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A Proof of Lemma 1

Lemma 1. The system (12) defines a unique bounded set of time preferences, which are

non-decreasing in all utilities, if

max
i

{
∞∑
s=1

N∑
j=1

f ijs < 1

}
.

Proof. The system of time preferences (12) can be written as a single matrix equation as

follows:

V 1
τ
...

V N
τ

V 1
τ+1
...

V N
τ+1
...


=



U1(cτ )
...

UN(cτ )

U1(cτ+1)
...

UN(cτ+1)
...


+



~0N f 11
1 . . . f 1N

1 f 11
2 . . . f 1N

2 . . .
...

...
...

...
...

...
...

...

~0N fN1
1 . . . fNN1 fN1

2 . . . fNN2 . . .

~0N ~0N f 11
1 . . . f 1N

1 f 11
2 . . . . . .

...
...

...
...

...
...

...
...

~0N ~0N fN1
1 . . . fNN1 fN1

2 . . . . . .
...

...
...

...
...

...
...

...





V 1
τ
...

V N
τ

V 1
τ+1
...

V N
τ+1
...


where ~0N is an 1×N vector of zeros. Letting ~Xτ denote the vector on the left hand side

of this expression, Λ the infinite dimensional square matrix on the right hand side, and ~Uτ

denote the vector of Us on the right hand side, we have

~Xτ = ~Uτ + Λ ~Xτ

⇒ ~Xτ = (1∞ −Λ)−1~Uτ ,

where 1∞ is the infinite dimensional identity matrix, and we have assumed that the relevant

matrix inverse exists.

In general infinite dimensional matrices do not have unique inverses. However, Lemma

1 in Bergstrom (1999) shows that 1∞−Λ has a unique bounded inverse with non-negative

elements if and only if 1∞ − Λ is a dominant diagonal matrix. A denumerably infinite

matrix 1∞ − Λ with Λ ≥ 0 is said to be dominant diagonal if there exists a bounded

diagonal matrix D ≥ 0 such that the infimum of the row sums of (1∞ −Λ)D is positive.

Clearly, a sufficient condition for 1∞−Λ to be dominant diagonal is if
∑∞

s=1

∑N
j=1 f

ij
s < 1

for all i.
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Although this lemma focusses on providing a sufficient condition that is easy to check,

the proof also provides a necessary and sufficient condition: 1∞ − Λ must be dominant

diagonal. This is equivalent to requiring the spectral radius of the linear operator Λ to be

less than 1, as this guarantees that the sequence (1∞−Λ)−1 = 1∞+Λ+Λ2 + . . . converges

(Duchin & Steenge, 2009). Checking this condition is however difficult in practice given

the infinite dimensionality of Λ. I will thus work with the simpler sufficient condition

throughout, but the results do not depend on this simplification. The proof of the main

proposition in Appendix C only requires the spectral radius of Λ to be bounded above by

1.

B Proof of Lemma 2

We wish to prove that non-dogmatic planners’ with preferences (12) have consistent beliefs

iff the intratemporal weights wijs satisfy (14). In the notation established in the text,

Lemma 2.

Probτ (i→ j; s) =
N∑
k=1

Probτ (i→ k; t)Probτ+t(k → j; s− t) (A.1)

for all τ ∈ N, s ≥ 2, 1 ≤ t < s if and only if there exists an N × N stochastic matrix P

such that

wijs = (Ps)i,j.

Let the beliefs of planners at time τ about the probability of a future self who subscribes

to theory i at time τ+s−1 switching to theory j at time τ+s be T
ij,(τ)
s . Denote the matrix

of these transition probabilities by T
(τ)
s . Let W

(τ)
s be the matrix of time τ planners’ beliefs

about which theory they will subscribe to at time τ+s, whose i, j element is Probτ (i→ j; s).

Then we have

W(τ)
s = T(τ)

s T
(τ)
s−1 . . .T

(τ)
1 .

Using this relation, (A.1) can be written as the requirement that

T(τ)
s T

(τ)
s−1 . . .T

(τ)
1 = T

(τ+t)
s−t T

(τ+t)
s−t−1 . . .T

(τ+t)
1 T

(τ)
t T

(τ)
t−1 . . .T

(τ)
1 , (A.2)

for all τ, t, s. It is clear that a sufficient condition for this to be satisfied is

T(τ)
s = P
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for all τ, s, where P is an N ×N stochastic matrix. To prove necessity, put s = 2, t = 1 in

(A.2) to find

T
(τ)
2 T

(τ)
1 = T

(τ+1)
1 T

(τ)
1

which implies

T
(τ)
2 = T

(τ+1)
1 . (A.3)

Putting s = 3, t = 1 in (A.2), we find

T
(τ)
3 T

(τ)
2 T

(τ)
1 = T

(τ+1)
2 T

(τ+1)
1 T

(τ)
1

⇒T
(τ)
3 T

(τ)
2 = T

(τ+1)
2 T

(τ+1)
1 .

and using (A.3) this reduces to

T
(τ)
3 = T

(τ+1)
2 .

Repeating this process of substitution, we find that a necessary condition for (A.2) to be

satisfied is

T
(τ)
s+1 = T(τ+1)

s .

Since non-dogmatic planners’ preferences are time invariant, it must be the case that

T(τ+1)
s = T(τ)

s .

Substituting this relation into the previous equation shows that

T
(τ)
s+1 = T(τ)

s

for all τ, s. This implies that the matrix of planners’ beliefs W
(τ)
s must be of the form

W(τ)
s = (P)s

for all τ .

C Proof of Proposition 1

We prove a more general version of the result in Proposition 1. The proof has two main

steps. First we find conditions under which all planners’ utility weights aijs are proportional

to a common discount factor µ̂s for large s. We then show that when these conditions are
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satisfied all non-dogmatic planners’ long-run SDRs are the same.

STEP 1:

Begin by defining the sequence of N ×N matrices

Fs :=


f 11
s f 12

s . . . f 1N
s

f 21
s f 22

s . . . f 2N
s

...
...

...
...

fN1
s fN2

s . . . fNNs

 (A.4)

and the sequences of N × 1 vectors

~Vτ =


V 1
τ

V 2
τ
...

V N
τ

 , ~Uτ =


U1(cτ )

U2(cτ )
...

UN(cτ )

 . (A.5)

Our general model (12) can be written as:

~Vτ = ~Uτ +
∞∑
s=1

Fs
~Vτ+s. (A.6)

We seek an equivalent representation of this system of the form

~Vτ :=
∞∑
s=0

As
~Uτ+s, (A.7)

where As is a sequence of N ×N matrices of the form,

As :=


a11
s a12

s . . . a1N
s

a21
s a22

s . . . a2N
s

...
...

...
...

aN1
s aN2

s . . . aNNs

 (A.8)

where aijs is the weight planner i at time τ assigns to theory j’s utility function at time

τ + s, i.e., U j(cτ+s).

We now prove the following:

Proposition A.I. Assume that the condition (13) is satisfied, and that f iis > 0 for all
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i = 1 . . . N , s = 1 . . .∞. Construct a directed graph G with N nodes labelled 1, 2, . . . , N .

Draw an edge from node i to node j 6= i iff f ijs > 0 for at least one s ≥ 1. If G contains a

directed cycle of length N , then there exists a µ̂ ∈ (0, 1) such that

lim
s→∞

aijs
µ̂s

= Kij > 0

where the Kij are finite constants.

Notice that the definition of non-dogmatic time preferences in (12) automatically im-

plies that the directed cycle condition in this proposition is satisfied (the graph G is com-

plete in this case, i.e., all edges exist). However, the directed cycle condition itself is

considerably weaker than is assumed in this definition.

Proof. Substitute (A.7) into (A.6) to find

∞∑
s=0

As
~Uτ+s = ~Uτ +

∞∑
p=1

Fp

(
∞∑
q=0

Aq
~Uτ+p+q

)
(A.9)

Equating coefficients of ~Uτ+s in this expression, we see that As must satisfy

A0 = 1N (A.10)

As =
s∑

p=1

FpAs−p for s > 0. (A.11)

where 1N is the N×N identity matrix. The solution of this recurrence relation determines

the utility weights aijs . It will be convenient to split this matrix recurrence relation into a

set of N vector recurrence relations as follows. Let ~Ajs be the j-th column vector of As,

i.e.,

~Ajs =


a1j
s

a2j
s
...

aNjs

 . (A.12)
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Define ~ej to be the unit vector with elements

(~ej)i =

{
0 i 6= j

1 i = j

Then (A.11) is equivalent to the N vector recurrence relations

~Aj0 = ~ej

~Ajs =
s∑

p=1

Fp
~Ajs−p for s > 0. (A.13)

for j = 1 . . . N .

The proof now has the following steps. We consider finite order models, i.e., FM ′ = 0 for

all M ′ greater than some finite M . We show that if a certain augmented matrix constructed

from the matrices F1, . . . ,FM is primitive, all planners will have a common long-run pure

time discount factor. A square matrix B is primitive if there exists an integer k > 0 such

that Bk > 0. We then extend this result to infinite order models by taking an appropriate

limit of finite order models. Finally, we show that primitivity of the required matrices in

the infinite order case is ensured by the graph theoretic condition in the statement of the

proposition.

Begin with the finite order case. Let M = max{s|∃i, j f ijs > 0} <∞. In this case, for

all s > M , (A.13) reduces to

~Ajs =
M∑
p=1

Fp
~Ajs−p. (A.14)

Define the NM ×NM matrix

ΦM =



F1 F2 . . . FM−1 FM

1N 0 . . . 0 0

0 1N . . . 0 0
...

...
...

...
...

0 0 . . . 1N 0


(A.15)
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where 1N is the N ×N identity matrix. In addition, define the ‘stacked’ vector

~Y j
s =


~Ajs
~Ajs−1

...
~Ajs−M+1


Then we can rewrite the Mth order recurrence (A.14) as a first order recurrence as follows:

~Y j
s = ΦM

~Y j
s−1

⇒ ~Y j
M+s = (ΦM)s~Y j

M . (A.16)

We now assume that ΦM is a primitive matrix. By the Perron-Frobenius theorem for

primitive matrices (Sternberg, 2014), this implies

1. ΦM has a positive eigenvalue, which we label as µ(M).

2. All other eigenvalues of ΦM have complex modulus strictly less than µ(M).

3. There exists a matrix C > 0 such that

lim
s→∞

Φs
M

[µ(M)]s
= C

4. µ(M) increases when any element of ΦM increases.

5.

µ(M) < max
i

∑
j

φij. (A.17)

where φij is the ijth element of ΦM .

Since the first N elements of ~Y j
s coincide with aijs , the third of these conclusions implies

that

∀i, j, lim
s→∞

aijs
[µ(M)]s

= C~Y j
M > 0.

To bound the value of µ(M), note that from point 5 of the Perron-Frobenius theorem

in (A.17), and the definition of ΦM in (A.15), we have

µ(M) < max
i

{
M∑
s=1

N∑
j=1

f ijs

}
(A.18)
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Thus, if
∞∑
s=1

N∑
j=1

f ijs < 1 (A.19)

for all i, µ(M) < 1, and hence lims→∞ a
ij
s = 0. Thus (13) guarantees that the time

preferences (12) are complete (i.e., finite on bounded consumption streams, and hence able

to rank arbitrary pairs of bounded consumption streams) for all finite M . This concludes

the finite M case.

We now extend this result to the case of infinite M . Assume that there exists an M ′ > 0

such that the matrix ΦM , defined in (A.15), is primitive for all M > M ′. For M > M ′,

define

~Vτ (M) = ~Uτ +
M∑
s=1

Fs
~Vτ+s(M)

and let
~̂Vτ = lim

M→∞
~Vτ (M).

Define the equivalent representations of these preferences by

~Vτ (M) =
∞∑
s=0

As(M)~Uτ+s (A.20)

~̂Vτ =
∞∑
s=0

Âs
~Uτ+s (A.21)

In addition, let µ(M) be the Perron-Frobenius eigenvalue of ΦM . We begin by proving

that:

Lemma 3.

µ̂ := lim
M→∞

µ(M) exists. (A.22)

Proof. Consider the eigenvalue µ(M + 1), where M > M ′. This is the Perron-Frobenius

eigenvalue of ΦM+1. The M -th order preferences ~Vτ (M) are equivalent to an M + 1th

order model, with FM+1 = 0. The matrix ΦM , which controls the asymptotic behavior

of ~Vτ (M) can thus be thought of as an N × (M + 1) matrix, where the last M rows

and columns are zeros. Call this matrix Φ̃M+1. The matrix ΦM+1, associated with the

asymptotic behavior of ~Vτ (M + 1), has entries that are strictly larger than than those of

Φ̃M+1 in at least some elements. Thus, by point 4 in our statement of the Perron-Frobenius

theorem, µ(M + 1) > µ(M). We also know that µ(M) < 1 for all M . Since the sequence
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µ(M) is increasing and bounded above, the monotone convergence theorem implies that µ̂

exists.

We have thus proved that if the matrices ΦM are primitive for M > M ′,

lim
M→∞

lim
s→∞

aijs+1(M)

aijs (M)
= lim

M→∞
µ(M) = µ̂. (A.23)

Note that since (A.17) and (A.19) are strict inequalities, µ̂ < 1. We now wish to know

whether it is also true that:

lim
s→∞

lim
M→∞

aijs+1(M)

aijs (M)
= µ̂. (A.24)

That is, can we change the order of the limits in (A.23)? For limit operations to be

interchangeable we require the sequence of functions they operate on to be uniformly

convergent. The functions in question here are V i
τ (M) and V̂ i

τ , which we can think of as

linear functions from the infinite dimensional space R∞ × RN = {(~Uτ , ~Uτ+1, ~Uτ+2, . . .)} to

R. If the sequence of functions V i
τ (M) converges uniformly to V̂ i

τ on any bounded subset

of R∞ × RN , then (A.24) will be satisfied. We now prove a second lemma:

Lemma 4. Let B be a compact subset of R∞ × RN , and assume that (13) is satisfied.

Then V i
τ (M) converges uniformly to V̂ i

τ on B.

Proof. Equation (A.13) shows that for all s ≤M , aijτ+s(M) = âijτ+s. Let Ū = maxj{sups{U j(cτ+s)}}
be the largest component of any ~U ∈ B. For any ~U ∈ B,

sup
~U∈B

∣∣∣V i
τ (M)− V̂ i

τ

∣∣∣ = sup
~U∈B

∣∣∣∣∣
∞∑
s=1

N∑
j=1

aijτ+M+s(M)U j(cτ+M+s)−
∞∑
s=1

N∑
j=1

âijτ+M+sU
j(cτ+M+s)

∣∣∣∣∣
≤

∞∑
s=1

N∑
j=1

[∣∣aijτ+M+s(M)
∣∣+
∣∣âijτ+M+s

∣∣] Ū
By Lemma 3, µ̂ < 1 also implies µ(M) < 1 for allM , so we know that limM→∞ a

ij
τ+M+s(M) =

0 = limM→∞ â
ij
τ+M+s for all i, j. Thus

lim
M→∞

sup
~U∈B

∣∣∣V i
τ (M)− V̂ i

τ

∣∣∣ = 0.

Hence V i
τ (M) converges uniformly to V̂ i

τ .

This concludes the infinite order case.
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The final step of the proof is to show that if the graph G, defined in the statement of

the proposition, has a directed cycle of length N , then there exists an M ′ > 0 such that for

all M > M ′ the matrix ΦM is primitive. We demonstrate this using a graphical argument.

Consider an aribtrary R × R matrix Bij, and form a directed graph H(B) on nodes

1 . . . R, where there is an edge from node i to node j iff Bij > 0. The matrix Bij is primitive

if there exists an integer k ≥ 1 such that there is a path of length k from each node i to

every other node j in H(B). If H(B) is strongly connected, i.e., there exists a path from

every node to every other node, then a sufficient condition for Bij to be primitive is for

there to be at least one node that is connected to itself.

Now consider our NM ×NM matrices ΦM . To construct the directed graph H(ΦM)

associated with ΦM in a convenient form, follow the following procedure: Construct an

M ×N grid of nodes (where N is the number of planners), with node (m,n) representing

planner n at time τ + m. For all m > 1, n, construct a directed edge from node (m,n) to

node (m− 1, n). In addition, construct a directed edge from node (1, n) to node (m′, n′) if

fnn
′

m′ > 0.

As an example, take the case M = N = 3, i.e., a third order model with three plan-

ners. In this case ΦM is a 9 × 9 matrix. Assume that f iis > 0 for all i, s = 1 . . . 3, that

f 12
1 , f 23

1 , f 31
1 > 0, and that f ijs = 0 otherwise. Figure F.1 represents the directed graph

associated with the matrix Φ3 in this case.

Examination of the figure shows that since f iis > 0, each of the ‘column’ subgraphs

{(m, 1)}, {(m, 2)}, {(m, 3)},m = 1 . . . 3 is strongly connected. Moreover, the cycle between

columns (the red dashed edges) connects the columns to each other, and causes the entire

graph to be strongly connected. Since each node in the first row is connected to itself, the

matrix Φ3 in this example is primitive.

Returning to the general case, suppose that f iis > 0 for all i and s. From the example

in Figure F.1 it is clear that this implies that for each fixed i the subgraph {(m, i)|m =

1 . . .∞} is strongly connected, with each of the nodes (1, i) connected to itself. Thus, if

there is a directed cycle between all of the ‘columns’ of the graph H(ΦM ′) for some M ′,

then for all M > M ′, H(ΦM) is strongly connected, and contains nodes that are connected

to themselves. Hence for all M > M ′, ΦM is a primitive matrix. This concludes the

proof.

STEP 2:

We now show that when the conditions of Proposition A.I are satisfied, all non-dogmatic

theories yield the same long-run SDR, and we compute an explicit formula for this con-
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Figure F.1: The directed graph H(Φ3) associated with the matrix in our example. The
vertical black edges arise from the identity matrices in the definition of ΦM (see (A.15)).
The dashed blue edges arise from f iis > 0, and the dashed red edges from f 12

1 , f 23
1 , f 31

1 > 0.

sensus discount rate.

Begin by defining

ρ̂ = − ln µ̂,

where µ̂ is defined in (A.22). When the conditions of Proposition A.I hold we know that

aijs ∼ Kij(s)e
−ρ̂s (A.25)

where ∼ denotes asymptotic behaviour as s → ∞, and the multiplicative factors Kij(s)

satisfy lims→∞
1
s

lnKij(s) = 0.

Now integrate the definition of ηj(c) in (17) to find1

(U j)′(c) = exp

(
−
∫ c

0

ηj(x)

x
dx

)
.

Make the change of variables x = cτe
gs′ in the integral in the exponent (recall that g is the

1In other words, solve the differential equation −c(U j)′′/(U j)′ = ηj(c) for (U j)′(c).
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long-run consumption growth rate), and evaluate (U j)′(c) at c = cτe
gs to find

(U j)′(cτe
gs) = exp

(
−g
∫ s

0

ηj(cτe
gs′)ds′

)
.

Defining

η̂j =

{
limc→∞ η

j(c) g > 0

limc→0 η
j(c) g < 0

(A.26)

we see that the s→∞ asymptotic behaviour of marginal utility is given by

(U j)′(cτe
gs) ∼ Lj(s)e

−gη̂js (A.27)

for some functions Lj(s) that satisfy lims→∞
1
s

lnLj(s) = 0. Combining (A.25) and (A.27),

we find

ri(s) = −1

s
ln

(
1

(U i)′(cτ )

N∑
j=1

aijs (U j)′(cτ+s)

)

∼ −1

s
ln

(∑
j

Kij(s)Lj(s)e
−ρ̂se−η

jgs

)

∼ ρ̂− 1

s
ln

(∑
j

Kij(s)Lj(s)e
−ηjgs

)

Define K̃ij(s) = Kij(s)Lj(s), and let q be the index of the planner with the lowest (highest)

value of η̂j when g > 0 (g < 0). Then∑
j

Kij(s)Lj(s)e
−ηjgs =

∑
j

K̃ij(s)e
−ηjgs

= K̃iq(s)e
−ηqgs

(
1 +

∑
j 6=q

K̃ij(s)

K̃iq(s)
e−(ηj−ηq)gs

)

Since ηj − ηq > 0 for all j 6= q when g > 0, and ηj − ηq < 0 for all j 6= q when g < 0,∑
j

Kij(s)Lj(s)e
−ηjgs ∼ K̃iq(s)e

−η̂gs,
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where η̂ is given by (18). Thus

ri(s) ∼ ρ̂− 1

s
ln
(
K̃iq(s)e

−η̂gs
)

⇒ lim
s→∞

ri(s) = ρ̂+ η̂g.

D Consensus long-run SDRs under uncertainty

It is straightforward to extend the proof of Proposition 1 to the case where future consump-

tion is uncertain. If consumption is uncertain non-dogmatic planners’ IWFs are simply the

expectation over their deterministic IWFs, i.e.,

V i
τ = Ecτ+1,cτ+2,...

∞∑
s=0

N∑
j=1

aijs U
j(cτ+s)

where Ecτ+1,cτ+2,... denotes the expectation over future consumption values, and the co-

efficients aijs are determined by the dynamical system in (A.11), as in the deterministic

case.

The analysis of the consensus long-run SDR now proceeds in close analogy to the

second part of the proof of Proposition 1. The consensus long-run pure rate of social time

preference is unchanged, however examination of the proof shows that we need to account

for the effect of expectations on the growth terms in the Ramsey rule.

Under uncertainty planners’ marginal rates of substitution between consumption today

and consumption s years from now are given by:

e−r
i(s)s = MRSis =

∑N
j=1 a

ij
s Ecτ+s(U

j)′(cτ+s)

(U i)′(cτ )
(A.28)

Define a planner specific ‘certainty equivalent’ long-run growth rate ĝj by requiring that

(U j)′(eĝjscτ ) ≡ Eg(U
j)′(egscτ ) (A.29)

as s→∞, i.e.,

ĝj ≡ lim
s→∞

1

s
log
[
((U j)′)−1

(
Eg(U

j)′(egscτ )
)]
. (A.30)

The long-run consumption growth rate g is uncertain in this expression, and Eg denotes
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expectations over the value of g. In analogy with (A.26), define

η̂j(ĝj) =

{
limc→∞ η

j(c) ĝj > 0

limc→0 η
j(c) ĝj < 0.

Then for large s, we know from (A.27) that

Ecτ+s(U
j)′(cτ+s) = (U j)′(eĝjscτ ) ∼ e−ĝj η̂j(ĝj)s

where ∼ denotes s→∞ asymptotic behaviour, as before.

As in the deterministic case, we see from (A.28) that planner i’s long-run elasticity of

marginal utility is determined by the term that dominates the sum

N∑
j=1

aijs Ecτ+s(U
j)′(cτ+s) ∼

∑
j

aijs e
−ĝj η̂j(ĝj)s

as s→∞. This sum is dominated by the exponential with the minimum value of ĝj η̂j(ĝj)

(which may be negative), for all i. We thus conclude that the consensus long-run SDR

under uncertainty is given by

ρ̂+ min
i
{ĝiη̂i(ĝi)} (A.31)

As an example of the application of this formula suppose that planners’ utility functions

are iso-elastic with elasticities of marginal utility ηi, i.e., (U i)′(c) = c−ηi . In addition,

assume that consumption growth is asymptotically log-normally distributed, i.e.,

log g ∼ N (µ, σ2).

From (A.29) planner i’s certainty equivalent long-run growth rate ĝi is thus defined by

requiring that at large s,

e−ηiĝis(cτ )
−ηi ≡ Ege

−ηigs(cτ )
−ηi = e−(ηiµ− 1

2
η2i σ

2)s(cτ )
−ηi

⇒ ĝi = µ− 1

2
ηiσ

2

Since elasticities of marginal utility are constant by assumption we know that η̂i(ĝi) = ηi,

and thus the consensus long-run SDR in this example is given by

ρ̂+ min
i
{µηi −

1

2
η2
i σ

2}.
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E Proof of Proposition 2

Part 1 of the proposition is immediate from point 4 in our statement of the Perron-

Frobenius theorem in Proposition A.I. Part 2 of the proposition follows from the fact

that the eigenvalues of a matrix are continuous in its entries. Consider a set of N ‘dog-

matic’ models, in which each planner assigns weight only to her own theory in future

periods. This set of N independent planners’ time preferences can be represented as a

single non-dogmatic set of N planners as in (12), but where f ijs = 0 if j 6= i. As in the

proof of Proposition A.I, begin by considering a model of finite order M , so that no planner

places any weight on any IWF more than M years ahead. Equation (A.16) shows that the

asymptotic behaviour of such a model can be described by first order difference equations

of the form:
~Y j
s = Φ0

M
~Y j
s−1.

In this case however, the matrix Φ0
M , defined in (A.15), is reducible. The largest eigenvalue

of Φ0
M is the rate of decline of the utility weights of the most patient dogmatic planner in

the long-run. As M → ∞, the set of eigenvalues of Φ0
M contains µ̂i1, the long-run utility

discount factor of planner i, and all eigenvalues of Φ0
M are less than or equal to maxi{µ̂i1}.

Now consider the continuous set of models with weights f ijs (ε), where ε > 0. Let

ΦM(ε) be the corresponding ΦM matrix for this set of models, where by assumption

limε→0+ ΦM(ε) = Φ0
M . The consensus long-run discount factor in model ε of order M ,

denoted µ1(ε,M) is the largest eigenvalue of ΦM(ε). Define

µ̂1(ε) = lim
M→∞

µ1(M, ε).

We know that this limit exists, due to the proof of Proposition A.I. Since the matrix ΦM(ε)

is continuous in ε > 0, and in the limit as M →∞ the largest eigenvalue of ΦM(0) = Φ0
M

is equal to maxi{µ̂i1}, we must have

lim
ε→0+

µ̂1(ε) = max
i
{µ̂i1}.

Since ρ̂(ε) = − ln µ̂1(ε) by definition, the result follows.
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F Comparative statics of the consensus long-run pure

rate of social time preference

It is naturally of interest to ask how the consensus long-run pure rate of social time prefer-

ence ρ̂ depends on the intertemporal weights f ijs . Unfortunately strong comparative statics

results on this question are likely out of reach. Technically, we need to understand how the

spectral radius (i.e., largest eigenvalue) of the matrices ΦM from Proposition A.I behaves

when we spread out or contract the distribution of weights f ijs . In order to sign the effect of

a spread in the weights we require something akin to a convexity property for the spectral

radius. Unfortunately, it is known that the spectral radius of a matrix is a convex function

of its diagonal elements, but not of the off-diagonal elements (Friedland, 1981).2

This section describes a special case of the model in which clean comparative statics are

possible. Assume that planner i’s intertemporal weights f ijs depend on a parameter λi ⊂
R+, i.e., f ijs = f ijs (λi). Let ~λ = (λ1, . . . , λN) be the vector of planners’ λ parameters, and

assume that ~λ takes values in a convex subset of RN+. Using the notation of Proposition A.I

we write the matrix of weights f ijs at a fixed value of s as Fs(~λ), where we now emphasize

the dependence of these weights on the parameter vector ~λ. We will say that preferences

are symmetric in ~λ iff for all permutation matrices3 P,

Fs(P~λ) = PFs(~λ)PT (A.32)

for all s, where PT is the transpose of P. Intuitively, if preferences are symmetric in
~λ, switching any two planners’ values of λ is equivalent to switching their entire set of

intertemporal weights, as this induces a permutation of the weight matrix Fs(~λ). The pa-

rameters λi are thus ‘sufficient statistics’ for planners’ intertemporal weights, and switching

λi ↔ λj is equivalent to relabelling i↔ j.

As an example of preferences that are symmetric in ~λ consider the following:

f ijs =

{
β(s, λi)xs j = i

β(s, λi)
1−xs
N−1

j 6= i
(A.33)

2Similarly, it is not possible to sign the effect of premultiplying ΦM by a doubly stochastic matrix, as the
spectral radius of a product of two matrices is not sub-multiplicative in general. Gelfand’s formula shows
that the spectral radius of a matrix product is sub-multiplicative if the matrices in question commute, but
this is not much use for our purposes.

3A square matrix is a permutation matrix if each of its rows and each of columns contains exactly one
entry of 1, and zeros elsewhere.
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where xs ∈ [1/N, 1) for all s = 1 . . .∞, and
∑∞

s=1 β(s, λ) < 1 for all λ ∈ I ⊂ R+. In this

model the time dependence of planners’ intertemporal weights f ijs has a common functional

form, given by a discount function β(s, λ) on the IWF of selves s years in the future, where

λ > 0 is a parameter. Variations in planners’ attitudes to time are solely due to differences

in their values of λ. The parametric model defined in (22), which we used in Section IV of

the paper, is of this form if γi = γ for all i.

Let ρ̂(~λ) be the consensus long-run pure rate of time preference in a model that is

characterized by the parameter vector ~λ.

Proposition A.II. Assume that planners’ time preferences are symmetric in ~λ and that

f ijs (λ) is strictly log-convex in λ > 0 for all i, j, s. Then if the parameter vector ~λA ma-

jorizes4 ~λB,

ρ̂(~λA) < ρ̂(~λB).

In words, this result says that if preferences are symmetric in ~λ, intertemporal weights

are log-convex functions of λ, and planners in group A disagree more about the parameter

λ than planners in group B, the consensus long-run pure rate of time preference will be

lower in group A than in group B.

I will provide some interpretation of the log-convexity condition in examples below, but

first we turn to the proof.

Proof. The proof relies on the following result due to Kingman (1961): Let bij(θ) ≥ 0 be

the elements of a non-negative matrix B, where θ ∈ R is a parameter. If bij(θ) is log-

convex in θ for all i, j, the spectral radius of B is a log-convex function of θ. Remark 1.3

in Nussbaum (1986) observes that Kingman’s result can be extended as follows: Let ~θ be

a vector of parameters that takes values in a convex set, and assume that the elements

bij(~θ) ≥ 0 of a matrix B are log-convex functions of ~θ. Then the spectral radius of B is

log-convex is ~θ.

We will employ the usual trick of working with finite order models first (i.e., setting

f ijs to zero for s > M), and taking a limit as M →∞ at the end. The consensus long-run

pure rate of time preference in a model of order M is determined by the largest eigenvalue

of ΦM , defined in (A.15). Denote this eigenvalue by µ̂M(~λ). If the matrix elements f ijs (λ)

are log-convex functions of the scalar variable λ, then f ijs (~λ) = f ijs (λi) is also a log-convex

4~λA majorizes ~λB iff there exists a doubly stochastic matrix H such that ~λB = H~λA. Intuitively, the
elements of ~λA are ‘more spread out’ than those of ~λB , and the sums of their elements are equal. See
e.g. Marshall (2010) for a discussion of majorization and its relationship to e.g. stochastic orders and
inequality measures.
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function of the vector of parameters ~λ. Thus, if f ijs (λ) is log-convex (or identically zero)

for all i, j, s, µ̂M(~λ) is a log-convex function of ~λ.

The final step of the proof is to observe that because of the symmetry of the set of

intertemporal weights in (A.32) the spectral radius must be a symmetric function of ~λ, i.e.,

any permutation of the elements of ~λ will leave the spectral radius unchanged. This follows

since the eigenvalues of a matrix are invariant under the permutations (A.32). Since µ̂M(~λ)

is a log convex, symmetric function of ~λ, its log is Schur-convex. Since µ̂M(~λ) = e−ρ̂M (~λ),

this implies that ρ̂M(~λ) is Schur-concave in ~λ. Thus by the properties of Schur-concave

functions, if ~λA majorizes ~λB we must have

ρ̂M(~λA) < ρ̂M(~λB).

The final result follows by taking the limit as M →∞.

As an initial example of the application of this result, consider a model in which the

discount function β(s, λ) in the example in (A.33) declines exponentially, i.e.,

β(s, λ) = (1 + λ)−s .

This discount function satisfies log β(s, λ) = −s log(1 + λ), which is strictly convex in λ.

Thus the result applies – more disagreement about the parameter λ decreases the consensus

long-run pure rate of social time prefenence.

We can extend this finding to a more general class of models by assuming that β(s, λ) =

β̃(λs), i.e., the parameter λ acts to rescale the time variable s. Following Prelec (2004) we

will say that β̃(s) exhibits decreasing impatience if log β̃(s) is a convex function of s for

s > 0. Discount functions that exhibit decreasing impatience have the form β̃(s) = e−h(s)

where h(s) is a concave function. The rate of increase of h(s) (which measures impatience)

slows as the time horizon s increases.

Corollary 1. Assume that β̃(s) exhibits decreasing impatience, and that the parameter

vector ~λA majorizes ~λB. Then

ρ̂(~λA) < ρ̂(~λB).

Thus, for example, in a hyperbolic model (see e.g. Prelec, 2004) we would have

β̃(s) = (1 + s)−(1+p) ⇒ β(s, λ) = β̃(λs) = (1 + λs)−(1+p)
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where p > 0 is a parameter. β̃(s) is log convex in s, so more disagreement about λ reduces

the consensus long-run pure rate of time preference in this model.

G Details of calibration

The data I use to calibrate the model and generate the results in Figures 1a and 1b are

taken from a recent survey by Drupp et. al. (2018). They surveyed expert economists who

have published papers on social discounting, asking for their opinions on, amongst other

things, the appropriate values of the pure rate of social time preference and the elasticity

of marginal social utility. The distribution of respondents’ views on these two parameters

is plotted in Figure F.2.

The calibration assumption I use is that the data in Figure F.2 correspond to ‘dogmatic’

views on the IWF, and in particular that these data correspond to the parameters of a

discounted utilitarian IWF with iso-elastic utility function. This assumption is consistent

both with the survey authors’ description of what they aim to elicit in their survey, and

with the participants’ responses. See footnote 19 of the main text for further explanation.

The calibration is made slightly delicate by the fact that there is no version of the

model in (12) in which planners place non-zero weight on all future selves that reduces

to a discounted utilitarian IWF. I calibrate the parametric model in (22) so that when

the weight on own preferences x = 1, planners’ time preferences can be represented by a

function that is a close approximation to a discounted utilitarian IWF, but still assigns

non-zero weight to all future selves.

To calibrate the values of γi, αi in (22), I use the fact that when x = 1 the model

reduces to a set of N independent intertemporal preferences of the form:

V i
τ = U i(cτ ) + γi

∞∑
s=1

(αi)
sV i

τ+s, (A.34)

where αi ∈ (0, 1) and γi ∈ (0, 1−αi
αi

). These time preferences have been studied by Saez-

Marti & Weibull (2005), and axiomatized by Galperti & Strulovici (2017). It is straight-

forward to show that they have the following equivalent representation:

V i
τ = U i(cτ ) +

∞∑
s=1

κsi

(
1 + γi
γi

)s−1

U i(cτ+s), where κi = αiγi. (A.35)
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Figure F.2: Experts’ recommended values for the pure rate of social time preference (ρi),
and the elasticity of marginal utility (ηi) for appraisal of long-run public projects, from the
Drupp et. al. (2018) survey. 173 responses were recorded. The dashed box depicts data
points that fall inside the 5− 95% ranges of both parameters. The red cross indicates the
location of the median values of ρi and ηi.

Writing out the sequence of intertemporal utility weights in this model explicitly,

1, κi,

(
1 + γi
γi

)
κ2
i ,

(
1 + γi
γi

)2

κ3
i ,

(
1 + γi
γi

)3

κ4
i , . . . , (A.36)

it is clear that if we take the limit as γi → ∞ of this model holding κi fixed, we recover

discounted utilitarian time preferences with discount factor κi. For any finite γi the pref-

erences in (A.35) are quasi-hyperbolic, with a short run pure time discount factor given by

κi, and a long-run pure time discount factor given by
(

1+γi
γi

)
κi.

Recall that the data in Figure F.2 correspond to the parameters of a discounted util-

itarian IWF, and that our calibration assumption is that these data correspond to the
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x→ 1 limit of the non-dogmatic model (22). The sequence in (A.36) shows that to ensure

consistency with the calibration assumption we must calibrate κi so that

κi = e−ρi , (A.37)

where ρi is survey respondent i’s recommended value for the pure rate of social time prefer-

ence. In addition, we must choose γi sufficiently large that the model closely approximates

discounted utilitarian time preferences. Notice from (A.36) that the discount factor of

planner i for s > 1 is given by

(1 + γ−1
i )κi ≈ e−(γ−1

i +ρi)

when γ−1
i is small. Thus γ−1

i = 1%, for example, corresponds to an additional 1%/yr

discount rate on the long-run future, over and above the short run discount rate ρi. Thus

if γ−1
i is too large, the model will provide a poor fit to a discounted utilitarian IWF when

x = 1, since non-dogmatic planners will exhibit sharply quasi-hyperbolic time preferences

in this case. To ensure that the model is a close approximation to discounted utilitarianism

when x = 1, but also that all planners place non-zero weight on all future selves’ IWFs

(which requires γi be finite), we must pick γ−1
i to be small but non-zero for all i, i.e.,

γ−1
i ≈ 0.1%. The numerical results presented in the paper are robust to heterogeneity in

γ−1
i , provided that none of these parameters is too large relative to respondents’ pure rates

of social time preference. As stated, γ−1
i must be small if the calibrated model is to provide

a good approximation to discounted utilitarian IWFs at x = 1.

In addition, I assume in line with Drupp et. al. (2018) that planners’ utility functions

are iso-elastic, i.e.,

U i(c) =
c1−ηi

1− ηi
(A.38)

for some ηi > 0. This implies that the elasticity of marginal utility is constant and equal

to ηi, and I simply calibrate ηi to be each respondent’s preferred value of this elasticity.

The requirement that the calibrated model provide a close approximation to discounted

utilitarian IWFs in an appropriate ‘dogmatic’ limit implies that the results depicted in

Figure 1a are robust to alternative specifications of the weights wijs for s > 1. The reason

for this is that, as discussed above (and as is evident from (A.36)), in order for the model

to closely approximate discounted utilitarian IWFs at x = 1, the calibrated values of γi

must be large, which in turn implies that the values of αi must be correspondingly small
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since κi = e−ρi = γiαi, where ρi is the observed pure time preference rate recommendation

of respondent i. Now notice that the models in (22) can be written as

V i
τ = U i(cτ ) + γi

[
αi

N∑
j=1

wij1 V
j
τ+1 + (αi)

2

N∑
j=1

wij2 V
j
τ+2 +O((αi)

3)

]
.

Since (αi)
s � αi for all s ≥ 2 if αi � 1, it does not much matter how the weights wijs

behave for s ≥ 2. Even if a weight x is given to current preferences at every future maturity,

i.e.,

wijs =

{
x i = j

1−x
1−N i 6= j

(A.39)

for all s ≥ 1, the results of the simulations hardly change.5

H Changing the model’s time step

This section of the appendix describes how to transform the parameters of the model used

in Figure 1 when the time step is changed.

For the version of the model in question planners’ time preferences took the form

V i
τ = U i(cτ ) + γi

[
αi

N∑
j=1

(P)i,jV
j
τ+1 + (αi)

2

N∑
j=1

(P2)i,jV
j
τ+2 +O((αi)

3)

]

where P is the annual transition probability matrix defined in (22), which depends on the

parameter x, i.e., the chance of a preference change in a year.

If the model’s time step is changed from 1 year to ∆T > 0 years the values of all its

dynamical parameters must change as well. Consumption growth rates are multiplied by

∆T , and, as in the calibration methodology set out in Section G above, the values of αi

and γi must be recalibrated so that:

κi = αiγi = e−ρi∆T ,

γ−1
i ≈ 0.1%×∆T

Transforming the matrix P is more complex. To make the version of the model with time

5Planners with beliefs (A.39) do not obey the consistency condition (14), but this has no relevance for
this discussion.
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step ∆T comparable to the original annual model, we need to find a stochastic matrix Q

such that

Q = P∆T . (A.40)

When ∆T is not a positive integer (e.g., if ∆T = 1/12 for a monthly time step) such

matrix equations may have no solution, or multiple non-negative solutions. However, in

our case the structure of the model ensures that there is a natural ‘∆T th power’ of P for

any ∆T > 0, and for all interesting values of the parameter x.

Begin by observing that the eigenvalues of P are 1 (with algebraic multiplicity 1)

and Nx−1
N−1

(with algebraic multiplicity N − 1), and are thus positive provided that x >

1/N .6 Matrices with positive eigenvalues have a unique ‘principal power’ that satisfies

the equation (A.40) and itself has positive eigenvalues (see e.g., Horn & Johnson, 2013).

It is essential that transforming the time step of the model does not change the signs of

the eigenvalues of the model’s transition probability matrix. If this were not the case the

qualitative dynamics of preference change would not be preserved under a change of time

step. One could, for example, find that planner’s intratemporal weights wijs oscillate with

maturity s, where no such behaviour existed before.

Since P is diagonalizable, it can be written as

P = VDV−1

where

V =



1 −1 −1 . . . −1

1 1 0 . . . 0

1 0 1 . . . 0
...

...
...

. . .
...

1 0 0 . . . 1


is a matrix whose jth column corresponds to the jth eigenvector of P, and D is a diagonal

matrix of corresponding eigenvalues, i.e., (D)1,1 = 1, (D)j,j = Nx−1
N−1

for j 6= 1. The principal

∆T th power of P is given by

Q = VD∆TV−1.

for any ∆T > 0.

Consider the case ∆T = 1/12, corresponding to a model with a monthly time step. It

6The case x < 1/N is not plausible.
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Figure F.3: Replication of Figure 1a in the paper for a monthly time step. To facili-
tate comparison with Figure 1a monthly discount rates have been converted to annual
equivalents (vertical axis), and the horizontal axis is scaled to years, rather than months.

is clear from the definition in the previous equation that raising Q to the twelfth power

yields the original matrix P, and that Q has positive eigenvalues. The matrix Q is the

only 12th root of P that has these properties.7

Figure F.3 presents an analogue of Figure 1a in the paper, however this time I have

calibrated the model with a monthly time step using the procedure outlined above. The

figure shows that there is no appreciable difference between versions of the model defined at

different time steps provided that the model parameters are adjusted to reflect the change

in time step.

Finally, I note that any version of the model defined with a discrete time step can be

7Other solutions of (A.40) have the same basic form as Q however we may replace any of the entries on
the diagonal of D1/12 with any of the twelve complex roots of the corresponding eigenvalue of P. As there
is only one way of choosing these roots so that they are all positive (and real), there is a unique ‘principal
power’ of P.
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thought of as an approximation to an underlying continuous model. Preferences could

change at any instant, and there is some underlying infinitesimal transition probability

matrix that could describe this continuous Markov process. But any discrete approximation

of this process, at any temporal resolution, is legitimate – any behaviour of the continuous

process, when aggregated up to a discrete time step ∆T by exponentiating the infinitesimal

transition matrix, can be replicated by an ‘ab initio’ discrete model with time step ∆T .

We lose nothing (at resolution ∆T ) in this discrete approximation, although the entries of

the discrete transition probability matrix (and hence the weight x) will differ according to

the magnitude of ∆T .

I Decomposing non-dogmatic SDRs

This section studies the resolution of disagreement about the two components of the SDR

– pure time preference and the consumption growth/inequality aversion term – separately.

It shows that much of the rapid convergence of SDRs with maturity shown in Figure 1a is

due to exponential convergence in the consumption growth term.

Section C of the appendix showed that the set of IWFs consistent with (12) can be

represented by

V i
τ =

∞∑
s=0

N∑
j=1

aijs U
j(cτ+s),

where the coefficients aijs are determined by the difference equations in (A.11), and aii0 =

1, aij0 = 0 if i 6= j. Planner i’s SDR at maturity s is

ri(s) = −1

s
ln

(∑N
j=1 a

ij
s (U j)′(cτ+s)

(U i)′(cτ )

)

We decompose this expression into a pure time preference term and a consumption growth

term. Defining

ρ̃i(s) = −1

s
ln

(
N∑
j=1

aijs

)
(A.41)

Gi(s) = −1

s
ln

 ∑N
j=1 a

ij
s (U j)′(cτ+s)(∑N

j=1 a
ij
s

)
(U i)′(cτ )

 . (A.42)
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we have

ri(s) = ρ̃i(s) +Gi(s). (A.43)

To understand the meaning of ρ̃i(s), notice that
∑N

j=1 a
ij
s is the total weight on utilities at

maturity s in IWF i, i.e., it is a pure time discount factor. Hence ρ̃i(s) is IWF i’s pure

rate of social time preference at maturity s. To interpret Gi(s) it is helpful to consider the

case where the utility functions U i(c) are iso-elastic as in (A.38). Denoting the compound

annual consumption growth rate at maturity s by gs, we have8

Gi(s) = −1

s
ln

(∑N
j=1 a

ij
s e
−ηjgss∑N

j=1 a
ij
s

)
. (A.44)

Consider a hypothetical case in which planners have no normative insecurity, i.e., aijs = 0

for all j 6= i; in this case we see that Gi(s) = ηigs, and we recover the familiar consumption

growth term in the Ramsey rule. Gi(s) is the generalization of this term to the non-

dogmatic case, i.e., it is the contribution to the discount rate from consumption growth

and inequality aversion. Figure F.4 plots the range of values for ρ̃(s) and G(s) as a function

of maturity for the model calibration described in Section G of the appendix. The figure

shows two important things. First, disagreements about the consumption growth term are

significantly larger, and thus quantitatively more important, than disagreements about the

pure rate of social time preference.9 Second, although the range of values for G(0) is larger

than that for ρ̃(0), disagreements about this term reduce substantially faster as maturity

s increases. The expression for Gi(s) in (A.44) suggests why this occurs. The argument of

the log in this expression is a weighted sum of exponential functions, and thus converges

exponentially fast to e−minj{ηjgs}s as s increases. For example, if consumption growth is a

constant 2%/yr, and we take η = 2 as a modal value of η, and η = 0.05 as the smallest

value of η, at a maturity of 50 years we have e−2×0.02×50 = 0.13, and e−0.05×0.02×50 = 0.95.

Thus values of ηigs that differ substantially from minj{ηjgs} receive little weight at long

maturities, causing the values of G(s) to converge rapidly.

To relate variation in the components ρ̃(s) and G(s) back to variation in the SDR

8For convenience in this calculation we have chosen units so that current consumption cτ = 1. This is
without loss of generality.

9The reader may wonder why the ranges for ρ̃(s) and G(s) depicted in Figure F.4 do not sum to the
range for r(s) in Figure 1a. The answer is that the ranges in Figure F.4 are properties of the marginal
distributions of ρ̃(s) and G(s), while the range of their sum r(s) depends on the joint distribution of these
two quantities. Figure F.4 demonstrates how disagreements about these two independently meaningful
quantities reduce as a function of maturity.
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r(s) = ρ̃(s) +G(s), we make use of the fact that

Var r(s) = Var ρ̃(s) + Var G(s) + 2Cov{ρ̃(s), G(s)}. (A.45)

Figure F.5a breaks the total variance in r(s) into each of these three components at each

maturity, for the illustrative case x = 97.5%. This figure confirms that much of the

variation in r(0) derives from variation in the growth term G(0), but that as maturities

increase disagreements about this term rapidly evaporate. Figure F.5b plots the ratio
Varρ̃(s)

Varr(s) as a function of s for a range of values of x, showing that for all these parameter

values almost all the remaining variation in r(s) for s > 50 is attributable to variation in

ρ̃(s) – we have almost complete convergence on the dominant G(s) term at these maturities.
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