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A Table and Figure Appendix (For Online Publication Only)

A.1 Sructural Model Parameters

Table A.1: Time Averaged Skill Prices Across Occupations

Occupation Manufacturing Other Services FIRE Health & Educ.

Managers 0.553 0.474 0.452
(0.023) (0.013) (0.020)

Science Professional 0.627 0.470 0.526
(0.017) (0.017) (0.015)

Science Assc. Professional 0.462 0.456 0.385
(0.011) (0.014) (0.013)

Other Assc. Professional 0.394 0.360 0.418
(0.009) (0.005) (0.008)

Clerks 0.285 0.282 0.205 0.183
(0.007) (0.004) (0.006) (0.006)

Agriculture 0.459
(0.023)

Building Trades 0.346
(0.006)

Metal Trades 0.455 0.438
(0.008) (0.009)

Other Crafts 0.329
(0.011)

Plant Operator 0.321
(0.014)

Machine Operator 0.399
(0.005)

Drivers 0.503 0.373
(0.020) (0.010)

Laborers 0.405 0.255
(0.008) (0.006)

Other Professional 0.262 0.238
(0.006) (0.007)

Personal Workers 0.159 0.233
(0.003) (0.002)

Retail Workers 0.154
(0.003)

Elementary Occupations 0.150
(0.002)

Customer Service 0.356
(0.007)

Health Professional 0.462
(0.017)

Teachers 0.213
(0.003)

Health Assc. Professional 0.340
(0.005)

Teaching Assc. Professional 0.312
(0.004)

Notes: Skill prices time-averaged for clarity. Units are relative to unconditional mean income (normalized to 1).
Standard errors are in parentheses and based on 100 block-bootstrap samples of the underlying sample.
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Table A.2: Income Regression Coefficients

(a) Manufacturing

βTen βAge βAge2
[a] βType:1 βType:2 βType:3 βType:4 βType:5 σ2

Managers 0.035 0.042 -1.248 -0.123 -0.906 -0.070 -0.706 0.147
(0.001) (0.006) (0.032) (0.006) (0.025) (0.004) (0.031) (0.002)

Science Prof. 0.058 0.033 -0.442 -0.033 -0.266 0.147
(0.001) (0.002) (0.022) (0.004) (0.013) (0.001)

Science Assc. Prof. 0.041 0.046 -0.953 -0.163 -0.526 -0.116 -0.485 0.126
(0.001) (0.004) (0.031) (0.005) (0.005) (0.003) (0.021) (0.001)

Other Assc. Prof. 0.064 0.003 -1.000 -0.679 -0.123 -0.464 -0.074 -0.346 0.156
(0.001) (0.011) (0.255) (0.023) (0.004) (0.008) (0.003) (0.011) (0.001)

Clerks 0.063 0.014 -1.000 -0.867 -0.174 -0.515 -0.107 -0.610 0.157
(0.001) (0.001) (0.000) (0.016) (0.006) (0.009) (0.006) (0.022) (0.001)

Agriculture 0.009 0.034 -1.105 -0.053 -0.941 0.033 -1.172 0.200
(0.001) (0.002) (0.022) (0.017) (0.022) (0.018) (0.035) (0.002)

Building Trades 0.040 0.044 -0.711 -0.046 -0.624 0.236
(0.001) (0.001) (0.008) (0.003) (0.004) (0.001)

Metal Trades 0.042 0.037 -0.588 -0.014 -0.456 0.052 -0.884 0.179
(0.001) (0.001) (0.014) (0.006) (0.009) (0.005) (0.028) (0.001)

Other Crafts 0.055 0.047 -0.774 -0.167 -0.574 0.206
(0.001) (0.020) (0.014) (0.004) (0.009) (0.002)

Plant Operator 0.044 0.003 -1.000 -0.573 0.021 -0.285 0.146 -0.748 0.160
(0.001) (0.008) (0.196) (0.022) (0.006) (0.013) (0.007) (0.022) (0.002)

Machine Operator 0.049 0.038 -0.683 -0.112 -0.461 0.187
(0.000) (0.001) (0.006) (0.002) (0.004) (0.001)

Drivers 0.055 0.032 -0.682 -0.044 -0.501 0.159
(0.001) (0.002) (0.022) (0.004) (0.023) (0.002)

Laborers 0.059 0.036 -0.754 -0.063 -0.501 0.194
(0.001) (0.001) (0.009) (0.002) (0.006) (0.001)
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(b) Services

βTen βAge βAge2
[a] βType:1 βType:2 βType:3 βType:4 βType:5 σ2

Managers 0.032 0.044 -1.215 -0.067 -0.913 -0.034 -1.028 0.177
(0.001) (0.001) (0.024) (0.005) (0.021) (0.004) (0.034) (0.002)

Science Prof. 0.055 0.040 -1.394 -0.001 -1.154 0.047 -0.985 0.153
(0.001) (0.002) (0.017) (0.006) (0.032) (0.005) (0.027) (0.002)

Other Prof. 0.049 0.017 -1.000 -1.131 -0.019 -0.930 0.005 -0.570 0.176
(0.001) (0.001) (0.000) (0.013) (0.003) (0.023) (0.002) (0.007) (0.001)

Science Assc. Prof. 0.037 0.046 -1.063 -0.093 -0.688 -0.082 -0.863 0.141
(0.001) (0.021) (0.019) (0.004) (0.017) (0.004) (0.027) (0.001)

Other Assc. Prof. 0.042 0.002 -1.000 -0.864 -0.464 0.033 -0.525 0.155
(0.001) (0.019) (0.421) (0.011) (0.005) (0.002) (0.008) (0.001)

Clerks 0.043 0.008 -1.000 -0.953 -0.041 -0.525 -0.003 -0.992 0.143
(0.000) (0.001) (0.000) (0.008) (0.004) (0.005) (0.004) (0.008) (0.001)

Personal Services 0.091 0.019 -1.000 -0.873 0.017 -0.601 0.126 -0.879 0.231
(0.001) (0.001) (0.000) (0.008) (0.007) (0.009) (0.007) (0.011) (0.001)

Retail Occs. 0.045 0.034 -1.000 -0.971 -0.181 -0.567 0.234
(0.001) (0.001) (0.000) (0.006) (0.004) (0.004) (0.001)

Metal Trades 0.040 0.042 -0.856 -0.043 -0.723 0.146
(0.001) (0.001) (0.020) (0.004) (0.018) (0.001)

Drivers 0.056 0.044 -0.719 -0.065 -0.454 0.204
(0.001) (0.016) (0.012) (0.003) (0.007) (0.001)

Elementary Occs. 0.039 0.018 -1.000 -0.772 -0.034 -0.521 0.128 -0.850 0.215
(0.001) (0.001) (0.000) (0.007) (0.006) (0.007) (0.006) (0.009) (0.001)

Laborers 0.083 0.007 -1.000 -0.928 -0.058 -0.552 0.237
(0.001) (0.001) (0.000) (0.011) (0.003) (0.011) (0.002)

(c) FIRE Industries

βTen βAge βAge2
[a] βType:1 βType:2 βType:3 βType:4 βType:5 σ2

Managers 0.026 0.040 -1.431 -0.091 -1.295 -0.012 -1.165 0.128
(0.001) (0.002) (0.023) (0.006) (0.020) (0.004) (0.022) (0.001)

Science Prof. 0.052 0.039 -1.576 -0.030 -0.412 0.009 -0.334 0.180
(0.001) (0.001) (0.023) (0.005) (0.018) (0.003) (0.011) (0.001)

Other Prof. 0.052 0.028 -1.000 -1.049 -0.064 -0.399 0.025 -0.540 0.166
(0.001) (0.002) (0.000) (0.036) (0.005) (0.025) (0.003) (0.019) (0.002)

Science Assc. Prof. 0.050 0.006 -1.000 -0.964 -0.072 -0.525 -0.064 -0.457 0.165
(0.001) (0.001) (0.000) (0.021) (0.005) (0.010) (0.004) (0.013) (0.001)

Other Assc. Prof. 0.043 0.048 -0.902 -0.107 -0.567 -0.037 -0.508 0.156
(0.001) (0.022) (0.016) (0.003) (0.010) (0.003) (0.014) (0.001)

Clerks 0.067 0.024 -1.000 -0.981 -0.141 -0.568 -0.050 -0.899 0.206
(0.001) (0.001) (0.000) (0.013) (0.005) (0.010) (0.005) (0.013) (0.002)

Customer Service 0.029 0.045 -0.919 -0.086 -0.485 0.135
(0.001) (0.001) (0.008) (0.003) (0.005) (0.001)
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(d) Health & Education

βTen βAge βAge2
[a] βType:1 βType:2 βType:3 βType:4 βType:5 σ2

Health Prof. 0.029 0.039 -0.463 0.186
(0.001) (0.002) (0.006) (0.001)

Teachers 0.044 0.018 -1.000 -1.271 -0.104 -1.097 -0.021 -0.842 0.127
(0.001) (0.001) (0.000) (0.006) (0.003) (0.012) (0.002) (0.007) (0.001)

Health Assc. Prof. 0.022 0.042 -1.153 -0.218 -0.599 0.013 -0.501 0.139
(0.001) (0.001) (0.006) (0.005) (0.011) (0.003) (0.005) (0.001)

Teaching Assc. Prof. 0.036 0.038 -1.203 -0.082 -1.216 0.005 -0.515 0.142
(0.001) (0.001) (0.004) (0.003) (0.005) (0.003) (0.005) (0.001)

Clerks 0.065 0.006 -1.000 -0.767 0.004 -0.345 0.096 -0.871 0.154
(0.001) (0.009) (0.196) (0.018) (0.008) (0.009) (0.008) (0.018) (0.001)

Personal Services 0.056 0.042 -0.807 -0.041 -0.413 0.005 -0.755 0.153
(0.001) (0.000) (0.004) (0.003) (0.004) (0.003) (0.009) (0.001)

a Presented ×103 for clarity.
b Coefficients from a log-linear Mincer regression of wages on worker attributes. Types refer to estimates of unobservable
heterogeneity across workers. Low skilled workers are either of type 1 or 2; Medium skilled workers are of type 3 or 4; High
skilled workers are of type 5 or 6. Type 6 coefficients all normalized to 0. Skill prices are in table A.1. Standard errors are in
parentheses and based on 100 block-bootstrap samples of the underlying sample.
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Table A.3: Mobility Productivity Parameters

Age 0.008
(0.000)
[0.001]

Age2(×1000) 0.000
(0.000)
[0.000]

Type 1 0.027
(0.010)
[0.016]

Type 2 0.120
(0.009)
[0.016]

Type 3 0.043
(0.009)
[0.014]

Type 4 0.150
(0.009)
[0.018]

Type 5 -0.018
(0.008)
[0.013]

Notes: Coefficients from a log-linear inverse productivity function.
Types refer to estimates of unobservable heterogeneity across work-
ers. Low skilled workers are either of type 1 or 2; Medium skilled
workers are of type 3 or 4; High skilled workers are of type 5 or
6. Type 6 coefficients all normalized to 0. Standard errors are
in parentheses and based on 100 block-bootstrap samples of the
underlying sample.
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Table A.4: Mobility Cost (Γ) Parameters

Up Tasking Down Tasking
Constant 0.723

(0.009)
[ 0.016]

Occ. Dummy 0.142
(0.003)

[ 0.002]
Sec. Dummy 0.258

(0.005)
[ 0.007]

Task 1 0.017 0.021
(0.007) (0.008)

[ 0.013] [ 0.015]
Task 2 0.035 0.018

(0.005) (0.005)
[ 0.009] [ 0.008]

Task 3 0.040 0.036
(0.028) (0.028)

[ 0.049] [ 0.041]
Task 4 0.110 −0.101

(0.027) (0.029)
[ 0.054] [ 0.060]

Task 5 0.126 −0.037
(0.011) (0.013)

[ 0.019] [ 0.024]
Task 6 −0.071 0.111

(0.040) (0.037)
[ 0.067] [ 0.060]

Task 7 0.076 0.024
(0.031) (0.030)

[ 0.061] [ 0.055]
Task 8 0.207 −0.198

(0.034) (0.045)
[ 0.053] [ 0.071]

Task 9 0.043 0.124
(0.033) (0.033)

[ 0.041] [ 0.044]
Task 10 −0.054 0.013

(0.057) (0.057)
[ 0.109] [ 0.109]

Notes: Coefficients from a log-linear cost function featuring a constant,
a dummy for switching occupations, a dummy for switching sectors, and
coefficients for moving in task space. The cost function is naturally scaled
by the variance of shocks, ρ, and results for the constant are not presented
adjusted. The first column presents the coefficients for moving up in task
space and second column presents coefficients for moving down. Standard
errors are in parentheses and based on 100 block-bootstrap samples of
the underlying sample. 8



Table A.5: Non-Pecuniary Benefits (η) Parameters
Occupation Manufacturing Other Services FIRE Health & Educ.
Managers 1.761 1.496 1.992

(0.094) (0.087) (0.109)
[0.325] [0.280] [0.333]

Science Professional 1.513 1.723 1.409
(0.116) (0.103) (0.110)
[0.345] [0.340] [0.298]

Science Assc. Professional 1.438 1.528 1.623
(0.091) (0.086) (0.094)
[0.328] [0.296] [0.312]

Other Assc. Professional 1.429 1.645 1.596
(0.090) (0.093) (0.095)
[0.294] [0.296] [0.327]

Clerks 1.565 1.751 1.609 2.223
(0.083) (0.087) (0.087) (0.100)
[0.291] [0.277] [0.291] [0.303]

Agriculture 1.471
(0.082)
[0.271]

Building Trades 1.468
(0.084)
[0.285]

Metal Trades 1.573 1.746
(0.089) (0.086)
[0.281] [0.302]

Other Crafts 1.321
(0.082)
[0.274]

Plant Operator 0.847
(0.080)
[0.279]

Machine Operator 1.714
(0.095)
[0.314]

Drivers 1.489 1.580
(0.084) (0.094)
[0.265] [0.301]

Laborers 1.810 1.647
(0.096) (0.092)
[0.299] [0.304]

Other Professional 1.534 1.435
(0.097) (0.104)
[0.289] [0.326]

Personal Workers 1.903 2.118
(0.093) (0.092)
[0.299] [0.303]

Retail Workers 1.682
(0.086)
[0.277]

Elementary Occupations 2.104
(0.094)
[0.304]

Customer Service 1.392
(0.082)
[0.282]

Health Professional 1.795
(0.118)
[0.346]

Teachers 2.159
(0.105)
[0.303]

Health Assc. Professional 1.895
(0.106)
[0.314]

Teaching Assc. Professional 1.665
(0.090)
[0.279]

Notes: Non-pecuniary benefits to each occupation and sector cell. Blanks occur because not
all occupations are present in all sectors. The Health & Education sector reflects public sector
and does not include things like R&D. Data appendix contains list of industry codes in each
sector. Units are proportional the unconditional sample mean income. Standard errors are in
parentheses and based on 100 block-bootstrap samples of the underlying sample.
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Table A.6: Non-Employment (u) Parameters

Age -0.020
(0.003)
[0.007]

Age2(×1000) 0.700
(0.075)
[0.239]

Type 1 1.400
(0.071)
[0.223]

Type 2 0.486
(0.035)
[0.072]

Type 3 1.380
(0.063)
[0.202]

Type 4 -0.433
(0.045)
[0.084]

Type 5 1.199
(0.066)
[0.214]

Notes: Coefficients from a quadratic specification for the virtual
value of non-employment. Types refer to estimates of unobservable
heterogeneity across workers. Low skilled workers are either of type
1 or 2; Medium skilled workers are of type 3 or 4; High skilled
workers are of type 5 or 6. Type 6 coefficients all normalized to
0. Standard errors are in parentheses and based on 100 block-
bootstrap samples of the underlying sample.
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A.2 Data Appendix Tables

Table A.7: Comparing Raw Data and Sample Frame

Raw Data Sample
Mean Q25 Q75 Mean Q25 Q75

Income (1000s) 230.80 151.38 229.72 93.04
Age 40.94 10.45 41.08 10.08
Low Skilled (%) 33.57 28.57
Med. Skilled (%) 42.65 46.28
High Skilled (%) 21.46 25.14
Manufacturing (%) 28.08 25.66
Services (%) 35.24 32.72
FIRE (%) 12.06 10.36
Health & Educ. (%) 24.62 31.26
Employment (%) 83.15 91.51
Observations 33502593 18513301

Notes: All variables pooled across units and time periods. Raw data refers to collected data on all units
in IDAS from 1996-2007 between 23 and 59. Sample data includes imputed, cleaned and dropped data.
See data appendix for complete description of sample creation. Income is in 1000s of DKK deflated by the
2000 Danish CPI. Low skilled mean completion of short-cycle or less education; medium-skilled implies
vocational or medium-cycle education; high skilled means university and higher. See the data appendix
for a mapping of NACE 1.1 industries to sectors.

Table A.8: Sector Level Summary Statistics

Age 40.55 40.79 40.51 42.05
Tenure 3.17 2.92 2.51 3.76
Low Skilled (%) 33.65 33.75 19.09 18.31
Med. Skilled (%) 59.42 51.10 51.57 30.24
High Skilled (%) 6.92 15.15 29.34 51.45
Observations 4346990 5542706 1754626 5296437

Notes: Pooled across time periods. Averages are taken with respect to individuals
in the estimation sample, conditional on employment.

Table A.9: Transition Matrix Across Sectors

Man. Services FIRE H&E
Manufacturing 93.11 4.67 1.18 1.04
Services 3.64 89.84 2.51 4.01
FIRE 2.36 6.26 89.16 2.22
H & E 0.56 3.39 1.00 95.05

Notes: Pooled across time periods. Averages are taken with respect to individuals
in the estimation sample, conditional on employment.
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Table A.10: Occupation Aggregation Breakdown

(a) Manufacturing

Occupation DISCO 3 Title % Represented
Managers Other Department Managers 35.94

Production And Operations Department Managers 31.52
General Managers 16.26
Directors And Chief Executives 12.76

Science Professional Architects, Engineers And Related Profs. 80.17
Computing Profs. 12.53

Science Assc. Professional Physical And Engineering Science Technicians 80.13
Computer Associate Profs. 8.45
Safety And Quality Inspectors 7.49

Other Assc. Professional Finance And Sales Associate Profs. 47.41
Administrative Associate Profs. 40.27
Business Services Agents And Trade Brokers 6.73

Clerks Secretaries And Keyboard-Operating Clerks 53.96
Material-Recording And Transport Clerks 21.62
Numerical Clerks 10.81
Other Office Clerks 8.56

Agriculture Market Gardeners And Crop Growers 40.94
Market-Oriented Crop And Animal Producers 26.10
Agricultural, Fishery And Related Laborers 14.43
Market-Oriented Animal Producers And Related Workers 9.69

Building Trades Building Frame And Related Trades Workers 45.92
Building Finishers And Related Trades Workers 38.09
Painters, Building Structure Cleaners And Related Trades Workers 13.47

Metal Trades Blacksmiths, Tool-Makers And Related Trades Workers 32.68
Metal Moulders, Welders,..., And Related Trades 29.19
Machinery Mechanics And Fitters 21.27
Electrical And Electronic Equipment Mechanics And Fitters 13.04

Other Crafts Food Processing And Related Trades Workers 34.45
Printing And Related Trades Workers 22.63
Wood Treaters, Cabinet-Makers And Related Trades Workers 20.58
Textile, Garment And Related Trades Workers 6.35
Precision Workers In Metal And Related Materials 6.11

Plant Operator Chemical-Processing-Plant Operators 34.57
Metal-Processing-Plant Operators 16.99
Power-Production And Related Plant Operators 9.12
Wood-Processing- And Papermaking-Plant Operators 6.79
Glass, Ceramics And Related Plant Operators 6.08
Mining- And Mineral-Processing Plant Operators 5.50

Machine Operator Food And Related Products Machine Operators 26.69
Assemblers 22.03
Metal- And Mineral-Products Machine Operators 11.97
Other Machine Operators And Assemblers 10.21
Rubber- And Plastic-Products Machine Operators 6.97
Printing-, Binding- And Paper-Products Machine Operators 6.57
Wood-Products Machine Operators 5.37

Drivers Agricultural And Other Mobile-Plant Operators 48.67
Motor-Vehicle Drivers 47.79

Laborers Mining And Construction Laborers 55.19
Manufacturing Laborers 30.57
Transport Laborers And Freight Handlers 11.09
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(b) Services

Occupation DISCO 3 Title % Represented

Managers Other Department Managers 35.53
Production And Operations Department Managers 28.46
General Managers 18.86
Directors And Chief Executives 10.84

Science Professional Architects, Engineers And Related Profs. 65.29
Computing Profs. 27.59

Other Professional Business Profs. 32.57
Social Science And Related Profs. 23.96
Writers And Creative Or Performing Artists 17.49
Legal Profs. 10.77
Archivists, Librarians, And Related Information Profs. 9.72

Science Assc. Professional Physical And Engineering Science Technicians 53.90
Computer Associate Profs. 22.24
Ship And Aircraft Controllers And Technicians 10.58
Optical And Electronic Equipment Operators 8.03

Other Assc. Professional Administrative Associate Profs. 44.25
Finance And Sales Associate Profs. 29.90
Customs, Tax And Related Government Associate Profs. 9.77
Business Services Agents And Trade Brokers 6.29

Clerks Secretaries And Keyboard-Operating Clerks 57.54
Library, Mail And Related Clerks 19.69
Material-Recording And Transport Clerks 10.64
Other Office Clerks 6.31

Personal Workers Protective Services Workers 34.66
Housekeeping And Restaurant Services Workers 25.38
Personal Care And Related Workers 19.31
Travel Attendants And Related Workers 9.30
Other Personal Services Workers 5.48

Retail Workers Shop Salespersons And Demonstrators 96.36
Metal Trades Machinery Mechanics And Fitters 65.01

Electrical And Electronic Equipment Mechanics And Fitters 20.34
Blacksmiths, Tool-Makers And Related Trades Workers 7.29
Metal Moulders, Welders,..., And Related Trades 6.49

Drivers Motor-Vehicle Drivers 74.38
Agricultural And Other Mobile-Plant Operators 12.98
Locomotive-Engine Drivers And Related Workers 9.25

Elementary Occupations Domestic And Related Helpers, Cleaners And Launderers 70.74
Building Caretakers, Window And Related Cleaners 17.81

Laborers Transport Laborers And Freight Handlers 72.56
Manufacturing Laborers 15.62
Mining And Construction Laborers 8.98
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(c) FIRE Industries

Occupation DISCO 3 Title % Represented

Managers Production And Operations Department Managers 57.47
General Managers 22.92
Other Department Managers 12.03

Science Professional Architects, Engineers And Related Profs. 47.94
Computing Profs. 44.25

Other Professional Business Profs. 75.04
Legal Profs. 9.24
Social Science And Related Profs. 7.44
Writers And Creative Or Performing Artists 5.88

Science Assc. Professional Physical And Engineering Science Technicians 43.81
Computer Associate Profs. 39.76
Optical And Electronic Equipment Operators 8.90
Safety And Quality Inspectors 5.69

Other Assc. Professional Finance And Sales Associate Profs. 55.81
Administrative Associate Profs. 34.56
Business Services Agents And Trade Brokers 6.36

Clerks Secretaries And Keyboard-Operating Clerks 52.82
Numerical Clerks 27.04
Other Office Clerks 9.59

Customer Service Cashiers, Tellers And Related Clerks 56.72
Client Information Clerks 41.73

(d) Health & Education

Occupation DISCO 3 Title % Represented

Health Professional Health Profs. (Except Nursing) 45.40
Nursing And Midwifery Profs. 43.24
Life Science Profs. 10.51

Teachers Primary And Preprimary Education Teaching Profs. 61.02
Secondary Education Teaching Profs. 17.32
Other Teaching Profs. 10.28
College, University And Higher Education Teaching Profs. 8.09

Health Assc. Professional Nursing And Midwifery Associate Profs. 57.33
Modern Health Associate Profs. (Except Nursing) 27.36
Life Science Technicians And Related Associate Profs. 14.78

Teaching Assc. Professional Preprimary Education Teaching Associate Profs. 60.47
Special Education Teaching Associate Profs. 33.03
Primary Education Teaching Associate Profs. 5.61

Clerks Secretaries And Keyboard-Operating Clerks 88.00
Other Office Clerks 5.20

Personal Workers Personal Care And Related Workers 94.89

This presents the DISCO 3 codes aggregated into each occupation-sector pair. For clarity, only occupations with over 5%
representation in the aggregation are shown. Full list available upon request. Data appendix completes description of aggregation
and relabeling of occupations.
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Table A.11: Industry-Sector Breakdown

(a) Manufacturing

NACE 1.1 Title % Represented
Construction 19.58
Manufacture of food products and beverages 11.80
Manufacture of machinery and equipment n.e.c. 11.33
Manufacture of fabricated metal products, except machinery and equipment 6.29
Manufacture of furniture; manufacturing n.e.c. 4.30
Manufacture of chemicals and chemical products 4.17
Manufacture of electrical machinery and apparatus n.e.c. 3.42
Manufacture of rubber and plastic products 3.33
Publishing, printing and reproduction of recorded media 3.25
Manufacture of other non-metallic mineral products 3.13
Sewage and refuse disposal, sanitation and similar activities 3.05
Manufacture of medical, precision and optical instruments, watches and clocks 2.47
Manufacture of wood and of products of wood and cork 2.36
Health and social work 1.87
Electricity, gas, steam and hot water supply 1.81
Manufacture of other transport equipment 1.77
Manufacture of radio, television and communication equipment and apparatus 1.72
Manufacture of pulp, paper and paper products 1.45
Manufacture of basic metals 1.35
Wholesale trade and commission trade, except of motor vehicles and motorcycles 1.35
Manufacture of motor vehicles, trailers and semi-trailers 1.15
Manufacture of textiles 1.10
Other business activities 1.05

(b) Services

NACE 1.1 Title % Represented

Public administration and defence; compulsory social security 20.75
Wholesale trade and commission trade, except of motor vehicles and motorcycles 14.65
Retail trade, except of motor vehicles and motorcycles 9.58
Health and social work 8.05
Post and telecommunications 6.83
Land transport; transport via pipelines 5.13
Education 4.88
Other business activities 4.41
Recreational, cultural and sporting activities 4.35
Sale, maintenance and repair of motor vehicles and motorcycles 4.05
Supporting and auxiliary transport activities; activities of travel agencies 3.09
Hotels and restaurants 2.88
Activities of membership organizations n.e.c. 2.66
Air transport 1.29
Real estate activities 1.16
Other service activities 1.05
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(c) FIRE Industries

NACE 1.1 Title % Represented

Other business activities 29.97
Financial intermediation, except insurance and pension funding 25.89
Computer and related activities 9.59
Health and social work 8.20
Insurance and pension funding, except compulsory social security 6.29
Education 4.68
Real estate activities 3.46
Research and development 2.99
Activities auxiliary to financial intermediation 1.31
Post and telecommunications 1.29
Supporting and auxiliary transport activities; activities of travel agencies 1.14

(d) Health & Education

NACE 1.1 Title % Represented

Health and social work 65.68
Education 28.62
Retail trade, except of motor vehicles and motorcycles 1.13

Presents all NACE 1.1 industries at the 2 digit levels within defined broad sectors. Percentages calculated by worker headcount
representation. Only industries with at least 1% of total industry employees reflected. Full list available upon request from
author. Overlap occurs due to reclassifying occupations due to small cell problems. See data appendix for formal description
of sector construction.
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Table A.12: Description of Tasks

% Var Top 5 Chars. Weight Bottom 5 Chars Weight
Task 1 39.06 Writing 11.67 Manual Dexterity −9.74

Written Expression 11.61 Extent Flexibility −9.45
Speaking 11.55 Handling and Moving Objects −9.42
Reading Comprehension 11.55 Multilimb Coordination −9.40
Written Comprehension 11.53 Static Strength −9.29

Task 2 17.09 Operation Monitoring 14.58 Clerical −2.58
Quality Control Analysis 14.39 Perform for/Work Directly w/ Public −2.28
Inspect Equipment, Structures, Materials 14.26 Fine Arts −2.14
Physics 14.15 Service Orientation −2.00
Visualization 14.04 Customer and Personal Service −1.85

Task 3 6.74 Assisting and Caring for Others 20.73 Programming −14.00
Therapy and Counseling 19.73 Engineering and Technology −13.97
Perform for/Work Directly w/ Public 18.00 Design −13.19
Psychology 17.25 Mathematics −13.07
Medicine and Dentistry 15.56 Interacting With Computers −12.91

Task 4 3.50 Sales and Marketing 24.28 Documenting/Recording Information −16.21
Economics and Accounting 20.40 Perceptual Speed −14.87
Selling or Influencing Others 19.28 Selective Attention −14.37
Administration and Management 18.96 Medicine and Dentistry −13.96
Building and Construction 18.90 Flexibility of Closure −13.24

Task 5 2.47 Fine Arts 20.44 Night Vision −21.54
Training and Teaching Others 16.10 Peripheral Vision −20.61
Thinking Creatively 14.41 Transportation −19.27
Education and Training 14.23 Glare Sensitivity −19.14
Chemistry 13.97 Spatial Orientation −19.02

Task 6 2.28 Geography 27.30 Management of Financial Resources −15.00
History and Archeology 24.15 Resolve Conflicts/Negotiate w/ Others −13.45
Physics 19.04 Monitoring and Controlling Resources −13.30
Biology 18.52 Selling or Influencing Others −13.19
Telecommunications 16.91 Service Orientation −13.12

Task 7 2.01 Customer and Personal Service 31.41 Thinking Creatively −14.54
Clerical 21.59 Originality −12.92
Economics and Accounting 18.79 Learning Strategies −12.61
Perform for/Work Directly w/ Public 17.01 Peripheral Vision −12.32
Sales and Marketing 16.26 Instructing −11.52

Task 8 1.91 Fine Arts 20.73 Evaluate Information to Determine Compliance −19.80
Visualization 18.25 Processing Information −17.23
Sales and Marketing 17.82 Training and Teaching Others −16.13
Originality 16.54 Developing and Building Teams −15.93
Visual Color Discrimination 16.01 Communicating w/ Supervisors, Peers, etc. −15.02

Task 9 1.61 Installation 18.39 Food Production −29.27
Repairing 16.82 Mathematics −24.27
Thinking Creatively 16.16 Number Facility −23.49
Equipment Maintenance 16.14 Biology −23.33
Repair/Maintain Electronic Equipment 14.99 Chemistry −22.85

Task 10 1.22 Perform for/Work Directly w/ Public 23.24 Monitoring −16.61
Communicate w/ Persons Outside Organization 19.46 Auditory Attention −15.91
Selling or Influencing Others 19.00 Production and Processing −14.68
Updating and Using Relevant Knowledge 16.11 Selective Attention −14.12
Extent Flexibility 13.99 Public Safety and Security −13.07

Source: ONET Database. Describes survey questions assigned to each task after PCA performed. Variance explained refers to total variance in
survey responses accounted for by each component (“task”). Characteristics presented are the top (bottom) most positively (negatively) weighted
survey questions for each component. All weights multiplied by 100. The full list is available upon request. Some survey question descriptions
shortened for clarity.
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A.3 Additional Results

Table A.13: Comparative Advantage Across Occupations
Type

Sector Occupation 1 2 3 4 5 6
Man. Managers 1 1 1 1 1 1

Science Prof. 1.43 1.04 1.44 1
Science Assc. Prof. 1.34 0.96 1.40 0.96 1.16 1

Other Assc. Prof. 1.72 1.00 1.45 1.00 1.30 1
Clerks 1.37 0.95 1.41 0.97 0.97 1

Agriculture 1.11 1.09 0.90 1.13 0.53 1
Building Trades 1.54 1.00 1.12 1

Metal Trades 1.91 1.12 1.48 1.14 0.71 1
Other Crafts 1.43 0.89 1.18 1

Plant Operator 2.03 1.16 1.76 1.25 0.82 1
Machine Operator 1.61 0.94 1.36 1

Drivers 1.59 1.01 1.29 1
Laborers 1.45 0.99 1.28 1

Serv. Managers 1.01 1.06 1.02 1.04 0.72 1
Science Prof. 0.83 1.13 0.77 1.12 0.76 1

Other Prof. 1.08 1.11 0.90 1.08 1.06 1
Science Assc. Prof. 1.16 1.04 1.31 1.01 0.70 1

Other Assc. Prof. 1.39 1.13 1.47 1.11 1.09 1
Clerks 1.26 1.09 1.44 1.08 0.64 1

Personal Services 1.38 1.17 1.25 1.24 0.75 1
Retail Occs. 1.18 0.87 1.23 1

Metal Trades 1.30 1.00 1.03 1
Drivers 1.53 0.99 1.37 1

Elementary Occs. 1.60 1.10 1.38 1.24 0.76 1
Laborers 1.23 0.99 1.21 1

FIRE Managers 0.79 1.03 0.58 1.06 0.58 1
Science Prof. 0.65 1.10 1.54 1.08 1.38 1

Other Prof. 1.17 1.06 1.61 1.10 1.10 1
Science Assc. Prof. 1.31 1.05 1.37 1.01 1.20 1

Other Assc. Prof. 1.35 1.01 1.34 1.03 1.12 1
Clerks 1.21 0.99 1.31 1.03 0.72 1

Customer Service 1.24 0.96 1.34 1
H & E Health Prof. 1.19 1

Teachers 0.92 1.02 0.72 1.05 0.77 1
Health Assc. Prof. 1.10 0.91 1.30 1.09 1.13 1

Teaching Assc. Prof. 1.04 1.04 0.68 1.09 1.10 1
Clerks 1.58 1.13 1.61 1.19 0.76 1

Personal Services 1.53 1.11 1.53 1.10 0.81 1

Notes: Plots the comparative advantage of type k in occupation o relative to type
6 (High absolute advantage + college educated) in occupation 1 (Manufacturing
Managers).
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Table A.14: Distribution of Lifetime Earnings Differentials (w/ η)

Mean Std. Dev Q5 Q50 Q95 % < 0
Low [L] 1.39 3.92 −0.22 0.82 6.60 5.36
Low [H] 2.10 1.89 0.94 1.87 4.57 3.12
Med [L] 1.97 3.78 −0.52 1.25 7.82 5.89
Med [H] 2.02 1.18 1.43 1.93 3.01 1.88
High [L] 2.73 4.45 −0.10 2.05 8.21 5.28
High [H] 2.26 1.90 1.64 2.04 3.93 2.24
Total 1.92 2.63 0.62 1.85 4.71 3.50

Notes: Tables report the (100x) log difference in discounted total earnings across individuals. Results
are based on simulating 100,000 individuals from the initial cohort under both the equilibrium with and
without changes in trade prices. The same shocks are used in both simulations. Discounted at β = .96.

A.4 Figures

Figure 1: Dynamic Effects of an Import Price Shock on Real Prices

(a) Real Skill Price Dynamics
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B Estimation Details

B.1 Model Solution and Derivation of the Regression Equation

Here I summarize in more detail the solution to the dynamic programming problem that leads to an esti-
mating equation. First some notation is in order. Define the inclusive value of state ω, o at time t as:

Dt(ω, o) =
∑
o′∈O

exp [ut(o, o
′, ω)/ρ+ βEtVt+1 (T (ω, o, o′), o′) /ρ]

Then, as shown in Rust (1987) , if moving cost shocks are GEV(1) the integrated value function (conditional
on aggregate shocks having been realized) can be written as:

Vt(o, ω) = γρ− ρ log (Dt(o, ω))

Dividing through by ρ, subtracting γ/(1− β) and plugging in the definition of the inclusive value gives rise
to the following Bellman equation:

Ṽt(ω, o) = log
∑
o′∈O

exp

{
−C(ω, o, o′) + ηo′ + wo′tEho′(o, ω)

ρ
+ βẼVt+1 (T (o, o′, ω) , o′)

}
(B.1)

where Ṽ is V/ρ− γ/(1−β). Incidentally, this demonstrates that one cannot separately identify a coefficient
in front of w and the variance of the shocks (a familiar result from nonlinear binary regression models—the
variance of the shock scales coefficients). Equation (B.1) can be solved via Bellman Function Iteration for
steady state or given any path of wages and a process on forecasting aggregate shocks. Moreover, transition
rates take the following logit form:

log πt(ω, o, o
′) = ut(o, o

′, ω) + βEtVt+1 (T (ω, o, o′), o′)− logDt(ω, o) (B.2)

Combining equations (B.1) and (B.2) yields the following:

Ṽt(ω, o) = γ +
ut(o, o

′, ω)

ρ
+ βEtṼt+1 (T (ω, o, o′), o′)− log πt(ω, o, o

′)

where I have combined all flow payoff terms into ut. This formula can be plugged into the formula for
transition probabilities iterating for finitely many periods to arrive at the equation from the main text.
Iterating forward once more yields,

Ṽt(ω, o) =
ut(o, o

′, ω)

ρ

+ βEt

(
ut+1(o′, o′′, ω)

ρ
+ βEt+1Ṽt+2 (T (ω′, o′, o′′), o′′)− log πt(ω

′, o′, o′′)

)
− log πt(ω, o, o

′)

Rearranging one can write this as,

log πt(ω, o, o
′)+βEt log πt+1(ω, o′, o′′) =

ut(o, o
′, ω) + βEtut+1(o′, o′′)

ρ
+β2EtVt+2(T (ω′, o′, o′′), o′′)− Ṽt(ω, o)

Finally, consider substituting Et log πt+1(ω, o′, o′′) with the realization of the transition rate and an
expectational error. As long as workers have rational expectations, this forecast error will be uncorrelated
with any time t variables. This leads to the final equation:

log πt(ω, o, o
′)+β log πt+1(ω, o′, o′′) =

ut(o, o
′, ω) + βEtut+1(o′, o′′)

ρ
+β2EtVt+2(T (ω′, o′, o′′), o′′)−Ṽt(ω, o)+ζo′,o′′,t+1

(B.3)
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where ζo′,o′′,t = β log πt+1(ω, o′, o′′)− βEt log πt+1(ω, o′, o′′). There are two expectational terms left, we will
take care of these after we have set up the differences and differences between workers.

Next notice that in the model switching occupations is a renewal action—if two workers in different
occupations with identical age, skills and comparative advantage, both switch into the same third occupation,
then they will look identical in all dimensions. Formally, consider two workers, 1 and 2 that are identical
in age, a, skill and comparative advantage, s, but differ in human capital, ten, and their most recent
occupation. Then (ω1, o) = (a, s, teno1 , o1) where the subscript on tenure is because tenure is occupation-
specific. Similarly, (ω2, o) = (a, s, teno2 , o2). If o′′ is such that o′′ 6= o1 and o′′ 6= o2 then we have:

T (ω1, o1, o
′′) = T (ω2, o2, o

′′)

This equality above hinges on the fact that human capital fully depreciates after a switch is made, but can
easily be weakened to allow for partial depreciation of human capital as long as the process on depreciation
is known in advance. Such an extension is explored in Appendix F. Notice that for workers 1 and 2,
β2EtVt+2(T (ω1, o1, o

′′), o′′) = β2EtVt+2(T (ω2, o2, o
′′), o′′).

Further suppose that workers 1 and 2 both were in occupation o1 at time t, that worker 2 went into
occupation o2 at t+ 1 and both enter o′′ at t+ 2. Moreover, that each worker has the same state, ω, at time
t. This situation is illustrated in the diagram below:

h, o

0, o′

0, o′′

h+ 1, o

The final regression equation starts from subtracting equation (B.3) evaluated for worker 2 from (B.3)
evaluated for worker 1:

log
πt(ω, o1, o2)

πt(ω2, o1, o1)
+ β log

πt+1(ω, o2, o
′′)

πt+1(ω1, o1, o′′)
=

[ut(o1, o2, ω) + βEtut+1(o2, o
′′, ω2)]− [ut(o1, o1, ω) + βEtut+1(o1, o

′′, ω1)]

ρ

+ ζo2,o′′,t+1 − ζo1,o′′,t+1

where both β2EtVt+2(·, o′′) and Vt(ω1, o1) cancel out. This leaves only utility parameters and forecast errors
on the right hand side of the equation. Turning to the difference in ut first:

ut(o1, o2, ω)− ut(o1, o1, ω) = f(ω)C(o1, o2) + ηo2 − ηo1 +
1

ρ
(wo2,tEς(Ho2(ω, ς))− wo1,tEς(Ho1(ω, ς)))

For the next period:

Et (ut+1(o1, o2, ω)− ut+1(o1, o1, ω)) =Et

(
f(ω2)C(o2, o

′′) + ηo′′ + wt+1,o′′Eς((T (ω2, o2, o
′′), o′′))

− f(ω1)C(o1, o
′′) + ηo′′ + wt+1,o′′Eς((T (ω1, o1, o

′′), o′′))

)
=f(ω2)C(o2, o

′′)− f(ω1)C(o1, o
′′)

Since switching is a renewal action, and the workers are otherwise identical, the only difference in the flow
utility terms is the difference in switching costs for the workers. This is a constant, and so the expectation
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term can be dropped. Combining these into the first equation one has the final estimating equation:

log
πt(ω, o1, o2)

πt(ω2, o1, o1)
+ β log

πt+1(ω, o2, o
′′)

πt+1(ω1, o1, o′′)
=
f(ω)C(o1, o2) + β[f(ω2)C(o2, o

′′)− f(ω1)C(o1, o
′′)]

ρ

+
ηo2 − ηo1

ρ
+

1

ρ
(wo2,tEς(Ho2(ω, ς))− wo1,tEς(Ho1(ω, ς)))

+ ζo2,o′′,t+1 − ζo1,o′′,t+1 +mo2,o1,o′′,t,t+1

(B.4)

where the new term, mo2,o1,o′′,t,t+1, reflects measurement error in the log π terms. From the first stage,
described in the next subsection, one can recover the parameters of H, including the parameters governing ζ.
Hence, in the second stage the income differences are known. The exception is the value of non-employment,
which I estimate as a quadratic function of age, and a linear function of skill. Thus, the parameters estimated
in the above regression are the parameters of C, η, ρ and wUnemp.. Notice that only differences in η are
identified and there is no constant. Thus, I normalize ηUnemp. = 0 and assume that entering non-employment
is costless (the cost is absorbed by the value of non-employment).

Since time t skill prices are orthogonal to the t+ 1 forecast error, this can be estimated with non-linear
least squares. If instead wt were forecasted before decisions were made, there would be additional forecast
error that would be correlated with contemporaneous variables. This would call for an instrumental variables
strategy. In Appendix H I show that there is not much sensitivity to estimates if one instruments skill prices
with lagged skill prices. In principle, this equation could be constructed for every possible ω—however there
are over 75 million possible combinations of state variables. Below I describe how I choose which subset of
the state space to use.

The error term in the regression is the difference in forecast errors. These forecast errors will likely be
correlated across different sets of occupations. For example, any pair of initial occupations that end in o′′

will all have correlated expectational errors. In order to deal with this I cluster standard errors by period.
In appendix G I modify the estimator slightly to construct pseudo-histories for each individual and use an
individual-level version of (B.4) to construct data that is not clustered across individuals within a time
period. Using this alternative estimator, errors become larger, but most point estimates do not appreciably
change.

B.2 Likelihood Setup for First Stage

Before detailing the procedure I review the likelihood function without unobserved heterogeneity, arising
from the timing and distributional assumptions discussed in the main text. In this section I index an
occupation-sector pair by o and employment status by e where e = 1 means employed. An observation for
individual i at time t is a wage, wit, employment situation, (o, e)it, and controls Xit (polynomials in age,
tenure and skill level). Wages in the unemployed state do no matter as I assume there is no unobserved
randomness in that state. This implies that the likelihood for individual i is given by,

Li = F(wiT , ..., wi0, (o, e)iT , ..., (o, e)i0, XiT , ..., Xi0)

From the paper, the following assumptions give rise to a first order Markov structure on the worker’s career
path: (1) that cost shocks are iid and (2) that tenure resets upon switching occupations. Moreover, the
assumption that wage shocks are unobserved at the time that an occupation is chosen implies that the
likelihood is separable in the wage and occupational decision. Thus the likelihood can be factored as follows:

Li =f(wiT |(o, e)iT , XiT )π((o, e)i,T |(o, e)i,T−1, XiT )

× · · · × f(wi1|(o, e)i1, Xi1)π((o, e)i,1|(o, e)i,0, Xi1)π((o, e)i0|Xi0)π(Xi0)

where π((o, e)i0|Xi0)π(Xi0) is the probability of observing the initial state. From the log normal assumption

on wages one has that f(wit|oit, Xit) = φ
(
wit−βotXit

σo

)
where β are the occupation specific Mincer coefficients

(the time subscript reflecting year fixed effects) and σ is the occupation specific standard deviation of the
wage shocks. π is determined from the model and is generally infeasible to calculate. Nevertheless, the wage
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parameters can be estimated separately in a first stage. This fact help guides how one adds unobserved
heterogeneity into the model.

Suppose that workers’ unobservable type is an |O| + 1-dimensional vector where each of the first |O|
elements are a workers’ productivity shifter in each occupation (comparative advantage) while the final
element is a workers’ inverse moving productivity shifter. Following Heckman and Singer (1984), I assume
that θ is drawn from a finite distribution, Qθ. Moreover, I index a worker’s type by k and define K = |Qθ|.
The likelihood becomes,

Li =

K∑
k=1

f(wiT |(o, e)iT , XiT , k)π((o, e)i,T |(o, e)i,T−1, XiT , k)

× · · · × f(wi1|(o, e)i1, Xi1, k)π((o, e)i,1|(o, e)i,0, Xi1, k)π((o, e)i0|Xi0, k)π(Xi0|k)π(k)

This is not log additively separable, but the EM algorithm can be employed in order to estimate the model
parameters. Before specifying things further I introduce some notation. Define: His to be the history of
data for worker i up to time s; qik = P (k|HiT ), the probability that worker i is of type k given their full
history; Ξ = (βmincer, βπ) to be the set of all parameters to be estimated. In this case, the objective function
becomes:

J = max
1

NT

N∑
i=1

K∑
k=1

qik×(
log π((o, ei0|Xi0, k; Ξ) + log π(Xi0|k; Ξ) +

T∑
t=1

[eit log f (wit|ωit, oit, k; Ξ) + log π (ωit, (o, e)it|Hit−1, k; Ξ)]

)

where the first two terms in the summation account for the initial state of the worker and the sum term
reflects the log likelihood of a particular history given a type.

In the standard EM algorithm one could now maximize this likelihood by iterating over a guess of
qik and the parameters of the model (in a manner I will detail below). However, this is infeasible as π
is generated by the solution to a complicated and non-stationary dynamic problem. Moreover, the initial
conditions require integrating over many career paths for each combination of observed initial values. The
next subsection discusses how I use Arcidiacono and Miller (2011) in order to construct an approximation
to the true likelihood that can be used to back out the parameters of the wage equation as well as the
distribution of types.

B.3 Approximate Likelihood for First Stage

In order to maximize the above objective without solving the model, I approximate the likelihood by using
the observed transition matrix across states in order to estimate π. That is to say, I maximize the objective:

Ĵ = max
1

NT

N∑
i=1

K∑
k=1

qik×(
log π̂((o, ei0|Xi0, k; Ξ) + log π̂(Xi0|k; Ξ) +

T∑
t=1

[eit log f (wit|ωit, oit, k; Ξ) + log π̂ (ωit, (o, e)it|Hit−1, k; Ξ)]

)

where now π̂ are estimated from the data.
Given qik, solving for the parameters of the income equation is straightforward: the normal structure

implies a weighted least squares regression. In particular, one needs to stack the vector of income and
covariates K times and include K − 1 dummies for each type. Then the qik play the role of regression
weights.

For a particular guess of qik, solving for π̂ amounts to a weighted average of transitions. Suppose that
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there were only a small number of finite state transitions. Then one could solve for the probability of moving
from state s1 to s2 at time t as,

π̂(s2|s1) =

∑N
i=1 qik1(sit = s2)1(sit−1 = s1)∑N

i=1 qik1(sit−1 = s1)

which is just the weighted average of transitions.1 In practice, the bin estimator above only works for states
which are relatively parsimonious and a transition matrix across states that is very dense. In my setting
this is not the case. While I observe many occupation to occupation transitions, I also include skill, age,
and tenure as state variables which greatly enlarge the state space. In this case one must smooth out the
transition probabilities.2 In order to do this I specify a linear probability model for each skill-type-year-
occupation-pair that has age, tenure and previous employment status (e) as covariates. This setup allows
for complete flexibility of the transition rates along the skill, year, type and occupation pair dimension
and imposes a polynomial structure on the continuous variables.3 This requires over 1000 regressions to
be performed, which is why I use an LPM framework instead of a logit or other non-linear setup. For
a discussion of some issues and limitations see the final subsection on computational and implementation
issues.

In order to perform the E step of the EM algorithm, one needs to be able to calculate the likelihood of
a particular unobserved state given a full history. From Bayes’ rule one will have,

P (k|HiT ) =

[∏T
t=1 f(wit)π((o, e)it|(o, e)t−1, Xit−1)

]
× π(k|Xi0)π(Xi0)∑

k′

[∏T
t=1 f(wit)π((o, e)it|(o, e)t−1, Xit−1)

]
× π(k′|Xi0)π(Xi0)

While the term π(Xi0) drops out, one needs to deal with the workers’ initial state. I estimate π(k|Xi0) by
regressing qik on the initial state. I do this separately for each initial employment-status-occupation-skill-year
and include a cubic in age, a cubic in tenure and an interaction term in the regression.4

B.4 Modified EM Algorithm for First Stage

The above subsection discussed how, given a set of weights qik, one could solve for the maximized likelihood.
In this subsection I write out the full algorithm and discuss its initialization. The algorithm is given as:

1. Begin with a guess of π(1) (oit|oit−1, Xit−1), Ξ(1), and π(1)(k|Xi0, oi0)

2. Generate an update of weights:

q
(j)
ik =

[∏T
t=1 f

(
wit|ωit, oit, k; Ξ(j−1))π (ωit, oit|Hit−1, k; Ξ(j−1))]πj−1(k|Xi0, oi0)∑

k′

[∏T
t=1 f

(
wit|ωit, oit, k′; Ξ(j−1)

)
π
(
ωit, oit|Hit−1, k′; Ξ(j−1)

)]
πj−1(k′|Xi0, oi0)

1This discussion derives from Arcidiacono and Miller (2011) and the above formula is equation (5.9) of
their paper.

2Examples of other papers that confronted similar issues are Ransom (2018) (who used a logit regression)
and Scott (2014) (who used a Laplace prior to deal with small bins).

3For the actual LPM, I allow for a cubic in age, a cubic in tenure, a cross-product in age and tenure, a
dummy for being previously non-employed and an interaction between the dummy and a full cubic in age. I
found the model began to become overfitted if I allowed for more interaction terms (partially because tenure
is 0 for many workers in non-employment). Moreover I bound the probabilities between 1− 10−6 and 10−6

to keep the likelihood well behaved numerically.
4This is for cases where the number of observations in the cell is greater than or equal to 25, for the

cases where an initial cell is less than 25 people I simply use the mean of q within the bin and include no
regressors. These cases account for .15% of workers.
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3. Update π(j)(k|Xi0, oi0) = π(j)(k,oi0|Xi0)
π(oi0|Xi0) by regressing q

(j)
ik on a polynomial of Xi0 for each occupation-k

pair.

4. Update Ξ(j) by maximizing Ĵ

5. Iterate on steps 2-4 until Ĵ stops growing to some tolerance.

To operationalize the procedure one needs an initial guess of model parameters and type distribution.
I follow the suggestion of AM and set Ξ(1) to a perturbed set of parameters around the results for a single
type. As a point on defining convergence, I divide by N instead of NT since the panel is not balanced and I
use a tolerance of 10−6. Because of occasionally very small or even negative values of LPM, I found that the
likelihood was numerically unstable at lower tolerances. Figure 2 plots the convergence of the likelihood.

B.5 Computational and Implementation Issues for First Stage

While the above outlines the algorithm I employ as well as several details of implementation there are two
final issues that need to be highlighted: missing data and small bins. These points are minor in the sense
that they relate very precisely to my particular implementation of the above algorithm. On the other hand,
they do mean that I am not maximizing the likelihood exactly as written above so I describe them for the
sake of completeness.

First, for a great many individuals, the occupation is unknown.5 While in principle one could integrate
out missing data by focusing on observed trajectories, I cannot do this. This is because with the modified
likelihood, I would need to estimate approximate transitions in and out of various possible combinations of
missing data which would put overly burdensome demands on the data in terms of bin size. And so, I ignore
missing observations, creating holes in workers’ histories. When I look at the data, it does not appear that
missing observations are correlated strongly with any demographic characteristic. However, as discussed in
my data section in regards to imputation, missing data is likely to occur when workers switch occupations.
Unfortunately, this potential source of bias runs throughout my estimation.

Second, while the size of the data allows me to handle a large state space, there are still several very
small transitions. In particular, some skill-year-occupation-pair bins are so small that one cannot estimate the
transition probabilities without overfitting (in some cases, there are more variables to fit than observations).
For these small cases, I drop the transitions from the estimation, treating them essentially the same as missing
data. I use a cutoff of twenty five observations in a bin before estimating an LPM. I have experimented with
cutoffs in the range of twenty to thirty five and found little sensitivity (flexibility of the LPM appears to be
much more important). This cutoff leaves about 99% of all observations in the likelihood and about 91% of
switches.

B.6 Construction of Variables for Second Stage

Before turning to the actual regressions in the second stage I discuss construction of the left and right hand
side variables. As a reminder, the left hand side in the estimation is given by:

LHS = log
π(o′|o,X)

π(o|o,X)
+ β log

π(o′′|o′, X ′)
π(o|o, X̃ ′)

which says that the left hand side is the discounted log difference in observing career trajectory o→ o′ → o′′

and o→ o→ o′′, given the same initial set of covariates, X. The reason for the notation X ′ and X̃ ′ reflects
that age and tenure change for workers and these changes depend on the career path. Notice that this
assumes that a workers’ unobserved type is known. This is why the EM algorithm is performed in the first
stage: one can extract π given the type as a solution to a weighted least squares regression where the weights
are exactly the probability of each individual being of a certain type. Thus, given a choice of β, one can
construct the left hand side with parameters already estimated in the first stage.

5In the data appendix I discuss more precisely how and when imputation occurs and what observations
are dropped.
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Due to the high dimensional state space and panel length there are several hundred million possible
combinations of the above formula. In order to deal with this problem computationally I pre-specify a
grid over the deterministic part of the sate space. In particular, I focus on age beginning at 28 increasing in
increments of 5, tenure increasing in increments of 2, and copy this grid for all skill types. This tremendously
lowers the state space by several orders of magnitude. Then for this grid I calculate all possible transition
paths given the observed pair-wise transitions observed in the data in a given year (i.e., I use every possible
π̂ from the first stage). This leaves on the order of 4.5 million observations, a substantially more tractable
number. Due to the choice of grid and the fit of the LPM, some probabilities are estimated at boundaries.
I do not remove these observations for two reasons: (1) this would be inconsistent with the first stage
estimation where in fact the LPM probabilities were bounded; and (2) as discussed in Artuç and McLaren
(2015), ignoring low probability events can bias results. This is because if a switch is observed in one period
and not another due to a change in wages, this is useful information. Ignoring such data points will artificially
lower measured worker responses to wage differentials.6

The right hand side variables are the costs and income associated with different occupational choices.
The construction of occupational characteristics occurs in the main text, so I do not discuss it here. For the
income, much like the left hand side, the type of the agent is assumed to known. Once again, the wages of
certain types and the distribution of types can be recovered from the first stage. Thus, the second stage of
the estimation uses the predicted income for workers in a particular state coming from the first stage wage
equation.

B.7 Regression Details for Second Stage

As a reminder of the main estimating equation I run regressions of the form:

log
π(o′|o,X)

π(o|o,X)
+ β log

π(o′′|o′, X ′)
π(o|o, X̃ ′)

=− C̃(o, o′, o′′, X,X ′, X̃; Γ)

+ [η′o − ηo] +
1

ρ
[wo′tg

′
o(X)− wotgo(X)] + εoo′tX

where the first term reflects moving costs, the second bracketed term is the difference in compensating
differentials across occupations, the third bracketed term is the difference in incomes across occupations
conditional on year and state, and the final term is the error term, which is the t + 1 forecast error on the
difference in continuation values for occupation o′ and o. Breaking out the cost term:

C̃(o, o′, o′′, X,X ′, X̃; Γ) = f(X; Γf )C(o, o′; ΓC) + β[f(X ′; Γf )C(o′, o′′; ΓC)− f(X̃ ′; Γf )C(o, o′′; ΓX)]

where f and C are non-linear functions of observables described in the main text. There are several special
cases of the above that are important for understanding the regressions. First of all, I normalize the value
of non-employment for 25 year old, low skilled workers to 0 (it’s clear that one occupational choice must be
normalized as I can only identify differences in the values of different states). Second, I normalize the cost
of entering non-employment to be zero.

Since there are too many points of support along the state space to construct all combinations of the
above regression I use a grid approach. In particular,

1. I use all observed pairs of occupational moves to construct counterfactual one-shot deviation transi-
tions. For example, if I observe transitions from occupation A to B, from A to C and from B to C
then I construct the counterfactual probabilities of going from A to B to C and then from A to A to
C.

2. Step 1 only defines the possible paths, in step 2 I define a grid across individual states by specifying:
(1) a subset of ages starting at 28 and moving up by 5s until 53; (2) repeating this for all possible

6In a robustness check I estimate the model using only non-bounded estimates. The estimated coefficient
on wages decreases from approximately 1.2 to .4, as expected. Despite the seemingly large magnitude, these
numbers actually change the simulation results little. This is because switching is low at the baseline so
jumps in 1/ρ have moderate effects on the overall change in switching elasticity.
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skill groups and types ; and (3) a subset of possible initial tenures, 1, 3, 5.

This leaves me with on the order 4.5 million points in the regression, which is a manageable number from a
memory perspective.

B.8 Standard Errors

I estimate the standard errors for the model’s parameters via block bootstrap. However, I do this in two
ways. In the first, I draw, with replacement, entire individual career paths (so that I am clustering by indi-
vidual). I use 100 bootstrap samples to construct standard errors. Specifically, I draw uniformly from the
pool of individuals. This risks over sampling from years with larger populations (i.e., later in the sample),
but this should not necessarily bias the standard errors. This procedure yields strictly more conservative
standard errors than those implied by treating first stage parameters as estimated and treating the second
stage estimate as a regression, with the number of periods going to infinity. Moreover, this properly accounts
for the fact that standard errors are based on the population of individuals and time periods going to ∞
and not the number of occupations, which is treated as constant. Note that this second point also implies
that there is no incidental parameters problem in estimating the occupation fixed effects. In practice, first
stage estimates are very precise. In light of the sample size, that little measurement error remains may not
be surprising. However, this cross-sectional variation in N ignores that second stage forecast errors will be
correlated across individuals. This motivates the T bootstrapping discussed next.

The block bootstrapping above relies on the idea that T is large. While T = 12 is a good sized panel for
identification purposes7 and such a panel length is not atypical in structural work (e.g., Das et al. (2007)),
it may underestimate standard errors to ignore the fixed time dimension. To this end, I also block bootstrap
in the time dimension in order to assess this issue.8 As resampling both individuals and years is difficult,
I focus on just resampling years, and treat the first stage parameters as estimated. Ignoring first stage
error does not seem problematic as first stage parameters are very tightly estimated—and this produces very
tight standard errors when coupled with the procedure in the previous paragraph. Specifically, I draw, with
replacement full sets of switches uniformly from the set of integers {1, ..., 10} and then take t, t + 1, t + 2
from the data. I experimented with block length, and a length of 1 produced the most conservative standard
errors. In Appendix G I discuss a third strategy based on Altuğ and Miller (1998). This relies on, essentially,
weighting the estimating regression by the empirical distribution of switchers. This weighting, paired with
a particular resampling strategy, yields

√
NT consistent estimates. This produces tighter standard errors

than bootstrapping on t, and changes the parameter estimates slightly. /

B.9 Jackknife Bias Correction

One parameter of interest, the semi-elasticity of transitions with respect to wages, 1/ρ, is identified pre-
dominantly from time variation, rather than cross-sectional variation9. In simulations, quantitative and
qualitative predictions do not change substantially with differences with changes in ρ, unless these changes
are large. Nevertheless, it plays an important role in governing the speed of adjustment to shocks in the
model and so its identification merits careful discussion. Given the short length of the panel, one must worry
not only about suitably adjusting standard errors but also the risk of short panel bias (see Arellano (2003) p.
85). Indeed, in simple Monte Carlo exercises, there is the potential for negative bias in the estimation of this
parameter with short panels. While this bias tends to evaporate quickly in simulations, it would be helpful
to have a sense of the potential for bias in the actual data. I do this relying on the split sample jackknife
technique introduced and discussed in Dhaene and Jochmans (2015). The key is that in the second stage
estimation, ρ, is essentially estimated as if the data is linear panel data. To that end, the finite T bias has a

7See, e.g., Honoré and Tamer (2006) for a discussion in which T > 3 is enough for identification in a
closely related class of models.

8I am particularly indebted to Bo Honore and Elena Manresa for discussions on this issue.
9As discussed in the main text, differences in transition rates with respect to tenure also identify this

parameter
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well known form, c0/T +O(T−2) for some time-invariant constant, c0. Given this formula, a consistent and
bias corrected estimator of ρ can be given by:

ρ̂JK = 2ρ̂0 −
ρ̂P1 + ρ̂P2

2

where ρ̂0 is the original estimate, ρ̂P1 is the estimate from the first half of the panel and ρ̂P2 is the estimate
on the second half of the panel10. The value for this corrected 1/ρ is 1.9, while the original estimate is 1.5.
The corrected number is larger, as should be the case—however the uncertainty is large. Moreover, despite
being quite a bit larger in proportional terms, the difference in estimates is small in terms of importance
for counterfactuals. Thus, the panel length seems to be sufficient for identifying the parameter of interest.
Appendix G contains a third estimate for 1/ρ based on a different weighting of the regression equations
that is

√
N consistent. This estimator has 1/ρ = 2.2, which is quite close to the corrected estimate in this

appendix. Appendix H also contains a linear approximation to the non-linear model and uses both an OLS
and IV approach to estimate the parameters. In these cases, 1/ρ ranges from 2.01 to 2.06. These different
specifications, done with different assumptions in mind, all point to a fairly robust estimate of 1/ρ that is
between 1.5 and 2.5. Numbers in this range are likely to lead to similar counterfactuals, which can also help
explain why the data may not be able to distinguish between values of 1/ρ in that range.s

B.10 Appendix B Figures

Figure 2: EM Algorithm Convergence
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10I construct pseudo-initial conditions based on T/2− 1 for the second half panel.
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C Details on Counterfactuals

In this section I detail more precisely how I perform counterfactuals. All counterfactual analysis must begin
from a specified initial equilibrium. I either use the observed distribution of workers and prices in Denmark
in 1996 or I use the steady state distribution of workers and prices that arises from simulating the model
forward assuming perfect foresight starting from the 1996 equilibrium. In the paper I specify which initial
condition for various counterfactuals.

C.1 Updating Labor Supply

1. Given initial conditions {Lot−1} and a guess of wages {wot} solve the worker’s problem to determine{
HS
ot

}
.

The details of the labor supply problem are in the main text, but this procedure reduces to iterating on a
Bellman equation.

C.2 Updating Labor Demand

As solving the firms’ problem is less central to the paper I discuss many details in this appendix. First I
review the basic set up, then explain how I update the system.

C.2.1 Technology and Prices

There is a representative firm within each industry using a Cobb-Douglas production function in labor,
capital and intermediates:

Y Di = z̃iK
βik
i

(∏
o

Lγioio

)βiL ∏
j

M
νij
ij

βiM

All subsets of coefficients sum to 1. For tradable goods, there is an aggregate good given by:

Yi =
((
ÃY Di

)ρi
+
(
Y Fi
)ρi) 1

ρi

and σi = ρi
ρi−1 is the elasticity of substitution.

Assuming perfect competition, the technology above gives rise to the following expenditure system:

Ei =

αi (W + pkK) +
∑
j

βjMνjiEj

 A
(
PDi
)1−σ

A
(
PDi
)1−σ

+
(
PFi
)1−σ +DF

i

(
PDi
)1−σ

and the following price system:

logPDi = − log zi + βik log (pk) + βiL
∑
o

γio log (wo) + βiM
∑
j

νij log
(
A
(
PDi
)1−σ

+
(
PFi
)1−σ) 1

1−σ

From a change in nominal factor prices or technology, one can solve for expenditures and output prices as
well as the aggregate price index.

C.2.2 The System in Changes

The above problem can be recast in terms of relative prices of domestic and foreign goods. These are
observed in the data from data on expenditure and elasticities of substitution, while data on relative prices
between sectors is not.
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To begin, rewrite the expenditure system in terms of relative prices between foreign and domestic:

Ei =

αi (W + pkK) +
∑
j

βjMνjiEj

 r1−σi

r1−σi + 1
+Xir

1−σ
i

where

Xi =
DF
i

(
PFi
)1−σ

A

and

ri =
APDi
PFi

Notice that for nontradable goods ri = 0 so that the expenditure system does not depend on the levels of
prices or productivity in the non-tradable sector.

To keep this intuition working in the small open economy case, consider rewriting the price system as
follows:

logPDi = − log zi + βik log (pk) + βiL
∑
o

γio log (wo) + βiM
∑
j

νij log

(
A
(
PDj

)1−σj
+
(
PFj

)1−σj
) 1

1−σj

= − log zi + βik log (pk) + βiL
∑
o

γio log (wo) + βiM
∑
j∈T

νij

[
log
(
r
1−σj
i + 1

) 1
1−σj + logPFi

]
+ βiM

∑
j∈NT

νij logPi

= − log zi + βiM
∑
j∈T

νij logPFi + βik log (pk) + βiL
∑
o

γio log (wo) + βiM
∑
j∈T

νij

1 − σj

[
log
(

1 + r
1−σj
i

)]
+ βiM

∑
j∈NT

νij logPi

Now for tradable goods subtract the foreign price,

log ri = − log zi +
∑
j

(
βiMνij − δij

)
logP

F
i + βik log (pk) + βiL

∑
o

γio log (wo) + βiM
∑
j∈T

νij

1− σj

[
log

(
1 + r

1−σj
i

)]
+ βiM

∑
j∈NT

νij logPi

where δ is the Kronecker delta function.
Ordering the industries by tradable and non-tradable, and dropping the logarithms as understood, and

first difference leads to the following matrix system:

∆

 log ri
· · ·

logPi

 = −∆ log z +

 BMT ,T − I|T |
· · ·

BMNT ,T

∆ logPFi +BK log ∆pk

︸ ︷︷ ︸
Exogeneous

+BL∆ logw +

 BMT ,T
· · ·

BMNT ,T

∆ log r̃i +

 BMT ,NT
· · ·

BMNT ,NT

∆ logPi

︸ ︷︷ ︸
Endogeneous

This system is at the heart of the simulation algorithm because with knowledge of rit−1 and a guess of ∆w
one can solve for rit without needing to solve for the level of any other prices.

This is a non-linear system of equations. However, linearizing r̃is around rit yields the approximate
linear solution:

∆

 log ri
· · ·

logPi

 =

IN×N −


BMT ,T ◦ r1−σt

1+r1−σt

BMT ,NT

· · · · · ·

BMNT ,T ◦ r1−σt

1+r1−σt

BMNT ,NT



−1

−∆ log z +

 BMT ,T − I|T |
· · ·

BMNT ,T

∆ logPFi +BK∆ log pk

︸ ︷︷ ︸
Exogeneous

+BL ∆ logw︸ ︷︷ ︸
Current Guess


where ◦ refers to multiplying the (i, j)th element of B by the jth element of r−σ

1+r1−σ . From here one can
move back to the expenditure system in levels using the following updating rule for export expenditure:

∆ logXit+1 = ∆ logDF
it+1 + (1− σ)∆ logPFit+1 −∆ logAt+1

Summarizing this algorithm:
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1. Given
{
rt−1, wt−1,∆P

F
}

and a guess of wt, solve the system of equations for {∆rt}

2. Construct rit = rit−1 + ∆ri

3. Adjust export demand by Xit = Xi,t−1

(
PFit
PFi,t−1

)1−σ
4. Solve the expenditure system for {Ei}

5. Construct labor and capital demand from the expenditure system:

HD
ot =

∑
i βiLγioEit
wot

with an analogous formula for capital.

C.2.3 Choice of Numeraire

As this is a general equilibrium model, I need to make one normalization in order to pin down a numeraire.
I treat the foreign demand shifter as fixed. To see that this is the case consider a one-sector, two-country
version of the trading environment. In this case, expenditure at home is given by,

ED = (WD + βME
D)

AD(PD)1−σ

AD(PD)1−σ + (τDFPF )1−σ)
+ (WF + βME

F )
(τFDP

D)1−σ

(τFDPD)1−σ + (PF )1−σ)

= (WD + βME
D)

AD(PD)1−σ

AD(PD)1−σ + (τDFPF )1−σ)
+

(WF + βME
F )(τFD)1−σ

(τFDPD)1−σ + (PF )1−σ)︸ ︷︷ ︸
Dit

(PD)1−σ

Here one can see both the small open economy assumption and choice of numeraire. First, the small open
economy assumption is that Denmark is sufficiently small that no foreign variables respond to it. Second,
when updating Xit I adjust only by the change in (nominal) foreign prices, which implies that Dit is constant.

C.3 Final Algorithm for Supply and Demand

In spite of the above discussions, solving the model itself boils down to a shooting algorithm. In particular one
first needs information on initial relative prices of goods and wage levels, {rt−1, wt−1} as well as information

on changes in exogenous variables
{

∆PF ,∆z
}

.Next, given a current guess of w
(j)
t and information on

{rt−1, wt−1} as well as any changes in exogenous variables:

1. From exogenous changes in foreign prices and the current guess of wages and capital prices, use perfect
competition and cost minimization to solve for the implied path of prices and continuation values.

2. Given a guess of the path of continuation values, solve for the equilibrium path of wages clearing
markets in each period and in each market.

3. Update wages using a non-linear Gauss-Seidel updating rule:

w(j+1) = λw(j) + (1− λ)wNew

I find the above algorithm to be reasonably stable given a conservative λ between .85 and .9. I initialize from
a myopic guess, where in each period workers treat the current wage as that which will continue forever.
This allows one to solve the model period-by-period. On a 2.7 GhZ Intel i7 processor, the Matlab code takes
approximately 12 hours from start to finish.
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D Data Appendix

D.1 Occupations and Occupational Characteristics

I use administrative data on workers in Denmark in order to estimate the worker supply model. In this section
I describe the main data sets, the construction of occupation codes and cleaning, as well as the definition of
income and other variables used. The last section discusses construction of occupational characteristics.

Description of Datasets

The extract of the Danish LEED which I rely on, called IDA, contains information on the position of each
worker in November of the calendar year it is collected. This dataset contains information on the employment
status of the worker, the worker’s firm, the worker’s total annual income from their November employer,
hours worker (which are imputed), the worker’s current level of education, age, as well as other demographic
variables that I do not use. In addition, it contains information on the worker’s occupation recorded at the
ISCO four digit level and a quality flag that tells me the source of information for the occupational code.

In addition to IDAS, I use two datasets on establishments in Denmark, FIRE and FIRM. These contain
standard information on the balance sheet of firms. The reason I use both datasets is that they contain
information on the industry code of plants and firms in the economy. Whenever possible I rely on plant-level
information in order to assign a worker to a particular industry. When this is not feasible I use firm level
data.

For trade data, I use the Danish customs data, UHDI. This database contains different aggregations of
the data. The extract on which I rely contains price and quantity data at the country-product-year level for
each firm.

In addition to the administrative data I use several publicly available datasets: (1) the Danish National
accounts; (2) the COMTRADE database as cleaned by CEPII (BACE); (3) Data on the Danish CPI from
Statistics Denmark; (4) Data on the LIBOR rate from the FRED database. These datasets are all used in
the calibration of the labor demand side and there is detailed information in that section.

Data Cleaning

Occupations - I use the two digit code for each four digit code in the data. In order to avoid imputed
and low quality data, I follow the recommendation of Statistics Denmark and only use those codes coming
from administrative surveys or pensions funds and not imputation or lagged information.11 In addition to
the use of Stats DK’s quality flags I perform the following imputations: (1) if a worker is employed in the
same occupation at t− 1 and t+ 1 but has missing data at t, I impute the occupation as that at t− 1; (2) if
a worker switches firms between t and t+ 1 and there is data on occupation in t+ 2, I impute any missing
occupational codes at t + 1. The first imputation, if anything, biases me against finding large transition
probabilities. The second imputation is done because a large amount of switching occurs through firms and
often occupational codes are slow to adjust. If occupational codes change when in non-employment, I reset
them to the occupational code observed in the last employed spell.

There are two changes to the ISCO’s definitions: first, I combine all managerial occupations (10-13) into
one code. This is because the paper is focused on horizontal, not upward mobility; second, I drop legislators
and those employed in military service.

There are some occupations that are insufficiently observed in certain skill groups to accurately estimate
transition rates. When this occurs, I have aggregated two digit occupations into the more dominant occupa-
tion (e.g., combining codes 51 and 52 into code 51). This predominantly affected high skilled workers who
have at least the equivalent of an American bachelor’s or master’s and are, predictably, rarely working in
low-skilled occupations. The table below summarizes these changes:

11This corresponds to quality codes 1,2,4, and 10. For details see:
http://www.dst.dk/da/Statistik/dokumentation/Times/personindkomst/discotyp.aspx
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Small Occupation Code Skill Groups Affected Assigned to Code
92 (Ag. Laborers) All 61 (Skilled Ag. Workers)
21 (Science Profs.) Low, Medium 22 (Science Assoc. Profs.)
41 (Office Clerks) High 42 (Customer Service Clerks)
51 (Personal Service Work) High 52 (Salespersons)
71, 74 (Building/Crafts Workers) High 72 (Machine Workers)
82, 83 (Drives, Plant Operators) High 81 (Machinists)
93 (Manufacturing Laborer) High 91 (Elementary Occupations)

Finally, some occupations that are very small in a certain sector (e.g., teachers in manufacturing) were
moved across sectors because of the same small bins issue. Table (15) in the online table appendix in the
appendix contains the full list of occupations that can be found in each sector.

Industry - I use NACE 1.1 four-digit codes for industries. These are assigned to plants, which are in
turn matched to workers. I aggregate NACE 1.1 codes into 4 sectors. Manufacturing includes construction,
agriculture and utilities and corresponds to NACE 1 2-digit codes 0-45; FIRE refers to NACE 1 2-digit codes
64-74; Public Services refer to NACE 1 2-digit codes 75, 80, 85-90; Other Services contains all remaining
codes. Table (16) contains a complete description of this aggregation, including the shares of each industry
in each sector.

Skill - IDA reports a worker’s completed type of education. I group workers with high school or short
cycle education in low skilled workers, workers with vocational or medium cycle education into middle skilled
workers, and those with a bachelor’s or more into high skilled workers. If workers education is ever reported
as lower than in a previous year, I impute the higher education. If education is ever missing, I use the year
before education if available, if that is unavailable, I use the next year reported education. The short-cycle
education in Denmark is one to two years of some vocational training, some apprenticeship work and qualifies
students for either continuing education or for basic occupations in fields as varied as IT to healthcare. The
medium-cycle education system in Denmark is most similar to an American associate’s degree but slightly
more expansive. It is geared towards vocational training, but the breadth of topics includes traditional
vocational careers, as well as STEM jobs, business, and teaching. In general, the Danish population has
been steadily increasing in educational attainment over time, however there are still substantial workers
who enter associate’s and vocational type degrees. The second panel of 3 plots trends in these variables.
There are secular declines in the share of workers with short cycle or lower education, and rapid growth in
attainment of a university degree. These trends are uncorrelated with cyclical changes in the employment
to population ratio, and reflect long run changes in the economy.

Occupational Tenure I construct occupational tenure for early cohorts using data from 1990 - 1996.
Tenure is censored above at 6 years in order to maintain an accurate measure across cohorts. I construct
tenure at the occupation-sector pair level.

Income - I focus on income as a measure of earnings, as this is the most well measured earnings concept in
the Danish register data, and hours are often imputed. IDA reports total salary based income in November
of each year, based on a worker’s primary and any second occupation. I do not observe the secondary
occupation, and would be unable to distribute the earnings. Hence, salaried income is fully attributed to
the reported occupation.

Employment - I count a worker as employed in t if they are employed in November of t. The first panel
of Table 3 plots aggregate employment to population ratio using this definition. The ratio is about 82% on
average. This is fairly close to aggregate figures from Statistics Denmark12 (not pictured), which average
78% over this interval. Moreover, the trends, including the drop and recovery in the early 2000s, match up
almost exactly.

In order to see the outcome of this data cleaning, tables A.7 and A.8 in the data appendix contain
summary statistics in the raw sample of individuals and in the final sample frame. Employment is higher in
the sample frame, as is the share of workers in the health and education sectors. The former occurs if a worker

12Figures on employment, unemployment, and not-in-labor-force can be downloaded from https://www.

dst.dk/en/Statistik/emner/arbejde-indkomst-og-formue/beskaeftigelse
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Figure 3: Employment and Educational Trends in Denmark
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is removed because they are non-employed for the full duration of the sample. The latter occurs because
higher quality income and occupational information is available in careers in the health and education sector.
This is likely a result of these reflecting public sector occupations. There is somewhat underrepresentation
of low skilled workers. This also likely reflects reporting quality and the fact that some low skilled workers
may have been non-employed for the duration of the sample.13 Otherwise the sample frame and raw data
look very similar in terms of demographics and mean income.

Construction of Characteristics

In order to construct tasks I use the ONet database. This database contains comprehensive survey questions
on various aspects of jobs. I use the “Work Activities,” “Skills,” “Abilities,” and “Knowledge” surveys.
These surveys contain 161 questions on 983 occupations at the SOC 2000 level. The questions are on a scale
of 1-5. I follow Firpo et al. (2011) in combining importance and level scales into a composite index. Then I
use quantiles in each survey response and treat the answers as cardinal.

In order to move from the large number of survey questions to a manageable number I use PCA, which
is the solution to a factor model. In particular, I treat the Onet database occupation measures as signals
generated by a set of underlying fundamental tasks; i.e., indexing occupations by o, fundamental tasks by t
and observed questions by n leads to the following factor model for occupational characteristics:

xno = λ′nFo + εno

where λn is an T × 1 coefficient specific to data series n that maps the 1× T vector of tasks Fo to x.
After estimation, I have 10 characteristics for 983 occupation in the SOC 2000 classification. Notice that

the actual tasks are not unique as factor models are only defined up to a normalization. For example, if one
estimates factor models by PCA the implicit normalization is that F ′F/O = IO where I is the identity. The
assumption that tasks are uncorrelated is arbitrary but useful, especially given that I will use these to price
distance in task space.

To aggregate this to the ISCO four digit classification I first match the SOC 2000 codes to the United
States Census codes. Then I use the US employment shares to calculate weights. Because I wish for the
characteristics to be time-invariant, I use the weights by pooling over the years 1999 - 2003, reweighing
each year by its population size. This assumes that the US employment shares for the more disaggregated
occupations are roughly similar to the Danish shares. Without more disaggregated data it is impossible to
check whether this is accurate. However, within an ISCO code, the variance between characteristics is not

13This does not mean that these workers are involuntarily unemployed. Some of them may be parents
who are at home, workers on disability, or workers in graduate school or some kind of other education for
the full period.
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large; on average the standard deviation of the characteristics within a code is 40% the standard deviation
across all codes. If no census weights are available, I simply take the equally weighted mean over occupations
within an ISCO 4 digit code. Once the four digit codes are mapped to, I use the occupational weights in
Denmark to aggregate to two digit codes. To insure time-invariance I use the same pooling procedure as I
did for the census codes.

D.2 Labor Demand/Calibration Details

In order to close the model for counterfactuals one must solve for the parameters governing production,
consumption, capital and trade. The table below summarizes in detail the set of variables and the data
source from which I draw the information. Because the algorithm relies on solving for variables in differences
(see technical appendix), no data on initial relative prices, initial relative productivity, or home bias terms
are required. In the remainder of this section I describe in some detail how I use the databases to calibrate
various parameters.

Symbol Size Meaning Data Sources

Production
α |I| × 1 Consumer Demand Natl. Accounts
BT ,T |T | × |T | IO Matrix from Tradables to Tradables Natl. Accounts
BT ,NT |T | × |NT | IO Matrix from Tradables to Nonradables Natl. Accounts
BNT ,T |NT | × |T | IO Matrix from Nontradables to Tradables Natl. Accounts
BNT ,NT |NT | × |NT | IO Matrix from Nontradables to Nontradables Natl. Accounts
BK |I| × 1 Capital input coefficients Natl. Accounts
BL |I| × |O| Labor input coefficients IDAS

{σi}Ti=1 |T | × 1 Substitution elasticities Broda and Weinstein (2006)

Prices
r0 |T | × 1 Initial relative prices{

∆PFt
}T
t=1

|T | × 1× T Path of foreign prices UHDI/Comtrade{
∆PNTt

}T
t=1

|NT | × 1× T Path of nontradable prices Natl. Accounts

{∆rKt}Tt=1 |I| × 1× T Path of capital prices LIBOR

{∆zt}Tt=1 |I| × 1× T Path of industry productivities Estimated

Income

{rKtKt}Tt=1 T × 1 Capital Income Natl. Accounts

{Xit}Tt=1 |T | × 1× T Foreign Demand Shifter Natl. Accounts{
∆DF

it/Ait
}T
t=1

|T | × 1× T Change in Relative Foreign Demand Natl. Accounts

Production and Utility Function Parameters

In order to calculate the Cobb-Douglas coefficients in the production function I use expenditure shares from
the Danish national accounts. Index industries by i, j and time with t. I use the time averaged shares leading
to the following number:

βij =
1

T

T∑
t=1

Eijt
Eit

At the level of aggregation used in the analysis (NACE 1.1 2-digit level), there is very little time variation
in these parameters over the time frame I consider. The R2 of the expenditure share on i, j fixed effects is
over .95.

From the national accounts I extract the capital share (defined as gross surplus) and the labor share in
a similar fashion. To go from the labor share to the occupation coefficients I use the observed income shares
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in the data. Hence,

βHoi = βiL ×
∑
m∈{o∩i} ym∑
m∈{i} ym

where m indexes workers and ym is worker income.

To calibrate consumer utility parameters I use final expenditure net of exports:

αi =
1

T

T∑
t=1

Eit +Mit −
(∑

j Ejit

)
−Xit

Iit

I.e., the demand parameter is domestic absorption net of intermediates over total income (labor, capital,
etc.).

Relative Prices and Productivity

To calibrate the path of relative prices (including the initial price) I use the share of expenditures and
information on σ:

rit =

(
EDit
EFit

)1−σi

In the baseline counterfactual, I set the Armington elasticity, σi, to 4 in all industries. This estimate comes
from Simonovska and Waugh (2014). To calibrate changes in foreign prices I use the method and substitution
elasticity estimates of Broda and Weinstein (2006), who build on the seminal work of Feenstra (1994). The
CES price index for tradable goods can be constructed year-to-year by decomposing price changes into the
intensive margin and the extensive margin. The former refers to products that are purchased in both years
and only prices and quantities change. For this subset of goods, called the common set and denoted by I,
the price index can be constructed using Sato-Vartia weights:

P Intt+1/P
Int
t =

∏
i∈I

(pi,t+1/pi,t)
si,t−si,t−1

log(si,t)−log(si,t−1)
×
(∑

j∈I
sj,t−sj,t−1

log(sj,t)−log(sj,t−1)

)−1

where s is the share of purchases from within the common set of goods. To correct for the adjustment
margin, let λt+1 be the share of total expenditure in t+ 1 on varieties newly available in t+ 1 and let λt be
the share of total expenditure in t on varieties that are no longer purchased in t+ 1. I.e., these are new and
destroyed varieties of goods, respectively. In this case, the total price index is given by:

Pt+1/Pt = P Intt+1/P
Int
t × (λt+1/λt)

1/(σ−1)

Notice, the elasticity of substitution, σ, only matters for understanding the impact of new varieties. This
term is most important in times of trade liberalization as many new import relationships are formed, and
old relationships destroyed. National accounts often ignore these changes (assuming prices are infinite in one
or the other period), which leads to an upward bias in price indices whenever variety growth occurs. In my
implementation, I use customs data aggregated to the country-product level to construct a variety-corrected
CES index for each industry. I construct a similar index from Comtrade. In a last step, I use information
from the national accounts, which are biased upwards as they ignore variety gains. I use the geometric mean
of these three indices. This is an ad hoc attempt to smooth the time path of foreign price changes.14

To calibrate changes in capital prices I use data from the LIBOR on interest rates. As the depreciation
rate, I use a value of δ = .1 for all industries.

14For most products all three of these series are highly correlated. However, over time and for a handful
of goods, the units in which certain goods were recorded changed. These time periods make the indices I
construct from customs data volatile. The national accounts uses a government defined price index that
appears to smooth over these issues.
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Finally, given all of the parameters estimated thus far, changes in TFP can be backed out as a residual
from the price system implied by Cobb-Douglas production and perfect competition:

∆ log z =

 BMT ,T − I|T |
· · ·

BMNT ,T

∆ logPFi +BK∆ log pk +BL∆ logw

+


BMT ,T ◦

r1−σt

1+r1−σt

− I|T | BMT ,NT
· · · · · ·

BMNT ,T ◦
r1−σt

1+r1−σt

BMNT ,NT − I|NT |

∆

 log ri
· · ·

logPi


The estimation of z is sensitive to the choice of δ and rt. Nevertheless, given my assumptions on these

variables, which are standard in the literature, I estimate an industry weighted TFP growth for Denmark
over the period 1995 to 2005 of -5%. However, this is driven largely by a handful of outliers, including the
energy sector which I do not use in the analysis. Removing these outliers leave a total change in TFP of
nearly 0 (< −1%). In the same period, the OECD estimates a roughly 0 change in TFP over the period,
with slightly sub -.5% annual growth from 1997 to 2001 and slightly above .5% annual growth from 2001 to
2005. That these numbers are close suggest the calibration is reasonable.

Non-Labor Income

In order to calculate capital stock, I use data on aggregate gross surplus. In the baseline counterfactuals I
use the aggregate stock of capital in 1996. For export demand, it’s shown in the technical appendix that
a sufficient statistic is a combination of true export demand, home bias, and the domestic price level. The
exact statistic can be calculated from data on the level of exports, relative prices and σ. It is given by the
formula:

Xit =
Exportsit

r
(1−σ)
it

This completes the calibration.
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E ACM Estimator Details

E.1 Review of ACM

For the set-up in ACM, once again let i index individuals, t index time, and o index occupation-sector
pairs. The assumptions in ACM are similar to mine with a few key differences. Below are the four main
assumptions in my model restated with equivalents in ACM:

1. Timing and Information Sets: Workers choose their occupations for t + 1 in period t. They can
only forecast wages at time t+ 1 using information at time t. However, they know the value of their
moving cost shocks at time t.

2. Errors on Human Capital: There are no idiosyncratic shocks to human capital and workers are
homogenous conditional on their occupation.

3. Human Capital Accumulation: Workers do not accumulate human capital in the model.

4. GEV Shocks: Moving cost shocks following a Gumbel distribution with scale parameter ρ.

From assumptions (1) - (4), the Bellman equation for a worker in occupation o at time t is given by:

Vt(o) = wt(o) + max
o′
{−C(o, o′) + ρεo′ + βEVt+1(o′)} (E.1)

Using the properties of the logistic distribution, one can solve for the probability of switching occupations
at time t (for a new occupation at time t+ 1) by:

πt(o
′|o) =

exp
(
−C(o,o′)

ρ + β
ρEVt+1(o′)

)
∑
o′′ exp

(
−C(o,o′′)

ρ + β
ρEVt+1(o′′)

) (E.2)

Moreover, the value of an occupation is given by:

Vt(o) = wt(o) + ργ − C(o, o′′) + βEtVt+1(o′′)− ρ log πt(o
′′|o) (E.3)

Note that this formula will hold for any choice of o′′. Taking the ratio of equation E.2 at o and o′ yields:

log
πt(o

′|o)
πt(o|o)

= −C(o, o′)

ρ
+
β

ρ
Et (Vt+1(o′)− Vt+1(o))

Plugging in E.7 for both Vt(o) and Vt(o
′) and choosing o′′ = o′ for both yields:

log
πt(o

′|o)
πt(o|o)

= −C(o, o′)

ρ
+
β

ρ
Et (wt+1(o′)− ρ log πt+1(o′|o′)− wt+1(o) + C(o, o′) + ρ log πt+1(o′|o))

Rearranging the above, and plugging in realizations and expectational error for the expected values yields
the estimating equation:

log
πt(o

′|o)
πt(o|o)

= − (1− β)C(o, o′)

ρ
+
β

ρ
(wt+1(o′)− wt+1(o)) + β log

πt+1(o′|o)
πt+1(o′|o′)

+ ζoo′t+1 (E.4)

This regression has a similar flavor to the main text’s with two differences. First, the “renewal action” is
simply switching occupations from o to o′. There is no need for a third occupation because there is no
human capital accumulation. Nevertheless, the identification is similar: one regresses wage differentials on
flows with a particular control function for dynamic selection. The second difference is that, because of the
timing assumption on choices, the coefficient on wages is scaled by β and wages will be correlated with the
expectational error. I return to the latter issue in the implementation section.
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E.2 Adding Observable Heterogeneity

Adding time invariant skills to ACM is trivial: one simply calculates transition rates separately by skill
group. One can then pool by skill group, or estimate separate parameters. I choose to pool by skill group,
as I do in the main text.

Adding age, which increases over time, is more difficult. ACM recommend, in lieu of a life-cycle model,
approximating aging through a stochastic process, as in many macro models. This allows them to keep the
simple structure of their estimator. In particular, suppose that age can be divided into a small number of
bins and that workers belong to an age category indexed by a = 1, ..., A. At any moment in time there is a
probability λa of moving from group a to a+ 1, with λA = 0. The worker’s problem is now:

Vt(o, a) = wt(o, a) + max
o′
{−C(o, o′, a) + ρεo′ + βEt ((1− λ)aVt+1(o′, a) + λaVt+1(o′, a+ 1))} (E.5)

Let Ṽ (o, a) = ((1− λ)aVt+1(o′, a) + λaVt+1(o′, a+ 1)). Then the probability of switching occupations is only
slightly modified from before:

πt(o
′|o, a) =

exp
(
−C(o,o′)

ρ + β
ρEṼt+1(o′)

)
∑
o′′ exp

(
−C(o,o′′)

ρ + β
ρEṼt+1(o′′)

) (E.6)

And the solution to the value function is also given by:

Vt(o, a) = wt(o, a) + ργ − C(o, o′′) + βEtṼt+1(o′′)− ρ log πt(o
′′|o, a) (E.7)

Now similarly defining w̃(o) = λaw(o, a+ 1) + (1− λa)w(o, a), one rearrange equations E.6 and E.5 to yield
a new estimating equation:

log
πt(o

′|o)
πt(o|o)

=− (1− β)C(o, o′)

ρ
+
β

ρ
(w̃t+1(o′)− w̃t+1(o))

+ β

[
λa log

πt+1(o′|o, a+ 1)

πt+1(o′|o′, a+ 1)
+ (1− λa) log

πt+1(o′|o, a)

πt+1(o′|o′, a)

]
+ ζoo′t+1

(E.8)

This slightly modified version of the ACM regression equation thus incorporates heterogeneity in age, and
can easily done separately by skill group.

E.3 Details of ACM Implementation

In order to implement the ACM estimator, I need to specify instruments for wage differentials and specify
the cost function C. Like ACM, for wages and flows at t + 1 I use wages and flows at t − 1. Twice
lagged differentials tend to be more well behaved instruments and avoid yielding negative estimates of ρ.
I fix β at .96, so I do not actually estimate this value. Instead, I run an instrumental variables regression
of flows on wage differentials using twice lagged wage differentials and twice lagged flows as instruments.
Since there are more instruments than variables, I can use two-stage GMM. I implement this in Stata using
the ivregress gmm command and bootstrap standard errors, clustering over time periods and ignoring
uncertainty in the estimation of transition rates and mean income.

In their original paper, ACM use a variety of specifications of C in their estimation. I find that including
a simple constant, C, behaves very poorly and leads to negative values of ρ. This seems to be driven by a few
aberrant observations, but is concerning. To that end, I improve the estimation (in terms both of sensible
estimates and precision) by including simple occupational controls. In particular, I include an exit and entry
cost, as in ACM and their follow, Artuç and McLaren (2015). I also include occupational characteristics. The
addition of characteristics has little effect on point estimates but tends to decrease standard errors. Thus,
the final specification includes wage differentials, fixed effects for entry occupation, for exit occupation,
characteristics of each occupation and uses as instruments, lagged differentials and lagged flows. As a minor
point, I use lagged wage differentials, not wages separately; and I use lagged values of the log difference in
flows that are on the right hand side of E.4, not the flows separately.
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When implementing the ACM estimator with observable heterogeneity, I split the sample by the three
skill groups in the population and I bin workers into the sets, 23-35, 35-50, and 50-60. Notice that λa
can be calculated directly from the data, as I observe workers aging. In this specification I use the same
instruments as before properly transformed. That is to say, the instruments are twice lagged values of w̃ and
twice lagged values of the function of flow probabilities in the second line of equation E.8. Age and skill are
directly controlled for in the regression, and are treated as part of the switching cost. As in the main text,
young workers in the highest skill group serve as the base group.

E.4 Review of AM

The model in Artuç and McLaren (2015) (henceforth, AM) is identical to that of ACM, and this section
focuses on the homogenous worker case. In the implementation (discussed in the sequel), I estimate separate
parameters (except for ρ) by skill type, and ignore age. The first key equation in AM’s method is to combine
equations (E.2) with (E.7). As an intermediating step, note that we can rearrange (E.7) so as to relate it to
the choice probability denominator:

Vt(o) = wt(o) + ρ log

(∑
o′

(
−C(o, o′) + βEVt+1(o′)

ρ

))

Hence, the choice probabilities can be rewritten as:

πt(o
′|o) = exp

(
−C(o, o′) + βEtVt+1(o′)− [Vt(o)− wt(o)]

ρ

)
Finally, by multiplying the transition probability by the total number of workers in o at time t, one has the
level of switchers at time t:

Lt(o
′|o) = exp

(
−C(o, o′)

ρ
+
βEtVt+1(o′)

ρ
− [Vt(o)− wt(o)− logLt(o)]

ρ

)
(E.9)

Am rely on a two step procedure inspired by Silva and Tenreyro (2006)’s work on the gravity model. In
the first stage, the estimate equation E.9 using Pseudo Poisson Maximum Likelihood (PPML) by saturating
unobservables with fixed effects and parametrizing the cost function. Specifically, in the first stage one
estimates the following model:

Lt(o
′|o) = exp

(
−C(o, o′)

ρ
+ λo′t + αot

)
+ εoo′t (E.10)

In the second stage, one uses the structure of the model to construct a regression equation with no unob-
servables. In particular, AM point out the following relationship:

λo,t−1 + βαot − βLot =
β

ρ
wt(o) + ζt(o)

where ζ is the same expectational error that appears in the main text and in ACM. Due to the timing
assumption, wages and expectational errors will be correlated, and so AM instrument with twice lagged
wages. Collecting the left hand side parameters into a single term, φot and using a hat to denote first stage
estimates yields the final second stage estimating equation:

φ̂ot =
β

ρ
wt(o) + ζot (E.11)

E.5 Details of AM Implementation

In implementing the AM estimator I add three components to E.11 that follow AM’s implementation: (1)
workers are differentiated by skill (but not age); (2) the first stage is estimated cross-section by cross-section,
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hence C is time varying; (3) there are non-pecuniary benefits to each occupation,15 that follow a trend. The
cost function is modeled as in AM: there is a fixed cost of switching sectors and/or occupations. There is also
an interaction term that can be positive (suggesting convexity in the costs of switching along both margins)
or negative (suggesting concavity in the costs of switching along both margins). Adding these ingredients
and parametrizing the cost function yields the following estimating equations that largely mirror AM:

Lst(o
′|o) = exp (CSec1{Sec}+ COcc1{Occ}+ CBoth1{Sec} × 1{Occ}+ λo′st + αost) + εoo′st (E.12)

φ̂ot =ζst + ηo + δot+
β

ρ
wt(o) + ζot (E.13)

where s indexes skill groups. In order to estimate the first stage, I follow the advice of Santos Silva and
Tenreyro (2011) and use Stata’s iterated, reweighted least-squares algorithm from the glm command, as the
usual poisson estimator can perform badly (in a numerical sense) with many fixed effects. Standard errors
are calculated by block bootstrapping and clustered at the yearly level. In order to bootstrap, blocks of
years (the estimation requires data from t− 2, t− 1 and t) are drawn with replacement T − 2 times.

15In AM, these benefits also differ by skill group. I found that this number of fixed effects dramatically
increased the imprecision on ρ (indeed, ρ < 0 appeared in some specifications), and so I treat these as
constant across skill groups — this aligns with the main text. Nevertheless, these estimates (along with
estimates that keep C constant, ignore δ and aggregate workers, are all available upon request.
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F Sectoral Human Capital Extension

F.1 Modeling and Identifying Sectoral Human Capital

In the model of the main text, occupational-specific human capital is non-transferable across sectors, even
in very similar occupations. While this keeps the focus on occupational human capital, it is also restrictive.
In this appendix I outline how one can incorporate sector and occupation specific human capital and present
the estimation of these parameters. Crucially, the model can be amended in a way that preserves finite
dependence while allowing for different types of human capital.

In order to maintain finite dependence and allow for sectoral human capital, I treat sector human capital
symmetrical with occupational human capital but keep track of these two states separately. Unlike in the
main text, let o refer specifically to occupations, let E ∈ {0, 1} refer to employment status and let s refer
specifically to sectors. Now we make occupation triples explicit: (1, o, s) refers to a worker employed in sector
s and occupation o; (0, o, s) refers to a worker that is not-employed who most recently worked in occupation
o and sector s. Notationally, let expo refer to experience in a particular 2-digit occupation and exps refer to
experience in a particular sector. With this in hand, I modify Assumption 3 from the main text as follows:

Assumption 3′ Sector specific experience resets upon switching sectors and similarly for occupational spe-
cific experience. However, sectoral (occupational) experience is fully transferred under any transition that
preserves sectors (occupations). Mathematically, for workers going from any state to an employed state,
sectoral human capital evolves according to:

expst =

{
expst−1 + 1 if st = st−1

0 if st 6= st−1

while occupation specific human capital accumulates as follows:

expot =

{
expot−1 + 1 if ot = ot−1

0 if ot 6= ot−1

For workers going from any state to a non-employed state, sectoral human capital evolves according to:

expst =

{
expst−1 if Et−1 = 1

0 if Et−1 = 0

while occupation specific human capital accumulates as follows:

expot =

{
expot−1 if Et−1 = 1

0 if Et−1 = 0

i.e., one keeps their accumulated experience for the first year of non-employment but loses it if they are not
re-employed after a period.

This is a similar set up to that in the main text. There is one point requiring discussion: how to define
an “occupation” across sectors. For example, are drivers in services and in manufacturing truly performing
the same occupation? I proceed under the seemingly reasonable assumption that occupational capital is
transferable across sectors within two digit occupational codes. However, two possibilities exist. First,
transferring sectors can destroy all specific human capital. In this scenario, there would be a “manufacturing”
capital as well as a capital for each occupation within manufacturing, and similar for other sectors. Second,
transferring sectors can only destroy sector-specific human capital if one’s occupation remains the same. In
this scenario, managers who move from manufacturing to services would keep their managerial experience.
From the perspective of a model, these are arbitrary decisions, while from the perspective of data they are
related to decisions over aggregation. The model can be extended in either direction. Indeed, if a modeler
had foreknowledge of which occupations had knowledge that could be moved across sectors and those that
did not (e.g., managers versus drivers) they could specify any arbitrary system of allowed spillovers. The
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table below outlines how capital accumulates starting from an initial point (s, o) to different combinations
of sectors and occupations both in the case that occupational human capital does and does not move across
sectors.

(s, o)→ (s, o) (s′, o) (s, o′) (s′, o′)
Case I exps + 1, expo + 1 0, 0 exps + 1, 0 0, 0
Case II exps + 1, expo + 1 0, expo + 1 exps + 1, 0 0, 0

Regardless of the rules governing human capital accumulation, workers that switch either occupations or
sectors or both see some of the specific human capital destroyed (while their general human capital continues
to accumulate). In terms of the model’s solution, the only change here is that ω, the worker’s state, now
contains both occupational and sectoral experience. The key equations governing worker’s value functions
and decision rules remain the same:

Ṽt(ω, (o, s)) =γ +
ut((o, s), (o, s)

′, ω)

ρ
+ βEtṼt+1 (T (ω, (o, s), (o, s)′), (o, s)′) (F.1)

− log πt(ω, (o, s), (o, s)
′)

log πt(ω, (o, s), (o, s)
′) =ut((o, s), (o, s)

′, ω) + βEtVt+1 (T (ω, (o, s), (o, s)′), (o, s)′) (F.2)

− logDt(ω, (o, s))

where, as in the main text, D is the inclusive value of state (ω, o, s)t and u is the flow payoff. The only
difference from the equations in the main text is that I have made explicit that o is actually an occupation-
sector pair, (o, s) (while suppressing E to economize on space).

In analyzing the expressions above, the first thing to note is that these changes imply nothing for the
first stage estimation of wage parameters, switching probabilities and unobservables via the EM algorithm.
The exclusion restriction in this first stage is that the shock to wages occurs after selection has occurred so
that the expected wage in period t only depends on contemporaneous observables, lagged observables, and
the time-invariant unobservable. Since this holds regardless of the elements of ω, the first stage is exactly
as in the main text. Threats to separately identifying returns to sectoral versus occupational human capital
remain if there is insufficient movement of workers and insufficient occupations within and across sectors.
As an extreme example, if there is a sector-occupation pair that is distinct from all other occupations and
sectors, one could never separately identify sectoral and occupational human capital parameters since these
are perfectly multicollinear. Similarly, if there are many occupations within a sector, but no one switches
across these occupations, then returns to occupational and sectoral experience cannot be separately identi-
fied as observed experience growth in either would be perfectly multicollinear. In practice, I have no such
narrow occupation-sector pairs nor is there insufficient movement in the data.

With the first stage estimated, one can turn to the second stage estimation, which identifies the level and
variance of switching costs. Before proceeding, it will be useful to rewrite the cost function being estimated:

C((o, s), (o′, s′)) = exp

{
Γ0 +

∑
v∈V
|vo,s − vo′,s′ |Γ+/−

v + ΓoDo6=o′ + ΓdDs 6=s′

}
(F.3)

where the v terms reflect changes in occupational attributes, while Γo and Γs are constants for switching
occupations and sectors respectively. As shown in the main text, the constant term measures any comple-
mentarities in switching both occupations and sectors simultaneously. Variation in occupation-sector pair
characteristics will identify the loadings on different tasks. However, what identifies the constant terms?
In order to separately identify the cost of switching occupations only, sectors only, and both one needs to
construct career paths featuring these kinds of movements that nevertheless ensure finite dependence holds.16

16One can always lean on functional form restrictions. Indeed, I posit a log-linear cost function instead
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From table (1), one can derive several career paths for workers that fulfill this identification need and
the finite dependence assumption. In particular, if workers begin in the same occupation sector pair at time
t, with identical observables (including experience), then finite dependence will hold if at t + 2 one of the
following holds: (1) both workers switch into an occupation and a sector they did not work in at t+ 1 and
one worker switches either sectors, occupations or both at t+ 1; (2) both workers stay in their initial sector
in all periods, switch into a new occupation at t + 2 and one worker switched occupations at t; (3) both
workers stay in their initial occupation in all periods, switch into a new sector at t+ 2 and one worker also is
in a different sector at t. I will call this a full-switch, a within-sector switch, and a within-occupation switch.
The figure below summarizes the types of transitions that can occur:

(a) Full Switch Example 1

(eo, es), (o, s)

(0, es + 1), (o′, s)

(0, 0), (o′′, s′)

(eo + 1, es + 1), (o, s)

(b) Full Switch Example 2

(eo, es), (o, s)

(0, 0), (o′, s′)

(0, 0), (o′′, s′′)

(eo + 1, es + 1), (o, s)

(c) Within Sector

(eo, es), (o, s)

(0, es + 1), (o′, s)

(0, es + 2), (o′′, s)

(eo + 1, es + 1), (o, s)

(d) Within Occupation

(eo, es), (o, s)

(eo + 1, 0), (o, s′)

(eo + 2, 0), (o, s′′)

(eo + 1, es + 1), (o, s)

An immediate drawback to this method is the need to observe workers moving across sectors frequently
and these sectors must be different. One can naturally ask how often this occurs. Approximately 5.4% of
workers work in at least 3 sectors. This increases to 6.2% of workers who are observed for at least three
periods. However, this number drops to a tiny fraction when one conditions on keeping the same occupation
throughout. In fact, out of 20,000 possible paths observed in the data, less than 300 fulfill this requirement.
Partially, this is a function of having many occupations and few sectors. Nevertheless, this is in sharp
contrast to the the number of workers who work in at least three occupations over the 12 year period under
study. Over 13.5% of people in the sample work in at least three occupations, and this climbs to 16% for
workers present for at least three periods. Moreover, there is a great deal of within-sector occupational
mobility, as discussed in the main text. Hence, while switching sectors is not uncommon, experiencing many
sectoral switches and keeping one’s occupation is decidedly rarer. Hence, an overly flexibly cost function
may not be identified and will introduce noise into estimation. To this end, I report results with and without
the interaction term. The latter specification does not preclude all interaction between switching sectors
versus occupations; indeed, the type-specific constants and the component of costs related to characteristics
dominates in all settings. Importantly, characteristics still differ by occupation-sector pair. This is true even
if the occupation code or sector code does not change.17

of arbitrarily estimating many fixed effects. Nevertheless, the point holds in a non-parametric setting and I
use all possible paths for identification.

17As a reminder, occupation-sector characteristics are determined by the composition of 3 digit occupations
in each cell, as these compositions change so will the characteristics, even for the same occupational code. For
example, “drivers” in manufacturing and services have different characteristics because most of the drivers
in the former operate heavy trucks or machinery, while most in the latter operate light trucks or simply cars.
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This section demonstrates how easily the finite dependence framework can be adapted to accommodate
multiple kinds of human capital. The literature on worker adjustment (including movement across firms)
often abstracts from different kinds of specific human capital. Nevertheless, it is clear that specific experi-
ences matter a great deal in explaining cross-sectional variation in incomes, the time path of income for an
individual, and thus also the reluctance of workers to abandon a sinking ship. The methods above are thus
a promising avenue to incorporate specific human capital in other contexts, such as models that allow for
workers to switch across both firms and industries or firms and occupations.

Finally, the above discussion also demonstrates some of the limitations of the finite dependence frame-
work. In particular, I treat human capital as observed. The assumption that human capital resets to 0 is
not necessary, but the value taken after a switch must be known and there must be a series of moves that
workers take that reset their value functions.18 This rules out an unobserved level of human capital that
accumulates with experience and depreciates at an unknown rate with switching. With a sufficiently long
panel, one could allow for a finite number of human capital levels per occupation and then estimate a tran-
sition matrix across these unobservables for each type. Such an extension of the first-stage EM algorithm
was discussed in appendix B with many more details in AM. Nevertheless, for |O| occupations, K types and
H levels of human capital, this requires estimating |O| ×K ×H parameters of a transition matrix, as well
as the actual returns to being in each state. These numbers may be reasonable if the choice set is small,
but in my setting this would amount to approximately 400 parameters. One promising alternative may be
to avoid modeling comparative advantage separately per occupation and instead model a low-dimensional
hidden Markov structure governing comparative advantage. For example, there could be m hidden states
and occupation-sector pairs pay different returns on each state. This is the strategy pursued by Dvorkin
(2017).

F.2 Results

While all the parameters have been re-estimated, in this subsection I focus on the parameters that change
the most across specifications. The EM algorithm suggests that within each skill group there is a type
that has absolute advantage over the other type, and I continue to use “high” and “low” type to refer
to this distinction. The correlation between the comparative advantage vectors across this specification
and that in the original model is .997519, and so there is not much difference in unobserved comparative
advantage between these two specifications. However, things differ in returns to tenure, the sensitivity to
wage differentials, and in the magnitude of moving costs.

Turning first to the returns to tenure, table F.2 contains the coefficients from the wage regressions allow-
ing for multiple kinds of tenure. Unsurprisingly, the returns to occupational and sectoral tenure estimated
separately tend to be lower than the occupation-sector returns to tenure estimated in the original specifica-
tion. As I now allow for partial transferability of human capital, the coefficients on age (capturing general
labor market experience) also tend to decrease. In a taxonomy of models studying labor market adjust-
ments in the trade literature, to the best of my knowledge, all papers have either ignored human capital
accumulation or allowed only for sectoral human capital accumulation.20. Hence, the specification here nests
most of the extant work. The coefficients on all kinds of human capital are on the same order of magnitude,
suggesting that intra-sectoral human capital accumulation is non-negligible.

Concretely, the median return to occupation specific human capital is 1.8% per year, and ranges from
essentially 0 to 4.5% per year. To put these numbers in perspective, the average manufacturing wage in
Denmark in the sample (in 2015 USD) is approximately 58 thousand dollars. Hence, a manufacturing
worker earning the mean return on their experience would lose 5 thousand dollars in income if a shock

18In Arcidiacono and Miller (2018), Arcidiacono and Miller propose an extension of finite dependence
based on weighting paths that does not strictly require a renewal action. Nevertheless, one always needs to
know the transition on states and be able to observe the states (perhaps after a first stage).

19This correlation is done unconditionally and can be contaminated by differences in means across groups.
The correlation in comparative advantage across occupations conditional on type varies between .936 and
.996

20This is not true of all labor market adjustment models. However, as international trade tends to study
reallocation across industries, this has been the dominant margin studied in that field
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pushed them into a new occupation, even if the new occupation pays similarly per skill unit and the worker’s
comparative advantage were constant. While these results showcase the importance of modeling occupations
narrowly, they also highlight that human capital appears to be transferable, especially across occupations
within a sector.21 While the main text focuses on the drastic situation where human capital is specific to
an occupation-sector pair, understanding more deeply the multifaceted nature of workers’ human capital
is clearly an important avenue of research for anyone interested in understanding the short run burden of
reallocation.

The changes in the estimated returns to human capital have immediate ramifications for the second stage
estimates of the cost function. All relevant structural parameter estimates can be found in tables F.3-F.7
in section F.3, below. Table F.3 shows the estimates for 1/ρ and the average value of C/ρ when allowing
for partially transferable human capital in the unrestricted and restricted cases discussed above. Moreover,
tables F.5 and F.4 contain the estimates for the cost function parameters. The most striking difference in
estimates is in 1/ρ which climbs from 1.5 to between 2.1 and 2.8 in the new specification. To understand
why, recall that 1/ρ is identified off of workers’ sensitivity to wage differentials after properly controlling for
selection. Hence, an increase in 1/ρ suggests more sensitivity to occupational and sectoral wage differentials.
If tenure was non-transferable or the returns to tenure were low, then richer specifications of human capital
would have limited impact on 1ρ, as there would be limited changes in wage differentials across specifications.
However, the increase in 1/ρ suggests that when properly controlling for human capital, workers are even
more responsive to wage differentials than previously measured.

The implications of a richer specification of human capital on estimated moving costs are ambiguous. On
the one hand, transferable human capital shrinks wage differences across occupations and sectors, which helps
explains the low rate of switching observed empirically. However, the higher sensitivity to wage differentials
also suggests a more acute response to the aforementioned smaller differences. Overall, the effect on C/ρ is
quite small, but due to the change in ρ the overall switching costs smaller (on average, 79% of the original
costs). Hence, more flexibility in human capital accumulation tends to lower the fixed costs of switching
occupations to 3 years of income or less. This is relatively reasonable number, especially in light of the very
large costs implied by models that do not control for human capital accumulation and other heterogeneity
across workers. Nevertheless, while different than the numbers in the main text, the change in moving costs
is not nearly as large when including transferable human capital as the change from simply including human
capital in the model.

The non-pecuniary factors and value of non-employment shift in terms of levels–in particular, they are
closer to 0 in these specification. Partially this reflects the fact that the variance in shocks is smaller.
Scaling the values of η by ρ would bring them closer together. Nevertheless, the values of η are smaller
when human capital can be transferred. Recall that the normalized state is non-employment, so η being
closer to 0 suggests that non-employment is not as bad a state. Understood this way, the shrinking value
of η is intuitive: if human capital can be transferred, then workers that switch occupations have higher
incomes than they would if they could not keep their human capital; this means the model can more easily
rationalize workers switching occupations more than they switch into non-employment without appealing to
unobservables. The relative values of η, however, do not change much. The correlation coefficient between
the original and new values of η is .925. This suggests that the importance of transferable human capital is
not in pinning down the relative sizes of occupations, but in the attractiveness of non-employment relative
to employment.

21This model does not strictly nest the model in the main text as there are no returns to occupation-sector
pairs measured. Income regressions using person-occupation FE, in lieu of the full structural model, suggest
that when all terms are allowed transferability is not rejected but neither is occupation-sector pair specific
human capital. Indeed, in a regression with coefficients common across occupations and sectors, the returns
to pair, occupation and sector human capital are, respectively, 1.2, 1.4 and 3.5%.
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F.3 Tables

Table F.1: Time Averaged Skill Prices Across Occupations

Occupation Manufacturing Other Services FIRE Health & Educ.
Managers 0.469 0.354 0.365

(0.023) (0.011) (0.018)
Science Professional 0.643 0.420 0.570

(0.020) (0.016) (0.018)
Science Assc. Professional 0.444 0.426 0.409

(0.013) (0.014) (0.015)
Other Assc. Professional 0.404 0.320 0.382

(0.011) (0.005) (0.008)
Clerks 0.288 0.254 0.216 0.178

(0.009) (0.004) (0.007) (0.006)
Agriculture 0.449

(0.021)
Building Trades 0.303

(0.006)
Metal Trades 0.410 0.380

(0.008) (0.009)
Other Crafts 0.292

(0.011)
Plant Operator 0.303

(0.014)
Machine Operator 0.363

(0.005)
Drivers 0.419 0.320

(0.019) (0.009)
Laborers 0.359 0.202

(0.008) (0.005)
Other Professional 0.246 0.248

(0.006) (0.008)
Personal Workers 0.119 0.219

(0.003) (0.002)
Retail Workers 0.126

(0.003)
Elementary Occupations 0.143

(0.002)
Customer Service 0.350

(0.008)
Health Professional 0.428

(0.016)
Teachers 0.211

(0.003)
Health Assc. Professional 0.328

(0.005)
Teaching Assc. Professional 0.295

(0.004)

Notes: Skill prices time-averaged for clarity. Units are relative to unconditional mean income (normalized to
1). Standard errors are in parentheses and based on 100 block-bootstrap samples of the underlying sample.
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Table F.2: Income Regression Coefficients

(a) Manufacturing

βTen,Occ βTen,Sec βAge βAge2
[a] βType:1 βType:2 βType:3 βType:4 βType:5 σ2

Managers 0.009 0.055 0.039 -0.000 -1.270 -0.149 -0.913 -0.107 -0.581 0.145
(0.001) (0.001) (0.002) (0.000) (0.038) (0.006) (0.027) (0.004) (0.031) (0.002)

Science Prof. 0.014 0.053 0.027 -0.000 -0.623 -0.085 -0.266 0.142
(0.001) (0.001) (0.001) (0.000) (0.038) (0.004) (0.013) (0.001)

Science Assc. Prof. 0.017 0.050 0.041 -0.000 -0.978 -0.177 -0.525 -0.128 -0.424 0.125
(0.001) (0.001) (0.001) (0.000) (0.046) (0.006) (0.007) (0.003) (0.019) (0.001)

Other Assc. Prof. 0.021 0.059 0.041 -0.000 -0.758 -0.148 -0.525 -0.100 -0.362 0.154
(0.001) (0.001) (0.001) (0.000) (0.022) (0.004) (0.010) (0.003) (0.013) (0.001)

Clerks -0.000 0.082 0.050 -0.001 -0.980 -0.189 -0.548 -0.125 -0.641 0.154
(0.001) (0.001) (0.001) (0.000) (0.018) (0.007) (0.011) (0.006) (0.029) (0.001)

Agriculture -0.001 0.030 0.028 -0.000 -1.217 -0.078 -1.038 0.010 -1.282 0.203
(0.002) (0.002) (0.002) (0.000) (0.028) (0.018) (0.027) (0.018) (0.045) (0.003)

Building Trades 0.026 0.040 0.044 -0.000 -0.751 -0.055 -0.667 0.243
(0.001) (0.001) (0.001) (0.000) (0.012) (0.003) (0.006) (0.001)

Metal Trades 0.024 0.046 0.033 -0.000 -0.663 -0.052 -0.501 0.025 -0.939 0.180
(0.001) (0.001) (0.001) (0.000) (0.015) (0.007) (0.011) (0.006) (0.030) (0.001)

Other Crafts 0.040 0.038 0.046 -0.000 -0.818 -0.172 -0.613 0.214
(0.001) (0.002) (0.002) (0.000) (0.017) (0.004) (0.013) (0.002)

Plant Operator 0.029 0.044 0.047 -0.001 -0.604 -0.010 -0.310 0.112 -0.820 0.169
(0.001) (0.002) (0.002) (0.000) (0.026) (0.007) (0.016) (0.006) (0.027) (0.002)

Machine Operator 0.028 0.051 0.035 -0.000 -0.716 -0.108 -0.460 0.199
(0.001) (0.001) (0.001) (0.000) (0.010) (0.002) (0.005) (0.001)

Drivers 0.027 0.053 0.031 -0.000 -0.738 -0.045 -0.534 0.165
(0.001) (0.001) (0.002) (0.000) (0.031) (0.004) (0.030) (0.002)

Laborers 0.033 0.058 0.032 -0.000 -0.806 -0.063 -0.523 0.204
(0.001) (0.001) (0.001) (0.000) (0.013) (0.002) (0.009) (0.001)

(b) Services

βTen,Occ βTen,Sec βAge βAge2
[a] βType:1 βType:2 βType:3 βType:4 βType:5 σ2

Managers 0.008 0.052 0.049 -0.000 -1.263 -0.113 -0.941 -0.080 -0.908 0.176
(0.001) (0.001) (0.001) (0.000) (0.023) (0.005) (0.026) (0.004) (0.043) (0.002)

Science Prof. 0.010 0.059 0.039 -0.000 -1.462 -0.027 -1.128 0.009 -0.884 0.156
(0.001) (0.001) (0.002) (0.000) (0.017) (0.006) (0.045) (0.005) (0.032) (0.002)

Other Prof. 0.025 0.042 0.062 -0.001 -1.218 -0.048 -0.986 -0.034 -0.553 0.183
(0.001) (0.001) (0.001) (0.000) (0.015) (0.003) (0.032) (0.002) (0.007) (0.001)

Science Assc. Prof. 0.011 0.051 0.044 -0.000 -1.143 -0.119 -0.600 -0.092 -0.943 0.140
(0.001) (0.001) (0.001) (0.000) (0.023) (0.005) (0.020) (0.004) (0.031) (0.001)

Other Assc. Prof. 0.024 0.041 0.048 -0.001 -0.982 -0.037 -0.527 -0.002 -0.512 0.156
(0.000) (0.000) (0.001) (0.000) (0.011) (0.003) (0.008) (0.003) (0.010) (0.001)

Clerks 0.010 0.063 0.050 -0.001 -1.082 -0.066 -0.525 -0.025 -1.077 0.140
(0.000) (0.001) (0.001) (0.000) (0.010) (0.005) (0.007) (0.004) (0.010) (0.001)

Personal Services 0.013 0.098 0.069 -0.001 -0.957 0.008 -0.625 0.152 -0.963 0.250
(0.001) (0.001) (0.001) (0.000) (0.010) (0.008) (0.011) (0.008) (0.011) (0.001)

Retail Occs. 0.023 0.056 0.082 -0.001 -1.012 -0.179 -0.567 0.251
(0.001) (0.001) (0.001) (0.000) (0.007) (0.003) (0.004) (0.001)

Metal Trades 0.002 0.055 0.039 -0.000 -0.921 -0.061 -0.766 0.143
(0.001) (0.001) (0.001) (0.000) (0.036) (0.005) (0.026) (0.001)

Drivers 0.030 0.057 0.043 -0.000 -0.782 -0.062 -0.452 0.210
(0.001) (0.001) (0.001) (0.000) (0.015) (0.003) (0.010) (0.001)

Elementary Occs. 0.019 0.034 0.068 -0.001 -0.836 -0.038 -0.555 0.131 -0.914 0.237
(0.001) (0.001) (0.001) (0.000) (0.007) (0.006) (0.008) (0.006) (0.009) (0.001)

Laborers 0.040 0.073 0.055 -0.001 -1.004 -0.055 -0.579 0.256
(0.001) (0.001) (0.001) (0.000) (0.014) (0.003) (0.015) (0.002)
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(c) FIRE Industries

βTen,Occ βTen,Sec βAge βAge2
[a] βType:1 βType:2 βType:3 βType:4 βType:5 σ2

Managers -0.047 0.069 0.045 -0.000 -1.467 -0.107 -1.377 -0.049 -1.166 0.133
(0.002) (0.001) (0.002) (0.000) (0.026) (0.006) (0.027) (0.004) (0.027) (0.002)

Science Prof. 0.017 0.052 0.031 -0.000 -1.726 -0.061 -0.433 -0.023 -0.299 0.176
(0.001) (0.001) (0.001) (0.000) (0.020) (0.004) (0.021) (0.003) (0.012) (0.002)

Other Prof. 0.013 0.082 0.062 -0.001 -1.088 -0.126 -0.432 -0.084 -0.443 0.163
(0.001) (0.001) (0.002) (0.000) (0.043) (0.005) (0.030) (0.003) (0.019) (0.002)

Science Assc. Prof. -0.002 0.074 0.042 -0.000 -1.008 -0.096 -0.524 -0.067 -0.425 0.166
(0.001) (0.001) (0.002) (0.000) (0.026) (0.005) (0.010) (0.004) (0.014) (0.001)

Other Assc. Prof. 0.011 0.077 0.041 -0.000 -0.885 -0.139 -0.522 -0.092 -0.391 0.154
(0.001) (0.001) (0.001) (0.000) (0.023) (0.003) (0.008) (0.003) (0.013) (0.001)

Clerks 0.001 0.115 0.054 -0.001 -1.008 -0.145 -0.489 -0.078 -0.863 0.207
(0.001) (0.001) (0.001) (0.000) (0.016) (0.006) (0.011) (0.005) (0.016) (0.002)

Customer Service -0.011 0.061 0.040 -0.000 -0.965 -0.068 -0.484 0.140
(0.001) (0.001) (0.001) (0.000) (0.011) (0.003) (0.006) (0.001)

(d) Health & Education

βTen,Occ βTen,Sec βAge βAge2
[a] βType:1 βType:2 βType:3 βType:4 βType:5 σ2

Health Prof. 0.037 -0.020 0.046 -0.000 -0.456 0.190
(0.001) (0.001) (0.002) (0.000) (0.006) (0.001)

Teachers 0.046 0.002 0.065 -0.001 -1.357 -0.111 -1.212 -0.028 -0.899 0.137
(0.001) (0.001) (0.001) (0.000) (0.006) (0.003) (0.015) (0.003) (0.008) (0.001)

Health Assc. Prof. 0.017 0.014 0.042 -0.000 -1.183 -0.221 -0.613 0.012 -0.512 0.146
(0.001) (0.001) (0.001) (0.000) (0.007) (0.005) (0.014) (0.003) (0.006) (0.001)

Teaching Assc. Prof. 0.032 0.012 0.040 -0.000 -1.226 -0.089 -1.236 0.017 -0.533 0.152
(0.001) (0.001) (0.001) (0.000) (0.004) (0.003) (0.006) (0.002) (0.006) (0.001)

Clerks 0.026 0.059 0.051 -0.001 -0.848 0.011 -0.395 0.106 -0.925 0.178
(0.001) (0.001) (0.001) (0.000) (0.016) (0.007) (0.011) (0.007) (0.020) (0.001)

Personal Services 0.042 0.029 0.043 -0.000 -0.847 -0.017 -0.423 0.027 -0.836 0.170
(0.001) (0.000) (0.000) (0.000) (0.005) (0.004) (0.005) (0.004) (0.010) (0.000)

a Presented ×103 for clarity.
b Coefficients from a log-linear Mincer regression of wages on worker attributes. Types refer to estimates of unobservable
heterogeneity across workers. Low skilled workers are either of type 1 or 2; Medium skilled workers are of type 3 or 4; High
skilled workers are of type 5 or 6. Type 6 coefficients all normalized to 0. Skill prices are in table A.1. Standard errors are in
parentheses and based on 100 block-bootstrap samples of the underlying sample.

Table F.3: Switching Elasticity and Switching Costs with Transferable HC

With Constant No Constant
1/ρ 2.146 2.784

(0.057) (0.056)
Mean C/ρ 5.511 4.938

(0.046) (0.044)

Notes: Results from regressing transitions rates on wage differentials.
Mean C/ρ refers to simple mean across all cells of cost matrix with no
adjustment for observed transition rates. Standard errors, in parenthe-
ses, calculated from 100 block bootstrap samples.
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Table F.4: Mobility Productivity Parameters with Transferable HC

With Constant No Constant
Age 0.010 0.016

(0.000) (0.000)
Age2(×1000) −0.036 −0.202

(0.011) (0.012)
Type 1 −0.013 0.047

(0.009) (0.010)
Type 2 0.075 0.130

(0.008) (0.009)
Type 3 0.001 0.059

(0.007) (0.008)
Type 4 0.086 0.139

(0.008) (0.008)
Type 5 −0.060 −0.003

(0.011) (0.012)

Notes: Coefficients from a log-linear inverse productivity function. Types refer to estimates of
unobservable heterogeneity across workers. Low skilled workers are either of type 1 or 2; Medium
skilled workers are of type 3 or 4; High skilled workers are of type 5 or 6. Type 6 coefficients all
normalized to 0. Standard errors are in parentheses and based on 100 block-bootstrap samples
of the underlying sample.
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Table F.5: Mobility Cost (Γ) Parameters with Transferable HC

With Constant Without Constant
Up Tasking Down Tasking Up Tasking Down Tasking

Constant 0.763
(0.012)

Occ. Dummy 0.081 0.088
(0.004) (0.004)

Sec. Dummy 0.631 1.279
(0.008) (0.011)

Task 1 −0.006 0.031 −0.007 0.032
(0.002) (0.002) (0.002) (0.002)

Task 2 0.008 0.028 0.009 0.028
(0.002) (0.002) (0.002) (0.002)

Task 3 0.120 −0.134 0.123 −0.137
(0.003) (0.006) (0.002) (0.005)

Task 4 0.035 −0.017 0.037 −0.017
(0.006) (0.006) (0.006) (0.006)

Task 5 0.006 0.039 0.007 0.040
(0.005) (0.005) (0.005) (0.005)

Task 6 −0.043 0.063 −0.047 0.065
(0.006) (0.006) (0.006) (0.006)

Task 7 −0.015 0.061 −0.003 0.058
(0.016) (0.014) (0.015) (0.013)

Task 8 −0.082 0.114 −0.084 0.125
(0.013) (0.011) (0.012) (0.010)

Task 9 0.127 −0.018 0.146 −0.029
(0.012) (0.009) (0.011) (0.009)

Task 10 −0.049 0.039 −0.054 0.041
(0.013) (0.014) (0.013) (0.014)

Notes: Coefficients from a log-linear cost function featuring a constant, a dummy for switching occupations,
a dummy for switching sectors, and coefficients for moving in task space. The cost function is naturally
scaled by the variance of shocks, ρ, and results for the constant are not presented adjusted. The first column
presents the coefficients for moving up in task space and second column presents coefficients for moving
down. Standard errors are in parentheses and based on 100 block-bootstrap samples of the underlying
sample.
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Table F.6: Non-Pecuniary Benefits (η) Parameters with Transferable HC
With Constant No Constant

Occupation Manufacturing Other Services FIRE Health & Educ. Manufacturing Other Services FIRE Health & Educ.
Managers 0.878 0.749 1.112 0.421 0.326 0.634

(0.076) (0.067) (0.072) (0.047) (0.040) (0.043)
Science Pro 0.655 0.986 0.780 0.194 0.511 0.289

(0.072) (0.075) (0.080) (0.045) (0.046) (0.049)
Science Assc. Pro 0.723 0.903 0.825 0.280 0.430 0.357

(0.071) (0.072) (0.075) (0.042) (0.043) (0.045)
Other Assc. Pro 0.703 0.965 0.828 0.267 0.485 0.376

(0.067) (0.070) (0.069) (0.040) (0.040) (0.040)
Clerks 0.739 1.065 0.893 1.014 0.341 0.607 0.473 0.573

(0.064) (0.067) (0.062) (0.068) (0.039) (0.038) (0.037) (0.041)
Agriculture 0.951 0.532

(0.070) (0.043)
Building Trades 0.949 0.500

(0.070) (0.041)
Metal Trades 0.816 0.900 0.383 0.470

(0.066) (0.066) (0.039) (0.040)
Other Crafts 0.764 0.360

(0.066) (0.041)
Plant Op 0.482 0.108

(0.072) (0.048)
Machine Op 1.090 0.603

(0.072) (0.042)
Drivers 0.699 0.935 0.302 0.483

(0.074) (0.072) (0.047) (0.043)
Laborers 1.017 1.024 0.557 0.573

(0.073) (0.069) (0.044) (0.041)
Other Pro 0.933 0.744 0.447 0.298

(0.071) (0.078) (0.041) (0.049)
Personal Workers 1.079 1.173 0.625 0.710

(0.066) (0.069) (0.038) (0.040)
Retail Workers 1.027 0.580

(0.068) (0.040)
Elementary Occs 1.482 0.939

(0.077) (0.044)
Customer Service 0.859 0.431

(0.063) (0.037)
Health Pro 1.042 0.513

(0.090) (0.056)
Teachers 1.265 0.744

(0.074) (0.043)
Health Assc. Pro 1.198 0.698

(0.075) (0.044)
Teaching Assc. Pro 1.046 0.600

(0.069) (0.041)

Notes: Non-pecuniary benefits to each occupation and sector cell. Blanks occur because not all occupations are present in all sectors.
The Health & Education sector reflects public sector and does not include things like R&D. Data appendix contains list of industry
codes in each sector. Units are proportional the unconditional sample mean income. Standard errors are in parentheses and based on
100 block-bootstrap samples of the underlying sample.
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Table F.7: Non-Employment (u) Parameters with Transferable HC

With Constant No Constant
Age −0.012 0.000

(0.004) (0.003)
Age2(×1000) 0.000 0.000

(0.000) (0.000)
Type 1 0.646 0.331

(0.048) (0.029)
Type 2 0.543 0.225

(0.086) (0.063)
Type 3 0.871 0.383

(0.097) (0.068)
Type 4 −0.038 −0.201

(0.085) (0.063)
Type 5 0.670 0.221

(0.097) (0.068)

Notes: Coefficients from a quadratic specification for the virtual value of non-employment.
Types refer to estimates of unobservable heterogeneity across workers. Low skilled workers are
either of type 1 or 2; Medium skilled workers are of type 3 or 4; High skilled workers are of type
5 or 6. Type 6 coefficients all normalized to 0. Standard errors are in parentheses and based on
100 block-bootstrap samples of the underlying sample.
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G Inference with Aggregate Shocks

This appendix presents an alternative estimator, based off of Altuğ and Miller (1998)’s work, that allows
for
√
N consistent estimation of the second stage structural parameters in the presence of aggregate shocks,

where N is the number of individuals. In the first subsection I review the problem with forecast errors, and
list out key assumptions on the time series of processes of skill prices that will be necessary for the estimator
to work. After that I introduce the estimator, present the results and contrast them with the estimator
from the main text. In the final section I describe the connection between the Altuğ & Miller-inspired
estimator and that from the main text. Both estimators are based on regressing differentials in flow payoffs
on conditional choice probabilities, but place different weights on different career paths.

G.1 Aggregate Shocks

Recall that for a worker in state ω at time t, the aggregate state is the vector of skill prices {wjt}j∈O.
This implies that workers are forecasting all future skill prices. This is a complicated forecasting problem
as there are 40 prices in the model. A strength of the CCP estimator is that it does not require one to
fully parametrize how beliefs are formed in the model. As a reminder of how this is accomplished, the main
text’s estimating equation relies on an occupation-triple transition j → j′ and a second transition, j′ → j′′,
conditional on an initial state, ω. With such transitions in mind, one can form a non-linear regression
equation of the form:

Yωjj′j′′t = C̃(j, j′, j′′, ω; Γ) + 1/ρ(wωj′t − wωjt) + uωjj′j′′t+1 (G.1)

which is a rewriting of equation (17) from the main text. Here Y is a function of estimated choice probabilities,
C̃ is a function of switching costs, and u is the regression error–containing both measurement error, m, and
forecast errors, ζ. While u is not correlated with any contemporaneous variables, one faces the problem that
the u’s are correlated across ω in the same period because all workers are forecasting the same set of wages.
While the above estimator is consistent, inference that ignores within-period correlation in u may lead to
smaller than justified confidence bands. For example, block bootstrapping individuals will appropriately deal
with measurement error in choice probabilities, but not with within-period correlation in forecast errors. One
solution would be to bootstrap on time, thus clustering by period in the second stage.22 But this procedure
may yield poor results if the number of clusters (i.e., the panel length) is small.

The estimator introduced in this appendix is based on a resampling scheme that fixes workers observed
choices in each period t but draws an arbitrary future aggregate state for each worker. The key insight,
outlined more formally below, is that as long as workers have rational expectations, any realized aggregate
shock in future periods can be used if one knows the conditional choice probabilities associated with moving
onward from that shock. There is no reason to use the actual realized shock at t+1. However, operationalizing
this requires placing assumptions on the time series process that governs aggregate shocks:

Assumption 1 The stochastic process governing wage differentials across occupations follows a stationary,
first order Markov process. In particular,

Et(Vt+1(ω, o)− Vt+1(ω, o′)|wt, wt−q, ωt, ωt−q) = E(Vt+1(ω, o)− Vt+1(ω, o′)|wt, ωt) (G.2)

for any choice of q.

The right hand side of (G.2) both drops the dependence of the expectation on calendar time after controlling
for covariates, and also removes any lags in the individual or aggregate state. This is slightly weaker than
the assumption that wages themselves follow a stationary Markov process, as only wage differentials enter
the estimation. In particular, non-stationary, or more backward looking, aggregate productivity shocks that
affect all wages uniformly are allowed. What matters is that economy-wide shocks are such that the difference
in wages (in levels) still follow a stationary Markov process.

22In the main text, I include these standard errors in brackets for the second stage parameters.
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By way of comparison, the the CCP estimator presented in the main text can identify time-invariant
model primitives even in the presence of non-stationary shocks.23 This is because the renewal actions frame-
work only requires forecasting one period forward.24 Nevertheless, as will become apparent, the estimator
below mandates stationarity.

G.2 An Estimator Based on Randomizing Aggregate Shocks

Instead of considering a particular state, ω, consider the panel data on individuals over time. In lieu of ω,
I change notation now to index workers by i with the understanding that (i, t) maps to a particular state.
Recall that the first stage estimator attached to each worker a probability of being an unobserved type, k,
and so in the second stage, the distribution of unobserved heterogeneity is treated as observed. Hence, the
data vector for individual, i in period t is given by their (1) current occupation, (2) current state variable
(age education, type, tenure), (3) lagged occupation, (4) lagged state, and (5) a weight attached to being
type k. There are k observations for each individual i, t, each weighted by the probability of being that type.

Since identification only depends on switchers, we can consider only the subset of data such that the
current and lagged occupation are different. From assumption 1, the relevant wage for workers is not their
realized income, but their expectation of the income uncontaminated by on-the-job productivity shocks.
Hence, for each individual I construct their expected income at the time of their decision. I can also
construct this income for any potential choice that the worker could have made, including the choice to
stay in their current occupation. Hence, for each individual i at time t I construct the conditional choice
probability regression as before:

log(πij′jt/πijjt) = f(ωit)Cjj′ + 1/ρ(wij′t − wijt) + βEt[Vj′t′(ωit′)− Vjt′(ωit′)]

where j is the worker’s lagged occupation, j′ is their current occupation, and t′ refers to the next period. I
do not use t + 1 to avoid confusing the next period with calendar time. As before, the problem with this
regression is that the difference in continuation values is unobserved. However, we may use the fact that V
is a function of choice probabilities to rewrite this as,

log(πij′jt/πijjt) = C̃(ωit, j, j
′, j′′; Γ) + 1/ρ(wij′t − wijt) + βEt

[
log

(
πj′j′′t′

πjj′′t′

)]
(G.3)

which bears close resemblance to equation (16) in the text. Altuğ and Miller’s insight is that one does not
need to use the realized shocks at t+1 when substituting in for the expectational term. Instead, any realized
aggregate shock in the subsequent period can be used as long as the choice probabilities associated with
such an outcome are known. In particular, if one could observe the realized CCPs at calendar time t+ 1 if
the aggregate shock led to the prices observed at s 6= t+ 1 then one could plug those into equation (G.3) to
yield an estimable equation:

log(πij′jt/πijjt) = C̃(ωit, j, j
′, j′′; Γ) + 1/ρ(wij′t − wijt) + β log

(
πj′j′′s;t
πjj′′s;t

)
+ uistjj′j′′ (G.4)

which plugs in π as if the aggregate state had progressed from where it was at time t to where it was in
period s. The dependence on t on the π terms on the RHS is to draw attention to the fact that these are

23An example of a primitive that is time varying and thus could not be identified would be aggregate
shocks to the non-pecuniary value of occupations. If the values changed then one would need to assume
either (1) that the process governing their change was known and deterministic (as Dix-Carneiro (2014) does
with technological change) or (2) followed a stationary process, independent of any other shocks or policy
changes. If one made either of these assumptions, such shocks could also be identified from the estimator
presented here.

24Compare this to full solution methods which requires the forecasting process on wages for any time t+S
to be estimable from the observed time series. For a discussion of non-stationarity and finite dependence that
covers far more ground than the one-step-ahead, single agent dynamic problem in this paper, see Arcidiacono
and Miller (2018).
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CCPs one would observe if the aggregate state moved on the path t → s. In order to exploit this insight,
notice that since the model has been estimated at every possible t and ω, many possible aggregate states
have been observed. However, for rational expectations to work when setting t′ to some arbitrary date, s,
in lieu of t + 1, the crucial Markov and stationarity assumptions come into play. To see why, realize that
plugging in a value of s for t′ can only be done if one knows the CCPs with aggregate shocks t′ = s. This is
tantamount to the CCPs being independent of the previous aggregate state’s realization, and so there being
no dependence on t conditional on s in estimating CCPs. This is best understood with an example. Fix the
period to be t = 5 and ask what would happen if instead of the world unfolding at t = 6 as it did, it instead
looked exactly like it did at t = 3. If the process governing states is stationary Markov, then the world has
essentially reset itself to t = 3 and workers act as they would act at the observed t = 3. On the other hand,
if this were not the case, than observing the shock at t = 3 later in the sample may be an aberrant shock and
the worker’s forecast of the future may very well be different. For example, if there are occupational specific
trends in the wages then observing a particular deviation from that trend would not lead to the same set
of choices probabilities as when the shock seemed like a smaller deviation from trend. For the rest of this
appendix, I will treat shocks as stationarity in order to do inference robust to aggregate shocks.

The final estimating equation comes from plugging in realized values of π into equation (G.3) and using
the Markov assumption to drop the dependence on t in the estimated CCPs for aggregate state associated
to s:

Yijj′j′′tt′ = C̃(j, j′, j′′, ωit; Γ) + 1/ρ(wij′t − wijt) + uijj′j′′t′ (G.5)

Armed with the fact that we can sample any aggregate shock for t′, we can implement the estimator. Two
choices have to be made: for an individual, (i, t), the econometrician must choose a renewal action j′′ and
a shock for the next period, s′. The first choice is novel to the environment of renewal actions. There are
in principle many choices of j′′ and one could construct many synthetic histories for individual (i, t). The
actual choice is irrelevant as long as it fulfills the renewal action conditions. I use the most popular option
for j′ to switch to unconditionally to be j′′.25 The choice of s is where the next insight from Altuğ & Miller
comes into play. They point out that if one draws s randomly for each individual then the aggregate shocks
in regression (G.5) will be uncorrelated across individuals.26 In particular, consider a random variable t′it
that is uniform on the integer set27 {1, ..., T}. Then for an individual indexed by i, t, j, j′, j′′ the aggregate
shock in the synthetic next period will be,

T∑
s=1

uω(i),s,j,j′,j′′δs=t′ (G.6)

where δ is an indicator function and u collects all flow payoff terms. If t′ is drawn iid across individuals
then these indicator functions will be independent across individuals and so the aggregate shocks will not be
correlated across i. In order to implement the estimator, after fixed j′′ and drawing an s′ for each individual,
I use non-linear least squares to estimate the structural parameters of the model.

G.3 Results

The results of the aggregate estimator can be found in tables (G.1)-(G.5) at the end of this appendix. There
are a few differences between the main text’s estimator and this new estimator. Three, in particular, stand

25This could leave some correlation across individuals, as even though E(ζtj′′ζsj′′) = 0, the set from which
t and s are drawn is small. In principle, one could draw j′′ as well; This was not pursued to save on
computational time, and to keep the subsequent discussion about weighting as clear as possible.

26They estimate π nonparametrically as a function of wages and construct artificial histories for workers
by perturbing wit with iid Gaussian shocks. This would be infeasible in my case because I am not computing
a single wage and a single value of leisure. However, I also do not need to simulate histories as far into the
future as they do, so I just draw from the discrete set of observed outcomes.

27There is no reason for the drawing scheme to be uniform. However, it is hard to estimate what the
drawing scheme would be. In Altuğ & Miller, they have a similar free parameter in determining the variance
on simulated aggregate shocks. In practice, one should pick a sampling scheme outside the model.

56



out.
First, as expected, the standard errors are much larger using this estimator. For most parameters,

they are roughly one order of magnitude larger than the standard errors reported from block bootstrapping
individuals, but quite close to those that come from bootstrapping over time. The scale parameters on
shocks remains significant, as do most of the parameters of the cost function. The cost function parameters
are jointly significantly different from zero.

Second, the estimated value of 1/ρ is 2.2 in this estimate, while it is closer 1.5 in the main text. This
is likely driven by the estimator’s re-weighting of regression equations, discussed in the next section. This
value suggests that workers are slightly more responsive to shocks than in the main text. The number is not
large enough to drastically alter the speed of adjustment to shocks; however, a smaller value of ρ increases
the ratio of net to gross flows in any counterfactual.

Third, the level of most variables—including costs and the estimated non-pecuniary values of each
occupation—are substantially lower (negative in the case of non-pecuniary values) than in the main text.
In both this estimator and in the main text, the normalization of all parameters is the non-employment
state of high skilled, high absolute-advantage workers. Thus, the interpretation of this level shift is that
the non-employment state of highly educated workers is seen as giving high utility relative to employment.
This seems unlikely and may reflect imprecision in the AM style estimator for these parameters. Only 7%
of the occupational switchers are high absolute advantage, college educated workers and this group has the
smallest non-employment rate. One can see that this is truly a shift in the level of costs and other variables,
versus a change in relative terms, by looking at the correlation between non-pecuniary values in the AM
estimator and in the main text’s estimator. The correlation coefficient is .68, and the actual values of η in
either specification are plotted against each other in figure 5.

To interpret the parameters in relative terms, one can renormalize the parameters for each type, by
subtracting off the value of non-employment. Then, for each type, the non-pecuniary values reflect the value
of being employed in occupation o versus being non-employed, and the non-pecuniary value plus the mean
income (still normalized to be mean 1) is the average value of employment. Then, one can calculate the
average moving cost as a fraction of the value of being employed for each type. This exercise suggests that
the costs are approximately 70% of their estimated value in the main text. Thus, the estimated costs are
smaller as a fraction of employment, but are similar in magnitudes.

Ultimately, the AM estimator and the estimator of the main text differ on three dimensions. First, the
standard errors are larger, suggesting that adjusting for aggregate shocks does increase uncertainty about
parameter estimates. Second, the value of non-employment for high absolute advantage, college graduates,
is drastically different across the two estimators–suggesting that this is an imprecisely estimated parameter.
Third, workers are estimated to be more responsive to shocks in the AM estimator, and smaller moving costs
are needed to rationalize worker flows. Nevertheless, most parameter estimates, especially for the remaining
5 types, are broadly similar and even the wider error bands still suggest that the key elasticity, 1/ρ, is
statistically significant, and at somewhere between 1.5 and 2.5. Indeed, the main methodological takeaway
is only strengthened: workers are more responsive to fundamentals than suggested by more aggregated
models. In the final subsection, a link between the AM estimator and that in the main text is established,
which more clearly fleshes out the source of changes in parameter estimates.

G.4 Comparison to the Main Text’s Estimator

In order to understand the connection between the estimator above and that in the main text, it is best to
ignore the random sampling of t′ and instead just treat it as t. The actual redrawing of t′ had little impact
on the point estimates of the second estimator, but impacted the size of the confidence bands. Hence, this
random drawing was not important, empirically, from an identification standpoint. Instead, as will be shown,
the key difference in the estimators is the weighting assigned to different sequences of choices.

To make things concrete, given a state, ω and a series of occupations, j, j′, j′′, one may construct for any
t the following equation for the residual that combines terms from equation (G.1):

uωjj′j′′t(θ) = Yωjj′j′′t − g(Xω,j,j′,j′′,t; θ)

which is the term that appears in equation (18). Now X contains all covariates in the cost function and
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income differentials, and Y is a function of CCPs. The main text estimator solves the problem:

min
θ

∑
ω

∑
j

∑
j′ 6=j

∑
j′′ 6=j,j′

∑
t

sωjj′j′′tuωjj′j′′t(θ)
2 (G.7)

where s is the weight assigned to the possibility of observing a particular state and path of occupations.
Once the CCPs and flow utility primitives are estimated for every possible such combination, one can use
every possible such combination (even those unobserved) in the estimation. In the main text, s is either 0
or 1, depending on whether a point is on a pre-specified grid28 The estimator in this appendix constructs
the same residual for each individual:

uijj′j′′t(θ) = Yijj′j′′t − g(Xi,j,j′,j′′,t; θ)

which is the same as the above but for each i instead of each ω. However, from the first stage estimation,
we have already binned all individuals into states, ω. Moreover, an explicit, single, choice of j′′ was made
for each j and j′, rather than using all possible outcomes. Hence we may write the above as,

uω(i)jj′j′′(j,j′)t(θ) = Yω(i)jj′j′′(j,j′)t − g(Xω(i),j,j′,j′′(j,j′),t; θ)

which makes explicit that j′′ is a function of j and j′ and that ω is now a function of i. Summing over
individuals and minimizing the squared errors leads to the the objective function for the new estimator:

min
θ

∑
i

∑
j

∑
j′ 6=j

∑
t

u2ω(i)jj′j′′(j,j′)t(θ)

Notice that here there is no weighting, all individuals and periods enter the objective symmetrically. Col-
lapsing by ω we have,

min
θ

∑
ω

∑
j

∑
j′ 6=j

∑
t

Nω,j,j′,tuωjj′j′′(j,j′)t(θ)
2 (G.8)

where now Nω,j,j′,t is the measure of individuals (possibly 0) in state ω with transitions j to j′ in period t.
Comparing equations (G.7) and (G.8), the latter places more weight on histories and states that are more
common in the data. This difference in weighting can account for much of the difference in the point estimates
between the two estimators. The benefits of the weighting scheme above is clear, as it allows for inference
in the presence of aggregate shocks. On the other hand, it heavily downweights events that are observed
less frequently. For example, unemployment spells are rare, and only 7% of switches are into and out of
unemployment (vis-a-vis permanent exit from employment). This is even lower for high skilled individuals,
as discussed above. As seen in the preceding section, the virtual value of non-employment accounts for the
biggest differences between the estimator in the main text and in this appendix, and is likely due to the
difference in weights across estimators.

28Recall that I used a grid to save on computational power. The grid use all possible values of j, j′, j′′, as
well as all possible types and period, but used an evenly spaced subset of ages and tenure.
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G.5 Tables

Table G.1: Switching Elasticity and Switching Cost

With Constant
1/ρ 2.224

(0.099)
Mean C/ρ 2.055

(0.094)
Notes: Results from regressing transitions rates on

wage differentials. Mean C/ρ refers to simple mean
across all cells of cost matrix with no adjustment for
observed transition rates. Standard errors, in paren-
theses, calculated from 100 block bootstrap samples.

Table G.2: Mobility Productivity Parameters

With Constant
Age 0.007

(0.002)
Age2(×1000) −0.326

(0.066)
Type 1 0.345

(0.057)
Type 2 0.599

(0.049)
Type 3 0.341

(0.053)
Type 4 0.472

(0.058)
Type 5 0.174

(0.058)

Notes: Coefficients from a log-linear inverse productivity function.
Types refer to estimates of unobservable heterogeneity across workers.
Low skilled workers are either of type 1 or 2; Medium skilled workers are
of type 3 or 4; High skilled workers are of type 5 or 6. Type 6 coefficients
all normalized to 0. Standard errors are in parentheses and based on 100
block-bootstrap samples of the underlying sample.
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Table G.3: Mobility Cost (Γ) Parameters

Up Tasking Down Tasking
Constant −2.227

(0.799)
Occ. Dummy 0.310

(0.013)
Sec. Dummy 2.086

(0.788)
Task 1 0.065 −0.028

(0.007) (0.013)
Task 2 0.077 0.082

(0.011) (0.010)
Task 3 0.079 0.011

(0.022) (0.022)
Task 4 0.153 −0.225

(0.024) (0.033)
Task 5 0.151 −0.096

(0.026) (0.032)
Task 6 −0.062 0.056

(0.027) (0.032)
Task 7 0.061 0.068

(0.052) (0.032)
Task 8 0.087 −0.189

(0.026) (0.036)
Task 9 0.130 0.046

(0.023) (0.035)
Task 10 0.021 0.057

(0.032) (0.044)

Notes: Coefficients from a log-linear cost function featuring
a constant, a dummy for switching occupations, a dummy for
switching sectors, and coefficients for moving in task space. The
cost function is naturally scaled by the variance of shocks, ρ,
and results for the constant are not presented adjusted. The
first column presents the coefficients for moving up in task space
and second column presents coefficients for moving down. Stan-
dard errors are in parentheses and based on 100 block-bootstrap
samples of the underlying sample.
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Table G.4: Non-Pecuniary Benefits (η) Parameters
Sector

Occupation Manufacturing Other Services FIRE Health & Educ.
Managers −2.159 −2.137 −1.842

(0.051) (0.053) (0.051)
Science Professional −2.391 −2.241 −2.155

(0.059) (0.055) (0.047)
Science Assc. Professional −2.210 −2.139 −2.119

(0.053) (0.054) (0.053)
Other Assc. Professional −2.141 −1.878 −1.902

(0.055) (0.040) (0.042)
Clerks −2.084 −1.832 −1.766 −2.288

(0.054) (0.046) (0.052) (0.066)
Agriculture −2.000

(0.066)
Building Trades −1.922

(0.046)
Metal Trades −1.907 −1.938

(0.046) (0.063)
Other Crafts −2.180

(0.059)
Plant Operator −2.500

(0.076)
Machine Operator −1.646

(0.038)
Drivers −2.003 −1.889

(0.063) (0.049)
Laborers −1.751 −1.826

(0.042) (0.051)
Other Professional −2.181 −2.483

(0.058) (0.071)
Personal Workers −1.862 −1.251

(0.052) (0.031)
Retail Workers −1.569

(0.039)
Elementary Occupations −1.308

(0.035)
Customer Service −1.823

(0.058)
Health Professional −2.103

(0.079)
Teachers −1.741

(0.042)
Health Assc. Professional −1.729

(0.052)
Teaching Assc. Professional −1.641

(0.051)

Notes: Non-pecuniary benefits to each occupation and sector cell. Blanks occur because
not all occupations are present in all sectors. The Health & Education sector reflects
public sector and does not include things like R&D. Data appendix contains list of
industry codes in each sector. Units are proportional the unconditional sample mean
income. Standard errors are in parentheses and based on 100 block-bootstrap samples
of the underlying sample.
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Table G.5: Non-Employment (u) Parameters

Age 0.013
(0.004)

Age2(×1000) 0.000
(0.000)

Type 1 −0.684
(0.026)

Type 2 −0.365
(0.065)

Type 3 −0.936
(0.063)

Type 4 −0.141
(0.064)

Type 5 −1.036
(0.071)

Notes: Coefficients from a quadratic specification for the virtual value
of non-employment. Types refer to estimates of unobservable hetero-
geneity across workers. Low skilled workers are either of type 1 or 2;
Medium skilled workers are of type 3 or 4; High skilled workers are of
type 5 or 6. Type 6 coefficients all normalized to 0. Standard errors
are in parentheses and based on 100 block-bootstrap samples of the
underlying sample.

G.6 Figures

Figure 5: Relative and Level Changes in η Across Specifications
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H Bias Under Different Information Assumptions

As noted by Dickstein and Morales (2018), assumptions about the information set of individuals can have
complicated effects on parameter estimates in a discrete choice model. Per assumption 1 in the main text,
workers have complete information on skill prices at time t when deciding where to work at t, while they
have no information on their idiosyncratic productivity in each occupation, ς. The goal of this appendix is
to explore the potential for bias if this assumption is violated. To do so I keep the basic structure on ς; in
particular that ς ∼ N (0, I) and is independent across individuals and time. However, I consider two different
assumptions on what the worker knows. At one extreme I consider the case that the worker knows ς at the
time of making their decision. At the other extreme, I consider the case that the worker has no information
on ς or skill prices, and can only forecast with t− 1 information.

Figure 6: Distribution of Log Income Residuals
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Before examining the potential magnitude for bias, one can ask what diagnostic tests could be run to
analyze the plausibility of the timing assumptions made in the model. One implication of the assumption
on information is that the distribution of income residuals between occupation switchers and occupation
stayers ought to be the same.29 Figures 6 plots these residuals.30 The first panel is the unconditional
distribution, while the second panel is the distribution plotted for each type. The distribution of residuals
for both switchers and stayers have similar peaks and are both fat tailed, but the distribution for stayers
has more mass to the left of the peak.31 This is consistent with workers having some information about ς.
In particular, workers do not appear to switch if it implies a negative residual and some stayers eat negative

29This is not quite true: the variance of income shocks can vary by occupations and the fraction of switchers
and stayers varies by occupation. Nevertheless, the distributions should be close. Moreover, the figures and
discussion proceed almost identically if I scale residuals by estimated standard deviation. In this case, the
residuals are truly N (0, 1).

30Another reason these residuals may differ if the assumptions on transferability of human capital are
wrong. A regression of the residuals for switchers on the Mahalanobis distance between occupations has a
statistically significant positive coefficient on distance. A positive coefficient is not consistent with mismea-
sured human capital, but is consistent with workers having more information: they only move to far away
occupations when they get a good shock. However, the R2 is low, and occupational distance explains only
.2% of the variation in residuals.

31When scaled by σ, the residuals have kurtosis in excess of 3, suggesting another source of misspecification
may be in assuming Gaussian errors. However, the computational benefits afforded by the Gaussian structure
are hard to match with more fat tailed distributions.
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residuals, suggesting frictions to switching. The distributions conditional on type look even more similar
between stayers and switchers, suggesting that the wage parameters may vary by type more flexibly than I
allowed for. Nevertheless, the evidence here militates for an investigation of the bias that arises from workers
understanding their income residuals.

H.1 Locally Full Information

In order to pin down the ramifications of the timing assumption on wages, consider a model where workers
observe their vector of productivity shocks in an occupation, ς. To analyze this world I make two simplifying
abstractions: (1) wages are constant over time (or that there is perfect foresight with constancy eventually);
(2) workers are homogeneous. In such a situation, the worker’s problem is:

v(o, ε, ς) = max
o′
−C̃oo′ + ρεo′ + w̃o′e

σo′ ςo′ + βṼ (o′) (H.1)

where σo′ is the variance of the shocks and ςo′ is a standard Gaussian. I have also collected occupation fixed
effects directly into the cost function. In this case Ṽ refers to the expectation over the two idiosyncratic
shocks. The model’s solution conditional on a realization of ς is just as in the main text. However, now to
aggregate across individuals one needs to integrate out the wage shock:

Ṽ (o) =ργ + ρ

∫
log

(∑
o′′

exp

(
−C̃oo′′ + w̃o′′e

σo′′ ςo′′ + βṼ (o′′)

ρ

))
dF (ς)

π(o′|o) =

∫ exp
(
−C̃oo′+w̃o′e

σ
o′ ςo′+βṼ (o′)
ρ

)
∑
o′′ exp

(
−C̃oo′+w̃o′′e

σ
o′′ ςo′′+βṼ (o′′)
ρ

)dF (ς)

In order to economize on notation, I will momentarily make the following substitutions:

C· =C̃·/ρ

V =Ṽ /ρ− γ/(1− β)

w′o =w̃′o/ρ

Moreover, it will be cleaner to collect all flow payoff terms into a single term, uo′o(ς). Having made these
substitutions, the worker’s value function and transition probability can be written as:

V (o;σ) =

∫
log

(∑
o′′

exp (uo′′o(ς) + βV (o′′))

)
dF (ς) (H.2)

π(o′|o;σ) =

∫
exp (uo′o(ς) + βV (o))∑
o′′ exp (uo′′o(ς) + βV (o′′))

dF (ς) (H.3)

If one could bring the integral inside of these expressions, then equations (H.2) and (H.3), would be the
Bellman equation and formula on transition probabilities from the main text. However, in order to make
progress in the current setting, I carry out a second order expansion around σ = 0. Hence, this can be
thought of as analyzing bias when σ is local to 0, or a local to 0 approximation to full information. First,
I evaluate the functions at σ, then take the first derivatives and evaluate at σ = 0 and finish with the
second derivative. To streamline analysis, it makes sense to focus on the derivative of the flow probability
conditional on ς:

π(o′|o, ς) =
exp (uo′o(ς) + βV (o))∑
o′′ exp (uo′′o(ς) + βV (o′′))
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The first step of the expansion is evaluation at 0:

uo′o(ς;σ = 0) = −Co′o + wo′ (H.4)

V (o;σ = 0) = log

(∑
o′′

exp (uo′′o + βV (o′′))

)
(H.5)

π(o′|o;σ = 0) =
exp (uo′o + βV (o′))∑
o′′ exp (uo′′o + βV (o′′))

(H.6)

In words, setting σ = 0 completely removes the shock from the aggregation. This is now almost exactly the
set of equations in the main text; the key difference is that this removes even the expectation of the wage
shock from the flow utility.

H.1.1 First Derivatives

Turning to first derivatives, I begin with the derivative of the flow:

∂uo′′o
∂σo′

=

{
wo′e

σo′ ςo′ ςo′ if o′′ = o′

0 else
(H.7)

For the Bellman equation, we use the Leibniz rule to bring the derivative inside the integral and define
the derivative implicitly:

∂V (o)

∂σo′
=

∫ ∑
o′′

π(o′′|o, ς)×
[
∂uo′′o
∂σo′

+ β
∂V (o′′)

∂σo′

]
dF (ς)

=
∑
o′′

∫
π(o′′|o, ς)∂uo

′′o

∂σo′
dF (ς) + β

∑
o′′

∂V (o′′)

∂σo′

∫
π(o′′|o, ς)dF (ς)

=

∫
π(o′|o, ς)∂uo

′o

∂σo′
dF (ς) + β

∑
o′′

∂V (o′′)

∂σo′

∫
π(o′′|o, ς)dF (ς)

(H.8)

where the second line uses the fact that V (o) does not depend on ς and so the derivative w/r/t σ is a constant,
and the third line uses (H.7) to remove all off diagonal terms. Finally, for the conditional probability function:

∂π(o′′|o, ς)
∂σo′

= π(o′′|o, ς)×
[
∂uo′′o
∂σo′

+ β
∂V (o′′)

∂σo′

]
− π(o′′|o, ς)×

(∑
o′′′

π(o′′′|o, ς)×
[
∂uo′′′o
∂σo′

+ β
∂V (o′′′)

∂σo′

])
(H.9)

While these expressions appear complicated, they simplify substantially when evaluated at σ = 0.
Starting with equation (H.7) :

∂uo′′o
∂σo′

∣∣∣∣
σ=0

=

{
wo′ςo′ if o′′ = o′

0 else

An immediate implication of the above result is:

E

(
∂uo′′o
∂σo′

∣∣∣∣
σ=0

)
= 0 ∀o′′ (H.10)

We will exploit the result in (H.10) extensively, along with the fact that equation (H.6) implies that the
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transition probabilities can be pulled out of all integrals. Turning to evaluation of (H.8):

∂V (o)

∂σo′

∣∣∣∣
σ=0

= π(o′|o)E
(
∂uo′′o
∂σo′

)
+ β

∑
o′′

∂V (o′′)

∂σo′
π(o′′|o)

= β
∑
o′′

π(o′′|o)× ∂V (o′′)

∂σo′

In matrix form, Dσo′V = βΠDσo′V where Π is the transition matrix on states. Since the row sums of βΠ
are strictly bounded by 1, there is no unit eigenvalue to this matrix and the only solution is the next key
result:

∂V (o)

∂σo′

∣∣∣∣
σ=0

= 0 ∀o, o′ (H.11)

Next, turning to the conditional probability:

∂π(o′′|o, ς)
∂σo′

∣∣∣∣
σ=0

= π(o′′|o, ς)× ∂uo′′o
∂σo′

− π(o′′|o, ς)π(o′|o, ς)× ∂uo′o
∂σo′

which uses the derivative of u and (H.5). Plugging in (H.7) once more yields the next result:

∂π(o′′|o, ς)
∂σo′

∣∣∣∣
σ=0

=

{
π(o′|o)(1− π(o′|o))∂uo′o∂σo′

if o′′ = o′

−π(o′|o)π(o′′|o)∂uo′o∂σo′
else

(H.12)

Notice that the derivative of the transition probabilities is a function of transition probabilities and derivatives
of flow payoffs—this fractal property of the derivative will be particularly useful in taking second derivatives.
Continuing, integrating over this function yields the derivative of the probability of moving:

∂π(o′′|o)
∂σo′

∣∣∣∣
σ=0

= 0 ∀o′, o′′ (H.13)

These first set of results simply point out that since the unobserved productivity shock is mean 0, there is
no first order bias from the worker knowing the value of this shock.

H.1.2 Second Derivatives

Now we can turn to second and cross-derivatives. First for flow payoffs,

∂2uo′′o
∂σ2

o′
=

{
wo′e

σo′ ςo′ ς2o′ if o′′ = o′

0 else
(H.14)

∂uo′′o
∂σo′∂σo′′′

= 0 ∀o′′′ 6= o′ (H.15)

Next for the Bellman equation, we can apply the chain rule to (H.8):

∂2V (o)

∂σ2
o′

=

∫ [
∂π(o′|o, ς)
∂σo′

∂uo′o
∂σo′

+ π(o′|o, ς)∂
2uo′o
∂σ2

o′

]
dF (ς) + β

∑
o′′

[
∂2V (o′′)

∂σ2
o′

π(o′′|o) +
∂V (o′′)

∂σo′

∂π(o′′|o)
∂σo′

]
Since many of the above terms will either be equal to zero or integrate to zero when evaluated σ = 0, it will
be notationally convenient to keep the expression above in terms of derivatives of π. With this in mind and
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rearranging things slightly:

∂2V (o)

∂σ2
o′

=

∫
∂π(o′|o, ς)
∂σo′

∂uo′o
∂σo′

dF (ς) +

∫
π(o′|o, ς)∂

2uo′o
∂σ2

o′
dF (ς)

+ β
∑
o′′

∂2V (o′′)

∂σ2
o′

π(o′′|o) + β
∑
o′′

∂V (o′′)

∂σo′

∂π(o′′|o)
∂σo′

(H.16)

For the cross derivative we can perform a similar operation:

∂V (o)

∂σo′′′∂σo′
=

∫
∂π(o′|o, ς)
∂σo′′′

∂uo′o
∂σo′

dF (ς) +

∫
π(o′|o, ς) ∂uo′o

∂σo′∂σo′′′
dF (ς)

+ β
∑
o′′

∂V (o′′)

∂σo′∂σo′′′
π(o′′|o) + β

∑
o′′

∂V (o′′)

∂σo′

∂π(o′′|o)
∂σo′′′

(H.17)

Turning to the conditional probability function:

∂2π(o′′|o, ς)
∂σ2

o′
=
∂π(o′′|o, ς)

∂σo′
×
[
∂uo′′o
∂σo′

+ β
∂V (o′′)

∂σo′

]
+ π(o′′|o, ς)×

[
∂2uo′′o
∂σ2

o′
+ β

∂2V (o′′)

∂σ2
o′

]
− ∂π(o′′|o, ς)

∂σo′
×

(∑
o′′′

π(o′′′|o, ς)×
[
∂uo′′′o
∂σo′

+ β
∂V (o′′′)

∂σo′

])

− π(o′′|o, ς)×

(∑
o′′′

[
∂π(o′′′|o, ς)

∂σo′
×
[
∂uo′′′o
∂σo′

+ β
∂V (o′′′)

∂σo′

]
+ π(o′′′|o, ς)×

[
∂2uo′′′o
∂σ2

o′
+ β

∂2V (o′′′)

∂σ2
o′

]])
(H.18)

With these equations in hand we can turn to evaluating these expressions at zero. First, we list some
useful integrals of derivatives of u:

E

(
∂2uo′′o
∂σ2

o′

∣∣∣∣
σ=0

)
=

{
wo′ if o′′ = o′

0 else

E

(
∂uo′′o

∂σo′∂σo′′′

∣∣∣∣
σ=0

)
= 0 ∀o′′′ 6= o′

E

((
∂uo′′o
∂σo′

∣∣∣∣
σ=0

)2
)

=

{
w2
o′ if o′′ = o′

0 else

E

(
∂uo′′o
∂σo′

∂uo′′o
∂σo′′′

∣∣∣∣
σ=0

)
= 0 ∀o′′′, o′

where the last line follows from an assumption of independence across ε. Turning to the Bellman equation,
from (H.11) and (H.12) we can rewrite (H.16) as:

∂2V (o)

∂σ2
o′

=π(o′|o)(1− π(o′|o))
∫ (

∂uo′o
∂σo′

)2

dF (ς) + π(o′|o)
∫
∂2uo′o
∂σ2

o′
dF (ς)

+ β
∑
o′′

∂2V (o′′)

∂σ2
o′

π(o′′|o)

Now using the properties of the u listed above:

∂2V (o)

∂σ2
o′

= π(o′|o)(1− π(o′|o))w2
o′ + π(o′|o)wo′ + β

∑
o′′

∂2V (o′′)

∂σ2
o′

π(o′′|o) (H.19)

This can be written in matrix form as D2
σoV = b(Π, wo′) + βΠD2

σoV where b can be inferred from (H.19).
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Alternatively, D2
σo′
V = (I−βΠ)−1b(Π, wo′). Performing similar substitutions for the cross-derivative yields:

∂V (o)

∂σo′′′∂σo′

∣∣∣∣
σo′=0

=− π(o′|o)π(o′′′|o)
∫
∂uo′′′o
∂σo′′′

∂uo′o
∂σo′

dF (ς) + β
∑
o′′

∂V (o′′)

∂σo′∂σo′′′
π(o′′|o)

=β
∑
o′′

∂V (o′′)

∂σo′∂σo′′′
π(o′′|o)

where the last line follows from the rules on integrals of derivatives of u. Thus, for the same reason as before,
the only solution to this equation is that the cross-derivatives are zero:

∂V (o)

∂σo′′′∂σo′

∣∣∣∣
σ=0

= 0 ∀o′, o′′′ (H.20)

With some work, the second derivative of π can be simplified as follows:

∂2π(o′′|o, ς)
∂σ2

o′

∣∣∣∣
σ=0

=
∂π(o′′|o, ς)

∂σo′
× ∂uo′′o

∂σo′
+ π(o′′|o)×

[
∂2uo′′o
∂σ2

o′
+ β

∂2V (o′′)

∂σ2
o′

]
− ∂π(o′′|o, ς)

∂σo′
π(o′|o)× ∂uo′o

∂σo′

− π(o′′|o)× ∂π(o′|o, ς)
∂σo′

× ∂uo′o
∂σo′

− π(o′′|o)× π(o′|o)× ∂2uo′o
∂σ2

o′

− βπ(o′′|o)×

(∑
o′′′

π(o′′′|o)× ∂2V (o′′′)

∂σ2
o′

)

Since many of the partials of u are zero, it will be easier to focus on the cases o′ = o′′ and o′ 6= o′′ separately.
First, if o′ = o′′ the above reduces as follows:

∂2π(o′|o, ς)
∂σ2

o′
=π(o′|o)(1− π(o′|o))(1− 2π(o′|o))×

(
∂uo′o
∂σo′

)2

+ π(o′|o)(1− π(o′|o))× ∂2uo′o
∂σ2

o′

+ π(o′|o)2(1− π(o′|o))w2
o′ + π(o′|o)2wo′

+ π(o′|o)×
(
β
∂2V (o′)

∂σ2
o′
− ∂2V (o)

∂σ2
o′

)
Where I have exploited (H.19) to substitute out many terms for the derivative of the continuation value of
V (o). Integrating and rearranging,

∂2π(o′|o)
∂σ2

o′
=π(o′|o)(1− π(o′|o))2w2

o′ + π(o′|o)wo′ + π(o′|o)×
(
β
∂2V (o′)

∂σ2
o′
− ∂2V (o)

∂σ2
o′

)
For the case that o′ 6= o′′:

∂2π(o′′|o, ς)
∂σ2

o′

∣∣∣∣
σ=0

=− π(o′′|o)π(o′|o)(1− 2π(o′|o))×
(
∂uo′o
∂σo′

)2

− π(o′′|o)× π(o′|o)× ∂2uo′o
∂σ2

o′

+ π(o′′|o)π(o′|o)(1− π(o′|o))w2
o′ + π(o′′|o)π(o′|o)wo′

+ π(o′′|o)
(
β × ∂2V (o′′)

∂σ2
o′
− ∂2V (o)

∂σ2
o′

)
Performing a similar series of substitutions and integrating:

∂2π(o′′|o)
∂σ2

o′

∣∣∣∣
σ=0

=π(o′′|o)π(o′|o)2w2
o′ + π(o′′|o)

(
β × ∂2V (o′′)

∂σ2
o′
− ∂2V (o)

∂σ2
o′

)
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Combining the above leads to the final result and key ingredient to the second order expansion:

∂2π(o′′|o)
∂σ2

o′

∣∣∣∣
σ=0

=

π(o′|o)(1− π(o′|o))2w2
o′ + π(o′|o)wo′ + π(o′|o)×

(
β ∂

2V (o′)
∂σ2

o′
− ∂2V (o)

∂σ2
o′

)
if o′ = o′′

π(o′′|o)π(o′|o)2w2
o′ + π(o′′|o)

(
β × ∂2V (o′′)

∂σ2
o′
− ∂2V (o)

∂σ2
o′

)
else

(H.21)
As a final point before moving on to the approximation, the cross-derivative of the conditional probability
function, ∂π(o′′|o, ς)/∂σo′∂σo′′′ , will contain terms that are functions of transition probabilities multiplying
cross-derivatives of u and V , as well terms multiplying ∂uo′′o/∂σo′′′ and ∂uo′′o/∂σo′ . It’s already been
established that such terms are either identically 0 or integrate to 0. Hence,

∂π(o′′|o)
∂σo′′′∂σo′

∣∣∣∣
σ=0

= 0

H.1.3 A Second Order Approximation

The regression equation in the main text uses the logarithm of the transition probabilities. Hence, one can
use equation (H.21) to approximate the regression equation. First taking derivatives of the log probabilities:
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Per the work above, nearly all of the terms in this expression are zero. Summing over σ component-wise
leads to the final expression:
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There are four such expressions that go into the final estimating equation. The first two are as follows:
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Expanding out the remaining terms in the summation leads to expressions of the following sort:
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Notice that only one term on the right hand side depends on o′. Hence, when subtracting the expressions
above most terms will cancel out. In particular, combining the above leads to the approximation for the first
part of the regression equation:
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For the second set of expressions:
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This leads to the following combined approximation for the regression equation:
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The first term on the right hand side is almost the regression equation except that it has σ = 0, whereas
I evaluate E(weςσ) = weσ

2/2. However, to finalize things, plug in the main regression equation, rearrange,

and recall that the second order approximation of the expectation is given by weσ
2/2 ≈ w(1 + σ2/2):
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Finally, we can plug back in the substitutions that removed ρ to yield the final approximation:
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H.1.4 Implications for Bias

Equation (H.23) shows that, to a second order, the omitted variable bias from a full information timing
assumption can be broken down into two terms–one that augments the wage differentials, and an extra
dynamic term. The sign of the bias is complicated and will depend on the correlation structure between
the level of wages, their variance, and switching probabilities in a non-linear way. The size of the bias is
more tractable. In particular, the size of the bias is mediated by the ratio of the variance in wages, σ, to
the variance on moving shocks, ρ. Unfortunately, putting numbers on the bias is difficult as estimating the
model when ς is observed is infeasible. However, the parameters estimated under the the model where ς is
unobserved suggests that (σ/ρ)2 will be on the order of 10−1. This is because ρ ∈ (.4, .7) depending on the
estimate, while σo < .25 ∀o. All of the probability terms will similarly be on the order of 10−1, as will β/2.
Hence, the bias terms will be on the order of 10−2 to 10−4, while the income differentials in the regression
will be on the order of 100. This suggests that the bias may not be large.

The above discussion is not a statement about Roy models in general, but a conclusion that depends
on the particular data at hand. If the residual wage variance were larger than the variance on moving cost
shocks, then the squared terms in (H.23) would be of the same or a larger order of magnitude as the level
of income differentials. In this case, the potential for bias might be substantial. This could be especially
problematic if the bias generates a smaller value of 1/ρ, implying an overestimate of the shocks on moving
cost and overestimating the costs of switching. The intuition behind this thinking is that, in the case where
the worker had full information, whichever set of shocks has a larger variance ought to drive most worker
reallocation. In the setting under study, there is evidence that residual wage variance is smaller than the
variance in moving cost shocks. This appears to be true in nearly all specifications, weightings and aggrega-
tions.

To explore the potential bias further, I estimate a version of the model under the static equilibrium
assumptions above. In particular, I use the time average of income and transition probabilities across
years, ignoring worker heterogeneity. In this case, it is clear that the non-pecuniary benefits in the model
would be multicollinear with wages as there is no time variation. Instead, we can identify ρ from cross-
sectional variation using a constant and occupational distance to measure C.32 The estimated value of 1/ρ
in this exercise is .38, which is much smaller than the model that includes heterogeneity, both observed and
unobserved. Nevertheless, this is surprisingly close to the estimator that allows for time variation, as well
as the ACM estimator (see the next section). Such a small value of 1/ρ implies a much larger variance in
shocks than the estimator from the main text. At first glance this may suggest this exercise will understate
the concerns for bias, but σ is also larger in this situation.

With this simplified model calibrated, I can construct the potential bias term. Notice that this bias term
is, at best, an approximation since neither ρ nor σ are properly estimated under model misspecification.
Nevertheless, the orders of magnitude may be informative. I focus predominantly on the first bias term
as it is clearly going to dominate the second term, and is also much easier to compute. The variance
of the bias term, and its covariance with income differentials is, as predicted, two orders of magnitude
smaller than the variance of the wage differentials. To interpret these numbers I construct the implied bias
using an approximate omitted variable bias formula, which ignores the second order terms, occupational
characteristics, and the fact that the skill prices are also incorrectly estimated if the model is misspecified.
In particular, denoting income differentials by ∆w and the first order terms by ∆FOT , I compute the
following bias term:

bias ≈ Cov(∆w,∆FOT )

V ar(∆w)

To get a sense of how the bias changes under different true values of σ and ρ, table H.1 shows the estimated
bias, as a percent of the true 1/ρ, when I multiply each element of the estimated σ by 2/3, 1 and 3/2 and
do similarly for 1/ρ.

32I find that controlling for occupational characteristics is very important in disciplining ρ.
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Table H.1: Potential Bias Under Full Information Assumption

2
3 × σ 1× σ 3

2 × σ
2
3 ×

1
ρ 0.53 1.21 2.72

1× 1
ρ 0.81 1.81 4.08

3
2 ×

1
ρ 1.21 2.72 6.12

The implied bias is positive in all cases. At the estimated values of 1/ρ and σ, the bias is 1.81%. Setting
the variance on moving cost shocks lower (i.e., adjusting 1/ρ upwards), increases the bias. Nevertheless,
the bias remains small as long as σ is being estimated relatively close to the truth. As expected, the bias
becomes most severe precisely when the true moving cost shocks have small variance and the income shocks
have large variance. This is depicted in the bottom right of the table, when the implied variance on moving
cost shocks is 2/3 of its true value and the variance on income shocks is 3/2 of its estimated value. In this
situation, the bias is more than 5%, which is large but remains modest. Importantly, this is more suggestive
evidence that, at least in this simplified setting and given the data at hand, the bias stemming from the
model’s information assumption versus a full information assumption is not very large. This is consistent
with the figure above since, despite some evidence of the information assumption failing, the distribution of
income residuals still overlap a great deal.

H.2 No Information

Another stark assumption that one could make is that workers’ do not know the skill prices when making
their decision. This is similar to ACM except I still assume that workers make their decision in the same
period in which they are paid. This set up is decidedly simpler than that above, and requires no complicated
expansions. In particular, the aggregation still proceeds as before but the estimating equation ought to be:
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Rearranging we can write this as a new forecast error and realization:
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Letting −et be the forecast error, the above setting can be modeled as a case of classical measurement error.
In particular,

(wo′th(o′, ωt)− woth(o, ωt)) = Et−1(wo′th(o′, ωt)− woth(o, ωt)) + et

where, as long as agents are rational, et is orthogonal to the unobserved, true, regressor. Hence, if the worker
knows less than I assume, there ought to be attenuation bias in the slope term. This should also enlarge the
constant term. In other words, if worker’s have less information, the costs of switching will be overestimated.
The economic intuition behind this result is that workers will appear to respond less to wage differentials
(as they are mismeasured) and this can only be rationalized with large switching costs. Without unobserved
heterogeneity, and thus no first stage, one could employ an IV estimator in the spirit of ACM to estimate
the model. In particular, lagged wage differentials would be a valid instrument for wage differentials.

Since the second stage estimator is non-linear, to explore the importance of the assumption on informa-
tion I estimate an augmented version of the model that is linear in the cost function terms (i.e., the constants,
occupation characteristics, and worker characteristics). The results of these regressions are presented in the
first two columns of table H.2, below.
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Table H.2: Comparing OLS and IV Estimates of 1/ρ

Estimation Method
OLS IV ACM-OLS ACM-IV ACM-IVC
2.04 2.06 0.13 0.49 0.46

[ 0.08] [ 0.07] [ 0.23] [ 0.39] [ 0.21]

This augmented second stage yields an estimate of 1/ρ = 2.04, which is close to the original estimate
and well within the range of values estimated in the main text and the appendices. The IV estimator in
this setup yields 1/ρ = 2.06, which is larger, but close to the original.33 This suggests that worker’s have
good information on skill prices in the period in which they move. This is not to say there is no variability
in skill prices over time. Indeed, an AR(1) of income differentials on lagged differentials has an R2 of .47.
The point is that workers are as responsive to observed wages as to an instrument that is valid under either
timing assumption.

This is different from the result in ACM, who found that instrumenting changed point estimates con-
siderably. In particular, they find that instrumenting increased the point estimate on 1/ρ from .22 to .35.
Implementing the ACM estimator on aggregated Danish data34, leads to a similarly large disparity between
OLS and IV. This can be seen in the last three columns of H.2. The third column is the estimate of 1/ρ
under OLS in the ACM setup; the fourth column uses an IV estimator based on lags; the final column uses
an IV estimator and includes occupational characteristics as control variables. Standard errors, calculated by
bootstrapping on time, ignoring measurement error in transition rates, are in brackets below the estimates.
While the OLS and IV estimator are far apart the error bands are large. This is likely a result of having
a relatively short panel compared to ACM. Nevertheless, the OLS and IV estimates are contained in each
other’s confidence bands. Hence, while this data replicates the findings in ACM on aggregated data, using
more data on individual characteristics seems, in this dataset at least, to alleviate some of the concerns over
timing and information.

H.3 Remarks

The calculations performed above are approximate as they ignore heterogeneity and are local to zero approx-
imations of the model in the main text. Nevertheless, all of the theoretical and numerical exercises suggest
that the potential for bias coming from my timing assumptions versus two extreme alternatives is small. In
the case that workers know more than I assume, it seems that this extra information (in the form of wage
shocks) is not as important as the information contained in the moving cost shocks. In the case that workers
know less than I assume, it seems that they are “close” to having the information I assume in the sense of
small forecast errors. Combining these two observations leads to the conclusion that workers seem to have a
very good idea of their wages when they are making their occupational choice if all they know is the current
skill prices—these skill prices are both forecasted well and there is little residual variance afterward.

While these exercises ought to assuage much concern over the potential for bias, there are some potentially
important situations that are not covered in the above. For example, workers may be heterogeneous in their
ability to forecast based on their characteristics. Under such a situation, there would be a biased measure
of ρ for every possible worker’s state and I am measuring an average (potentially not even population-
weighted) of these biased estimates. Because for some groups this might be over- or under- estimated, it
is unfortunately hard to know where this average would lay. Another case that is not considered is when
agents have a noisy signal of their income shocks that is correlated across occupations. For example, it might

33While the confidence intervals around the point estimates overlap, the IV estimator was larger than
the OLS estimator in most bootstrap replications, thus the bias was positive and statistically significant.
Nevertheless, it is economically small.

34In particular, I use twice lagged differentials and twice lagged switching probabilities as instruments
for contemporaneous differentials. To be as close to ACM as possible in this exercise, I use only two-way
occupation fixed effects, and not occupational characteristics. However, including these controls has little
effect. The estimate for ρ is close to 2.1, which is surprisingly close to ACM’s estimate from a long panel in
the US.
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be that workers have better information about occupations similar to their own occupation than about very
different occupations. As a third example, workers may have incomplete information about their own state
variables; for example, they may not know their comparative advantage in occupations they have never tried.
Understanding the role of workers’ information set is beyond the scope of this paper, and requires different
methods than those I’ve pursued. Nevertheless, different assumptions on information sets that are amenable
to analysis do not seem problematic; while future research, perhaps using moment inequalities or other
methods, may be able to shed light on the importance of more flexible modeling of workers’ information.
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I Anticipation Counterfactual

I.1 Setup

In this counterfactual, the setup is exactly as described in the main text. In particular, workers face the
same dynamic choice problem as before, labor supply is the same, and the model is solved with workers
having perfect foresight of the economy’s evolution in response to news of any future foreign price changes
is revealed. However, instead of an unexpected shock at t = 0, the workers have perfect foresight that the
shock will occur at t = 10. The model begins from an initial steady state, so news of the lower trade costs is
still unanticipated. This setup gives workers time to adjust in preparation of the shock’s onset. The actual
shock is the same as that in the main text, and so I do not review the details here.

I.2 Impact on Workers with Anticipation

In discussing the impact on workers who have foreknowledge of changes in trade prices, I focus on differences
between the results in the main text and in this counterfactual. Previewing the results, the importance of
occupations remains a salient feature in all counterfactuals. And swings in skill prices are muted, they are
still large at impact—suggesting it is the size of the foreign price change, and not its being unexpected that
matters. A novel part of the new analysis is that there are now substantial differences in outcomes along the
life cycle. Young workers are more able to adapt in anticipation of the shock, leading to larger gains in income.

Figure 7 reproduces the graph of the evolution of skill prices in the economy in the new counterfactual.
In the first panel, which plots changes in skill prices across occupations, two distinctions stand out from the
original counterfactual. First, the effect on nominal skill prices at impact is smaller, as one would expect if
workers adjust in advance. In the main text, the maximum change in skill prices relative to a world without
changes in import prices was 1.5%, and the minimum was -2.75%. However, when workers can adjust in
anticipation, the maximum increase is only .5% while the largest drop is less than 2.5%. The reason for
these muted effects is explained by the second key difference from the original model: there are anticipatory
effects on skill prices. Since workers are aware that there will be a large change in skill prices at t = 10,
some workers begin leaving occupations predestined for a drop in demand early (or choose not to enter into
them). This leads to a temporary increase in skill prices for remaining workers before a drop after import
prices decline. A mirrored phenomenon takes place in other occupations, as workers begin to enter sectors
in anticipation of increased demand.

Figure 7: Dynamic Effects of an Import Price Shock on Nominal Skill Prices–Different
Timing

(a) Dispersion Across Occupations

-2 0 2 4 6 8 10 12 14 16 18 20

Periods After Shock

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

%
 C

h
a
n
g
e
 i
n
 S

k
ill

 P
ri
c
e
s

Non-Manufacturing

Manufacturing

(b) Dispersion Across Sectors
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Adjustment costs—both fixed and in terms of human capital loss—are key in explaining these patterns
in skill price adjustments. Workers who receive favorable switching cost shocks before a change in labor
demand takes place are keen to exploit their good fortune. Other workers who do not receive sufficiently
favorable shocks remain in their occupation. In a model without switching costs, workers would never adjust
occupations before a shock took place as the continuation values of all occupations would be equalized, even
if compensating differentials could sustain skill price dispersion.

In the second panel of Figure 7, one sees that qualitatively similar phenomena to those describe above
occur with sectoral average skill prices. There are slight changes in skill prices before the price change takes
place, in anticipation, followed by larger changes in skill prices when the price change occurs. Comparing
each panel of the figure leads to the same conclusion as in the main text: the dispersion in skill price changes
within sectors, is much larger than across sectors. In fact, these within versus between differences are even
clearer when workers can anticipate price changes. For example, focusing on manufacturing in panel (b),
the change in skill prices from anticipation effects is almost zero for the average skill price in manufacturing.
However, from panel (a), it is actually clear that there are large changes in skill prices even before import
competition ramps up. This difference reflects that much reallocation, both before and after the foreign price
change, occurs within manufacturing.

Table I.1: Percent of Income Variance Explained

Levels Differences
Announcement Short Run Long Run

Occs/Sectors 65.6 94.6 60.1 47.5
Occupations Only 58.0 76.6 52.6 40.1

Sectors Only 16.4 11.3 13.9 4.6
Notes: Income variance is calculated across all individuals present, weighting by the distribution of workers in

the equilibrium with trade. Residual variance reflects worker demographics within each economic unit. Short run
is defined as the period at impact, long run is based on a steady state that is assumed to be reached at 40 periods.

In order to quantify the dispersion alluded to above, Table I.1 recreates Table 8 from the main text.
There is one additional column, besides the short run and long run effects, the table contains information on
the variance decomposition when news of the price change is announced. The major findings do not change
from that in the main text. In particular, occupations have more explanatory power than sectors, especially
in the short run. However, echoing the discussion above, the new column reveals that one’s occupation and
sector in the economy also matter a great deal for how their income changes before changes in foreign prices
even occur. In fact, at announcement, one’s occupation is even more important for explaining variation in
income than after trade prices adjust. While interesting, it mostly buttresses the key point that much of the
reallocation taking place occurs as workers rotate through different tasks, even within the same broad part
of the economy.

Finally, one can quantify outcomes along different dimensions of worker heterogeneity. Here one must
take a stand on which set of workers to consider—workers at the time of announcement, workers alive at
the time of the price change, or another period. I look at workers alive at the time of the announcement,
but focus on changes in income after foreign prices change. This is to make the changes in earnings more
comparable to the table in the main text, with the caveat that this ignores workers preemptive actions.

Turning to heterogeneity along the skill distribution, Table I.2 plots the distribution of lifetime earnings
for different sets of skills and unobserved ability.

The patterns are broadly the same as in the main text. The majority of workers who lose in terms of
lifetime income are workers with a medium level of education, or workers who are of low absolute advantage.
On average, 7% of workers see decreases in lifetime earnings—while larger than the original counterfactual,
this masks the fact that many workers make more in income before the foreign price change takes place by
reallocating preemptively. The median worker sees an increase in earnings of 3.55%, close to the 4.14% in the
original counterfactual. Including the η terms, and giving them an interpretation as part of compensation,
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Table I.2: Distributional Impact of Trade on Workers After Shock

(a) Distribution of Lifetime Earnings Differentials

Mean Std. Dev Q5 Q50 Q95 % < 0
Low [L] 4.95 9.15 −0.24 4.46 16.65 5.75
Low [H] 3.58 5.18 −0.23 3.38 9.01 7.15
Med [L] 4.59 9.34 −1.73 3.94 17.40 7.69
Med [H] 3.40 4.54 −0.19 3.38 5.87 6.59
High [L] 4.34 8.57 −1.10 3.50 16.67 9.64
High [H] 3.55 4.49 −0.14 3.34 8.74 7.10
Total 3.94 6.72 −0.23 3.55 10.92 6.74

(b) Distribution of Lifetime Earnings Differentials (w/ η)

Mean Std. Dev Q5 Q50 Q95 % < 0
Low [L] 1.29 4.61 −0.30 0.78 6.97 6.36
Low [H] 1.75 1.85 −0.03 1.65 4.19 5.78
Med [L] 1.77 4.08 −0.38 1.16 7.96 7.26
Med [H] 1.66 1.32 −0.02 1.72 2.64 5.11
High [L] 2.23 5.41 −0.54 1.61 6.80 9.64
High [H] 1.82 1.91 −0.07 1.79 3.54 6.02
Total 1.63 2.93 −0.05 1.55 4.50 5.89

Notes: Tables report the (100x) log difference in discounted total earnings across individuals. Results
are based on simulating 100,000 individuals from the initial cohort under both the equilibrium with and
without changes in trade prices. The same shocks are used in both simulations. Discounted at β = .96.

leads to smaller gains, but leads to a smaller fraction of workers losing in terms of compensation.

Thus far, there have been only small quantitative differences between a situation where workers do not
foresee increased globalization and in which they do. Qualitatively, key patterns remain the same: intra-
industry reallocation plays a much larger role in determining distributional outcomes than across sectors,
and losses, especially large losses, appear concentrated on low absolute advantage workers with at least
some education. However, there are large differences along the life cycle of workers. Intuitively, workers can
anticipate the coming changes in foreign prices, but only the young are likely to face low enough adjustment
costs to react. To illustrate these differences, Figure 8 recreates Figure 6 from the main text, and plots
mean changes in income for different age groups. The first panel plots these differences for the cohort alive
at announcement, but only plots income after the trade liberalization, while the second panel plots these
differences for the full life span of workers.

In both panels, there is a downward slope in average changes in earnings across age groups. This is
particularly pronounced for workers alive at the time of the announcement. The relationship is partially
mechanical in the second panel, especially for the oldest workers, as younger workers are in the labor pool
for a longer time after trade prices fall. However, this is not entirely mechanical, which is clear as some
older workers actually see small income declines on average. Even focusing on workers only after import
prices change, one can see a sharper decline in earnings growth along age than the decline in the main
text’s counterfactual. Both situations reflect the same phenomenon that was stated above: when there is an
anticipatory reaction, it exacerbates the effects on older workers who are not positioned to react.
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Figure 8: Distributional Impacts Across Age Groups
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(b) Worker After Announcement
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Notes: Figures report the (100x) log difference in discounted total earnings across individuals. Results are based on simulating
100,000 individuals from the initial cohort under both the equilibrium with and without changes in trade prices. The same
shocks are used in both simulations. Discounted at β = .96.

I.3 Conclusion

In this counterfactual, workers have ten periods to preemptively respond to news that there will be a large
shift in prices. The impacts of trade liberalization across occupations remain large, despite the fact that there
is clear evidence that works react in anticipation. Indeed, one’s occupation at the time that an upcoming
surge in import competition is announced is even more important in explaining how workers react than at
the actual onset of the foreign price change. In relative terms, sectoral differences actually become much
more muted as a substantial amount of preemptive reallocation ultimately occurs within sectors.

Altering how much workers can anticipate foreign price changes does not seem to matter for the distribu-
tional consequences either across one’s initial occupation or across the skill distribution. However, there are
clear differences in how younger versus older workers are able to incorporate this information. In particular,
young workers can shift around, and stand to reap large gains from trade. Older workers, in this new settings,
are seemingly hurt by the ability of the young to act; their income growth is lower, on average, than in the
main text’s counterfactual and is even negative for the average older worker alive at the announcement for
information. These impacts across the age distribution are a clear avenue for future research. In particular,
understanding better how younger versus older workers are able to exploit the slow revelation of changes in
globalization may yield more precise estimates of the winners and losers from trade, and insights into why
certain trade shocks seem to have large effects in the reduced form, while others do not.
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