predictive power. Then, an additional resampling
step using the weights computed in (A36) can be added to mitigate this problem. After a
resampling step has been performed, all weights are set equal to 1/N .

Usually the final resampling step is implemented when a certain criterion suggests that
the distribution of weights became too uneven. A common practice is to check the effective
sample size defined as:

(A37) N e
t =

(
N∑
i=1

(
w

(i)
t

)2
)−1

.

N e
t takes values from 1 (very uneven distribution) to N (Uniform distribution), so the resam-

pling step is performed when N e
t is less than a certain threshold N̄ .

The procedure to implement our particle filter is summarized in the algorithm below.
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THE ALGORITHM

Initialization: t=0

Draw a set of particles {(l0,M0, θ1, θ2, s0, C0)(i)}Ni=1 from a prior

Recursion: for t = 1, 2, ...T repeat steps 1 to 6

1. Approximate p(φ|D0:(t−1))

1a) Consider a transformation of the vector θ1 and call it φt
1b) Compute the weighted sample mean φ̄t−1 and the covariance matrix Vt−1

1c) Compute m
(i)
t−1 = aφ

(i)
t−1 + (1− a)φ̄t−1

2. Resample

2a) Compute w̃
(i)
t ∝ w

(i)
t−1p

(
Dt|l(i)t−1, gM (M

(i)
t−1),m

(i)
t−1, θ

(i)
2

)
2b) Resample {(lt−1,Mt−1,mt−1, θ2, st, Ct)

(i)}Ni=1 with weights w̃
(i)
t

Let the new particles be {(l̃t−1, M̃t−1, m̃t−1, θ̃2, s̃t−1, C̃t−1)(i)}Ni=1.

3. Propagate

3a) Sample φ
(i)
t from N

(
m̃

(i)
t−1, (1− a2)Vt−1

)
3b) Sample M

(i)
t from p

(
Mt|M̃ (i)

t−1, φ
(i)
t , θ̃

(i)
2

)
3c) Sample l

(i)
t from N

(
µ

(i)
t , C

(i)
t

)
where µ

(i)
t and C

(i)
t are defined in (A27) and (A28).

4. Compute new weights

w
(i)
t ∝

p(Dt|l̃(i)t−1,M
(i)
t , θ

(i)
1 , θ̃

(i)
2 )

p(Dt|l̃(i)t−1, gM (M̃
(i)
t−1), m̃

(i)
t−1, θ̃

(i)
2 )

.

5. Update sufficient statistics and propagate θ2

5a) Compute s
(i)
t = S

(
l
(i)
t , l̃

(i)
t−1,M

(i)
t , M̃

(i)
t , φ

(i)
t , Dt

)
5b) Sample θ

(i)
2 from p

(
θ2|s(i)

t

)
6. Decide to resample or not

if N̄ <

(∑N
i=1

(
w

(i)
t

)2
)−1

6a) Resample with weights w
(i)
t

6b) Re-set weights w
(i)
t = 1

N
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III. Estimating the New Keynesian model

We show how to apply our estimation strategy to estimate the model of LS described in
Section III.

A. The model and its state space representation

The model consists of equations (27), (28), (29) and (30).
In order to write the model in the Sims (2002) canonical form (A1) define ηxt = xt−Et−1(xt),

ηπt = πt −Et−1(πt), ξ
x
t = Et(xt+1) and ξπt = Et(πt+1). Then, the NK model can be expressed

as:

(A38) ηxt + ξxt−1 = ξxt − τ(Rt − ξπt ) + gt

(A39) ηπt + ξπt−1 = βξπt + κ(ηxt + ξxt−1 − zt)

(A40) Rt = ρRRt−1 + (1− ρR)(ψ1

(
ηπt + ξπt−1

)
+ ψ2(ηxt + ξxt−1 − zt)) + εR,t

Defining the vector yt = [ xt πt Rt ξxt ξπt gt zt ]′, the system in matrix form is:



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 (1− ρR)ψ2

0 0 −τ 1 τ 1 0
0 0 0 0 β 0 −κ
0 0 0 0 0 1 0
0 0 0 0 0 0 1





xt
πt
Rt
ξxt
ξπt
gt
zt


=

=



0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 ρR (1− ρR)ψ2 (1− ρR)ψ1 0 0
0 0 0 1 0 0 0
0 0 0 −κ 1 0 0
0 0 0 0 0 ρg 0
0 0 0 0 0 0 ρz





xt−1

πt−1

Rt−1

ξxt−1

ξπt−1

gt−1

zt−1


+

+



0 0 0
0 0 0
1 0 0
0 0 0
0 0 0
0 1 0
0 0 1


 εR,t
εg,t
εz,t

+



1 0
0 1

(1− ρR)ψ2 (1− ρR)ψ1

1 0
−κ 1
0 0
0 0


[
ηxt
ηπt

]
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The class of solutions that we propose, parametrized by the matrixMt, is written in equation

(18) and it is expressed in terms of the vector l̃t =

[
yt
yBt

]
, where yBt describes the evolution of

the variables in the backward-looking solution. Note that in the vector l̃t the exogenous state
variables gt and zt appear twice, since their dynamics are independent of Mt. For practical
purposes, it is convenient to rewrite the solution in terms of a vector lt where each exogenous
shock is reported only once. First, define the following vectors:

y1,t = [ xt πt Rt ξxt ξπt ]′; y2,t = [gt zt ]′.

The solution can be partitioned as
y1,t

y2,t

yB1,t
y2,t

 =


G̃1,t G̃2,t G̃3,t G̃4,t

0 G̃5,t 0 0

0 0 G̃6,t G̃7,t

0 0 0 G̃5,t



y1,t−1

y2,t−1

yB1,t−1

y2,t−1

+


H̃1,t

H̃2,t

H̃3,t

H̃2,t

 εt
where εt = [ εR,t ε′g,t εz,t ]. The endogenous variables in y1,t depend on the entire vector

l̃t−1, while the same variables in the backward-looking solution only depend on the backward-
looking components of l̃t−1. The exogenous variables, instead, are described by their own
dynamics. It is straightforward, then, to rewrite the solution as: y1,t

y2,t

yB1,t

 =

 G̃1,t

(
G̃2,t + G̃4,t

)
G̃3,t

0 G̃5,t 0

0 G̃7,t G̃6,t


 y1,t−1

y2,t−1

yB1,t−1

+

 H̃1,t

H̃2,t

H̃3,t

 εt
that is, using a compact notation:

(A41) lt = Gtlt−1 +Htεt

that is the state equation of system (A14), where the latent vector is:

lt = [ xt πt Rt ξxt ξπt gt zt xBt πBt RBt ξxBt ξπBt ]′.

The observation equation is:

(A42) Dt = c+ Flt

where Dt is a column vector with output gap, inflation and interest rate,

c =

 0
π∗

π∗ + r∗

 , and F =

 1 0 0 0 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 0 0 0 0 0
0 0 4 0 0 0 0 0 0 0 0 0

 .
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B. The parameters updated through the Liu and West filter

The set of parameters has two components: θ = (θ1, θ2), where θ1 contains all the parame-
ters of the model except the variances:5

θ1 = [ ρg ρz ρR κ ψ1 ψ2 τ−1 π∗ r∗ γ ]′.

Define the vector φ as a transformation of the vector θ1 such that every element has support
from −∞ to +∞. In particular, we use the logit function for the parameters that can take
values in [−1 1], and the logarithm for the parameters with positive support:

φ(i) =



h(ρ
(i)
g )

h(ρ
(i)
z )

h(ρ
(i)
R )

log(κ(i))

log(ψ
(i)
1 )

log(ψ
(i)
2 )

log(τ−1(i))

log(π∗(i))

log(r∗(i))

h(γ(i))


where h is the logit function.

Finally, the parameter a in equation (A19) is set equal to 0.99.

C. The multiplicative sunspots

The latent process M1,t is updated using its law of motion. Under the stable model MS

we distinguish two cases: if condition (31) is not satisfied, M
(i)
1,t can vary over time and we

sample its values from the Normal distribution:

N
(
M

(i)
t−1, σ

2(i)
ζ

)
.

In contrast, if the Taylor principle is respected we set it equal to zero, that is the value
corresponding to the unique stable solution.

Under the unstable model MU , we first verify that the indicator function in (9) is equal to

5The parameter γ is estimated only under the unstable model and it is not included in the vector θ1 under the stable
model MS .
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one. Then, with probability γ(i), we draw M
(i)
1,t from the Normal distribution:

N

(
M

(i)
t−1

γ(i)
, σ

2(i)
ζ

)

while we set it equal to zero with probability
(
1− γ(i)

)
.

D. The parameters updated through Particle Learning

The vector θ2 collects all the error variances and covariances:

(A43) θ2 = [ σ2
R σ2

ζ σ2
g σ2

z ρgz ]′.

We follow the Particle Learning approach by Carvalho et al. (2010). The latent processes

and the parameters in θ
(i)
1 are used to update a set of sufficient statistics s

(i)
t that contains

T
(i)
R , T

(i)
ζ , T

(i)
gz , n

(i)
ζ,t and, where:

T
(i)
R =

t∑
j=1

(
ε

(i)
R,j

)2
; T

(i)
ζ =

n
(i)
ζ,t∑
j=1

(
ε

(i)
ζ,j

)2
; T (i)

gz =
t∑

j=1

([
ε

(i)
g,j

ε
(i)
z,j

] [
ε

(i)
g,j ε

(i)
z,j

])

and n
(i)
ζ,t is the number of times M

(i)
t has been drawn from a Normal distribution rather

than being set equal to zero. The sufficient statistics are then used to update the posterior
distributions of the parameters in θ2, which are known analytically (up to a normalizing
constant), given our assumptions on the prior distributions. In particular, we assume that
the priors for σ2

R and σ2
ζ have an Inverse Gamma distribution defined, respectively, by shape

parameters aR and aζ , and rate parameters bR and bζ .
6 Their posterior distributions are also

Inverse Gamma: (
σ

2(i)
R |Dt

)
∼ IG

(
aR +

t

2
, bR +

T
(i)
R

2

)
(
σ

2(i)
ζ |Dt

)
∼ IG

aζ +
n

(i)
ζ,t

2
, bζ +

T
(i)
ζ

2

 .

Since the shocks to supply and demand are correlated, we assume that the prior for σ2
g , σ

2
z

and the covariance ρgz is an Inverse Wishart with 8 degrees of freedom and scale matrix Σ0.
Given new data at time t, we can draw these parameters from their posterior distribution:

(Σgz|Dt) ∼ IW (Σ0 + Tgz, 8 + t) .

6These hyperparameters are such that the prior means and variances for σ2
R and σ2

ζ are the ones reported in Table 1.



16 THE AMERICAN ECONOMIC REVIEW MONTH YEAR

E. The model under determinacy and stochastic volatility

In section V we compare the models MS and MU with a case in which we impose determi-
nacy, but at the same time we allow the standard deviations of the structural shocks to vary
over time. In this case we set M1,t = 1 for every t, and we explore only the parameter space
such that condition (31) is satisfied.

To estimate this model, we use the same algorithm described above with some modifications.
First the parameter vector θ is partitioned as:

θ1 = [ ρg ρz ρR κ ψ1 ψ2 τ−1 π∗ r∗ γ ρgz ]′

and

(A44) θ2 = [ δ2
R δ2

g δ2
z ]′.

The latent processes are lt, with dynamics described by equation (A41), and

(A45) σ̄t = [ log σR,t log σg,t log σz,t ]′

with dynamics described by equation (13).

We take advantage of analytical integration, in analogy with the estimation of modelMS and
MU : conditional on σ̄t the state space model for lt is linear and Gaussian. Then, we modify
the weights for the first resampling defined in equation (A18) (point 2a in the algorithm):

(A46) w̃
(i)
t ∝ w

(i)
t−1p

(
Dt|l(i)t−1, gσ̄(σ̄

(i)
t−1),m

(i)
t−1, θ

(i)
2

)
where

(A47) gσ̄(σ̄
(i)
t−1) = E

(
σ̄

(i)
t |σ̄

(i)
t−1

)
= σ̄

(i)
t−1

Moreover, in the propagation step, we keep Mt = 1 and we propagate σ̄
(i)
t from the distribution

implied by its law of motion (13) (point 3b in the algorithm). The distribution of the latent

process l
(i)
t is again Normal, with mean and covariance matrix computed through the Kalman

recursion (A25) to (A28), appropriately modified.

Finally, the set of sufficient statistics s
(i)
t contains the following variables:

T
(i)
R =

t∑
j=1

(
ν

(i)
R,j

)2
; T (i)

g =

t∑
j=1

(
ν

(i)
g,j

)2
; T (i)

z =
t∑

j=1

(
ν

(i)
z,j

)2
.

These allow us to draw δR, δg and δz from their posterior distributions.
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F. Computational details

We work with 500,000 particles: this number is big enough to guarantee that the filter
explores well the parameter space and the support of the latent processes at any time t.
However, as is clear from Figure 5, when the inference on ψ1 switches to the indeterminacy
region, we observe a reduction in the variance of the posterior distribution. In order to make
sure that this change in the distribution reflects the likelihood implied by new data, and not a
technical problem related to the filter, we increase the number of particles to 2,000,000 from
1972:IV to 1979:II.

The particles are distributed to 44 cores which run in parallel. We use a computer with two
processors Intel Xeon E5-2699 v4. The algorithm takes approximately 90 minutes to estimate
the first subsample.
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