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A. Appendix

In this appendix, we provide full derivations for all the results in the main text. The title
of each subsection below indicates the particular equation(s) derived in that subsection. To
make it easier to read this appendix without having to go back and forth to the main text,
we reproduce the key equations to be derived as propositions and also rewrite any equations
from the main text that are needed; these equations are assigned the same numbers as in

the main text.

A.1. The certainty equivalent in (6)

Definition A.1.1 A certainty equivalent amount of a risky quantity is the equivalent risk-

free amount in static utility terms, i.e.

(A1) Uy, (Nhﬂf [Uh,t+dt]) =E; [u’Yh(Uh,t-f—dt)]a

where wy, (+) is the static utility index defined by the power utility function?

z!~h
(A2) U, (.CC) — T— Y >0, Y 7& 1
h
hll', Th = 1)

and the conditional expectation Ey[-] is defined relative to a reference probability measure P.

Proposition A.1.1 The date-t certainty equivalent of household h’s date-t + dt utility is

(5)
Un,t

Proof: The definition of the certainty equivalent in (A1) implies that

given by

1
(6) it [Uni+dt] = Et[Ungvar) — 5 Unt By

1 1
,Uh,t[Uh,tert] =F, [Uﬁ,ﬁ'&t} = _ E, [Ué;“/h + d(Ui;%)] =
Applying Ito’s Lemma, we obtain

_ _ 1 oy
AU = (1= ) Uyl — 5 (1= Uy g (dU)?

In continuous time the more usual representation for utility is given by Ju,, where J, , = Uy, (Unot),
with the function ., defined in (A2).
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1—
= (1 — ’}/h)UhytPYh

2 Un,t

dUp; 1 dUp.. \
Uh7t 2’7}1 7

Therefore,

14+ (1 =)

[dUne 1 (dUn;
_Uh,t 2 " Unt

1
] ) a
Un,t '

Hence, expanding the above expression, and using the notation g = o(dt) to denote that

1
tht U t+ar) = Et [U;;:Zt} R = Uy (Et

E; >

= Upy <1 + (1 =)

[ dU}, ¢ 1
Z | — =y, F
i Uh,t } YLt

g/dt — 0 as dt — 0, one obtains:

dUy, 1 AU+ \ 2
Pt Untrdt) = Ung | 1+ By [ ’t] — =k < ’t> + o(dt),
Un,t 2 Un,t
which, in the continuous-time limit, leads to the expression in (6). |

A.2. The familiarity-biased certainty equivalent in (8)

While (8), giving the familiarity-biased certainty equivalent, is given as a definition
within the main text of the paper, we can derive it from more primitive assumptions. To

do so, we need additional definitions and lemmas.
We start by defining the measure Q¥~.

Definition A.2.1 The probability measure Q¥ is defined by

Q" (A) = E[La&nr],

where E is the expectation under P, A is an event realized at date T, and &, is the expo-

nential martingale (under the reference probability measure P) given by

dfh t 1 T ~—1
=t — 0 tdz
Enit Uyh’t b

where Q = [Qum] is the N x N correlation matriz of returns on firms’ capital stocks

1, n=m
Q — bl bl
o {p, n#m,
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and

Zi=(Z14y.. Zng) "

Recall that when a household is less familiar with a particular firm, it adjusts its expected
return, which is equivalent to changing the reference measure to a new measure, denoted by
Q¥~. Applying Girsanov’s Theorem, we see that under the new measure Q¥”, the evolution

of firm n’s capital stock is given by
dKn,t = [(Oé + th,t)Kn,t — Dn,t]dt =+ O'KmtdZ,:’}%,
where Z;f’ht is a standard Brownian motion under Q¥*, such that

dt, n=m.
dz’"dz"r, = !
n,tmem.t { pdt, n #m.
Before motivating the definition of the penalty function, we make the following addi-
tional definition, so we can measure information losses stemming from biases with respect

to a specific firm.

Definition A.2.2 The probability measure Q"»n is defined by

Q" (A) = E[La&nn,T);

where E is the expectation under P, A is an event realized at date T, and &y is the
exponential martingale (under the reference probability measure P) given by

déppe 1
— = *Vh,n,tdZn,t-
gh,n,t g

The probability measure Q" is just the probability measure associated with familiarity
bias with respect to firm n. Familiarity bias along this factor is equivalent to using Q"»n
instead of P, which leads to a loss in information. The rate of information loss stemming
from familiarity bias with respect to firm n can be quantified via the Kullback-Leibler

divergence (per unit time) between P and Q"»», given by

2
1y
DEL[P|QYrn] = 5 072”.

We can now think about how to measure the total rate of information loss from famil-

iarity biases with respect to all N firms. We can form a simple weighted sum of the date-¢
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conditional Kullback-Leibler divergences for familiarity bias with respect to each individual

firm, i.e.,

N
Lyt =Y Wya D" [PIQ],
n=1
in which W, ,, is a household-specific weighting matrix. We can think of the matrix W, ,,
as a set of weights for information losses, analogous to the weights used in the generalized

method of moments.

The choice of weighting matrix depends on how a household weights information losses,
which we assume depends on the household’s level of familiarity bias. For illustration,
consider the simple case where W, ,, = ﬁﬁ, p = 0 so shocks to firm-level returns are
mutually orthogonal, and the household A is completely unfamiliar with all firms save firm

1. In this case,

f1 -1
W, =40 =0 "7
o { 0, n#l

Our expression for total rate of information loss from familiarity biases with respect to all

N firms then reduces to

> h

Ly, = ——=—DEL[p|Qvr1].
R [P|Q"1]

So, we can see that if a household is completely unfamiliar with a particular firm, the
information loss associated with deviating from the reference measure P is assigned a weight
of zero. The more familiar a household is with a firm, the greater the weight on the

information loss for that firm caused by deviating from the reference measure.

Motivated by the above discussion, we now define a penalty function for using the

measure Q¥ instead of P.

Definition A.2.3 The penalty function for household h associated with its familiarity bi-

ases 1s given by

A

1
L= —v) T vy,
h,t 202 htth Yhit

We can see that information losses linked to the firms with which the household is totally

unfamiliar are not penalized in the penalty function. The household is penalized only for
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deviating from P with respect to a particular firm if it has some level of familiarity with
that firm. If it has full familiarity with a firm, the associated penalty becomes infinitely
large, so when making decisions involving this firm, the household will not deviate at all

from the reference probability measure P.

Theorem A.2.1 The date-t familiarity-biased certainty equivalent of date-t + dt household
utility is given by

(A3) 1y ¢ Un t+at] = B, ¢[Unt+at] + UntLp1dt,

where ﬁz,t[Uh,Hdt] is defined by

(A4) wy (4 [Ungar]) = B [y Unagar),
and
T -1
1 Vhﬂgrh Upt 1.
(A5) Lpy=———5—— = ~Lny,
Y o 8
where vy = (Vpig, - - -, I/hN’t)T is the column vector of adjustments to expected returns, and

L'y, = [Lhnm) is the N x N diagonal matriz defined by

l_fhn —
, n=m,
Fh7nm = { f6n n # m

and fry € [0,1] is a measure of how familiar the household is with firm, n, with fp, = 1

implying perfect familiarity, and fr, = 0 indicating no familiarity at all.

Proof: Using the penalty function given in Definition A.2.3, the construction of the familiarity-
biased certainty equivalent of date-t+dt utility is straightforward—it is merely the certainty-
equivalent of date-t 4 dt utility computed using the probability measure Q*» plus a penalty.
The household will choose its adjustment to expected returns by minimizing the familiarity-
biased certainty equivalent of its date-t + dt utility—the penalty stops the household from
making the adjustment arbitarily large by penalizing it for larger adjustments. The size
of the penalty is a measure of the information the household loses by deviating from the

common reference measure, adjusted by its familiarity biases, and so

i tUnevd) = gy 4[Unytrae] + Un gL dt,
where 17 ,[Up 144 is defined by (A4) and Ly, is given in (A5). |

Equation (8) follows from Theorem A.2.1, so we restate the equation formally as the

following corollary before giving a proof.
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Corollary A.2.1 The date-t familiarity-biased certainty equivalent of date-t +dt household
utility is given by

vy tﬂ'h,twh,t + —
Unt ’

-1
WhiUw,, -+ 1 V;Itfh Upt "
29n o2 ’

(8)  wp 1 [Untrat]l = pnt[Untrae) + Uny X (

where Uw, , = gvl{,’;it is the partial derivative of the utility of household h with respect to its

wealth.

Proof: The date-t familiarity-biased certainty equivalent of date-t 4+ dt household utility is
given by (A3), (A4), and (A5). We can see that [} ,[Up4a] is like a certainty equivalent,
but with the expectation taken under Q"» in order to adjust for familiarity bias. From

Lemma A.1.1, we know that

. v, [dU 1 AU \?
1 ¢ [Unt+dt] = Ung (1 +EX" [ Uhhﬂ = 5mE ( U::) ) + o(dt).
We therefore obtain from (A3)
v, [dU 1 AU\
(AG) NZt[Uh,t—&—dt] == Uh,t 1 + E;Q " |: h’t:| — *'YhEt < hi) + Lh’tdt + O(dt).
’ Unt 2 Un,t

Applying Ito’s Lemma, we see that under Q¥*,

AUpy = Why

OUp ¢ dWh,t_i_} o ?Upy (dWhy 2
OWny Why 20 MTOWZ, \ Wiy )

where

dWV N N
Wihvt = (1 - thn,t) idt + thn’t ((a + vp)dt + angth) — cpdt.
hyt

n=1 n=1

Hence, from Girsanov’s Theorem, we have

v [ dUny dUht] Wi OUp
EX" H=F b Rt
¢ [ Unt ] ! [ Unt Unt OWh 4

Wh,tiB;ch,tdt.
We can therefore rewrite (A6) as

AUp ¢
Un,t

Wht OUp 4
Unt OWh

1 dUht>2
— ZwE ’
} Yhta ( Uh,t

5 + Ly dt +

th ¢ [Ung+dt] = Uy (1 + Ey [ ™ h,tiU;,ch,tdt> +o(dt).
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Using (6) we obtain

Wit OUp LB 1 Vhtrh Vp
T :I? 1%
Upy OWpy WHht70t

v h,t
th e lUntvat) = pni[Ungirar] + Uny ( ) dt + o(dt),

2 o2

and hence (8). [

A.3. The Bellman Equation and Mean-Variance Choice in (11) and (12)

We state the Hamilton-Jacobi-Bellman equation as the following proposition.

Proposition A.3.1 The utility function of a household with familiarity biases is given by

the following Hamilton-Jacobi-Bellman equation:

Cht) 1 [dUht]
AT 0=sup| dpu ~ )+ sup inf v ’ 7
( ) C}B( o (Uht Whtyghtyht Uhtuht dt

)

where the function

and

o [AUn ] = i ¢ [Unytrae — Unitl = w4 [Ungtdt] — Une,s

with py] ; [Un,t+at] given in (8).

Proof: Writing out (10) explicitly gives

-+ 1- 1L
Uh,t Yo (1 _ 6—6hdt)cht wh + e~ Ondt (Mz,t[Uh,t—I—dt]) Un

where for ease of notation sup and inf have been suppressed. Now,

_ 1 _ 1
(M'ﬁ,t[Uh,Hdt])l n = (Unt +MZ,t[dUh,t])1 h

1
AU 1\ on
Uy (14| t])

Up,
— U;ﬁ <1 + ( 1; [dUhtD + o(dt).
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Hence,
_ 1 1—-L 1—-L 1 dU 1—-L
Uy, " = 0nCy, " dt+ U, , " (1 + <1 — W) [t [ Uhh:D — 6pU,, " dt + o(dt),

from which we obtain (AT). [

Equations (11) and (12) are obtained from the following proposition by setting p = 0.

Proposition A.3.2 The household’s optimization problem consists of two parts, a mean-

variance optimization

sup inf MVh (ﬂ-h,tv wh,t’ Vhi))

Th,tyWh,t Yht

and an intertemporal consumption choice problem

C C
(11) 0 = sup | 9y Uy, ( h7t) - sup inf MV, (7, whe, Vny) |
Ch.t Uh»t Wh,t Th,ty Wh,t Yhit
where
(12)

T -1
L v Ly vy

1
2 92 T T

— Yo s sk STt Vp T +
Y h,t*h,t ) h,t'th, ) Z,Yh 0_2

MV(T(hﬂfv Whts Vh,t) =i+ (Oé - i)Trh,t - 92

Proof: Assuming a constant risk-free rate, homotheticity of preferences combined with
constant returns to scale for production implies that we have Up; = kW, for some

constant kp,. Equations (11) and (12) are then direct consequences of (8) and (A7). [

A.4. Adjustment to expected returns and portfolio choice in (13)—(16)

Proposition A.4.1 For a given portfolio, wy s = 7, 1xp ¢, adjustments to firm n’s expected

return are given by

WhUw, 1
#(7 - 1)"2 W Tyt Thng, 7€ AL, N}

A8 Uhnt = —
(48) it Unt frn

Proof: From (8), we can see that
inf Mz,t[Uh,tert]
Vnt

is equivalent to

. WhiUw,, 1
inf —————wv, 1T, +
Vh,t Uh t ’

)

T -1
——uvy I vy
2fyho-2 h;t h )
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The minimum exists and is given by the first-order condition,

9 [WhiUw,,
thﬂ: Uh,t

1
T T p—1 _
Vp 1 Tht&ht + 72%02 Vh,trh vht| = 0.

Carrying out the differentiation and exploiting the fact that F,:l is symmetric, we obtain

WhtUw, 1
0 = 2 h’tﬂ'htﬁcht+ 2F}71Vh,t'
Un,t R o
Hence,
o WhiUw, ,
Upt = =Yoo ———Lp T i®p;.
Uh,t
Therefore, we obtain (AS). [ |

Proposition A.4.2 For a given portfolio decision, the optimal adjustment to firm-level

expected returns is given by
(A9) Unt = —10° Dp ThaThs.

FEach household then faces the following mean-variance portfolio problem:
(A10)

1 1
: , T . 2.2 T
sup inf MV (mps, ®pe,vnyg) = i+ (o + SVntTht — D) The | — 7m0 Tt T 2Tt
Th,ts Th,t Yhot 2 2

Proof: Because household utility is a constant multiple of wealth, the expression for the
optimal adjustment to expected returns in (A8) simplifies to (A9). Substituting (A9) into

(12), we see that each household faces the mean-variance portfolio problem in (A10).

For the special case in which a household is fully familiar with all firms, I'j, is the
zero matrix, and from (A9) we can see the adjustment to expected returns is zero and
the portfolio weights are exactly the standard mean-variance portfolio weights. For the
special case in which the household is completely unfamiliar with all firms, each I'y,
becomes infinitely large and 7 = 0: complete unfamiliarity leads the household to avoid
any investment in risky firms, in which case we get non-participation in the stock market

in this partial-equilibrium setting. |

Proposition A.4.3 The optimal adjustment to expected returns made by a household with

familiarity biases is

(A11) v, = —(a—i)[I+ Q1 '1,
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where 1 is the N by 1 vector of ones. The optimal vector of optimal portfolio weights is

wyp, = wpxy, where

(A12) =02t
Th Ul/N
11

A13 Ty = — —qpn,

(413) S

O'%/N is the variance of the fully diversified portfolio i.e.
2

T+ (N 1),

o = (e 0 = %

and qy, is the following N by 1 vector,
(Al4) an=(1+(N=1)p)(Q+Ty) "1,
the entries of which have the following arithmetic mean

1
Hgh = NlTQh-

For the special case of p =0 used in the main text, we obtain equations (13), (14), and

(16) in the main text:

(13) v, = —(a—i) (1 — fp),
fn 1

14 z, =21,

(14 =

(16) = B2
Th 01N

where g, = %1Tfh.

Proof: Minimizing (12) with respect to vy, gives (A9). Substituting (A9) into (12) and

simplifying gives
: , L 9 o T
(A15) MV, =i+ (a—1i)m, — 3RO T T (Q+Tp)xp,.
We find @x; by minimizing a2w;(Q + I'n)xp, so we can see that xj; is household h’s

minimum-variance portfolio adjusted for familiarity bias. The minimization we wish to

perform is

1
min *CL';(Q + Fh) Ty,
xp 2
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subject to the constraint
17z, = 1.
The Lagrangian for this problem is
Ly = %m;(ﬂ +Th) @n + An(1—17@y),
where )\, is the Lagrange multiplier. The first-order condition with respect to xj, is
(Q+Th)xp, = Apl.
Hence

Tp = )\h(Q + Fh>711.

The first order condition with respect to A\, gives us the constraint
17z, =1,
which implies that
T 1717}
A= [1T(Q+Ty)" 1] .

Therefore, we have

Q4T g
1T (Q+Ty) 1 1Ty’

Tp
where gy, is defined in (A14). Hence

y = L+ =1)p
h=—— .
17q,

Substituting the optimal choice of x; back into mg(Q + I'y)xy implies that

mZ(Q + Fh)wh = Ap-

Therefore, to find the optimal 7, we need to minimize

1
MV, =i+ (a—i)mp, — §’Yh027rz)\h-
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Hence,

. . T .
Wh:iia—zleqh a—1 :1% i a—1 ’
An 02 Y o1+ (N=1p]  m G[1+ (N —1)p]

which gives us the result in (A12). Substituting (A12) and (A13) into (A9) and simplifying

gives (A1l). Settinng p = 0 in these expressions gives us the results in the main text.

We can express wy, = mpxp in terms of the familiarity-biased adjustment made to
expected returns:

jal 4y —11

1
wp=—0" 3

Th o

Substituting the expressions for the portfolio choices and the Lagrange multiplier Ay

into the mean-variance objective function with familiarity biases gives:

29, \oyN N
Hence

11 fa—i)\?
Al6 MVh:i—|—< ) Lhah -
( ) 29 O1/N 1

A.5. Mean-Variance Welfare in (19)
The following proposition summarizes results on how familiarity biases impact a house-
hold’s mean-variance welfare.

Proposition A.5.1 Mean-variance welfare evaluated using the portfolio policy which is

optimal in the presence of familiarity biases is given by

-\ 2
(A17) o (S0) (1 G = 17 - o).

P4
29, \ o1/N

The increase in mean-variance welfare from removing familiarity biases is given by

1 (a—i)? 9 9
(A18) E (Ul/N) ((th —-1)“+ Uqh) )
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N2
where 2“17;1 (G“J;) O‘Zh s the increase in mean-variance welfare obtained by first remov-

ing familiarity biases in the choice of composition of the subportfolio of risky assets, and

N\ 2

ﬁ (f&;) (pgn — 1)2 is the subsequent increase in mean-variance welfare obtained by re-

moving also familiarity biases in the capital allocation decision, i.e. the choice of which
g Y 4

proportion of wealth to invest in risky assets.

Proof: We start by giving both the mean-variance objective function in the presence of
familiarity biases and the mean-variance welfare function in terms of general, not necessarily

optimal, portfolio choices.

Mean-variance welfare is given as a function of the proportion of wealth invested in risky
assets, 7y, and the subportfolio of risky assets @, by (A15). Substituting in the household’s

decisions, given in (A12) and (A13) into the above expression and simplifying gives

. 1 (a—i\? iqTQqh
UM™Y (7h, ) :z+< ) [2Mqh—N b

2v \ o1/n +1701 |’
where
L
—1'01=1 N-—-1
~ +( )p
Defining
1T
o2, thQQh_ 2
gh — 71 qh
1m0l
we obtain

Setting p = 0 gives expression (19) in the main text.

Without familiarity biases, mean-variance welfare is given by

1 —i\°
Ué”vw,?,x%):H(“ ) |
O1/N

Hence, the increase in mean-variance welfare obtained from removing familiarity biases is
given by (A18).

We now study how mean-variance welfare changes when the biases in the subportfolio

of risky assets are eliminated, followed by eliminating the biases in the proportion of wealth
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invested in risky assets. Denote the biased portfolio choices by 7, and the unbiased

portfolio choices by 77,[{ =7y, + Ay, :cg =x + Axy, ie.

1l a—1
(A19) Th = —— 5 Mqh,
Th 01N
11
A20 Ty = — —qpn,
(420) = e
L a—i
(A21) W}?Zﬂ'h—f—ATrh:—QQ Z,
Yh Ul/N
1
(A22) z =) + Axy, = Nl.

Observe that

MVEe(mp, + Amp,xp + Axy) — MVE(mh, xp)
1 2

- —§’Yhf727rh [(:Bh + Awh)TQ(xh + Axyp) — wZth]

+ (a —i)Am), — %%02 [[(Wh + Amp)? — 7% (@ + Axy) T Qxy + Ay |
where %'yhUZTr%L [(a:h + Axp) " Q(x) + Axy,) — a:ZQa:h] is the change in mean-variance wel-
fare when the biases in the subportfolio of risky assets are eliminated, and (a0 — 7)Amy, —
o ? [[(mh + Amp)? — w2)(zh + Axy) T Q) + Azp)] is the change in mean-variance wel-
fare by then eliminating the biases in the proportion of wealth invested in risky assets.
Using the expressions in (A19), (A20), (A21), and (A22), it follows that

I o7, T T 1 (a—i)? 9
2 Azy) Q) + Azy) — -

5 ho [Wh[(thr zp) QUxn + Azp) mhfﬂh]] 29 \ouw Oahs

and
: Lo 2 2 T 1 (a—i)? 2
(@ — @) Amp — S0 [[(WhﬂLA?Th) — ) (®n + Axp)  Qxp +A$h)} =3 (tgh — 1)%.
Yh \O1/N

|

A.6. Optimal consumption in (20)

The following proposition summarizes results on optimal consumption choice.
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Proposition A.6.1 A household’s optimal consumption-to-wealth ratio is given by

_ i\ 2
(20) Cne _ ch = Yndp + (1 —y) (i-i- 11 (a Z) uqh> :

Whe 29, \o1Nn

Proof: Mean-variance utility subject to familiarity biases and with the household’s deci-

sions is given by (A16). Hence, we can rewrite (11) as

C
(A23) 0 = sup <5huwh <ht> —cp + MVy(7h, xp, Vh)> .
Ch,t Uht

)

The first-order condition with respect to consumption is

1
C T, 1 1
5 (> [ )
Un,t Unt  Why

Hence, we obtain

which implies that

C cn — YVpo
sup <5h Uy, <UZ7:§> —Cp + MVh(wh,a:h,uh)> = w

Cht

+ MV,

)

where Cj,+/W}, s is the consumption-wealth ratio chosen by household h and MV}, is her

resulting mean-variance utility subject to familiarity biases. It follows from (A23) that

-\ 2
ch = Ppop + (1 = Pp) MVy = pp + (1 — y) (2 + 11 (a — Z) uqh>

29, \o1N

from which one can get the expression in the text by setting p =0. B

A.7. Welfare in (21)

Proposition A.7.1 Welfare is given by a function of the proportion of wealth invested
in risky assets, mwy, the subportfolio of risky assets xy, and the consumption-wealth ratio,

ch = Chi/Why by

Unt = K (chy Thy p) Wiy,
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where

(21) Rp (Ch,ﬂ'h,wh) =K

_ [ Sntn ] 1*1@7 .
" Lndn + (= n) (UMY (my, 1) — cp) &

in which ¢, = Cht/Whyt. The impact of a one percent change in U,]l\/lv(ﬁh,wh) on the

percentage change in welfare is given by the following elasticity

=U T > 0.
A UMY (myy, ) " (T, 1)

(1 — —h) (UMV( , ) — ch)

The size of the above elasticity beyond one captures the size of the additional intertemporal

effect of a change in mean-variance utility on lifetime welfare.

The impact of a one percent change in the consumption-wealth ratio on the percentage

change in welfare is given by the following elasticity

dlnky, Yo + (1 — V) UMY (mh, ) — cn

On(cn) — Yndp + (1 — Pp) (UMY (mh, 1) — )

When removing familiarity biases the resulting percentage change in welfare is always pos-

o s, 01 A(cn) A(cn) : :
itive, i.e. 815(5:) o) > 0, where e ’5 1s the percentage change in the consumption-wealth

ratio.

Proof: We start from the recursive equation for welfare
Unt = A(Cht, int[Un t+dt))-

Hence

1 _ _ 11
(Unge) Pr=(1- 6hdt)0htwh + e (g [Upgyar]) o

1—-L 1—-L
= 0pdt(Chy) Un 4+ (1 = 6pdt)(Uny + pne[dUny))” ¥n

L __L dU, =
= 5yt (o) T+ (1 5ydt) (U ) (1+uh,t[Uh¢]> h
h,t

e (1) [ o)

dU, _1
hot [ ht} B 5hdt> — (Ung)' ™ + o(dt)

= 5hdt(0h,t) wh + (1 — (Shdt Uht

dU,
ht [ ht:| — 5hdt> + O(dt).
Un,t

1—ﬁ 1—-L 1
= 53C)y, "t + (Upa)' -

kﬁ 1L 1
0=0,C,, " dt+ (Upy) “n o
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Hence, in the continuous time limit, we obtain

1--L _1 1 1 d
0="0,Cy, " + (Uh,t)l ol —— Mht Unet| _ On| -
’ n dt

Treating Uy, as a function of W}, ;, we have via Ito’s Lemma

2 aQUh,t

a0, Whesiwst dWi,, L1 Mo (dWh,t>2
Un,t U Whe 2 Upy Wh
Assuming that
Unt = knWhy,
where kj, is a constant, we obtain
dUpt  dWhy
Unt Why
Hence
|:dUh,t:| [dWh,t]
h, = T
Hhit Un,t Wht

1
— [z + (a—@)mp — iyhUQW%w;Qwh — ch] dt,

where we assume that ¢, 7w, @y, and ¢, are constants. Therefore

1L
O:5hch’t¢ Uht [(1 ) ( (Ct—Z)Wh—%”yhU thhQCCh—Ch> —(Sh:|
-+ MV
0= (cp) 4 (rn)' (1 - ) Vimth, @n) — cn) — 5h]
1

0 = Yndn (cn)' o - (kn)' "0 [Un6n + (1 — ¥n) (UMY (mn, ) — cp)]

-4 _ Y10n (Ch)l_ﬁ
Undn + (1 —vp) (UMY (7h, 20) — cp)

wh(sh 1*@ c
Urop + (1 — ) (UMY (1, @) — cp) -

Rp =

Therefore, we obtain (21).
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For a given consumption-wealth ratio, we now consider the impact of changes in x5, and

7, on percentage changes in the utility-wealth ratio and hence on kj, that is we compute

Oln ky .
OlnUMV (7 xp)"

=U (7Th,:13h) .
O UMY (m,p) " Op — (1 B 1/)1;1) (UMY (7, @n) — cn)

Observe that a necessary condition for xj to be well-defined is that

8p — <1 — wlh> (UMY (. ) — ep) > 0.

Hence, we can see that a percentage decrease in Ué” V (7, 1) is multiplied by the factor

UMV (7, x L > 0. The size of this elasticity beyond one captures
n (T ")6h—(1—ﬁ)(U§W(mwh>—ch) y bey p

the size of the additional intertemporal effect of a change in mean-variance utility on lifetime

welfare.

Now note that
Akj, ~ Olnky Alcy) i}@%i Acy )\ 2
Kj Oln(cp)  ¢p K52 Och

Ch

Ynop + (L — ) UMY (m, @) — e Acy
Yron + (1 — ) (UMY (7, 21) — cn) cn

v (-] ()
h h — & .
2) [yndn + (1 — ¥n) (UMY (zpy n) — cn)]® \ e

Hence, we can see that to first order, increasing c; increases utility if c¢; < o + (1 —
Tbh)U}yV(ﬂh,wh). [ |

A.8. Condition for no-aggregate-biases across households in (22)

We start by formally stating the “no aggregate bias” condition.

Definition A.8.1 Suppose household h’s risky portfolio weight for firm n is given by

Thn = N + €hns

where % s the unbiased portfolio weight and ey, is the bias of household h’s portfolio when

investing in firm n. The biases €, “cancel out in aggregate” 1
g h ggreg

1 H
V?’L, H];Ehnzo.
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Proposition A.8.1 The following condition holds

H

1 1
Vn, IT —4hn = 17
H }; Kgh "

if and only if portfolio biases cancel out in aggregate. Observe that the above condition

reduces to (22) for the special case of p = 0.

Proof: The no aggregate bias condition is equivalent to

1
hz_livh ; va
which is equivalent to
1
T Z xp, = —1
h=1

Because the optimal risky portfolio with familiarity biases is given by (A13), the above

condition can be rewritten as

i.e.

Now suppose that

It follows that
H
1 1
T E Tp = 717
H — N

which is equivalent to the no aggregate bias condition.

Therefore,
1L 1
Vne{l,...,N}, — —qnn = 1.
n { ) ) }7 H }; Ligh qhn
holds if and only if the no aggregate bias condition holds. ]
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A.9. The symmetry condition in (23)

In order to derive a closed-form expression for the equilibrium interest rate, we impose

the following “symmetry condition”.

Definition A.9.1 The “symmetry condition” states that for distinct households, h and j,

we have

Hgh = Hgj = Hq-

Observe that for the special case of p = 0 used in the text, the symmetry condition reduces
to (23).

Proposition A.9.1 The following condition is equivalent to the combination of the sym-

metry condition and the no aggregate bias condition:
1 & 1 &
(A24) = hz_; G = ;1 Ghn-

Proof: Because the LHS of (A24) is independent of h, it follows that u,, = % 27]:[:1 Ghn 1S

independent of h, which is the symmetry condition. Hence,

T
T D I = Ho,
h=1
which implies that the no aggregate bias condition holds.

Now suppose that both the symmetry condition and the no aggregate bias condition

hold. No aggregate bias implies that
11
Vne{l,...,N}, =3 ——qun = 1.
{ } H hZ::l Mqh n
Using the symmetry condition, the above expression becomes
1.1
Vned{l,...,N}, — — =1,
which reduces to
T
Vn G {1,...,N}, H;qhn :uq’

which is equivalant to (A24). B
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A.10. Equilibrium interest rate in (24)

The following proposition summarizes the equilibrium interest rate.
Proposition A.10.1 The equilibrium risk-free interest rate is given by the constant

2
91N
Hq

(24) =0 —7

Proof: Market clearing in the bond market implies that

H
(A25) > Bri=0,
h=1

where the amount of wealth held in the bond by household h is given by
Bh,t = (1 - Wh,t)Wh,t~

Using the expression for 7, ; given in (A12), we can rewrite the market clearing condition
(A25) as

Hence,

T OUN =
H
W,
1= — —2}171 hit ’YU%/N,
Zh:1 Mthh,t
which reduces to
2
. 91/N
t=a—7—,
Hq

if the symmetry condition holds, and upon setting p = 0 it gives the expression for the

interest rate in (24) in the main text. [ |
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A.11. Equilibrium macroeconomic quantities in (26) and (27)

Proposition A.11.1 The general equilibrium economy-wide consumption-wealth ratio is

given by

agg
Ct

(26) Va9

1
—c=a—g=y5+(1-9)(a=3y02),
where g, the aggregate growth rate of the economy, is equal to the aggregate investment-

capital ratio, which is given by

129 1

Il
=
o)
|
s
|
|
<
|
=
=2
q

)

g:

Proof: Substituting the equilibrium interest rate in (24) into the expression in (20) for the
consumption-wealth ratio for each individual gives the general-equilibrium consumption-
wealth ratio:

2
1 Ul/N)

(A26) ch:c=w5+(1—w)<a—§7 i,

where 11, is constant across households because of the symmetry condition. Observe that

2

_ 2T
O, = 0 Ty, Q)

_ 2., Qan

(17qp)?

T Q
2 1'Q1 7thqh
2 1701
N/Lq N N

1 1701
_ 2 2 2
=0 7N,ug 7N (Uqh + /J:q)

For the case p = 0 and under the condition that each familiarity coefficient fp, can

be either 1 or 0, we have that ps, = %Zﬁ;l frn = %25:1 f?,, implying that a;h =

% 25:1 f2 - ,u?ch = Ufn — ufch. Therefore, using (15), we get:

2
g
(A27) 02 = N

Hfh
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and, under the symmetry condition that pg, = py, (A27) implies that 0:2,% = 02 is identical

across all households, leading to
L,
cp=c=16+ (1 —¢)<o¢ - 57‘%)-

Observe that in the expression above, all the terms on the right-hand side of the second
equality are constants, implying that the consumption-wealth ratio is the same across house-
holds. Exploiting the fact that the consumption-wealth ratio is constant across households
allows us to obtain the ratio of aggregate consumption-to-wealth ratio, where aggregate
consumption is C;#® = Zthl Ch.t and aggregate wealth is W88 = Zthl Wh, i

agg
G~

agg —
W,

C,

which is the second equality in (26).

Equation (1) implies

N N
g Yn,t =« g Kn,tv
n=1 n=1

and Equation (2) implies

N N N N
d <Et Z Kn,t] ) = Et dz Kn,t] =« Z Kn,t — Z Dnﬂgdt.
n=1 n=1 n=1 n=1

In equilibrium Y | K, ; = W7 and 2| D,,; = C?8. Therefore,

thagg ( Cfgg )
~agg = | @~ 7rage ) At
Wt gg Wt gg

We also know that

thagg d Y; agg

agg — 1 agg
W, Y,

SO

y288 agg
gdt = E; [d L } = (oz - Ctagg> dt = (a — c)dt.
Wi

Rearranging terms leads to the first equality in (26):

(26) c=a—g.
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We now derive the aggregate investment-capital ratio. The aggregate investment flow

must be equal to aggregate output flow less the aggregate consumption flow:
1288 = K88 _ 88,
It follows that the aggregate investment-capital ratio is given by

I;igg _ Ctagg 1

2
K?gg—a—@:a—c:wd—(w—l)§'yaw.

Finally, we relate trend output growth to aggregate investment. Firms all have constant
returns to scale and differ only because of shocks to their capital stocks. Therefore, the

aggregate growth rate of the economy is the aggregate investment-capital ratio:

agg
L t

agg »
Kt

g =
which gives us the expression for g in (27). |
A.12. Social welfare per unit of aggregate capital in (29) and (30)

Proposition A.12.1 Welfare is given in terms of the endogenous growth rate of the econ-
omy, g, by

_ J AV 0%)]
) 5-(1-3) (9-dvot (1+52)) [5 <1 ¢> (g 2 )|

°w

U%/N
g=w(a—0)— 51— 1)y,
(0= ) = 5 =17
and

2

o

a—iz’yﬂ,

Hq
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it follows that

ch = Pi+ (1 =)

Hence,

Hence, we obtain (A28). W

We now look at the special case where the familiarity coefficients fy,, are restricted to
be either 0 or 1.

Proposition A.12.2 If p =0, oy is independent of h and the familiarity coefficients fuy

are restricted to be either 0 or 1, then kp s independent of h and is given by

S0 (00)) I
(29) K=

UMV(Um) w = 07

and

1 1
UMV(Uw) =0+ J <g— 270%) = — 10‘2

with the endogenous aggregate growth rate g given in (27) and where we use UMV (04) to
denote the utility of a mean-variance household after imposing market clearing, which is
obtained by substituting into (18) the equilibrium interest rate from (24) and the condition
that mp, = 1 for each household.

Proof: We assume that p = 0, oy, is independent of h and the familiarity coefficients fy,,
are restricted to be either 0 or 1. Consequently, (A26) reduces to

ch :c:w5+(1—¢)<a—%vai).
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Furthermore, substituting the equilibrium interest rate from (24) into (A17) and simplifying
gives
L 5

UMV (0g) =a — 370

Therefore (21) reduces to (29). W

A.13. Disentangling the micro- and macro-level effects in (32)

Proposition A.13.1 Suppose that oq, is independent of h. A reduction in familiarity

biases changes social welfare per unit capital stock as follows:

jal
dln (Utsocza /Ktagg) =dlnk = dln "i‘micm-level + dln R’macm—level’
where dINK|, ;..o 1over COPures the effect of a reduction in familiarity biases at the micro-

2
q

AN K|, o 1ever 910€S the macro-level effect of a change in the equilibrium growth rate driven

level, that is, a reduction in o, and an increase in ug for individual households, whereas

by an increase in g for individual households.

The micro-level effect of a reduction in familiarity biases on social welfare is given by

1 LY ke
AN K|, ro-tevel = 27 Uf/N [v?ki(dlnogh +2dInpg) — <1 - @ZJ) z:qdlnllq] )

where k; captures the intertemporal effects and k. captures the effects arising from current

consumption:
1
ki = 1 1
1
kc == o2 )
= (1-2) (=)
where

o\ 2
2 q
vi=|—=) .
? (Nq)

The macro-level effect of a reduction in familiarity biases on social welfare is given by

1
dln’%macm—eve = ki_ I—— kc dg,
vt =[5~ (1) ]
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where

1 ‘7% N
(A30) dg = 5t — Dy—LCdIn pg.
2 g

If p = 0 and fp, € {0,1}, then the percentage change in social welfare per unit of
aggregate capital stock stemming from a change in familiarity biases is given by

dink ldUMV(afc)

2 2
do?, ¢ doi

i

where

dUMV(Uw) _ aUMV(Um) dg n 8UMV(Um)
do? B Jg do2 do2

ey ]

macro-level effect  micro-level effect

Proof: Define the square of the coefficient of variation

From (A28), we can see that

Therefore
1

dln ky, = dlnk; — dln ke,

_1
P

and

8111]% 1 1
— —*vahaf/]v <1 — T/’) k;,

8lnvgh 2

Olnk. 1~v , 1
=222 (1= 2 ) ke

Oln pug 2#!101/N( ¢)

8lnk1 o 1
dlng (1 ¢> ghi

Olnk, 1
1—— .
Y ( w)g“
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Hence

Oln ky, 1 Olnk; 1

2 9
= = — =Y 01 vk
alnvgh 1—ialnv§h 9 'Tah71/

1 1 1
Jlnky _ Y U%/N <1 _ > k.

O0ln p, _iqu P
Therefore
Olnky, 9 Oln Ky,
dl : = ——dl dl
n ’{h|mlcro-level dln ,Ugh nvqh + oln liq 1 fig
1 1~ 1
=—— k;dl — | 1——=|dl
2701/1\, [vqh nv, + e " n g
= —579N vgpki (dInoy —2dInpg) + — (1 — — ) dlnp,
Hq P
1 ke 1
= *’YU%/N [v?hki (—dlnag +2dInpg) — — (1 — ) dln,uq] .
2 Hq (0
Also
Oln ky,
dln ’%h|macr0-level - 8leng
1 Olnk alnkcdl
1— L dlng o0l g

Equation (A30) then follows from (A29).

If o4y is independent of h, then &y, is independent of & and social welfare per unit wealth

L U Usocial . . . .
is given by k = kp = Zthl W’;tt = bz . Hence, the increase in social welfare per unit
s t

wealth from infinitesimally small changes in familiarity biases is given by dx = dxy,.

We now impose the assumptions that p = 0 and f,, € {0, 1}, which implies that

2 1
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The above expression tells us that the independence of i from h implies that v, and hence
osp is independent of h. We can thus see from that (A28) that x; becomes independent of
h and

SV (o) T 20,

5P
R =
UMV (g,,) =0,
in which
1 1
UMVi(gy) =6+ — <g - wi) —a-102,
P 2
where
2
o
2 1/N 2
oL = =0 1+wv
x [if 1/N( f)
Therefore
dink 1 dUMV(Um)
do2 6+ (1 —) UMV (o,)  do2
B ldUMV(Jm)
¢ dot
where

dUMV(Uac) _ 8UMV(033) dg + aUMV(U:c)
do? B Jg o2 o2

xT xr

i NGR

macro-level effect  micro-level effect

A.14. Social welfare with preference heterogeneity in (33)

The proposition below shows that when households are heterogeneous, then social wel-
fare per unit of aggregate wealth is given by xj, averaged across all households, in contrast to
the case where households had identical preferences and social welfare per unit of aggregate

wealth was given by (the common) .
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Proposition A.14.1 We assume that the following symmetry condition holds

l ,uqh

= ,Vhe{l,...,H}.

Social welfare per unit of aggregate wealth at date t is given by the wealth-weighted

average of kp:

. H H
Utsocwl B Zh:l Uh,t Z Wh +

Wi Zthl Whe 33 J 1 Wﬂt
where
1
Kp = ¢h5h — |:5h — (1 — ,(;h> (gh - ;RU%/N>:| y
Upop + (1 —Up) [gh - %’YW%/N <1 + h)}
q
and

1
gn = (e —dp) — 5(@% - 1)RU%/N'

For the special case of p =0 and with the assumption that fn, € {0,1}, Ky, is given by

1
|:1/’h5h+(1—¢h)UMV:|1_¢h n £ 0,

P,
_ 1)
Kp = h )
UMV ¢h = 07
where
MV __ R 2
U =  — Ul/N

If we assume that all households have equal date-t wealth, we obtain
Usoczal
agg = ( Z"’Qh)
where date-t aggregate wealth is given by

H
Wi = " Wiy = H Wy
h=1
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Proof: If the investment opportunity set is constant, that is, the interest rate is constant
(below we will specify the condition that ensures this indeed is the case), then the vector

of optimal portfolio weights of household h is given by

a—1i gn
wp — -—.
thO’%/N N

Furthermore, the date-t optimal consumption rate of household h is given by

Cht 1 <a—z’>2
A31 Rt b+ (1 =) i+ — .
(A31) Wa Yrop + (1 — ) ( 2 \ovw Hah

In equilibrium the bond market clears and so

H
> (1= m) Wiy =0.
h=1
Therefore,
H H
S T Whi=> Wiy
h=1 h=1
Hence,
a—1 A n 1
— h
— > "B Wiy =Y Wy,
TUYN =1 Th h=1
and so
(A32) i=a-Roiy,
where

-1

We now impose the symmetry condition that for distinct households h and j:

Hah _ Haj
Th Vi
We hence obtain
(A33) R="
Kgh
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Substituting (A32) into (A31) and using (A33) gives

Chit 1
cp = Wh,t = Ypop + (1 — 'lbh) <a — 2RU%/N> .

Observe that the symmetry condition implies that for every householdh:
T, = 1.

Household h’s experienced utility level is given by (A15). It follows that in equilibrium

with the symmetry condition, we have

Th
Uf]L\JV(O-mh) = — ?Jih7

where

U . .
Therefore kj, = W};tt is given by

Kh

_ Yop } ——
Yron + (1 —n) (UMY (0g,) — )

Now observe that

2

1 Ouh
UMV(Uwh)_ChZQh—*’YhU%/N 1+,
2 P,

where

1 dWw,
gh = E; [ h’t}

1 2
Wt a | = Ul —0n) — o (¥n — 1)R01/N~

2

We also have
1 o 1 o
gh—?RO'l/N:?ﬁh a—5h—§R01/N ,

and so

1 1
cp = 0p — <1 - ¢h> (gh - 2720%/]\,) .
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Therefore

Kp = Yrop = ﬂ {&L — (1 — Tﬁ1h> <gh — ;Raf/N>]

Yo + (1 —y) {gh - %’Yhaf/N <1 + g~

Han

For the special case of p = 0 and with the assumption that f, € {0,1}, we have

0]2% = ffp— ,u?h, and so
R
UMY = Uy (00,) = a = oty
while UMV (54, ) — ¢p, simplifies to give

1

Therefore
(/N on

Ynon + (1 —n) (UMY (0g,) —cn) o’

where
1 2
ch=vUpop+ (1 —9Yp) | — 57301/]\, .

Hence, we obtain

[ —wwww
Rp = 5v ’

where
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B. Labor Income

In this section, we first provide the details of the model with labor income and then

provide the proofs for all the propositions.

B.1. Labor Income: Details

A household’s dynamic budget constraint in the presence of labor income is given by

AW, ¢

Y;
AWy ht gy
Wh it

9
Wh

N
= <]_ — 7Th7t) ’Ldt + 7Th,t Z xhn,t (O[ dt + g dZnﬂg) — Chﬂfdt +
n=1

where ¢+ = Cht/Wht, Yiy is the date-t labor income flow of household A, and

dYp ¢ Wht
—= =4 —1 =) dt dz
Yo Y <mY n Yo +oyalypng,

where Zy, is a standard Brownian motion under the reference measure P such that

dZy pdZy s = py i (1 4 €dppy)dt,
A2y psdZy g = Sppodt.

We can define a new vector of Brownian motions, consisting of the Brownian motions

driving labor income ShOCkS, i.e.
Zy = (Zy Zy )
R Aty Hit) -

The correlation matrix for the combined vector of Brownian shocks (dZ,, (dZy;)") T is
denoted by 24, that is

dZ/], (dZy,)")"(dZ], (dZy;)") = Qadt,

where

Oy = ( Q py i (JIN + €ln) )
pyr(JIn + ely) In ’

and Jy is the N x N matrix in which every element is a one.

B.2. Labor Income: Propositions and Proofs

We start by extending the definition of the probability measure Q¥" to make clear that

the expected labor income flow to a household is unaffected by familiarity biases.
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Definition B.2.1 The probability measure Q"% is defined by

Q" (A) = Ellaénr],

where E is the expectation under P, A is an event, and &, is an exponential martingale

(under the reference probability measure P)

dény 1 -
L 0pest g ()T

where Ogr is the H x 1 vector of zeros.

Proposition B.2.1 The stochastic optimal control problem for a household with familiarity
biases and exogenous labor income can be solved via the following Hamilton-Jacobi-Bellman
equation

C o — k
sup inf; Sply, <ﬁh’t> 4 bkt

Chits Th ts Tht h,t Vn
(B1)
Wh,tﬁ W C 1
+ AL kont + mh i (a + T, U — mpy ooy (1 + €Tppt) — 1) — b
Up.t Whie Wiy
1 (W20, w5 WUy, i
+ 5 )t llt,Wh,Wh — Y - ht,Wp, (UQW}QL’tw}thwh,t _ 2PYKJYU7Th7t(1 + 6xhh,t> + 0_%/)
Ut Unt
1 V}Itrgl’/h,t
Q’yh o2 ’
where Uhﬂg = Uh,t/Yh,t; Wh,t = Wh,t/Yh,t; and
1 1 1
kihg = 00 + —pyne — = <1 + > VoY + VoY — Uyt
VY 2 U
kot =i+ Yhor — [ty his
Whi
pynt =0y | my —In v |
h,t
Proof: We now define
= Wh
Whi = :
’ Yt

Page 36 of Online Appendix



Hence, using Ito’s Lemma

AWy n d(Yh_,tl) AW}, ¢ d(Yh_,tl)

Wh.t thtl Wh. thtl

AWy N =Y, [ AV + 52, 0 (dY0e)?  dWy, (=Y H)d Yy
Yh_,tl Wht Yh_,t1

Wh
AWy dYhy N <th¢ ) 2
Wh Yit Yt Whie Yni
N
Y;
ht dt + OTh,t Z a;;m,t dth

h,t n—1

AW
Wh

AWt dYp

= idt + mp (a0 — 0)dt — cpdt +

— pypedt — oy dZy g + oy-dt
N

— 00y ThtdZy Z Thn,tdZn ¢
n=1
N
Yt
dt +ompy Z Thnt At

= (0 —i)dt — cpdt +
(= 1) Wis 2
N
PYE Y Thnt + PYKG?Chh,t) dt

— iy pidt — oydZy g + oy dt — ooy Th, (
n=1
ah t 1
— + — — (,uy,hﬂg — 0'32/)] dt
Whe  Why

aw,
ht _ 1+ TFh,t[a — pyroyo(l+ ea:hh,t) -] -

—

Wh

N

+0The Y Thnt dny — oy dZy g

Chi 1 )

— 4 = — (MY,h,t — Uy) dt
Whi

Wh

n=1

i+ mhilo — pykoyo(l+ ee, xp ) — i) —

oThiy g, —ovey ) (dZ)  dZy,)"
Ch 1
= & + = - (,U«y,h,t — 032/)] dt
Whe  Why

i+ (0 — epygoyoe, Ty — i) —

+ (omnexpy, —ove, )(dZ) ,dZy,) "

where

Wi —

Hy ht = 9Y <mY —In Yh’t> = 9y <my —1In Wh,t)
h,t

a=o«o— PYKOYO.
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For algebraic simplicity, we define
0 = Oymy

T = —Qy.

We now derive the dynamics of /W?h’t under the probability measure Q¥* by using Girsanov’s

Theorem. Hence, we obtain

d/Wh ) "N . ah 1
— ot = |7+ 7Th7t[Oé + Cl);;t(l/h’t — epYKayaeh) — Z] - /\77t + = - (MY,h,t — Uy) dt
Wit Whe  Why
+ (omnamy . —ove, )((dZY) . dZy,)",
where

dZ;/ = dZt — 7Th7tm;£tllh7t.

The dynamics of Y} ; remain the same under Q"", because shocks to labor income are

orthogonal to shocks to the exponential martingale &, ;.

We start from the recursive definition of the utility function
Unt = A(Cht, g, 1[Untrat])-

Defining

we obtain

Upt = A <Ch,t,ﬂz,t [ }’,H tUh,t+dtD :

hit

Observe that under both the reference probability measure P and Q¥

dYp+
v = = pyptdt + oydZy .
hot
and
u 1
Yiu = Yh,teft NY,h,ste_§0'%/(U_t)""UY(ZY,h,u_ZY,h,t)’
and so

1—
<Yhu> T A veds— 3o () (1) 203 (u=0)+ (1= [y (Zy o~ Zyt)]
Yht

)
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— o= ([} py.sds—37m0% (u—1)) M’
My p ¢

where

1 2 2
—=(1- o t+(1— oy Z
AdY,h,t e 2( 'Yh) Y ( 'Yh) Y Y,h,t7

is an exponential martingale with respect to both the reference probability measure P and

Q.

Therefore

1_
Iy |:Yh,t+dt i ] EQh <Yh,t+dt> R -
hi |~ Unvat| = | By ~ htdt
Yh,t Yh,t i
1

~ =7y, ~
— Q¥h | (1=n) (py,n e dt—5yno% dt My htvdt 751,
= (Et |:e( )( Jhot 2 Y ) My Uh,t+dt + Uh,tLh,tdt

F1AS)

T—vp, .
) + Uhﬂth’tdt

1
1 g2 v | My httdt 51— RN
— elmvne=gmoy)dt (E,(g@ []\MUh tdt + Ut Lp,pdt
Y,ht ’

1
_1 2 \dt QY [51— 1= 73
— e(mvinai=37m%) (Et v [Uh,tlgtD + UptLpdt,

where the probability measure Q;h is defined by the martingale My ;. Now

1 1
- 1—v Yh ~ ~ _ —Yh
<E;@Y [%;134) = <E;@ [(Uh,t +dUp,)" WL})
[ E 1=n =7
~ Yh dU,
= U | BEY |14+ 222
Unt
— 1
) a0, 1 .\’ s
= O | B | [ 14+ Q=)= = S (=) | = o(dt)
Uh,t Uh,t
v | dU, 1 v | (ds )
= ﬁh,t 1 E;@Y = hit — 5’}/}1 t Y — hit + O(dt)
hit Un,t

Therefore

1 1

~l—— ~1—

-5 D7
Uth Yho o (1 —e hdt)Chtwh

)
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~ ~ 2 Yy,
~1-L (1 1l 42 vno | dU, 1 Yh dU,
+ e_éhdtUh,t whe(l wh)(UY,h’t Q’YhUy)dt 1+ E?Y Ah,t o §7hEt Y Uhﬂf + O(dt)
ht h,t

~ ~ 2
1 v [ dl, 1 v | (dU
— kypgdt + (1 _ ) B | St B Zhit + Ly dt
wh Uh,t 2 Uh,t

+ o(dt),

where

1 1 1
Kint = 0n + —Htynt — 5 <1 + > VhOY + WOy — Py pi-
Py 2 (07

Hence, in the continuous time limit, we obtain

1N 1 [ o |dU,| 1 _on|({dU,,
_klh,t“‘(l_) = — BT =~ + Lpdt |,
wh dt ht 2 Uh,t

which can be rewritten as

~ N ~ 2
C o —k 1 o | dU 1o |4y

Spup | =2t ) + 2L 11h7t + dat E;,@Y ~ht| R ;@Y — + Lpdt
Uh,t 1-— Eh Uh7t Uh,t

It follows from Girsanov’s Theorem that under probability measure Q}", we have

d/Wh . C\h 1
— b — kont + (e + @) vp — oy rooy (1 + expnyg) — i) — =< L | dt
Wh Whe  Why

+ (ompazy 1 —ove, ) ((dZY)T,dZy,)",
where

, 2
kont =1+ Yoy — lyht-
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Hence

— 2

1o | dWhy

%Et Y (W\’ = 0'27T}21,tw;,t9mh,t — 2PYKO'YU7Th,th,t(JN + EIN)eh + O')Q/GZINeh
h,t

2_2 T 2
=0 ﬂ-h,txh,thh,t — 2py[(0'y(77'('h7t(1 + €$hh,t) + Oy .

Also,
~ B —~ =5 —~ 2
0 | d0n WhtUht Wi @ | Wi |1 A o AWh,t
t —~ t — 7/\— —
Unt | Uh,t Wh+ 2 Unt Wht
~ 27 TioWis 2 2
E;@;h d/\Uh,t _ Rt ht W, E;@;’l d/V\Vh,t
Un,t Uh,t Wh
and so
dU, 1 a0\~
Yh Yh
E?Y — h»t _ 7,7 Ei@Y — h’t
Un,t 2 Unt
o~ /\2 - g =5 2 o~
_ Wh tUht W EQ;}L dWh, ¢ n 1 Wh,tUht,th/V\h " WhatUht,Wh EQ;h dWh, ¢
_— = — by - =< - =< t —
Uh,t Wht 2 Unt Un, Wht
Wh,tﬁh W, Ch 1
= W ooy 4 T+ @l v — oy ROy (14 €xpng) — 1) — - + —=— | dt
Un,t Wh,t Wht
W20 WD, =\
1 ht h,t w
+ 3 M — — ki We (J%riﬂ:ltﬁmh,t — 2pykoyomh(1+ €xpny) + o2)dt.
Uh,t Unt

Therefore, we obtain (B1). [ |

Proposition B.2.2 The FOC’s of the Hamilton-Jacobi-Bellman equation (B1) give the

following expressions for the optimal controls in terms of the normalized value function

Uth.'
1. The optimal consumption-wealth ratio ¢y is given by
~ ~ 1=y, ~ —Yn
Gy — Chyt 5on Uny Wi, tUhtW
t T = — Yh - ~
hit Wht Unz
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2. The optimal portfolio policy is given by wyy = T @y, where

1 aa—1
wng = Ty} [Al Sy <1h - 1) (1+ eehﬂ ,

Yhit o? Yhit

and

(o
—~,
W (/j _Wh,tUht,WhWh
h,t ht,I7V\h Uh,i
Yhit = Vh =~ + = = )
Uh7t Whthht,Wh
Ut
WiU, =
Yh LY Rt W,
\Ijh,t == Q + TAthh
Yht Uhﬂg

3. The optimal adjustment to the vector of expected returns is given by vy, where

— -1 -1
~ WhU,, w, ~
Vpy=— | L +ns ’Yhiﬁ LI or;! (= 1)1 — pyrook (v — Ane) (1 +€ep)].
hit

Proof: The FOC for consumption can be solved to give

Ch,t = = =

~ ~ 1=Yn (T35 73 —Vn
Cht s¥n <Uh,t> Wh:tUht,Wh

=

Wh,t Wht

and so using the optimal consumption choice we obtain

~ W, .77 ~ 1 3 1—
(Ch,t> _ WhiUht,/VVh G %‘wh (Uht,ﬁ/\h) Yh — 8,

= = i
Une Wy L=

Hence

5wh(UhtWh)liwh = U0 S — Unkiny

_l’_
wh —1 "¢h -1
/Wh,tﬁh W -
+ T kg g+ T+ @ v — WPy KOOy (L + €xpng) — 1)) + =—
Unt Wi

Page 42 of Online Appendix



~ PN 2

—, o ,\
1 WhthhEWhWh Wh’tUht,Wh 2 2 T 2
+ - | —t | ——— (0T 1T Q%h e — 20y KOy IR (1 + €Xpng) + oy )
2 Uh,t Uh,t
T p—1
IR R
29, o2

The FOC for v, can be solved to give

_ o WUy,
Upt = — Yo ——=——Thtlnpy,
hit

and so

Wh(ﬁht,ﬁ/\h)l_wh —Vnon Yy — Ynkin

Y —1 Yp —1
Whvt Aht’VV
+ ———" |kone + (e — oy Koy omh (1 + €xppy) — 1) + =—
Uh,t Wht
=, =
L WiUp
+ §’U\—’hh<o—27rf2z,tw;,tﬂxh,t — 2pYKJyU7Th7t(1 + exhh’t) + 012/)
h,t
Wil )
1 htY ht W,
— 5"}% Th (Uzﬂz’tw;t(ﬁ + Fh)whyt — 2,0y[(0y07rh7t(1 + €$hh,t) + 052/)
h,t

We now rewrite the above expression as

5¢h(ﬁhtﬁh)l_¢h — Ynkin,t

Pp — 1
Wh7tUht,/V[7h k 1 . ~ 1
——=—" |kant + =— + Tl — i) — (v = Ant) Py KOy O (1 + €Xpp )
Unt ht
~ 2 2 T 2
—§'Yh,t(0 7Th,ta’h,t\I’h,tmh,t +oy)|,
where
Y
W [7 _Wh,tUht,WhWh
o =~ hit ht,/V[?h + Uh,t
ht = Vh = == )
Uh,t Wh,tUpy
Ut
WU
h Yt W,
Uy = Q4 22 W p
Yh,t Uh,t
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If [?h,t is a concave function of /V[7h,t, then the optimal portfolio is given by the following

optimization problem:

) ~ 1.
sup(a — )1 wp — (Y — Ant) Py Koy o (1T why + ewppg) — §’Yh,t0'2w}zt\ph,twh,t‘
Wh,t

The FOC for the optimal portfolio policy wy,; is therefore
A nt U iwnt = (= )1 = (yh = Ant)py oy o (1l + eep),

and so

where

It follows that

) ~ 1.
sup(e — )1 wpy — (Vh — Ans)py oy o (1T why + ewnnt) — §7h,t0'2w}—£t\1’h,twh,t
Wht

1
~ 2 T
= 3t wp Wh,1wht-

Therefore at the optimum

5¢h(ﬁ' _ )1—¢h — Unkiny Wh tﬁ _ 1
ht, W, : tY e, W, .
0= h + = h k2h7t + =+ 77h,t(0'27r}2;,7tw}—£t\1/h,twh,t — 0'52/)
Yn—1 Un,t Wi 2
Consequently,

VVh[7 W, 1 ao—1
Ut = — ot — D O [A21 -8 <Jh = 1> (1+ eeh)]
t

Unt Yht O Yh,t
Wil Wi O B
h W, h,t W 1 — 1
= oW [ T R W o [Aa 2Z1—ﬂ<]h—1> (1—|—6eh)]
Uh,t Yht Uh,t Yht O Vh,t
— -1 -1
WhU,, w 1 a—i
= o | r g | W | opt [AO‘ 1-8 (j’l - 1> 1+ eeh)]
Yhit Unt Yhit O Yh,t
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1 -1

—~ o~

~ ht, W _ . ~
= [T+ (m—st | Qrt | (= i)l = pykook (v — Fns) (1+ cen)].
ht

|
Proposition B.2.3 If we look for an approxzimate loglinear solution of the form
fjh,t = K/hwfiﬁa

then the optimal consumption-wealth ratio is given by

~

N C g —p T (1— -
Chit = Zht 5;5%,#1 whahwhW}E’lt an)(¥n 1)’
Wht

and the optimal portfolio policy by

Wht = Wh

(B2) St 2 (2 ) ]

where

Yh = apyn + 1 —ap,
W, =0+ ’YﬁahI‘h.
Yh

Also the vector of adjustments to expected returns is given by

Vht = Vp

~ —1
= — (I + R QP}:1> [(O& — i)]. — PYKOYO (’yh — ;y\h) (1 + 66h>] .

YhQh
Furthermore,
S Yooq | vl
— “h s W 17(1}17
" [(a,) 3}1] (W)
where
_ 1 —~
G= W

and ap, and Wf: can be determined in terms of exogenous variables by solving

1
(Wi) ! = =+ k3,
Wh

—T1 1

ap l—ah
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+Jn [UZTF;QL&?ZQ% — pyroyomp(l +expn) |,

a T17%\ — *
" (W) = ki,

—T1 + 1
* T17%\ — 1.
+ (1 —p)ap [kzh + (Wy) Ly §7h(7r;2102w;‘1'h:ch — U%)] ,

where k}; = kihﬂf’ﬁht:ﬁ’{’ i€ {1,2}.

The ratio of utility to wealth when Wh,t = /W,’: s given by

S 78 1 whl—l
ay, cr '

Note that W,’: is the level of the wealth-income ratio such that

Up _
Wy

Vp
B

—

d/WW] 0

Wh

where for an event A realized at date T
v | Myp
) = 5 [

and

My = e—%(1—Wh)zafft-l—(l—%)UYZY,h,t.

Proof: If we look for an approximate loglinear solution of the form
Unt = kW,

we see that the optimal consumption policy is given by

~

A C i — (1 -
Gt = ol = gl Vng e WD)
Wh

and the optimal portfolio policy by

Wht = Wh

where

Ah = apyn + 1 —ap,
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Thah

U, =Q+ Iy,.
Yh
If we define
by, =T, '1
b, =V, "ep,
then
1l a—1
wp = — 2b—ﬁ 7_1 (by, + €by)
Th O
Also
Vpt = Vp
= —appo°Thwy
1
= —ap o T V), [ =5 3 'y - B <% - 1> (1 +€€h)]
Y O Th
-1 B
]_ _
= —ypapo’ <zhahf + QF;) [Aa 5 '1- 154 (WL — 1> 1+ eeh)]
Vh Yh O Vh
1 1 M1 a—i
S— <A1+ Qr,;l) [AO‘ 2%-,3(’”—1) (l—i—eeh)}
Th YhQh Y O Th
~ —1 .
- 1l a-
— _Fpo? (I—l— h QF;1> [AO‘ 1-8 <7” - 1) 1+ 6eh)}
YhQh Y O Th
5 -1
(14 ant) (e 01 priove (n -0 (1+ cen)].
Yhah

Hence,

N 1 1.
anch = Yrking + (1 — ¢n)ap {kzh,t + =+ §’Yh(0277i2z,tx;1l—,t‘l’h$h,t - 012/)} .
ht

The steady-state value of the wealth-labor income ratio, W,i:, is defined by

dWmt] | 0
Wh,t

Wht W

Yh
B

so we see that at the steady-state, where variables are denoted by an *, we have

A% (TAT¥ * . 1
& (Wi, ap) = k3, + mnlan) (o + zh(an) "vnlan) — ey kooy (1 + zpp(an)) — i) + =
h
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which using the expression for the optimal portfolio vector in (B2), can be rewritten as

(B3)
Ak (TR * 1 ~
¢ (Wi ap) = ki, + ﬁ +An(an) [027Th(a)2mh(ah)TQa:h(ah) — pyroyor(ap)(1 + exhh(ah))]
h
Note also that
e Ch _ cn 1=bn (g 1y(man)($nm1)
(B4) Wy s ap) = % =05, K, ay (Wy (an)) AR

h
ki, (W) = i+ vp02 — (10 + 71 In W)

Defining

we see that at the steady state zj,; = 0. At the optimum, we have
(B5)

apép eV I =y Ty + (1= Yn)a,
ot

1 1.
kont + =— + §7h,t(027r}21,t93;,t‘1’h,t$h,t - U%)] .

If we expand (B5) around Zzj; = 0, we obtain

anéh (Wi, an)[1 + (1 — ap)(¥n — 1)%h,]

*\ — =~ 1/\ =
= whklh,t + (1 - 1/1h)ah |:k32h,t + (Wh) 1(1 — Zh,t) + §’Yh(7T}2LUQCL‘h(ah)T\I’hZL'h(CLh) — 0')2/):| + O(Z;QZ)

By comparing coefficients of zj,, we obtain
ant,(Wy, an) = ki, (Wy)
* * *\ — 1/\
(B6) + (1= ¥n)an [th(Wh) + Wi+ §'Yh(7ri2102wh(ah)—r‘1’hmh(ah) - 0’12/)] :

(B7)
—(1 = ap)anet (Wi an) = 71(1 — an) — ap(W;) ™

Rearranging (B7), we have

—T1 1

ap, 1—ay

(BS) & (Wi ap) = W)™
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Using (B8), we rewrite (B3) and (B6) as

-, 1 o1 L e

a1 _ah(Wh) = T + k3 (Wy)

(B9> + ‘?h(ah) [UQWh(a)th(ah)TQwh(ah) — pYKO'y(TTFh(ah)(l + exhh(ah))}
—1 (W) = kg (W)

(B10) (L=t (K5, + () + ) (o (an) Dnn(an) — o3|

To summarize, we can find an approximate loglinear solution by solving (B9) and (B10)
numerically to obtain a and W*. We can then use (B8) to obtain ¢*, the steady-state
consumption-wealth ratio. We can rearrange (B4) to obtain
S Ynoq ﬁ
“= ()"

(W)=,

It follows that

up U

= (W)=
[y ]
-1(2) 5

Observe that W;Lk is a stochastic steady state level of household wealth, which accounts

for the long term pricing of risk as in Hansen and Scheinkman (2009), because the expected
rate of change of wealth is zero at /W;m = Wf: under the probability measure Qy", as opposed
to under the reference probability measure P. That is, it is the probability measure Q3"

that adjusts for the long term pricing of risk.
Proposition B.2.4 The utility of a household making biased consumption-portfolio choices
s given by

1

) 1

* .
. Uen Onn Y
ue’h — = C€7h,

W \wnkey + (1= vnacs (LQL, — )
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where

x 1k
LQe,h - ke,Qh

+ (o — ypy Kooy (1 + exgpnn) — i)

— 1
+ (W)t = 3 [aenmn + (1= acp)] (0?75 n @0y Qap — 20y KOy oTan (L + €xapn) + 03).

The constant ap, s the solution of
Onnbe,n
= Uk 15,

+ (1 = ¥n)ae,n {k:,Qh + Tan(o — ympy Kooy (1 + €xapn) — i) — Cop + (W) ™

1
—3 [@enyn + (1 —aep)] (027r3,hwlhﬂwd7h —2pyroyomgn(l + exqgpn) + 032/)} ,

where be . The constant aqy together with mqp, Tqpn define the biased decisions of the
household.

The asterisk x indicates that all values are computed at the steady state /Wh,t = Wh,t
defined by

AWe bt

We,h,t

Y =0,

] |We,h,t:W§,h

where for an event A realized at date T

and

My = 6_%(1_'Vh)Qa'%/t‘F(l_'Yh)UYZY,h,t'

Proof: We start by computing welfare for a household without familiarity biases, using
the consumption and portfolio policy for the household with familiarity biases. The con-

sumption policy is of the form

C\eht Yp, 1 71— -

~ _ Bt 1=ty — T (1—aan) (¥ —1)

Ceht = = =0 Kan Qqn We,h,t )
e,h,t

where k4 and aqj have subscripts d to make it clear that they pin down the approximate

optimal controls for a household with familiarity biases, but not for a household without
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such biases. Furthermore, ¢ ¢, Cep, and W ¢ contain the subscript e to make it clear

that they apply to a household without familiarity biases. Hence,

6eht ) sty Ze
~ _ hat b 1=, =y * \(1=agn)(Pn—1) ,(1=aqn)(Yrn—1)Zc,n
Ceht = = =0, Kap "G (We,h) : e : ety
e,h,t

where W: 5, is the steady-state value of the wealth-labor income ratio for a household with-
out familiarity biases, but whose controls are taken from the optimal problem for a household

with familiarity biases, and also,

o~

~ —1 We,h,t
Ze,h,t = In —-—-.

*
e,h

Consequently, when W, j, ; = ch“ p» We have Z. , ¢ = 0. Expanding around Z.p; = 0, we see

that
Coht = @ = /C\:’he(liadvh)(whfl)/z\e,h,t’
e,h,t
where
(B11) = 6P hag (W) A —0am) (=),

We assume the utility-labor income ratio is given by

~

Aae,h
Uevhvt = ’ievh‘W(i,h,t’

where k. and a. ) are endogenous constants we need to determine. Therefore

)

~ o e,h,t
Ue,h,t - =
e,h,t

—~
*

aen—1_(aen—1)z
— ’Qe,h( th) e,h e( e,h ) e,h,t

_ox (aen—1)Ze
_ue,he e e ,

where

g g = e (Wep) e

Hence

~
Cei’he[(l_ad,h)(d’h_l))_(ae,h_l)]ge,h,t _
=~

Ue,h,t ue,h
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The evolution of the wealth-labor income ratio is determined by the consumption-
portfolio policies, which are biased. Consequently, the steady-state shall be as before,

that is, given by

R ) 1
& =K+ man(a+ g ,vn — mpyrooy (1+ xap,) — ) + =,

*

h

The steady-state value of the wealth-labor income ratio, ﬁ/\e* n» is defined by

Py
Et

—

We,h,t w

%
Wena=W7,

dWe,h,t]

where for an event A realized at date T

and

My = e_%(1_'7h)20'$/t+(I_Wh)UYZY,h,t.

So we see that at the steady-state, we have

kT . 1
C:,h(We,h) = k:,2h + Fd’h(oz — ’yhpy[(aay(l + exd’hh) —1i)+ =
We,h
Therefore, using (B11), we obtain
- — 17 — — * . 1
5;Lph/{'cll,hwhad,1il;h (We,h)(l agn)(Yn—1) _ ke,Qh + Wd,h(Oé —Yhpykooy (1 + exqnn) — i) + =
e,h

We can solve the above equation numerically to obtain We* ;, in terms of exogenous constants.
We can then use (B11) to obtain ¢, in terms of exogenous constants. From (B1), we can
see that

—kint

+ ae,n {kgh,t + Wd,h,t(a — ’yhpYKO'O'y(]. + €£d7hh’t) — Z) — ,c\;he(l*ad,h)(wh*l)ge,h,t + (A;h)flefia,h,t]

1

= 5en [acnvn + (1 = acp)] (TG n s p e e — 2py KOy 0T an (1 + €Xann) + 0%),
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which we can rewrite as

1—-L
Snn (gh> B e(l‘ﬁ)Kl—%w(wh—1)>—(ae,h—1)}se,h,t

= Ypkin

Sk

+ (1 = ¥n)aep {k2h,t + Tant(a —yppyrooy (1 + exgnng) — 1) — Cop,

2

For ease of notation, define

and so
(1= ) 11 =aan) @n—1)~(@cn—DIZ
Onnbe el Pn dh)(Vn en=1)]Zen

= pking

>

+ (1 = ¥n)aen {kzh,t + mant(@ = yppy Kooy (1 + €xqpne) — i) — Co py

2

e(1=ad,n)(bn=1)Zc .t + (/W:,h)_le_ge,h,t

1
— = Jacnyn + (1= acp)] (0270 4@ p Qans — 20y KOy 0Tant(1 + €xanng) + U%)}

e(1=ad,n)(bn=1)Zc ¢ +(

1
—— Jaenyn + (1= aep)] (02704 @ Qaps — 20y KOy 0Tape (1 + €Tapnyg) + U?v)} -

—~
*

e,h

Expanding the above equation around Z ; ; = 0 up to first order and comparing coefficients

gives

(B12) dptonbe,n
= ¢hkz,1h

+ (1 = Yn)acp {@,% + man(a = ypy Kooy (1 + exann) — ) — o, + (WSp)

2
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and

Sutnben (1 - wlh> (1~ agg)(Wn — 1)) — (aen — 1]

(&)
+ (1= ¥n)acn {—m =2 p(l = aan)(n — 1) = (W)}

(B13)

where
* 1 T17% 1 1 2 2
Eiipn=0n+|——-1)(o+nInW;,)— =1+ — ) ymoy +moy
)Ly wh ) 2 wh

kigp =i+ mot — (1o + 1 InWy).
We can make b, ;, the subject of (B13) as follows:
nbe,n (bn = 1) [(1 = agpn)(Pn — 1)) = (acn —1)]
=1 —vn)m
+ (1= n)ach {

Onben[(1 — agn)(hn — 1)) — (ae,n — 1)]
11 = aen {11 = Call = aan)n — 1) = (W) ™'}

w1 = agp)(@n = 1) = (Wz,) 7}

—711 = Co (1 = agn)(bn — 1) — (Ae*,h)_l}

<k
—T1 = Qeh {—71 — Ce,

(B14) beh = Sul(1 = agp)(thn — 1) — (aep — 1)]

Substituting (B14) into (B12) gives a nonlinear algebraic equation for a., which can be

solved numerically.

It follows from (B12) that

o Ush _ Onn -
e,h W* It 1_ 10% — o e,h
eh Unk? 1, + (1 —¥n)aen (LQY, — ¢ ),

where

LQ; =k op
+ wan(a —yppyrooy (1 + exgpn) — 1)
aen Y + (1 —aep)] (027r§,hm;h§2md7h —2pykoyomgn(l+ e€xqnn) + 032/).

B |
+ (Wen) T 5[
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