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This supplement is organized as follows. Section [SI] generalizes the setup in Section [[I]
and gives proofs of results given in that section. Section gives proofs of results in Sec-
tion [[V] Section [S3|shows the fit of the specifications from the CPS placebo study considered
in Section [[, and Section [S4] gives additional details and results for the placebo study, includ-
ing results on the performance of the honest Cls. Section [55] considers an additional Monte
Carlo study. Finally, Section [S6| constructs an estimate for a lower bound on the smoothness

constant K from Section [V.Al

S1. PROOFS OF RESULTS IN SECTION

The claims in Section follow directly from general results on the properties of g, that
are given in the following subsection. The proofs of these results are given in turn in Sections
A.2-A4. To state these results, we use the notation diag{a,} to denote a diagonal matrix
with diagonal elements given by a4, ..., aq, and vec{a,} = (a}, ..., ay)".

S1.1. Properties of 625, under General Conditions
In this subsection, we consider a setup that is slightly more general than that in Section 3,
in that it also allows the bandwidth h to change with the sample size. For convenience, the
following assumption summarizes this more general setup.

Assumption 1 (Model). For each N, the data {Y;, X;}, are i.i.d., distributed according to
a law Py. Under Py, the marginal distribution of X; is discrete with G = G_ + G support
points denoted x1 < -+ < - < 0 < wg-11 < -+ < xg. Let p(x) = Ex(Y; | Xi = )
denote the CEF under Py. Let e; = Y; — u(X;), and let 02 = Vn(e | Xi = z,) denote
its conditional variance. Let h = hy denote a non-random bandwidth sequence, and let
Gn C{1,...,G} denote the indices for which |z,| < h, with G} and G;, denoting the number
of elements in Gy, above and below zero. Let 1y = Pn(X; = z,), m = Pn(|Xi| < h), and
Ny = SN T{|X;| < h}. For a fized integer p > 0, define

m(z) = [{x>0},1,z,...,2°, 1{x > 0}x,...,I{x >0} 2P,
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M; = T{|X,| < h} m(X;), and my = 1{|z,| < h} m(z,). Let Q = Nihz;; M;M], and Qn =
EN(M M’)/W Let 0, = QN'En(M;Y;)/7, and denote its first element my 7,. Let 6 =

11\} N M;Y;, and denote its first element by 7. Define 6(z) = p(x) — m(z)' 0y, and

u; =Y; —m(X )0, = 0(X;) + €. Define Q =En(u?M;M)])/m = Z (02 4 0%(24))Qq, where
Qg = "Emgmy,.
Note that the setup allows various quantities that depend on Py and h to change with
N, such as the number of support points G, their locations z,, the conditional expectation
function p(z), or the specification errors 6(X;).
Assumption 2 (Regularity conditions). (i) supy maxzeq,. qyEn(ef | Xi = z,) < o0,
det(H'QnH™") = det(X eg, 2m(zy/h)m(zy/h)") > C for some C > 0 that does not
depend on N, where H = diag{m(h)}, Nm — oo, and the limit limy_,o.. H'QnH ™ exists.
(ii) supy maxeg, 0(z,) < 0o; and the limit limy oo H 'QH " exists.

The assumption ensures that that bandwidth shrinks to zero slowly enough so that the
number of effective observations N7 increases to infinity, and that the number of effective
support points Gy, = G} + G is large enough so that the parameter ), and the asymptotic
variance of § remain well-defined with well-defined limits. We normalize @n and () by the
inverse of H since if h — 0, their elements converge at different rates.

Our first result is an asymptotic approximation in which G} and Gj are fixed as the
sample size increases. Let By, ..., Bg be a collection of random vectors such that vec{B,} ~
N(0,V), with

V =~ ding({my(03 + (1))} — — vee{myd(ry)} vee[myd(ey)Y

Note that if |z,| > h, then B, = 0 and @, = 0, and that the limiting distribution of the
statistic v/ N (T — 73) commdes with the distribution of €|@Qy" g L myB,. Finally, define

W, = e,Qx'm, (Bg ml, Q' Zm]B + (N/7T)U27Tg5(xg)) :

7j=1
With this notation, we obtain the following generic result.

Theorem S1. Suppose that Assumptions and@ hold. Suppose also that, as N — oo, (i)
G and G, are fized; and (ii) the limit of V exists. Then

52 i
dery = (1 +opy(1

HMQ

Our second result is an asymptotic approximation in which the number of support points
of the running variable (or, equivalently, the number of “clusters”) that are less than h away
from the threshold increases with the sample size.
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Theorem S2. Suppose that Assumptions [1] and [4 hold. Suppose also that, as N — oo,
Gj, — 00 and maxgeg, my/m — 0. Then

G
Gery = (14 0py(1))e1Qy' (ﬂ +F(N=1)> Q- 7@;6(%)2-) Qn'er.

g=1

The assumption that maxgeg, m,/m — 0 ensures that each “cluster” comprises a vanishing
fraction of the effective sample size.

S1.2. Auxiliary Lemma

Here we state an intermediate result that is used in the proofs of Theorem 1 and 2 below,
and that shows that 63y is consistent for the asymptotic variance of 6.

Lemma S1. Suppose that Assumptions (1] and|g (i) hold. Then

N, /N
MY 1 4 op, (1), (s1)
H'QH ' — H'QNvH ™' = 0p,(1). (S2)
If, in addition, Assumption|d (i) holds, then
VINGH (8 — 0,) £ HQRLS + opy (1), (S3)

where S ~ N(0,Q). R
Letng = SN 1{X; = 2,}, ¢, = HQ *Hm(z,/h){|z,| < h}, and let

ay = HELE D S 0 06— ) (1 = 4} 7)o

Then H™' 35 mgA, L HS +opy (1), and

6%RV=<1+OPN<1>>Zl<eaag>2( N, s/ m@ﬁ(%)). (59

~92 _ -1 -1
Furthermore, Gggw = €1Qn QN €1 + opy (1).

Proof. We have Vy(N,/N) = n(1 — n)/N < w/N. Therefore, by Markov’s inequality,
N7 — oo implies N’L/N =En(Np/(N7))+0py (1) = L+0p, (1), which proves (SI). Secondly,
since elements of H~ 1J\/[ are bounded by 1 {]X | < h}, the second moment of any element of
Ne-1QH — HIQuH ™ = = S0 H-Y(M;M! — E[M;M/))H~" is bounded by 1/(Nr),
which converges to zero by assumptlon. Thus, by Markov’s inequality, 3&H “IQH-! —
H'QnH™' = op,(1). Combining this result with and the fact that H'QyH ™!

bounded then yields .
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Next note that since ZN ngg5( g) =0, H™ ZG 1mgA = \ﬁ PO \folMiUz‘, and
that by the central limit theorem, \ﬁ >N fH WMou, £ H-'S + opy (1). Therefore,
~ TN _1 1 1 N -1 d -1
VNRH (O — 0,) = E( QH™' T; Miu; = HQy' S + opy (1),

as claimed. Next, we prove (S4). Let J, = YN, I{X; =x,}@;M;. Then by (SI), the

cluster-robust variance estimator can be written as
2
L,
Q- :

" At l S A
=07 S0 e = +on )Y (3=
g=1

The expression in parentheses can be decomposed as

\/%elQ Ly = €idy (Ag + Nyd () /VNT = ngmiy(0 — 6,) /v Nr)

= €14, (A + Nmyo (379)/\/_ (ng/Nn)G, q,H 127”] )v

which yields the result.
It remains to prove consistency of &gw. To this end, using (S1)), decompose

. 1 Y
H ' QeawH ™' = (1 + ory (1) 37— ST@WHIMMH = (1+0py(1))(C1 + Cy + C3),
i=1
where C1 = N Z ulHTIMM!HY, Cy = e (M’(O — 0p))*H 'M;M/H™!, and C3 =
—= N M0 — 0,)H MM/ H~ 1. Since elements of M; are bounded by I{|X;| < h},
variance of C; is bounded by E[ufI{|X|, < h}]/N7* = op, (1), so that by Markov’s inequality,
01 = E[Cl] + opy(1) = H'QH™" + opy(1). Similarly, all elements of Cy are bounded,

D Dl N (MO — 0,))2 = opy(1) by (S1)—(S3). Finally, C; = op, (1) by Cauchy-Schwarz
inequality. Thus,

H 'QuuwH ™' = H'QH ' + op (1), (S5)
and consistency of Gy then follows by combining this result with (S2). [

S1.3. Proof of Theorem

Let ¢ = HQN Hm(x,/h)I{|z,| < h}, and define g,, A,, and n, as in the statement of
Lemma [S1] By Lemma [S1} g, = ¢4(1 + op, (1)), and by Markov’s inequality and Equa-
tion (S1), ng/Ny = my/7 + 0py (1) for g € G,. Combining these results with Equation (S4)),
it follows that the cluster-robust variance estimator satisfies

G

s s ¢ ’
&%RV = (1+opy(1)) Z(ell‘Jg)Z (Ag + \/N_W?gd(zg) - ?gf./_f, Z_: m(xj/h)Aj) )

g=1
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To prove the theorem, it therefore suffices to show that

G

€14y (Ag - %Q; > mlz;/h)A; + \/m:qé(xg)> = Wy(1+opy(1)). (S6)

=1

This follows from Slutsky’s lemma and the fact that by the central limit theorem,

vee{A,} £ vee{B,}(1 + op, (1)). (S7)

S1.4. Proof of Theorem

Throughout the proof, write a < b to denote a < Cb for some constant C' that does not
depend on N. By Equation in Lemma we can write the cluster-robust estimator as

G 2
Cy = 3(ch,)* (A + (N/m) Pmyd(x,))

g=1

2
g —1’\

G
= Z q 61 2(ng Sa
= g N g
G
~ n _
~2 3 (4d,)* (Ag + (N/m)"*myd(ay)) ﬁ@H 13,
g=1

where S = Z]-Gzl mjA;, and ny, A, and g, are defined in the statement of the Lemma.

We first show that Cy = op, (1). Since H'S = Op, (1) by Lemma [S1] it suffices to show

that
2

).
G
Z_: g,e1) qu = opy(1).

To this end, note that since elements of m(x,/h) are bounded by 1, for any j, by Cauchy-
Schwarz inequality, |, e;| < He}H@_lHHg,Q(p + 1), where ||v]|2 denotes the Euclidean norm
of a vector v. By Lemma , ||69H@*1H||2 = Op, (1) and N, /7N =1+ op, (1) so that

G 2
Z N2 26 nggek

<Opy() Y ]’Q%=OPN<1> Y e

9eGL g€,

Now, since EN(ng) = Nmy(1 —m,) + NQWQ and ) gcg, Ty =T,

n? (1 —my) T2 1 maxgeg, T 7r
E g _ g g 29 - ( 9E€Gn g> g ‘
N Z N272 Z N2 + 72 — \Nnm * Z -0

9€ln 9geEGH 9€Gn

n2 .
Therefore, by Markov’s inequality, > ,cg, —zwz = opy (1), so that Cy = op, (1) as claimed.
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Next, consider C;. Let ¢, = HQN Hm(z,/h)1{|x,| < h}. We have

! N7 2 L (R T(X, = 2 1K, = ]} (e ()6 +0(y)

1 N N G

= (1+ OPN(]‘))Niﬂ_ Z Z Z(el%)Qﬂ {Xi =2, I{X; = 2,4} (&; + 0(y)) (g5 + 6(y))

i=1j=1g=1

= (1 + OPN(l)) (C + 2(612 + 613 + Cl4 + 615 + Cl()))

where
1 NG L )
Cii = N Z Z(Gﬂg) I{X; = 24} (i + (zg))",
i=1 g=1
] Ni-1 G o
Cio = N DD D (€gy) T{X; = 2} T{X; = x4} e,
i=1 j=1g=1
1 N i-1G o
Ci3 = N=n Z Z(el%) I{Xi = 2} I{X; = 24} £;0(x),
i=1 j=1 g=1
1 Ni-1G L
Cia = Nr ZZ Z(el%) X = 2 H{X; = 24} 26 (),
i=1 j=1g=1
] Ni-1 G ) )
/
Cis = = 2 3 2 (ehay)I{X: = 2} (I{X; = ,} = m)d(x, )2
i=1 j=1 g=1
1 & X 2
Cio = = 2 3000 = D(€hgy)"T{X; = 2} myd(a,).
g=11i=1
We have
1 G /I —1 -1
~N(Ci1) = = Z elqg 7Tg U + 5(%) ) = e1Qn QQy e1,
g=1
and
1 G 4 degh 7Tg 1
Va(Ciy) < o 2:: €1q.) T En[(ei + 6(z ) | Xi = z,] =< et = 0.
Next, EN(Clg) =0, and
N-1& , 4, 2<maxg7rgzg‘;17rg maxg g
Vn(Ci2) = W;(el%) Tg0g09g 2 2 T x -0
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The expectations for the remaining terms satisfy Ey(Ci3) = En(C14) = En(Ci5) = 0, and

N-1& 22
En(Cis) = o Z €1Qg 5(%) .
g=1
The variances of Cy3,...,Cig are all of smaller order than this expectation:
1 G QN minfik)-l N max, w
Vi (Ci3) = SYED) Z Z (6,1q9)473‘7§5(x9)2 = ¢Z 61% 2 25(%{)
N*m2 575 o 2
= 0(En(Ci6))
i—11—1

i=1 k=1 j=1 g 1
1 N N min{i,k}-1 @
<Nz > m(hgg)'(xy)" = o(En(Cis)),
T™icik=1 j=1 g=1
and
1 G G N
Vn(Cio) = 53 YD D (= V)X(U{g = [}y — mymp)mgms()?0(xs) (€1 q9)* (€1 4y)
g=1f=11i=1
N & 3 4
< 2 Zﬂ-gé(xg) (6/1(19) = 0(En(Cip))

It therefore follows that

1 G
C1 = (140, (1)E(C1) = (1 + 0p, (1)) (ea@m@;&el - Z@’lqg)%ﬁé(%)?) -

g=1

Finally, the cross-term Cs is op, (Ex(C1)'/?) by Cauchy-Schwarz inequality, so that Gagy =
(14 opy(1))EN(Cy), which yields the result.

S2. PROOFS OF RESULTS IN SECTION

For the proof of Propositions ' We suppose that Assumptions (1 and (i) hold. We denote
the conditional variance of 7 by 62 = ¢, HQN' HQHQN Hey, where Q = E[o?(X;)A\(X;)] /7,
and \(x) = m(z/h) - (x/h)’]l{|x| < h}. We assume that 62 is bounded and bounded
away from zero. To ensure that 6%y, as defined in Section m is consistent, we assume
that as N — oo, PN(Z 1 I{n, <1}) — 0, so that in large samples there are at least two
observations available for each support point. We put ag = 0 if ny < 1. For simplicity, we
also assume that h — 0; otherwise rg,, will diverge with the sample size.
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For the proof of Proposition [2, we suppose that Assumptions[IJand [2] hold. For simplicity,
we also assume that as N — oo, G} and G}, are fixed, and that mingeg, m,/7 is bounded
away from zero. We also assume that the asymptotic variance of 7+ B(W) is bounded away
from zero for some W € W.

S2.1. Proof of Proposition

We first derive the expression for rg,;,, following the arguments in Theorem B.1 in /Armstrong
and Kolesar (2016). Note first that the local linear estimator 7 can be written as a linear es-
timator, 7 = Y w(X;)Y;, with the weights w(z) given in (). Put w. () = w(z)I{z > 0},
and w_(z) = w(z)[{x <0}, and put p,(x) = p(z)l{zr >0} and p_(x) = p(z)l{z <0},
with the convention that p_(0) = lim,qo £(0). Since Y, w i (X;) = — SN, w_(X;) =1 and
7 = p+(0) — pu—(0), the conditional bias has the form

Th— T = Zw+(Xi)(M+(Xz‘) — u+(0)) + Zw—(Xi>(M—(Xi) — p-(0)).

By assumption, the first derivatives of the functions p, and p_ are Lipschitz, and hence
absolutely continuous, so that, by the Fundamental Theorem of Calculus and Fubini’s the-
orem, we can write, for x > 0, py(x) = p4(0) + ¢/ (0)x + r(x), and for < 0, p_(z) =
p—(0) 4’ (0)x+7(x), where r(z) = T{zx > 0} fi p"(s)(x—s) ds+T1{x < 0} [V 1" (s)(x—s) ds.
Since the weights satisfy >N | Xjw, (X;) =0, and ¥ | X;w_(X;) = 0, it follows that

m—T= > wX)r(X)+ > wXi)r(X;)

i: X; >0 i X;<0

= [T o) X WX )ds+ [ ) w(X) (X, — ) ds,

i X;<—s

where the second line uses Fubini’s theorem to change the order of summation and integration.
Next, note that w,(s) = >;. x,>, w(X;)(X; — s) is negative for all s > 0, because w(0) = 0,
wy(s) = 0 for s > h, and W/ (s) = — X x,>, w(X;) is monotone on [0, h] with @’ (0) = —1.
Similarly, w_(s) = ;. x,<_s w(X;)(X;—s) is positive for all s > 0. Therefore, the expression
in the preceding display is maximized by setting p”(z) = —K sign(z), and minimized by
setting p”(z) = K sign(x). Plugging these expressions into the preceding display then gives
|7, — 7| < By, with By = —K N, w(X;)X?sign(X;)/2, which yields (8.

Let op, (1) denote a term that’s asymptotically negligible, uniformly over My (K). To
complete the proof, we need to show that (i) Gny = 62 + opy (1), (ii) VNu(F — 7)) =
N<07672-) + OPN(1)7 (iii) \/Fh(%h - T) = b(:“) + OPN(1)7 and (iV) \/MBN = By + OPN(1)7
where b(i) = /N/7 - QN E[M;r(X;)] and By = —(K/2:/N/7) - e,QN'E[M; X?sign(X;)]
are non-random, and by an argument analogous to that in the preceding paragraph, satisfy
SUD e vy (1) [D(1)| < Boo. It then follows from uniform continuity of ¢vi_(-) that

Py (N7 = 7] < evica(rou)Oxn) = Pr(1Z + (1) /57| < ev1-a(Bse/57)57) + opy (1),

where Z ~ N(0, 1), from which honesty follows.
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To show (i), note that by (SI), (S2), and the law of large numbers, it suffices to show
that H Qv H =N, ' SN 02(X;)A(X;) = op, (1). Note that N,Quny = z I{n(X;) > 1}
ENX;) — Yiss 66 1{X; = X;,n(X;) > 1} /(n(X;) — 1), where n(z) = L)1, I{X; =z} (so
that n(z,) = n,). This yields the decomposition

N
HilﬁNNHil ZO' i Z € _U )\(X2>

<1+OPN<1>> {”< X)) > 1) T{X, = X,} A(X)
T /NN, g% n(X)—l

Z)\ Del{n(X;) =1}.

Since elements of A\(X;) are bounded by I{|X;| < h}, the first term on the right-hand side
of the preceding display is of the order op, (1) by the law of large numbers Conditional
on Xi,..., Xy, the second term has mean zero and variance bounded by - max;o 4(Xl-),
which imphes that unconditionally, it also has mean zero, and variance that converges to
zero. Therefore, by Markov’s inequality, it is also of the order op, (1). Finally, by assumption
of the proposition, the probability that the third term is zero converges to one. Thus,
ONN = 02 + opy (1) as required.
Next, (ii) holds by (SI), (S2)), and a central limit theorem. To show (iii), note that

VNu (1, —7) = (14 oPN(1))e;QN1Hf > HT Mir(X,).
Since elements of H 'M;r(X;) are bounded by I{|X;| <h} KX?/2 < I{|X;| < h} Kh?/2,
it follows that elements of the variance matrix of (N7)~"/2%, H~'Myr(X;) are bounded by
K?h*/4. Thus, (iii) follows by Markov’s inequality. Finally, the proof of (iv) is analogous.

S2.2. Proof of Proposition

It sufﬁces to show that for each W € W, the left- and right-sided CIs [cj *(W), o0) and
(—o0, e, *(W)] are asymptotically valid Cls for 73, + b(W), for any sequence of probability
laws Py satisfying the assumptions stated at the beginning of Section [S2] and satisfying
i € Mgpmg(h). Honesty will then follow by the union-intersection principle and the definition
of MBME(h)

Note first that by the central limit theorem and the delta method,

v vec(fig — fig) B mdiag(o}/my)  vec(ozm,H™")
N (Nhl SN ) "V O vee(oZm! H-'Y — HIQH- || ory(L).
Applying the delta method again, along with Lemma [ST], yields

\/ﬁh <Vec(g(fg> - 5@9))) =4 N (0,%) + op, (1),

Th — Th
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where the variance matrix ¥ is given by

B diag(o; - 7/mg) + V vee(o2m,Qy'er — mLQN QQy'er)
vee(ogmyQy'er — myQy'QQN e1)' QN QN e ’

and Vis a G, x G, matrix with (g, g*) element equal to m},Q~'QQ "' my-— (02407 )m, Q™ my-.

Fix W = (g7,9%,s7,s"), and let a(W) € RE 1 denote a vector with the g_th element
equal to s~, (G}, +¢)th element equal to sT, the last element equal to one, and the remaining
elements equal to zero. It follows that v/Nj, (7 +b(W) — 1, — b(W)) is asymptotically normal
with variance a(W)'Ea(W). To construct the left- and right-sided Cls, we use the variance
estimator

V(W) = a(W)Sa(W), (S8)

where ¥ is a plug-in estimator of ¥ that replaces QQn by @, Q) by QEHW, 7 /7y by Nyp/ng, and
o7 by 77 (given in Section [[V.A]). Since by standard arguments ng/Ny = m,/m+0py (1), and
67 = 0.4 opy(1), it follows from and that Y(W) = a(W)'Sa(W) + op, (1), which,
together with the asymptotic normality of /Ny (7 + b(W') — 7, — b(W)), implies asymptotic
validity of [c] *(W), 00) and (—o0, ck “(W)], as required.

S3. ADDITIONAL FIGURES
This section shows the fit of the specifications considered in Section[[} Specifically, Figure
shows the fit of a linear specification (p = 1) for the four values of the bandwidth h considered;
Figure [S2| shows the analogous results for a quadratic fit (p = 2). In each case, the value of
the parameter 7, is equal to height of the jump in the fitted line at the 40-year cutoff.

S4. PERFORMANCE OF HONEST CIS AND ALTERNATIVE CRV CIS IN CPS
SIMULATION STUDY
In this section, we again consider the CPS placebo study from Section [[ in the main text
to study the performance of the honest CIs proposed in the Section [V} Given that the
typical increase in log wages is about 0.017 per extra year of age, guided by the heuristic
in Section [V.A] we set K = 0.045 for the BSD CIs. In addition, we also consider two
modifications of the CRV ClIs that have been shown to perform better in settings with a
few clusters. The first modification, which we term CRV2, is a bias-reduction modification
analogous to the HC2 modification of the EHW variance estimator developed by Bell and
McCaffrey| (2002)). This modification makes the variance estimator unbiased when the errors
u; = Y; — M/0), are homoscedastic and independent. To describe it, let M denote the
Nj, x (2p +2) design matrix with ith row given by M/, and let M, denote the n, rows of the
design matrix M for which M} = m(z,)" (that is, those rows that correspond to “cluster” g).
Here ng, is the number of observations with X; = xz,. The CRV2 variance estimator replaces
Qcry in the definition of 52, given in Section with

. 1 & .
QCRVQ = Fh Z M;Agugu’gAgMg,

g=1
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where U, is an ng-vector of the regression residuals corresponding to “cluster” g, and A,
is the inverse of the symmetric square root of the n, x n, block of the annihilator matrix
Iy, — M(M'M)~'M’ corresponding to “cluster” g, I,,, — Mg(M’M)_lM’g. Thus, AL, —
MQ(M’M)_lM;]Ag = I,,. In contrast, the CRV estimator, as implemented in STATA,

sets A, = \/Gh/(Gh —1) x (N, = 1)/(Np — 2(p + 1))I,,. The second modification that we
consider also uses the CRV2 variance estimator, but replaces the usual 1.96 critical value in
the construction of 95% confidence intervals with a critical value based on a t-distribution
with a degrees of freedom, where a is chosen so that the first two moments of Gcrye/V(7 | M)
match that of x2/a, assuming correct specification and independent homoscedastic errors.
This modification has also been proposed by Bell and McCaffrey (2002), and, as discussed
in Imbens and Kolesar| (2016), it generalizes the classic Welch-Sattherthwaite solution to the
Behrens-Fisher problem.

The results are reported in Table [S1| for the linear specification (p = 1), and in Table
for the quadratic specification (p = 2). For convenience, the tables also reproduce the results
for inference based on EHW and CRV standard errors, reported in Table[I]in the main text.
To compare the length of honest ClIs and CRV-BM CIs to those of EHW, CRV, and CRV2
CIs, the tables report average normalized standard errors. We define normalized standard
error of a CI [a,b] with nominal level 95% as (b — a)/(2 x 1.96), so that the CI is given
by adding and subtracting the normalized standard error times the usual 1.96 critical value
from its midpoint. Finally, Table [S3| compares magnitudes of the various clustered standard
errors relative to that of the conventional EHW estimator.

The coverage properties of honest Cls are excellent: they achieve at least 95% coverage
in all specifications. The length of BME CIs is moderately larger than that of EHW Cls in
specifications in which EHW Cls achieve proper coverage. The BME CIs are much longer,
especially for large h or small N,. This is in line with the discussion in Section [[V.B|

In designs in which the fitted model is close to being correctly specified (all quadratic
specifications and linear specifications with h < 15) CRV-BM ClIs do about as well as EHW
CIs in delivering approximately correct coverage, while the CRV2 adjustment alone is not
sufficient to bring coverage close to 95%. On the other hand, in designs in which the fitted
model is misspecified (linear specifications with A = 15 or h = o), the coverage of CRV-
BM ClIs is only slightly better than that of EHW Cls; the improvement in coverage is not
sufficient to bring coverage close to 95%. This contrasts with the coverage of the honest
Cls, which remains close to, or above, 95%. Furthermore, the CRV-BM ClIs are much more
variable than EHW, and thus the average length of the CRV-BM CI, as measured by the
normalized SE, is greater than in the case of EHW: in the designs considered, they are about
40% longer on average, sometimes more than twice as long. In part due to this variability, the
probability that CRV2 and CRV-BM ClIs are longer than EHW CIs in a particular sample is
not very close to 1, and falls between 0.7 and 0.9 for most of the designs that we consider, as
shown in Table[S3] This suggests, in line with the results in Section [V] that in any particular
empirical application, these CIs may not be larger than EHW Cls.
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S5. ADDITIONAL SIMULATION EVIDENCE

In this section, we consider a second Monte Carlo exercise in which we simulate realizations
of an outcome variable Y; and a running variable X; from several data generating processes
(DGPs) with different conditional expectation functions and different numbers of support
points, and also several sample sizes. This allows us to disentangle the effect of model
misspecification and the number of the support points on the performance of CRV-based
inference; something that was not possible in the CPS placebo study from Section [I}

Each of our DGPs is such that the support of the running variable is the union of an
equally spaced grid of G~ points —1, —(G~ —1)/G~,...,—1/G~ and an equally spaced grid
of G* points 1/G*,2/G™",... 1. We consider values G~,G* € {5,25,50}. The distribution
of X; then has probability mass 1/2 spread equally across the support points above and
below zero, so that P(X; = z,) = 1/G* for z, > 0 and P(X; = z,) = 1/G~ for z, < 0.

The outcome variable is generated as Y; = u(X;) + €;, where ¢; and X; are independent,
g; ~N(0,0.1), and

w(x) =x+ A -sin(m - ) + Ag - cos(m - x).

We also generate a treatment indicator that is equal to one if X; > 0, and equal to zero oth-
erwise. Since p(z) is continuous at = 0 for every (A1, A2), the causal effect of our treatment
at the cutoff is zero in our all our DGPs. We consider (A1, A2) € {(0,0), (0.05,0), (0,0.05)}
and the sample sizes N, € {100, 1000, 10000}, and estimate the treatment effect by fitting
the linear model

Vi=0+7-I{X; >0} + 8 - X; + 87 - I{X; > 0} - X; + U,. (59)

Note that this specification is analogous to the model in the main text with p = 1 and
h = 1. We do not consider alternative values of h and p in this simulation exercise because
variation in the accuracy of the fitted model is achieved by varying the DGP.

To asses the accuracy of model , we plot the versions of u(x) that we consider together
with the corresponding linear fit in Figure [S3|for the case that G~ = G = 10. As one can see,
the departure from linearity is rather modest for (A1, X2) € {(0.05,0), (0,0.05)}. In Tables[S4-
[S6 we then report the empirical standard deviation of 7, the empirical coverage probabilities
of the EHW and CRV Cls with nominal level 95%, as well as the coverage probabilities of
the honest CIs, and the CRV2 and CRV-BM modifications. For BSD ClIs, we consider the
values K = 72/20, which corresponds to the largest value of the second derivative of u for
the designs considered, as well as the more conservative choice K = 72/10.! To compare
length, the tables report normalized standard errors, defined in Section [S4]

Table reports results for the case (A, A2) = (0,0), in which the true conditional
expectation function is linear and thus our fitted model is correctly specified. We see that
the CRV standard error is a downward-biased estimate of the standard deviation of 7, and
therefore the CRV confidence interval under-covers the treatment effect. The distortion is

LAs pointed out in the main text, the choice of K requires subject knowledge, as it implies certain
restrictions on the shape of u(x). This is generally difficult to mimic in the context of a simulation study
based on an artificial DGP.
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most severe for the case with the least number of points on either side of the threshold

(G~ = G =5), where it amounts to a deviation of 20 percentage points from the nominal
level. With more support points the distortion becomes less pronounced, but it is still
noticeable even for G~ = G = 50. These findings are the same for all the sample sizes

we consider. The distortion of CRV2 Cls is slightly smaller, and the coverage of CRV-BM
is close to 95%, at the cost of a loss in power (as measured by the average normalized
standard error). The honest Cls perform well in terms of coverage, although they are quite
conservative: this is the price for maintaining good coverage over CEFs that are less smooth
than p(z) = x (see |Armstrong and Kolesar| (2017) for theoretical results on impossibility of
adaptation to smooth functions).

Table [Sh| reports results for the case (A1, A2) = (0,.05). Here u(z) is nonlinear, but due
to the symmetry properties of the cosine function 7, = 0. This setup mimics applications in
which the bias of 7 is small even though the functional form of u(x) is misspecified. In line
with our asymptotic approximations, the CRV standard error is downward biased for smaller
values of N, and upward biased for larger sample sizes. Simulation results for the case that
N = 107, which are not reported here, also confirm that the CRV standard error does not
converge to zero. Correspondingly, the CRV CI under-covers the treatment effect for smaller
values of IV, and over-covers for larger values. The distortions are again more pronounced for
smaller values of GT and G~. The CRV-BM CIs correct for these size distortions, while the
CRV2 modification alone is not sufficient. The honest Cls perform well in terms of coverage,
but they are again quite conservative: again this is due to the possible bias adjustment built
into the Cls.

Table [S6| reports results for the case (A1, \a) = (.05,0). Here the linear model is misspec-
ified as well, but in such a way that 7, is substantially different from zero; with its exact
value depending on Gt and G~. As with the previous sets of results, the CRV standard
error is downward biased for smaller values of N, and upward biased for larger sample sizes.
However, since 73, # 0 here, the coverage probability of the CRV confidence interval is below
the nominal level for all N, and tends to zero as the sample size increases. For smaller values
of N, the coverage properties of the CRV confidence interval are also worse than those of the
standard EHW confidence interval. The CRV confidence interval only performs better in a
relative sense than EHW confidence interval when N is large, but for these cases both Cls
are heavily distorted and have coverage probability very close to zero. So in absolute terms
the performance of the CRV confidence interval is still poor. The same conclusion applies
to the CRV2 and CRV-BM modifications. The assumption underlying the construction of
BME CiIs is violated for G, = G_ = 5, since in this case, the specification bias of a linear
approximation to the CEF is actually worse at zero than at other support points. Conse-
quently, BME CIs undercover once N, is sufficiently large. In contrast, the coverage of BSD
CIs remains excellent for all specifications, as predicted by the theory.

In summary, the simulation results for EHW and CRV Cls are in line with the theory
presented in Sections [II|and [[TI|in the main text, and the results for CRV2 and CRV-BM Cls
are in line with the results presented in Section [S4 The honest Cls perform well in terms of
coverage, although BME ClIs are overly conservative if N, is small or the number of support
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points is large. As discussed in Section [[V.B] they are best suited to applications with a few
support points, in with a sufficient number of observations available for each support point.
BSD Cls, combined with appropriate choice of the smoothness constant K, perform very
well.

56. LOWER BOUND FOR K
In this section, we use ideas in |Armstrong and Kolesar| (2017) to derive and estimate a left-
sided CI for a lower bound on the smoothness constant K under the setup of Section [V.A]
in the main text.

To motivate our procedure, consider measuring the curvature of the CEF u over some
interval [z, 23] by measuring how much it differs from a straight line at some point xy €
(x1,x3). If the function were linear, then its value at x5 would equal Ap(z1) 4+ (1 — N)u(x3),
where A = (z3 — 23)/(z3 — x1) is the distance of z3 to zo relative to the distance to x;.
The next lemma gives a lower bound on K based on the curvature estimate Ap(zq) + (1 —

Mp(as) — pa2).
Lemma S2. Suppose p € My(K) for some K > 0. Then K > |A(xy, 2, x3)|, where

(1 = Nplzs) + A1) — plwz) _ (1= Mpals) + () — plzz)

Al o) =2 (1 —N)a3 + Xa? — 23 =2 (1 — XM A\(x3 — 21)? (510)
Proof. We can write any u € My(K) as
(o) = 0) + O () (o) = [~ () (s11)

This follows by an argument given in the proof of Proposition [I] in Section [S2] Hence,

Au(zr) + (1 = Nplzs) — plxz) = (1 = A)r(zs) + Ar(zr) — r(z2)
=(1-2MX) /x:(x?’ —u)p" (u) du + A[El2(u —x1) " (u) du.

The absolute value of the right-hand side is bounded by K times (1 — A) [*(z3 — u) du +
+A [;2(u—x1) du = (1= X) (23 — 22)*/2+ N(22 — 21)*/2, which, combined with the definition
of A, yields the result. O

Remark S1. The maximum departure of p from a straight line over [z, z3] is given by
maxyepo,1]|(1 — A p(zs) + A1) — pp(Az1 + (1 — A)zg)|. Lemma [S2|implies that this quantity
is bounded by maxyep1](1 — M)A (w5 —21)?K/2 = K(z3—1x1)?/8, with the maximum achieved
at A = 1/2. We use this bound for the heuristic for the choice of K described in Section[[V.A]

While it is possible to estimate a lower bound on K using Lemma by fixing points
X1, To,x3 in the support of the running variable and estimating A(zy, 2, 3) by replacing
p(z;) in (S10) with the sample average of Y; for observations with X; = x;, such a lower
bound estimate may be too noisy if only a few observations are available at each support
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point. To overcome this problem, we consider curvature estimates that average the value of
1 over s neighboring support points. To that end, the following generalization of Lemma
will be useful.

Lemma S3. Let I}, = x4, Tx|, k = 1,2,3 denote three intervals on the same side of cutoff
such that Ty < xpy1. For any function g, let E,[g(x1)] = SN, g(x) {z; € Ik} /ng, ni, =
SN T{x; € I} denote the average value in interval k. Let N, = E,(z3 — x3)/E, (13 — 7).
Then K > |u(Iy, I, I3)|, where

oA Lnfi(21) + (1 = An) Eppa(zs) — Enpu(zs)
E, [(1 = \)a3 + \a? — 23] '

A(LL, I, Iy) = (S12)

Proof. By Equation (S11)), for any A € [0, 1] and any three points 1, xs, 3, we have

() + (1= Np(as) — p(w2) = 04/ (0) + Ar(z1) + (1 = N)r(xs) — r(2)
—(1-)) / (25 — w)d" (u) du + /\/g:(u — ) () du+ (//(O) + /0 1 () du)

2
where § = (1 — A\)xg + A\r; — xo. Setting A = )\, taking expectations with respect to the
empirical distribution, observing that £,6 = 0 and E,zy = (1 — \,)E,23 + A\ Epxq, and
using iterated expectations yields

AEnp(r1) + (1 = N) Epp(zs) — Enp(z)
=(1— )\n)En[ 3(95'3 —u)p" (u) du + N\, B, /{: (u—z)p"(u)du + S, (S13)

2

where

g

S = (1—)\n)En/

2

(Epxs —u)p” (u)du + E, /m()\nu — MEnz1 + Epxg — 20)p” (u) du

- [ q(u)p” (u) du, qu) = (1= \)(Epzs —u) + E Il {u < 2} (u— x3).

Z2

Observe that the function ¢(z) is weakly positive on I, since q(z2) = (1—\,) (E,23—22)+xo—
Ean = )\n(@'Z - Enxl) Z 07 Q(EZ) = (1 - )\n)<En$3 - j?) Z 0, and q,<u) = )‘n - En]I {x2 S U},
so that the first derivative is positive at first and changes sign only once. Therefore, the
right-hand side of is maximized over pu € Fy(K) by taking p”(u) = K and minimized
by taking p”(u) = — K, which yields

K
MnBapi(1) + (1= M) Eupa(ies) = Enpa(a)| < By [(1= A + Auarf — 3]

The result follows. O

To estimate a lower bound on K for three fixed intervals I, Is and I3, we simply replace
E,u(xy) in (S12) with the sample average of Y; over the interval I. We do this over multiple
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interval choices. To describe our choice of intervals, denote the support points of the running

variable by 25 < --- <ay <0 < af <--- <z, and let Jf, = [z, 7;5,] denote

the mth interval containing s support points closest to the threshold, and similarly let
I = [0 g Trmsy1—s)- To estimate the curvature based on the intervals J?Efzsa J;kq,s and

ms?

J3r.s» we use the plug-in estimate

/\ks@(‘]g?c—ls) + (1 - Aks)@(‘{?ﬁf—l,s) - y(‘@j@,s)

A+ — 2 9
ks (1-— Aks)fQ(J;;,s) + Mes T2 (J3k—2,5) — 532“5271,5)

where we use the notation y(I) = SN, ViI{X; € I} /n(I), n(I) = Y, 1{X; € I}, and
72(I) = i, Xl {X; € I} /n(I), and A = (2(Js. ) — T(Jak1,0))/ (@( T o) — T(Jshp.0))-

For simplicity, we assume that the regression errors ¢; = Y; — u(X;) are normally dis-
tributed with conditional variance o(X;), conditionally on the running variable. Then A,js
is normally distributed with variance

2)\2362<J2§2—27s>/n<‘]§;€—275) + (]‘ - )\ks)az(‘]?;z—l,s)/n(‘];;c—l,s) + az(ng_c,s)/n(Jg;c,s)
3 .
(1= M) + M2 2) = P2 )

V(Ag) =

By Lemma [S3| the mean of this curvature estimate is bounded by |E[A}]| < K. Define A,
analogously.

Our construction of a lower bound for K is based on the vector of estimates AS =
(AL, Ay AL ,A}hs), where M, and M_ are the largest values of m such that
T3 < T, and T3, , > Ta_.

Since elements of A are independent with means bounded in absolute value by K, we
can construct a left-sided CI for K by inverting tests of the hypotheses Hy: K < Ky vs
Hy: K > Ky based on the sup-t statistic maxy geq_ 43| AL /V(AL)/2|. The critical value
¢1—a(Kp) for these tests is increasing in Ky and corresponds to the 1 — o quantile of
maxy ge(—+}| Z1s + Ko JV(AL)12| where Z{, are standard normal random variables, which
can easily be simulated. Inverting these tests leads to the left-sided CI of the form [IA( 1—ay 00),
where Kj_, solves maxhqe{_,ﬂ|AgS/V(AiS)1/Q| = q1_o(K1_,). Following (Chernozhukov
et al.| (2013), we use K, /2 as a point estimate, which is half-median unbiased in the sense
that P(Ky < K) >1/2.

An attractive feature of this method is that the same construction can be used when the
running variable is continuously distributed. To implement this method, one has to choose
the number of support points s to average over. We leave the optimal choice of s to future
research, and simply use s = 2 in the empirical applications in Section [V] of the main text.
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Table S1: Inference in CPS simulation study for placebo treatment: Linear specification.

Avg. normalized SE CI coverage rate (%)
h Th N, SD(7) EHW CRV CRV2 BM BME BSD EHW CRV CRV2 BM BME BSD

—0.008 100 0.239 0.234 0.166 0.218 0.364 0.606 0.309 93.8 77.3 86.3 96.9 100  97.2
500 0.104 0.104 0.073 0.097 0.160 0.253 0.170 94.7 78.0 86.8 96.7 100 979

2000 0.052  0.052 0.036 0.048 0.079 0.125 0.109 949 77.3 86.6 96.6 100 99.7

10000 0.021  0.023 0.015 0.020 0.033 0.055 0.064 96.1 77.2 86.6 96.9 100 99.9

10 —0.023 100 0.227  0.223 0.193 0.218 0.270 0946 0394 939 873 90.8 95.2 100 97.0
500 0.099 0.099 0.086 0.097 0.117 0.385 0.215 944 876 91.1 95.2 100  98.0

2000 0.049 0.050 0.044 0.049 0.059 0.187 0.131 93.0 86.0 89.8 94.3 100  99.1

10000 0.021  0.022 0.021 0.024 0.029 0.086 0.077 82.9 78.1 83.8 91.0 100  99.1

15 —0.063 100 0.222  0.216 0.197 0.214 0.246 1.137 0453 92.7 884 90.7 94.4 100  96.8
500 0.095 0.096 0.089 0.096 0.108 0.507 0.242 899 85.3 87.9 91.7 100  98.5

2000 0.048 0.048 0.047 0.052 0.058 0.243 0.146 73.0 71.2 75.6 81.6 100 98.7

10000 0.020 0.021 0.028 0.030 0.034 0.118 0.087 15.3 348 43.9 55.8 100  98.7

oo —0.140 100 0.208 0.205 0.196 0.208 0.229 1.281 0.513 88.6 85.6 87.8 90.9 100  96.5
500 0.091 0.091 0.094 0.099 0.107 0.822 0.269 66.7 67.3 70.8 75.6 100 97.8

2000 0.045 0.046 0.058 0.061 0.066 0.460 0.162 134  29.2 34.5 41.1 100  98.0

10000 0.019 0.020 0.043 0.046 0.049 0.271 0.097 0.0 0.6 1.3 29 100 98.1

Note: Results are based on 10,000 simulation runs. BM refers to CRV-BM ClIs. For BSD, M = 0.045. For CRV-BM, BME,
and BSD, Avg. normalized SE refers to average normalized standard error, described in the text. For EHW, CRV, and CRV2, it
corresponds to average standard error, averaged over the simulation runs.
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Table S2: Inference in CPS simulation study for placebo treatment: Quadratic specification.

Avg. normalized SE CI coverage rate (%)
h Th N, SD(7) EHW CRV CRV2 BM BME BSD EHW CRV CRV2 BM BME BSD

—0.100 100 0.438 0.427 0.206 0.394 0.897 0.705 0.309  93.2 60.7 84.0 972 995 97.3
500 0.189 0.190 0.086 0.172 0.382 0.301 0.170  94.7 59.9 83.8 974 99.7 979

2000 0.093 0.095 0.042 0.084 0.187 0.149 0.109 951 B8.7 83.2 974 998 99.7

10000 0.038 0.042 0.018 0.036 0.079 0.067 0.064 96.4 59.5 84.4 97.6 999 999

10 0.008 100 0.361 0.349 0.258 0.342 0.540 1.000 0.394  93.3 79.5 88.3 97.2 100 97.0
500 0.157 0.156 0.110 0.147 0.231 0.405 0.215 948 79.0 88.1 96.8 100  98.0

2000 0.077  0.078 0.055 0.073 0.115 0.196 0.131 94.7 794 88.1 96.8 100  99.1

10000 0.033  0.035 0.025 0.034 0.053 0.087 0.077  95.6 80.8 89.4 97.6 100  99.1

15 0.014 100  0.349 0329 0.270 0.325 0.443 1.189 0453 923 83.6 89.1 96.0 100  96.8
500 0.146 0.147 0.117 0.141 0.187 0.516 0.242 946 85.1 89.9 95.8 100  98.5

2000 0.073  0.073 0.058 0.070 0.092 0.243 0.146 946 83.9 89.7 95.7 100 98.7

10000 0.031  0.033 0.026 0.031 0.041 0.107 0.087 93.7 828 88.7 95.1 100  98.7

oo —0.001 100 0.316 0.303 0.267 0.302 0.371 1.327 0.513 93.0 87.6 90.9 954 100  96.5
500 0.134 0.135 0.117 0.132 0.155 0.804 0.269 949 89.0 92.2 955 100 97.8

2000 0.068  0.067 0.058 0.065 0.077 0.402 0.162  94.7 88.7 91.6 95.4 100  98.0

10000 0.029  0.030 0.027 0.030 0.035 0.178 0.097 96.0 91.0 93.7 96.7 100 98.1

Note: Results are based on 10,000 simulation runs. BM refers to CRV-BM ClIs. For BSD, M = 0.045. For CRV-BM, BME,
and BSD, Avg. normalized SE refers to average normalized standard error, described in the text. For EHW, CRV, and CRV2, it
corresponds to average standard error, averaged over the simulation runs.




Table S3: Inference in CPS simulation study for placebo treatment: Comparison of relative
magnitude of EHW standard errors relative to CRV, CRV2 and CRV-BM standard errors
under linear and quadratic specification.

Linear Quadratic
Rate EHW SE < Rate EHW SE <
h Th N, CRV CRV2 BM CRV CRV2 BM

5 —0.100 100 0.14 0.38 0.82 0.03 0.38 0.87
500  0.13 0.37 081 0.01 0.36 0.87

2000 0.13 0.36 0.80 0.01 0.34 0.86

10000  0.09 0.30 0.77 0.00 0.30 0.85

10 0.008 100 0.26 044 0.74 0.15 0.43 0.85
200  0.25 043 0.71 0.12 0.38 0.81

2000 027 044 0.72 0.11 0.37 0.81

10000  0.39 0.60 0.84 0.13 0.40 0.82

15 0.014 100 0.31 047 0.71  0.20 0.45 0.81
500  0.34 047 0.69 0.18 0.39 0.74

2000 0.45 0.61 079 017 038 0.72

10000  0.92 0.96 099 0.18 0.39 0.72

oo —0.001 100 0.38 0.52 0.73 0.26 0.48 0.78
500  0.54 0.66 0.80 0.24 0.42 0.67

2000 0.93 0.96 099 0.23 0.41 0.66

10000  1.00 1.00 1.00 0.26 0.44 0.70

Note: Results are based on 10,000 simulation runs. BM refers to CRV-BM ClIs. For CRV-BM ClIs,
SE refers to average normalized standard error, described in the text.
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Table S4: Simulation results in second Monte Carlo exercise for u(x) = x.

Avg. normalized SE CI coverage rate (%)
Gy G_ Ny 1, sd(7) EHW CRV CRV2 BM BME BSD 49 BSDg EHW CRV CRV2 BM BME BSD 49 BSD g9

5 5 100 0 0.148 0.149 0.105 0.141 0.221 0.332 0.197 0.249 94.6 79.1 88.0 96.6 100.0 98.5 99.0
1000 0.046 0.047 0.032 0.044 0.068 0.097 0.091 0.124 95.7 775 88.0 96.6 100.0 99.0 99.5
10000 0.015 0.015 0.010 0.014 0.022 0.031 0.047 0.067 94.8 773 874 96.2 100.0 99.5 100.0

5 25 100 0 0.143 0.141 0.114 0.136 0.186 0.686 0.178 0.219 94.5 85.4 90.3 96.9 100.0 97.8 97.8
1000 0.044 0.044 0.036 0.043 0.057 0.248 0.078 0.102 95.5 87.2 91.1 96.9 100.0 98.6 98.1
10000 0.014 0.014 0.011 0.013 0.018 0.074 0.037 0.052 95.5 86.7 91.1 97.2 100.0 99.4 100.0

5 50 100 0 0.143 0.140 0.115 0.135 0.183 0.754 0.176 0.216 93.7 86.0 90.3 96.3 100.0 97.4 97.8
1000 0.043 0.044 0.036 0.042 0.056 0.397 0.077 0.100 95.3 87.3 91.3 97.1 100.0 99.0 98.1
10000 0.014 0.014 0.011 0.013 0.018 0.111 0.036 0.050 95.2 87.3 90.9 96.6 100.0 99.2 99.9

25 25 100 0 0.136 0.131 0.124 0.131 0.143 0.791 0.159 0.186 93.8 91.3 92.9 94.8 100.0 96.6 96.9
100000 0.040 0.041 0.039 0.041 0.044 0.280 0.064 0.076 95.5 93.2 94.5 95.7 100.0 97.9 98.0
10000 0.013 0.013 0.012 0.013 0.014 0.083 0.027 0.032 954 93.1 94.3 95.5 100.0 97.8 98.3

25 50 100 0 0.132 0.130 0.125 0.130 0.140 0.843 0.156 0.183 94.2 92.8 93.8 95.4 100.0 96.9 96.7
1000 0.042 0.041 0.039 0.041 0.043 0.430 0.063 0.074 94.7 93.0 93.9 95.0 100.0 974 97.6
10000 0.013 0.013 0.012 0.013 0.013 0.119 0.026 0.031 94.9 93.2 93.9 94.8 100.0 97.9 97.8

50 50 100 0 0.133 0.129 0.126 0.130 0.138 0.879 0.154 0.180 93.5 92.6 93.2 94.7 100.0 96.6 96.7
1000 0.040 0.041 0.040 0.041 0.042 0.472 0.062 0.072 95.3 94.1 94.8 95.4 100.0 97.6 97.7
10000 0.013 0.013 0.012 0.013 0.013 0.127 0.025 0.029 94.9 939 94.3 94.9 100.0 97.5 97.7

Note: Results are based on 5,000 simulation runs. BSD 49 and BSD gg refer to BSD CIs with K = 0.493 and K = 0.986, respectively,
and BM refers to CRV-BM ClIs. For CRV-BM, BME and BSD, Avg. normalized SE refers to average normalized standard error,
described in the text. For EHW, CRV and CRV2, it corresponds to average standard error, averaged over the simulation runs.




¢GS

Table S5: Simulation results in second Monte Carlo exercise for pu(x) = x + .05 - cos(m - x).

Avg. normalized SE CI coverage rate (%)
Gy G_ Ny 1, sd(7) EHW CRV CRV2 BM BME BSD 49 BSDg EHW CRV CRV2 BM BME BSD 49 BSD g9

5 5 100 0 0.148 0.149 0.105 0.142 0.222 0.332 0.197 0.249 94.7 78.9 88.1 96.6 100.0 98.4 99.0
1000 0.046 0.047 0.033 0.044 0.069 0.098 0.091 0.124 95.7 784 89.0 96.9 100.0 99.0 99.5
10000 0.015 0.015 0.012 0.017 0.026 0.033 0.047 0.067 94.8 84.1 92.1 98.2 100.0 99.5 100.0

5 25 100 0 0.143 0.141 0.115 0.136 0.186 0.686 0.178 0.219 94.5 85.4 90.2 96.8 100.0 97.8 97.8
1000 0.044 0.044 0.036 0.043 0.058 0.248 0.078 0.102 95.5 87.3 91.4 97.0 100.0 98.5 97.8
10000 0.014 0.014 0.012 0.015 0.020 0.075 0.037 0.052 95.4 88.8 93.2 98.1 100.0 99.1 100.0

5 50 100 0 0.143 0.140 0.115 0.135 0.183 0.754 0.176 0.216 93.7 86.3 90.1 96.1 100.0 97.4 97.9
1000 0.043 0.044 0.036 0.043 0.057 0.397 0.077 0.100 95.3 87.6 91.6 97.3 100.0 98.9 98.0
10000 0.014 0.014 0.012 0.015 0.020 0.112 0.036 0.050 95.3 89.4 93.5 97.5 100.0 99.0 99.9

25 25 100 0 0.136 0.131 0.124 0.131 0.143 0.791 0.159 0.186 93.8 91.5 92.9 94.7 100.0 96.6 96.9
100000 0.040 0.041 0.039 0.041 0.044 0.280 0.064 0.076 95.4 93.1 94.5 95.8 100.0 97.9 98.0
10000 0.013 0.013 0.013 0.013 0.014 0.084 0.027 0.032 954 939 95.0 95.9 100.0 97.8 98.3

25 50 100 0 0.132 0.130 0.125 0.130 0.140 0.843 0.156 0.183 94.2 92.9 93.7 95.4 100.0 96.9 96.7
1000 0.042 0.041 0.039 0.041 0.043 0.430 0.063 0.074 94.7 929 93.9 95.1 100.0 974 97.7
10000 0.013 0.013 0.013 0.013 0.014 0.119 0.026 0.031 94.8 93.5 94.1 95.1 100.0 97.9 97.8

50 50 100 0 0.133 0.129 0.126 0.130 0.138 0.880 0.154 0.180 93.6 92.7 93.3 94.6 100.0 96.6 96.7
1000 0.040 0.041 0.040 0.041 0.042 0.472 0.062 0.072 95.3 94.1 94.8 95.5 100.0 97.6 97.7
10000 0.013 0.013 0.013 0.013 0.013 0.128 0.025 0.029 949 941 94.6 95.1 100.0 97.5 97.7

Note: Results are based on 5,000 simulation runs. BSD 49 and BSD gg refer to BSD CIs with K = 0.493 and K = 0.986, respectively,
and BM refers to CRV-BM ClIs. For CRV-BM, BME and BSD, Avg. normalized SE refers to average normalized standard error,
described in the text. For EHW, CRV and CRV2, it corresponds to average standard error, averaged over the simulation runs.
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Table S6: Simulation results in second Monte Carlo exercise for p(x) =z + .05 - sin(w - x).

Avg. normalized SE CI coverage rate (%)
Gy G- Nn 1, sd(7) EHW CRV CRV2 BM BME BSD,4 BSDg EHW CRV CRV2 BM BME BSD 49 BSD g9
5 b 100 0.108 0.148 0.150 0.107 0.145 0.227 0.334 0.197 0.249 &88.6 68.9 81.6 94.0 100.0 96.3 98.5
1000 0.046 0.047 0.039 0.054 0.084 0.102 0.091 0.124 37.3 27.7 475 76.2 96.0 97.2 99.2
10000 0.015 0.015 0.025 0.036 0.057 0.041 0.047 0.067 0.0 0.1 5.8 54.3 5.9 98.4 99.9
5 25 100 0.090 0.143 0.141 0.116 0.138 0.188 0.687 0.178 0.219 &89.4 787 84.5 94.2 100.0 96.0 97.5
1000 0.044 0.044 0.040 0.049 0.065 0.252 0.078 0.102 47.7 399 53.0 72.6 100.0 97.0 97.7
10000 0.014 0.014 0.021 0.028 0.038 0.085 0.037 0.052 0.0 0.2 5.1 25.0 100.0 98.2 99.9
5 50 100 0.088 0.143 0.140 0.116 0.137 0.185 0.755 0.176 0.216 89.3 80.2 85.5 94.0 100.0 95.6 97.6
1000 0.043 0.044 0.039 0.048 0.064 0.400 0.077 0.100 49.4 41.3 53.9 72.9 100.0 97.1 98.0
10000 0.014 0.014 0.020 0.028 0.037 0.121 0.036  0.050 0.0 0.3 5.6 25.9 100.0 98.4 99.9
25 25 100 0.072 0.135 0.131 0.125 0.132 0.144 0.792 0.159 0.186 90.5 87.9 89.5 92.1 100.0 95.1 96.4
100000 0.040 0.041 0.041 0.042 0.045 0.283 0.064 0.076 59.4 57.8 61.4 65.9 100.0 97.0 97.7
10000 0.013 0.013 0.016 0.017 0.018 0.092 0.027 0.032 0.0 0.2 0.4 0.6 100.0 97.2 98.2
25 50 100 0.070 0.132 0.130 0.125 0.131 0.141 0.844 0.156 0.183 91.0 88.7 90.2 92.6 100.0 95.5 96.4
1000 0.042 0.041 0.040 0.042 0.044 0.431 0.063 0.074 60.0 58.3 61.1 64.5 100.0 96.3 97.5
10000 0.013 0.013 0.015 0.016 0.017 0.126 0.026 0.031 0.1 0.1 0.2 0.2 100.0 97.1 97.8
50 50 100 0.068 0.132 0.130 0.126 0.130 0.138 0.881 0.154 0.180 91.0 89.6 90.5 92.2 100.0 95.1 96.4
1000 0.040 0.041 0.040 0.041 0.043 0.474 0.062 0.072 62.2 61.0 62.8 64.9 100.0 96.4 97.5
10000 0.013 0.013 0.014 0.015 0.015 0.135 0.025 0.029 0.1 0.2 0.2 0.2 100.0 97.0 97.5

Note: Results are based on 5,000 simulation runs. BSD 49 and BSD gg refer to BSD CIs with K = 0.493 and K = 0.986, respectively,
and BM refers to CRV-BM ClIs. For CRV-BM, BME and BSD, Avg. normalized SE refers to average normalized standard error,
described in the text. For EHW, CRV and CRV2, it corresponds to average standard error, averaged over the simulation runs.
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Figure S1: Fit of specification for p =1 (linear, red line) in the full CPS data. The figure displays fit for bandwidths
h =5 (top-left panel), h = 10 (top-right panel), h = 15 (bottom-left panel), and h = 0o (bottom-right panel)
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Figure S2: Fit of specification (1) for p = 2 (quadratic, red line) in the full CPS data. The figure displays fit for bandwidths
h =5 (top-left panel), h = 10 (top-right panel), h = 15 (bottom-left panel), and h = co (bottom-right panel).
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Figure S3: Plot of pu(z) = x+.05-cos(7-x) (top panel) and p(z) = 2+ .05-sin(7-z) (bottom
panel) for G- = G = 10. Dots indicate the value of the function at the support points of
the running variable; solid lines correspond to linear fit above and below the threshold.
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