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This Appendix is organized as follows. Section A contains the derivations of the hiring cost

function that we introduced in Section 2. Section B provides additional figures referenced in the

main text. Section C details the algorithms for the computation of the stationary equilibrium,

transitional dynamics, and estimation of the model’s parameters.

A The hiring cost function

In this section we show that, once we postulate the hiring cost function

C(n, e, v) =

[

κ1

γ1
eγ1 +

κ2

γ2 + 1

( v

n

)γ2
]

v, (A1)

then, through the firm’s optimization, we obtain a log-linear cross-sectional relationship be-

tween the job-filling rate and the employment growth rate that is consistent with the empirical

findings in DFH. Next, by substituting the firm’s first-order conditions into (A1), we derive a

formulation of the cost only in terms of (n, n′) that we use in the intertemporal problem (10) in

the main text.

As we explained in Section 2.1, the firm solves a static cost minimization problem: given a

choice of n′, it determines the lowest cost combination of (e, v) that can deliver n′. The hiring
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firm’s cost minimization problem is

C(n, n′) = min
e,v

[

κ1

γ1
eγ1 +

κ2

γ2 + 1

(v

n

)γ2
]

v (A2)

s.t. : n′ − n ≤ q (θ∗) ev

v ≥ 0

Convexity of the cost function (A1) in (e, v) requires γ1 ≥ 1 and γ2 ≥ 0. After setting up the

Lagrangian, one can easily derive the two first-order conditions with respect to e and v that,

combined, yield a relationship between the optimal choice of e and the optimal choice of the

vacancy rate v/n:

e =

[

κ2

κ1

(

γ1

γ1 − 1

)]
1

γ1
( v

n

)

γ2
γ1 . (A3)

Note that if γ2 = 0, as in Pissarides (2000), recruiting intensity is equal to a constant for all firms

and it is independent of aggregate labor market conditions —both counterfactual implications.

The following changes in parameters (ceteris paribus) result in a substitution away from va-

cancies and towards effort: ↑ κ2, ↓ κ1, ↑ γ2, and ↓ γ1. The effect of the cost shifter is obvious.

A higher curvature on the vacancy rate in the cost function (↑ γ2) makes the marginal cost of

creating vacancies rise faster than the marginal cost of recruiting effort. Since the gain in terms

of additional hires from a marginal unit of effort or vacancies is unaffected by γ2, it is optimal

for the firm to use relatively more effort.

Now, substituting the law of motion for employment at the firm level into (A3), we obtain

the optimal recruitment effort choice, expressed only as a function of the firm-level variables

(n, n′):

e
(

n, n′
)

=

[

κ2

κ1

(

γ1

γ1 − 1

)]
1

γ1+γ2
q (θ∗)

−
γ2

γ1+γ2

(

n′ − n

n

)

γ2
γ1+γ2

(A4)

which, in turn implies, for the job-filling rate,

f
(

n, n′
)

= q (θ∗) e
(

n, n′
)

=

[

κ2

κ1

(

γ1

γ1 − 1

)]
1

γ1+γ2
q (θ∗)

γ1
γ1+γ2

(

n′ − n

n

)

γ2
γ1+γ2

. (A5)

This equation demonstrates that the model implies a log-linear relation between the job-filling

rate and employment growth at the firm level, with elasticity γ2/ (γ1 + γ2) < 1, as in the data.
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Finally, substituting (A5) into the firm-level law of motion for employment yields an ex-

pression for the vacancy rate

v

n
=

[

κ2

κ1

(

γ1

γ1 − 1

)]− 1
γ1+γ2

q (θ∗)
−

γ1
γ1+γ2

(

n′ − n

n

)

γ1
γ1+γ2

. (A6)

Now, note that by substituting the optimal choice for recruitment effort (A3) into (A1), we

obtain the following formulation for the cost function:

C (n, v) =

[

κ2
γ1 + γ2

(γ1 − 1) (γ2 + 1)

( v

n

)γ2
]

v, (A7)

which is one of the specifications invoked by Kaas and Kircher (2015).

Finally, if we use (A6) in (A7), we obtain a version of the cost function only as a function of

(n, n′) that we can use directly in the dynamic problem (10):

C∗
(

n, n′
)

= κ2

[

γ1 + γ2

(γ1 − 1) (γ2 + 1)

]

{

[

κ2

κ1

(

γ1

γ1 − 1

)]
1

γ1+γ2
q (θ∗)

−
γ1

γ1+γ2

(

n′ − n

n

)

γ1
γ1+γ2

}1+γ2

n.

3



B Additional figures

Figure B1: Counterfactual job finding rate and unemployment

Notes: The counterfactual series are constructed as follows. First take the aggregate matching function Ht = AtU
α
t V1−α

t . This implies a job

finding rate ft = Ht/Ut = Atθ
1−α
t , where θt = Vt/Ut. Consider also the empirical law of motion Ut = (1 − ft−1)Ut−1 + St−1, which defines

a series for entry into unemployment. In the data this comes from either separations of employed workers or transitions of out of the labor

force to unemployment, the exact source is not of consequence to this exercise. With data on Ht, Ut, Vt, we can use the above to construct

{θt, St, At, }. This can also be inverted. Given a counterfactual {θt, St, At, }, we can compute a counterfactual ft and Ut. The counterfactual

series in the figure involve setting Xt = X0 one by one for
{

θd
t , Sd

t , Ad
t ,
}

, and computing the counterfactual series for ft and Ut.
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Figure B2: Dynamics of output under the two shocks

Figure B3: Match efficiency and the composition of job seekers

Notes: The adjusted measures of match efficiency are constructed as follows. Consider the case of allowing for on-the-job search (OJS). The

matching function is Ht = AtS
α
t V1−α

t , where the measure of effective units of search is St = Ut + sE
t Et, in which Ut is the number of unemployed

workers, and Et the number of employed workers. Rearranging the matching function obtains Ht = At

[

1 + sE
t (Et/Ut)

]

Uα
t V1−α

t . The first term

At is the adjusted path of match efficiency, and the term in square brackets is the adjustment factor. To measure sE
t we exploit constant returns

to scale in the matching function which implies that hires out of employment are HE
t = st ftEt, where ft is the job-finding rate of unemployed

workers: HU
t = ftUt. Relative search intensity of the employed sE

t can therefore be measured by sE
t = EEt/EUt where EEt and UEt are the BLS

employment-employment and unemployment–employment transition rates. A corresponding exercise where St = Ut + sN
t Nt + sE

t Et includes

Nt workers out of the labor force (OLF), is responsible for the grey lines.
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Figure B4: Employment-weighted growth rate distribution in the model

Figure B5: Relative search intensity of employed workers

Note: The two series are constructed as the ratio of the EE flow rate to the UE flow rate. In one case, the UE rate is taken directly from the BLS,

and in the other case, we adjust the UE rate by subtracting unemployed workers on temporary layoff from the denominator and rehires from

temporary layoffs from the numerator.
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C Computational details

C.1 Value and policy functions

We use collocation methods to solve the firm’s value function problem (4)-(7). Let s = (n, a, z)

be the firm’s idiosyncratic state, abstracting from heterogeneity in σ which is permanent. We

solve for an approximant of the expected value function Ve(n′ , a′, z) which gives the firm’s ex-

pected value conditional on current decisions for net worth and employment:

V
e(n′, a′, z) =

ˆ

Z
V(n′, a′, z′)dΓ(z, z′),

where the integrand is the value given in (6).

We set up a grid of collocation nodes S = N × A × Z where N = {n1, . . . , nNn}, with Nn =

Na = Nz = 10. We construct Z by first creating equi-spaced nodes from 0.001 to 0.999, which we

then invert through the cumulative distribution function of the stationary distribution implied

by the AR(1) process for z to obtain Z. This ensures better coverage in the higher probability

regions for z. We choose A and N to have a higher density at lower values. The upper bound

for employment, n̄, is chosen so that the optimal size of the highest productivity firm n∗(z̄) is

less than n̄. We choose the upper bound for net worth, ā, so that the maximum optimal capital

k∗(z̄) can be financed, that is, k∗(z̄) < ϕā. Note that N, A, and Z are parameter dependent, and

therefore recomputed for each new vector of parameters considered in estimation.

We approximate V
e(s) on S using a linear spline with Ns = Nn × Na × Nz coefficients.

Given a guess for the spline’s coefficients, we iterate towards a vector of coefficients that solve

the system of Ns Bellman equations, which are linear in the Ns unknown coefficients. Each

iteration proceeds as follows. Given the spline coefficients, we use golden search to compute

the optimal policies for all states s ∈ S and the value function V(s). We then fit another spline

to V(s), which facilitates integration of productivity shocks ε ∼ N (0, ϑz). To compute V
e(s) on

S, we approximate the integral by

V
e(n, a, z) =

Nε

∑
i=1

wiV (n, a, exp(ρz log(z) + εi)) .

Here, Nε = 80, and the values of εi are constructed by creating a grid of equi-spaced nodes
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between 0.001 to 0.999, then using the inverse cumulative distribution function of the shocks

(normal) to create a grid in ε. The weights wi are given by the probability mass of the normal

distribution centered on each εi. Note that this differs from quadrature schemes in which one

is trying to minimize the number of evaluations of the integrand, usually with Nε around four.

Since V(s) is already given by an approximant at this step, and the integral is only computed

once each iteration, this is not a concern and we compute the integral very precisely. We then

fit an updated vector of coefficients to V
e(s) and continue.1

C.2 Stationary distribution

To construct the stationary distribution, we use the method of nonstochastic simulation from

Young (2010), modified to accommodate a continuously distributed stochastic state. We create

a new, fine grid of points S f on which we approximate the stationary distribution using a his-

togram, setting N
f
n = N

f
n = N

f
z = 100. Given our approximation of the expected continuation

value, we solve for the policy functions n′
(

s f
)

and a′
(

s f
)

on the new grid and use these to cre-

ate two transition matrices Qn and Qa, which determine how mass shifts from points s f ∈ S f

to points in N f and A f , respectively. We construct Qx as follows for x ∈ {a, n}:

Qx[i, j] =



1
x′
(

s
f
i

)

∈
[

X
f
j−1,X

f
j

]

x′
(

s
f
i

)

− X
f
j

X
f
j − X

f
j−1

+ 1
x′
(

s
f
i

)

∈
[

X
f
j ,X

f
j+1

]

Xj+1 − x′(si)

X
f
j+1 − X

f
j



 ,

for i = 1, . . . , N
f
s and j = 1, . . . , N

f
x .2 This approach ensures that aggregates computed from

the stationary distribution will be unbiased. For example if x′(s) ∈ (Xj, Xj + 1), then masses wj

and wj+1 are allocated to Xj and Xj+1 such that wjXj + wj+1Xj+1 = x′(s). The transition matrix

for the process for z is computed by Qz = ∑
Nε
i=1 wiQ

i
z, where Qi

z is computed as above under

z′(s f ) = exp(ρz log z + εi). The overall incumbent transition matrix Q is simply the tensor

product Q = Qz ⊗ Qa ⊗ Qn.

To compute the stationary distribution, we still need the distribution of entrants. To allow

1In practice, instead of this simple iterative approach to solve for the coefficients, we follow a Newton algo-
rithm as in Miranda and Fackler (2002), which is two orders of magnitude faster. The Newton algorithm requires
computing the Jacobian of the system of Bellman equations with respect to the coefficient vector. The insight of
Miranda and Fackler (2002) is that this is simple to compute given the linearity of the system in the coefficients.

2If exit is optimal on grid point s
f
i , then we set row i of Qx to zero.
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for entry cutoffs to move smoothly, we compute entrant policies on a dense grid of N0
z = 500

productivities. This is clearly important for us since it ensures that entry does not jump in the

transition dynamics or across parameters in calibration. The grid Z0 is constructed by taking

an equally spaced grid in [0.01, 0.99] and inverting it through the cumulative distribution func-

tion of potential entrant productivities (exponential). Let the corresponding vector of weights

be given by P0. Given the approximation of the continuation value V
e(s), we can solve the

potential entrant’s policies n′
0(s0) and a′0(s0), conditional on entry. We can then solve the firm’s

discrete entry decision. Finally, we compute an equivalent transition matrix Q0 using these

policies, where nonentry results in a row of zeros in Q0.

The discretized stationary distribution L on S f is then found by the following approximation

to the law of motion (15)

L = (1 − ζ)Q′L + λ0Q′
0P0,

which is a contraction on L, solved by iterating on a guess for L. The final stationary distribution

is found by choosing λ0 such that ∑
N

f
s

i=1 Li = 1.

C.3 Computation of moments

We compute an aggregate moment X by integrating λ over firm policies x(s). Using the above

approximation, this is simply X = L′x(s).

For age-based statistics, our moments in the data refer to firm ages in years. We therefore

generate an “age zero” measure of firms by allowing for 12 months of entry. We then iterate this

distribution forward to compute age statistics such as average debt to output for age 1 firms or

the distribution of vacancies by age.

For statistics such as the average annual growth rate conditional on survival, we need to

simulate the model. In this case, we draw 100,000 firms on S f in proportion to L and simulate

these forward solving (rather than interpolating) firm policies each period and evolving pro-

ductivity with draws from the continuous distribution of innovations ε. To remove the effect of

the starting grid, we simulate for 36 months and compute our statistics, comparing firms across

months 24 and 36.
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C.4 Estimation

The model has a large number of unknown parameters and a criterion function that is poten-

tially nonsmooth. Furthermore, the model does not have an equilibrium for large regions of the

parameter space.3 For these reasons, using a sequential optimizer that takes the information

from successive draws from the parameter space and updates its guess is prohibitive. For ex-

ample, a Nelder-Mead optimizer both needs to be returned values for the objective function at

each evaluation and needs to make many evaluations of the function when taking each “step”.

Our solution is to use an algorithm that we can very easily parallelize, that efficiently ex-

plores the parameter space, and for which we can ignore cases with no equilibrium. We set

up a hyper-cube in the parameter space and then initialize a Sobol sequence to explore it. A

Sobol sequence is a quasi-random low-discrepancy sequence that maintains a maximum dis-

persion in each dimension and far outperforms standard random number generators. We then

partition the sequence and submit each partition to a separate CPU on a high performance com-

puter (HPC). From each evaluation of the parameter hyper-cube, we save the vector of model

moments and regularly splice these together, choosing one that minimizes the criterion func-

tion. Starting with wide bounds on the parameters, we run this procedure a number of times,

shrinking the hyper-cube each time.

This procedure has a number of benefits. First, we trade in the optimization steps associated

with a traditional solver for scale. Instead of using a 10 CPU machine to run a Nelder-Mead

algorithm, we can simultaneously solve the model on 300+ CPUs. Second, the output of the

exercise gives a strong intuition for the identification of the model. From an optimizer one

may retrieve the moments of the model along the path of the parameter vector chosen by the

algorithm. In our case, we retrieve thousands of evaluations, knowing that the low-discrepancy

property of the Sobol sequence implies that for an interval of any one parameter, the remaining

parameters are drawn uniformly. Plotting moments against parameters therefore shows the

effect of a parameter on a certain moment, conditional on local draws of all other parameters.

Plotting a histogram of the moments returned gives a strong indication as to which moments

may be difficult to match for the current bounds of the parameter space.

3For example, if the value of home production is very low then unemployment derived from the labor demand
condition may be negative. Wages are so low that labor demand eclipses the fixed supply L̄.
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C.5 Transition dynamics

We solve for transition dynamics as follows. Consider the case of a shock to aggregate pro-

ductivity Z. We specify a path for {Zt}
T
t=0 with Z0 = ZT = Z̄. Given a conjectured path for

equilibrium market tightness
{

θ̃∗t
}T

t=0
and the assumption that the date T continuation values

of the firm are the same as they are in steady state, one can solve backward for expected value

functions Ve
t at all dates T − 1, T − 2, . . . , 1. Setting the aggregate states U0 = Ū and λ0 = λ̄,

and using the conjectured path θ∗t , the shocks, and continuation values, one can then solve for-

ward for a new market clearing θ∗,′
t that equates unemployment from labor demand Udemand

t and

worker flows U
f lows
t in every period using the labor demand and evolution of unemployment

equations,

U
f lows
t+1 = Ut − H(θ∗t ) + F(θ∗t )− λe,tn0

Udemand
t+1 = L̄ −

ˆ

n′(s, θ∗t , At, Ve
t)dλt

Once we reach t = T, we set θ̃∗t = θ∗t and iterate until the proposed path and equilibrium path

for market tightness converge.
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