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Equilibrium

Party strategies are probability distributions over mechanisms. Given that
the objective functions can be written in terms of cost functions that depend
only on bids, we may as well take them to be probability distributions over
bids. Formally, we take a strategy for party k to be a probability measure
represented by a cumulative distribution function Fk over bids, that is, on
[bk, ⌘k]. The objective function of each party is ⇧k(bk, F�k)V � ⌘kC(bk/⌘k)

where ⇧k(bk, F�k) is the probability that a bid bk wins. With this formulation
we have an all-pay auction model. We do not assume common prize, we allow
arbitrary Vk � 0 and common cost C(') which is continuous and strictly
increasing for ' � y. As in the text we assume bL 6= bS.

Theorem 1. There is a unique equilibrium. In this equilibrium neither party
uses a pure strategy, the utility of the disadvantaged party is 0 and the utility
of the advantaged party is V�k � ⌘�dC(bd/⌘�d).

We also record additional facts not reported in the text but used subsequently
in this Online Appendix which are the equilibrium strategies. Let F 0

k (b) record
the size of the atom at b (if any). In (⌘Ly, bd):

Fd(bd) = 1� ⌘�dC(bd/⌘�d)� ⌘�dC(bd/⌘�d)

V�k

F�d(⌘�d'�d) =
⌘dC(b�d/⌘d)

Vk

The disadvantaged party has a single atom at F 0
d (⌘dy) = 1�⌘�dC(bd/⌘�d)/V�k+

⌘�dC(⌘Ly/⌘�d)/V�d. The advantaged party if it is large has an atom at F 0
L(bS) =

1� ⌘SC(bS/⌘S)/VL, and whichever party is advantaged has an atom at

F 0
�d(y⌘L/⌘d) = ⌘dC(y⌘L/⌘d)/Vd.

Proof. S will never submit a bid bk for which ⌘Sy < bk < ⌘Ly since such a bid
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will be costly but losing, and neither party will submit a bid for which bk > bk

since to do so would cost more than the value of the prize. It follows that k

must either bid ⌘ky or in the range [⌘Ly, bd]. If VS  ⌘SC
�
y⌘L/⌘S

�
, it follows

that bS  ⌘Ly. In this case S will only turn out committed voters, that is will
bid ⌘Sy, and L wins with probability 1 by bidding ⌘Ly. This case is ruled out
in the text.

Consider now the case VS > ⌘SC
�
y⌘L/⌘S

�
. In the range (⌘Ly, bd) there

can be no atoms by the usual argument for all-pay auctions: if there was an
atom at bk then party �k would prefer to bid a bit more than bk rather than a
bit less, and since consequently there are no bids immediately below bk party
k would prefer to choose the atom at a lower bid. This also implies that S

cannot have an atom at ⌘Ly: if L has an atom there, then S should increase
its atom slightly to break the tie. If L does not have an atom there, then S

should shift its atom to ⌘Sy since it does not win either way.
Next we observe that in (⌘Ly, bd) there can be no open interval with zero

probability. If party k has such an interval, then party �k will not submit
bids in that interval since the cost of the bid is strictly increasing it would do
strictly better to bid at the bottom of the interval. Hence there would have
to be an interval in which neither party submits bids. But then, for the same
reason, it would be strictly better to lower the bid for bids slightly above the
interval.

Let Uk be the equilibrium expected utility of party k. In equilibrium the
disadvantaged party must earn zero since it must make bids with positive
probability arbitrarily close to bd, while the advantaged party gets at least
U�d � V�d � ⌘�dC(bd/⌘�d) > 0 since by bidding slightly more than bd it can
win for sure, but gets no more than that since it must make bids with positive
probability arbitrarily close to bd. We conclude that the equilibrium payoff of
the advantaged party must be exactly U�d � Vd � ⌘�dC(bd/⌘�d).

From the absence of zero probability open intervals in (⌘Ly, bd) it follows
that the indifference condition for the advantaged party

Fd(bd)Vd � ⌘�dC(bd/⌘�d) = Vd � ⌘�dC(bd/⌘�d)
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must hold for at least a dense subset. Similarly for the disadvantaged party

F�d(b�d)V�d � ⌘dC(b�d/⌘d) = 0

for at least a dense subset. This uniquely defines the cdf for each party in
(⌘Ly, bd):

Fd(bd) = 1� ⌘�dC(bd/⌘�d)� ⌘�dC(bd/⌘�d)

Vd

F�d(b�d) =
⌘dC(b�d/⌘d)

V�d
.

As these are differentiable they can be represented by continuous density func-
tions which are found by taking the derivative.

Evaluating Fd(bd) at ⌘dy gives

F 0
d (⌘dy) = 1� ⌘�dC(bd/⌘�d/V�d) + ⌘�dC(⌘Ly/⌘�d)/V�d.

Since Fd(bd) = 1 and we already proved that S has no atom at ⌘Ly this is in
fact the only atom for the disadvantaged party.

As for the advantaged party, if -d = S then ⌘L > ⌘S � bS > bL im-
plies that FS(bL) = ⌘LC(bL/⌘L)/VL = 1. If instead �d = L then FL(bS) =

⌘SC(bS/⌘S)/VL. If bS < ⌘S then this is 1 and there is no atom, otherwise there
must be an atom of size F 0

L(bS) = 1� ⌘SC(bS/⌘S)/VL. Turning to ⌘Ly we see
that the atom there is given by

F 0
�d =

⌘dC(y⌘L/⌘d)

V

since the advantaged group never bids less.

Which party is advantaged?

Theorem 2. For any individual cost function c(y) with corresponding com-
mitted voters y there exist ✓S < 1, ⌘

S
< 1/2 and V > V S > 0 such that if

all the conditions ✓ > ✓S, ⌘S � ⌘
S

and V S < V < V hold the small party is
advantaged. Conversely if y > 0 for any values of the other parameters there
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exist ✓L > 0, ⌘S > 0 and V L > 0 such that if any of the conditions ✓ < ✓L,
⌘S < ⌘S, V < V L or V > V are satisfied then the large group is advantaged.

Proof. For completeness we allow in this theorem the possibility that bS < ⌘Ly,
that is the small party may or may not be willing to turn out at least the
number of committed voters of the large party. To prove the first half of the
theorem, observe that marginal cost is C 0(') = (1� ✓)c(') + ✓(1� ')c0(') so
if ✓ = 1 then C 0(1) = 0. Since average cost at ' = 1 is C(1) > 0, average cost
is strictly larger than marginal cost at ✓ = 1,' = 1. Therefore from continuity
it must be so for ✓,' both sufficiently close to 1. That is for 1 � ✓ > ✓S

and 1 > ' > ' > ' average cost is declining. Having fixed ' we may choose
⌘
S
< 1 large enough that for ⌘S � ⌘

S
the small party is large enough to outbid

'⌘L, that is 1/2 > ⌘
S
� '(1 � ⌘

s
). Hence if we choose the prize V so that

the large party’s maximal willingness to turn out lies in this range, that is,
' > bL/⌘L > ' then the small party must be advantaged as is able to outbid
the large party and has a lower average cost of matching the large party bid.
For the second half of the Theorem, the large party is advantaged for ✓ = 0

hence by continuity for small ✓. For ⌘S < ⌘Ly the small party is unable to
overcome the committed voters of the large party. If V < C(⌘Ly/⌘S) then the
small party is unwilling to bid. If V > ⌘LC(⌘S/⌘L) = V then bL > ⌘S so the
large party is surely advantaged.

Who Wins?
Theorem 3. The equilibrium bidding function of a strongly advantaged party
FOSD that of the disadvantaged party.

Proof. At bd we have Fd(bd) = F̂�d(bd) = 1 so this is irrelevant for FOSD.
For ⌘Sy  b < ⌘Ly we have FL(b) = 0 while FS(b) > 0 if and only if S is
disadvantaged. Hence when S is disadvantaged its bidding schedule cannot
FOSD that of L, while if it is advantaged this range is irrelevant for FOSD.

It remains to examine the range ⌘Ly  b < bd. In this range the equilibrium
bid distributions are given by

Fd(b) = 1� ⌘�dC(b/⌘�d)

V
+

⌘�dC(b/⌘�d)

V
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F�d(b) =
⌘dC(b/⌘d)

V
.

Hence for FOSD of the advantaged party, we must have

1� ⌘�dC(b̂d/⌘�d)

V
+

⌘�dC(b/⌘�d)

V
� ⌘dC(b/⌘d)

V
> 0.

Moreover since ⌘dvd � ⌘dC(bd/⌘d) this is true if

1� ⌘�dC(bd/⌘�d)

⌘dC(bd/⌘d)
+

⌘�dC(b/⌘�d)

⌘dC(bd/⌘d)
� ⌘dC(b/⌘d)

⌘dC(bd/⌘d)
> 0

and if and only if the disadvantaged party is not constrained in bidding. This
is equivalent to

(⌘�dC(b/⌘�d)� ⌘dC(b/⌘d))�
�
⌘�dC(bd/⌘�d)� ⌘dC(bd/⌘d)

�
> 0.

Let t(⌘, b) ⌘ ⌘C(b/⌘). The derivative with respect to ⌘ is t⌘(⌘, b) = C(b/⌘)�
(b/⌘)C 0(b/⌘) so the cross partial is t⌘b(⌘, b) = �(b/⌘2)C 00(b/⌘). Observe that
the sufficient condition may be written as

0 < (t(⌘�d, b)� t(⌘d, b))�
�
t(⌘�d, bd)� t(⌘d, bd)

�

=

Z ⌘�d

⌘d

�
t⌘(⌘, b)� t⌘(⌘, bd)

�
d⌘

= �
Z ⌘�d

⌘d

Z bd

b

t⌘b(⌘, b
0)d⌘db0 =

Z ⌘�d

⌘d

Z bd

b

(b0/⌘2)C 00(b0/⌘)d⌘db0

This is positive if ⌘�d > ⌘d and C is convex or if ⌘d > ⌘�d and C is concave,
which gives the primary result. On the other hand, in the case of a common
prize, L advantaged, and S unconstrained, it is negative and gives the exact
sign of Fd(b)�F�d(b) (it is necessary and sufficient). Hence, since the difference
between Fd and F�d is positive for ⌘Sy  b < ⌘Ly and negative for ⌘Ly  b < b̂d

neither bidding schedule FOSD the other.
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The next proposition studies the case where costs are incrementally con-
cave and yet the large party is advantaged as noted in footnote 12 in the text.
It shows how the FOSD result can fail in the strong sense that the disadvan-
taged small party turns out more members in expectation and has a higher
probability of winning than the large advantaged party.

Proposition. Suppose that cost is quadratic so that for ✓ > 1/2 it is incremen-
tally concave. For any ⌘S there exists a ' > 0 such that for any y < ' there is
an open set of V ’s and for any such V there are bounds 1/2 < ✓ < ✓⇤ < ✓  1

such that
a. for ✓ > ✓ > ✓⇤ the small party is advantaged
b. for ✓⇤ > ✓ > ✓ the large party is advantaged yet the small party turns

out more expected voters and has a higher probability of winning the election.

Proof. Recall the quadratic case C('k) = (1�2✓)('k�y)2+2✓(1�y)('k�y).
Hence C 0(y) = 2✓(1� y) and C 00('k) = 2(1� 2✓). We fix ✓ > 1/2 so that cost
is incrementally concave.

We first establish that for sufficiently small y there is a range of V 0s such
⌘Ly < bS < ⌘S for 1/2  ✓  1 and such that S is advantaged at ✓ = 1.

Since the derivative of C with respect to ✓ is 2('k � y) (1� 'k) > 0 the
greatest willingness to bid is at ✓ = 1/2 and the least is at ✓ = 1. At ✓ = 1/2

the utility of S is V � (1 � y)('k � y) and so bk < 1 for V < (1 � y)2 = V S.
At ✓ = 1 the utility of S is V + ('k � y)2 � 2(1 � y)('k � y) so bk > ⌘Ly for
V > 2(1� y)(⌘Ly/⌘S � y)� (⌘Ly/⌘S � y)2 = V S.

Set ✓ = 1 and let '⇤ be defined by A('⇤) = A(⌘L'⇤/⌘S). Some algebra
yields '⇤ =

q
(⌘S/⌘L)y(2� y). This will be less than ⌘S/⌘L provided y(2�y) <

⌘S/⌘L. At ✓ = 1 the utility for L is V � ⌘L
�
�('L � y)2 + 2(1� y)('L � y)

�
.

Hence L would like to bid greater than ⌘L'⇤when

V > ⌘L
⇣
�(

q
(⌘S/⌘L)y(2� y)� y)2 + 2(1� y)(

q
(⌘S/⌘L)y(2� y)� y)

⌘
= V L.

It is smaller than ⌘S when V < ⌘L
�
�(⌘S/⌘L � y)2 + 2(1� y)(⌘S/⌘L � y)

�
=

V L. Hence for V in this range and ✓ = 1 S is advantaged.
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We observe that when y = 0 we have V S = 1, V S = 0, V L = ⌘S (2� ⌘S/⌘L) >

⌘S and V L = 0. This establishes that for sufficiently small y there is a range of
V 0s such that ⌘Ly < bS < ⌘S for 1/2  ✓  1 and such that tS is advantaged
at ✓ = 1. Fix such a V .

Define the desire to bid as the solution of

(1� 2✓)(bk/⌘k � y)2 + 2✓(1� y)(bk/⌘k � y) = V/⌘k

and for S at least this is also the willingness to bid, and it will be the willingness
to bid of L provided the constraint bL < ⌘L is satisfied. Since the last equation
is quadratic in bk it can be solved by the quadratic formula from which it is
apparent that bk(✓) is a continuous function. This implies as well that the
strategies are continuous in ✓, since the support of the continuous part of
the density is continuous as is the upper bound. We can also conclude that
bS = bL = b if and only if

(1� 2✓)(b� ⌘Sy)
2 + 2✓(1� y)⌘S(b� ⌘Sy) = ⌘SV

and
(1� 2✓)(b� ⌘Sy)

2 + 2✓(1� y)⌘S(b� ⌘Sy)� ⌘SV =

(1� 2✓)(b� ⌘Ly)
2 + 2✓(1� y)⌘L(b� ⌘Ly)� ⌘LV.

The latter equation is linear in b since the b2 terms are the same on both sides.
Hence the equation has a unique solution b(✓) which is a rational function of
✓. Substituting that into the first equation we find that those values of ✓ for
which bS = bL are zeroes of a rational function. Hence, either there must be a
finite number of zeroes or the function must be identically equal to zero. But
it cannot be identically zero since bS � bL is negative at ✓ = 1/2 and positive
at ✓ = 1. We conclude that there is some point ✓⇤ at which bS = bL and S is
advantaged for ✓⇤ < ✓ < ✓ for some ✓, while L is advantaged for ✓0 < ✓ < ✓⇤

for some ✓0.
Since C is incrementally concave in ✓⇤ < ✓ < ✓ and S is advantaged there,

it follows that S follows a strategy that FOSD that of Ly. Hence in the limit
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at ✓⇤ the strategy of the small party either FOSD that of the large party or
is the same as that of the large party. However, for ✓ > ✓⇤, S plays ⌘Ly with
probability zero while L plays it with probability

1� C((bL/⌘S))

⌘SV
+

C((⌘L/⌘S)y)

⌘SV
!

C((⌘L/⌘S)y)

⌘SV
> 0

so in the limit the two strategies are not identical. Since at ✓⇤ the strategy
of S FOSD that of L, it has a strictly higher probability of winning and
strictly higher expected turnout. Since the probability of winning and expected
turnout are continuous functions of the strategies which are continuous in ✓ it
follows that this remains true in an open neighborhood of ✓⇤.

Proposition 1. The measures � and � satisfy 0  �, �  1/2. If g(c) is
weakly decreasing then � = 1/2. If g(c) is weakly increasing then � = 1/2. If
the density g(c) shifts to the right then � is constant and � decreases; if the
density shifts to the right holding fixed c(1) then � increases. Furthermore,
increasing dispersion by a change of scale around the mode increases both �

and �.

Proof. Recall from the text that G(c) is the cdf of costs for an individual so
that c(') = G�1('), ' = G(c) and the support is [c(0), c(1)]. We denote the
density of G(c) by g(c), and we assume it is continuously differentiable, strictly
positive, and has a single “top” in the sense that it is either single peaked or
a it is a limiting case such as the uniform where the density is flat at the top.
To define �, � we first defined

µ(c) =
(g(c))2

2 (g(c))2 + (1�G(c)) g0(c)
,

then � = minc�0 µ(c) and � = max{0, 1 � maxc�0 µ(c)|}. For the purpose of
deriving the properties of �, � it will be convenient instead to define

�(c) = �(1�G(c)) g0(c)

(g(c))2
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and observe that µ(c) = 1/(2 � �(c)) so that µ(c) and �(c) share the same
monotonicity properties. We take � = minc�0 �(c)  0 the smallest possible
value of �(c) and � = maxc�0 �(c) � 0 the largest. In the uniform case
g0(c) = 0 so �(c) = 0. If the density is increasing then �(c)  0 so � = 0 and
if it is decreasing � = 0. Equivalent to the definition in the text

� =
1

2� �

and define � = 0 if � > 1 and

� = 1� 1

2� �

otherwise. Hence � is an increasing function of � and � is a decreasing function
of �. Since �  0 and � � 0 we have 0  �, �  1/2. The properties of �, �
for the uniform, increasing and decreasing cases can be read directly from the
results for �,�: both 1/2 for the uniform case, � = 1/2 in the increasing case,
and � = 1/2 in the decreasing case. For the single-peaked case we now prove

a. If the density shifts to the right then � is constant and � decreases (�
decreases); if the density shifts to the right holding fixed c(1) then � decreases
(� increases);

b. Increasing dispersion by a change of scale around the mode increases �

(� increases) and decreases � (� increases).
(a) We consider first the case of shifting the density to the right holding

fixed c(1). The only interesting case is when the peak cg is interior, that is,
satisfies c(1) > cg > 0. Consider a h(c) also with upper support c(1) with
mode ch. Suppose that for some positive constants �, ⇣ we have ch > cg +�

and for c > ch we have h(c) = ⇣g(c � �) (density shifts right). Notice the
scaling factor ⇣ is needed since holding fixed the upper bound c(1) mass is lost
as we shift g to the right. We prove that �h < �g .

Notice that since by assumption of a single peak g0(cg) = h0(ch) = 0, we
can define � without loss of generality only for values of c to the right of the
mode. Hence we have that
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�h = max
c(1)�c�ch

�
R c(1)

c h(⇠)d⇠h0(c)

(h(c))2
= max

c(1)�c�cg+�
�
R c(1)

c ⇣g(⇠ ��)d⇠⇣g0(c��)

(⇣g(c��))2

and after a change of variable c̃ = c�� we have

= max
c(1)���c̃�cg

�
R c(1)��

c g(⇠̃)d⇠̃g0(c̃)

(g(c̃))2
< max

c(1)�c�cg
�
R c(1)

c g(⇠̃)d⇠̃g0(c̃)

(g(c̃))2
= �g.

This gives the result for fixed c(1). Focus on the key result

�h = max
c(1)���c̃�cg

�
R c(1)��

c g(⇠̃)d⇠̃g0(c̃)

(g(c̃))2
;�g = max

c(1)�c�cg
�
R c(1)

c g(⇠̃)d⇠̃g0(c̃)

(g(c̃))2

For � there are two effects of a right shift: the range over which the integral
of g(⇠̃)d⇠̃g0(c̃) in the numerator is taken is shorter for h and the maximum
is taken over a narrower range. There is no analogous result for �. For �

the range of the integral remains the same, but rather than a maximum over
c(1) � � � c̃ � cg we take minimum over cg � c̃ � c(0) � �. Hence the
minimum is taken over a larger range, offsetting the effect of the shorter range
of the integral and the combination of the two is ambiguous.

For an ordinary right shift (that is, not holding fixed c(1)) the range of the
integral does not change. For � the range over which the maximum is is taken
does not change, so the right shift is neutral. For � the range over which the
minimum is taken increases so the minimum becomes more negative.

(b) We first prove the result for �. Consider a h(c) also with upper support
c(1) with mode ch = cg. Suppose that for some positive constants � > 1, ⇣ for
c > ch we have h(c) = ⇣g(cg + (c � cg)/�) (greater dispersion to the right of
the mode).

We have

�h = max
c(1)�c�cg

�
R c(1)

c h(⇠)d⇠h0(c)

(h(c))2
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= max
c(1)�c�cg

�
R c(1)

c ⇣g(cg + (⇠ � cg)/�)d⇠(1/�)⇣g0(cg + (c� cg)/�)

(⇣g(cg + (c� cg)/�))
2

and after a change of variable c̃ = cg + (c� cg)/� we have

= max
cg+(c(1)�cg)/��c̃�cg

�
R cg+(c(1)�cg)/�

c g(⇠̃)d⇠̃g0(c̃)

(g(c̃))2
.

Furthermore, since � > 1 and cg < c(1) we have cg + (c(1) � cg)/� = [(� �
1)/�]cg + [1/�]c(1) < c(1) so

�h < max
c(1)�c�cg

�
R c(1)

c g(⇠̃)d⇠g0(c̃)

(g(c̃))2
= �g.

Here again there are two effects, a shorter range of integral and a shorter range
over which the maximum is taken, both lowering �. In the case of � it is also
the case that both the range of the integral and range over which the minimum
is taken shrink: hence the minimum must increase.

Theorem 4. is equivalent to

Proposition 2. a. cost is incrementally convex if and only if ✓ < 1/(2� �)

b. cost is incrementally concave if and only if � < 1 and ✓ > 1/(2� �).

Proof. We report expected cost C(') =
R '

y c(y)dy + ✓(1� ')c(') and its first
two derivatives C 0(') = (1�✓)c(')+✓(1�')c0('), and C 00(') = (1�2✓)c0(')+

✓(1� ')c00('). Observe that c(') = G�1(') so

c0(') =
1

g(G�1('))

c00(') = � g0(G�1('))

(g(G�1(')))3

and hence we can rewrite C 00(') as

C 00(') =
1� ✓(2� �(c))

g(c)
.
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Hence C 00(') > 0 if and only if ✓ < 1/(2��(c)) from which the result follows.

The value of elections

Theorem 5. In a high value election the probabilities that the small party
concedes and the large party preempts the election increase in V, and approach
1 in the limit. As V increases the bid distribution of the small party declines
in FOSD and the bid distribution of the large party increases in FOSD. The
expected vote differential increases in V while the expected turnout cost remains
constant.

Proof. In a high value election S is constrained and L is advantaged. The
probability L preempts is F 0

L(⌘S) = 1 � (⌘S/V )C(1), increasing in V . The
probability of concession by S is F 0

S(⌘Sy) = 1 � ⌘LC(⌘S/⌘L)/V increasing in
V .

Since changing V with bd = ⌘S the support and shape of the cost function
in the mixing range do not change, so raising V simply lowers the densities
by a common factor, meaning that these shifts reflect stochastic dominance as
well. The FOSD result implies the increased vote differential.

Total surplus is V �⌘�dC(bd/⌘�d). Since some party certainly gets the prize
this implies the expected turnout cost is ⌘�dC(bd/⌘�d) and in a high value
election bd remains constant at ⌘S, so expected turnout cost is ⌘LC(⌘S/⌘L)

independent of V .

Monitoring Difficulty in High Value Elections

Theorem 6. In a high value election, an increase in monitoring difficulty
✓ decreases the turnout of the advantaged (large) party in terms of FOSD.
Furthermore, there exists 0 < ⌘ < ⌘  1/2 such that for ⌘ < ⌘S < ⌘ the
expected turnout of the disadvantaged (small) party decreases in monitoring
difficulty in terms of FOSD while the expected vote differential also decreases.

Proof. If the election is not high value the disadvantaged party is uncon-
strained. Hence, given the definition of willingness to bid ⌘kC(bk/⌘k)�V = 0,
we can apply the implicit function theorem and find that

12



dbd
d✓

= �⌘ddC(bd/⌘d)/d✓

C 0(bd/⌘d)
= �⌘d✓(1� bd/⌘d)c(bd/⌘d)

C 0(bd/⌘d)
< 0

Hence as ✓ decreases, that is as monitoring efficiency increases, so it does peak
turnout. In a high value election the peak turnout bd is fixed at ⌘S and S is
disadvantaged. Examining the equilibrium bid distributions we have

FS(b) = 1� ⌘LC(⌘S/⌘L)

V
+

⌘LC(b/⌘L)

V

FL(b) =
⌘SC(b/⌘S)

V

while C('k) = T ('k) + ✓(1 � 'k)T
0
('k). Examining FL(b) first, we see that

dFL/d✓ > 0 which is the condition for a decrease in FOSD. For FS(b) we have

dFS

d✓
= �⌘L

V

⇣
(1� ⌘S/⌘L)T

0
(⌘S/⌘L)� (1� b/⌘L)T

0
(b/⌘L)

⌘

Notice that for 'k sufficiently close to y we must have (1�'k)T
0
('k) increasing,

say for y < 'k < '0. Hence for ⌘S/⌘L < '0 we have dFS/d✓ < 0 for b 
⌘S. This is the condition for an increase in FOSD. Since FL stochastically
dominates FS and FL decreases while FS increases it follows that the expected
vote differential must decrease.

Consider next that as ⌘S ! 1/2, it follows that (1� ⌘S/⌘L)T
0
(⌘S/⌘L) ! 0.

Hence for any fixed b it is eventually true that dFS(b)/d✓ > 0. It follows that,
for sufficiently large ⌘S, the expected turnout ofS must decline with ✓. Since
the derivative of expected turnout is a continuous function of ✓, it follows
that there is a value of ⌘ such that expected turnout of S is constant with ✓

while for larger ⌘S it declines. At ⌘ the expected vote differential must decline
with ✓ since S expected turnout is constant and L expected turnout declines.
Since the derivative of the expected vote differential is also continuous in ⌘S

it follows that for ⌘S larger than but close enough to ⌘, S expected turnout
declines and the expected vote differential does as well.
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Symmetry of the Fundamentals

Let ⇢ 2 [0, 1] be a measure of the mix of issues between transfers and laws
where ⇢ = 0 mans the election is purely about transfers and ⇢ = 1 means
it is purely about laws. Examples of transfers include control over natural
resources, the division of government jobs, the division of a fixed budget,
taxes and subsidies and limitations on competition such as trade restrictions
or occupational licensing. Examples of laws include civil rights, laws con-
cerning abortion, criminal law, defense expenditures, non-trade foreign policy
and policies concerning monuments. We suppose that Vk = v(⌘k, ⇢) where
v(1/2, ⇢) = V . We take pure transfers to mean a common prize so that
v(⌘k, 0) = V and pure laws to mean a common per capita prize so that
v(⌘k, 1) = 2V ⌘k. We assume that v(⌘k, ⇢) � 0 twice continuously differen-
tiable with v⌘(⌘k, ⇢) � 0. Define the prize elasticity with respect to party size
�(⌘k, ⇢) = d log v(⌘k, ⇢)/d log ⌘k) = v⌘(⌘k, ⇢)⌘k/v(⌘k, ⇢). Then for pure trans-
fers we have �(⌘k, 0) = 0 for for pure laws we have �(⌘k, 1) = 1. It is natural
to assume then that �⇢(⌘k, ⇢) > 0: that as the importance of laws as an issue
increases the prize elasticity with respect to party size goes up. This implies
in addition that v⇢(⌘k, ⇢) > 0 for ⌘k > 1/2 and v⇢(⌘k, ⇢) < 0 for ⌘k < 1/2.
That is, as the importance of laws as an issue increases the value of prize to
the large party goes up and to the small party goes down. It follows directly
that increasing the importance of laws improves the advantage (positive or
negative) of the large party by raising its willingness to bid and lowering that
of the small party.

Example. Suppose that the election has a mix of transfer and legal issues so
that v(⌘k, ⇢) = (1�⇢)+2⇢⌘k where 0  ⇢  1 is the relative importance of legal
issues. Then �(⌘k, ⇢) = 2⇢⌘k/ ((1� ⇢) + 2⇢⌘k) and �(⌘k, 0) = 0, �(⌘k, 1) = 1

and the derivative is

�⇢(⌘k, ⇢) =
2⌘k ((1� ⇢) + 2⇢⌘k) + 2⇢⌘k(1� 2⌘k)

((1� ⇢) + 2⇢⌘k)
2 > 0.

Proposition 3. If ⇢ > 1 then there are cost functions, prize values, party
sizes, and monitoring difficulty for which the small party is advantaged.
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Proof. Willingness to bid is 1 � (⌘k/v(⌘k,⇢))C(bk/⌘k) = 0. Using the implicit
function theorem we find

dbk/d⌘k =

�(v(⌘k, ⇢)� v0(⌘k, ⇢)⌘)C(bk/⌘k)/v(⌘k, ⇢)2 � (1/v(⌘k, ⇢))C 0(bk/⌘k)(bk/⌘k)

C 0(b/⌘)/v(⌘k, ⇢)

so that the sign determined by C 0('k)'k�(1��(⌘k, ⇢))C('k). If the parties are
of near equal size and this is positive or V > (1/2)C(1) then L is advantaged,
if the parties are of near equal size, V < (1/2)C and this is negative, S is
advantaged. If ⇢ = 0 so the election is purely about transfers then this is
C 0('k)'k � C('k) so which party is advantaged depends on whether average
cost is increasing or decreasing as we know. If ⇢ = 1 so the election is purely
about laws this is C 0('k)'k which is always positive so L is always advantaged.
In the intermediate cases there are always parameter values for which S is
advantaged. Take the quadratic case with no committed voters where C('k) =

(1�2✓)'2
k+2✓'k At ✓ = 1 this is C('k) = �'2

k+2'k and C 0('k) = �2'k+2.
Hence

C 0('k)'k� (1��(⌘k, ⇢))C('k) = (�2'k + 2)'k� (1��(⌘k, ⇢))
�
�'2

k + 2'k

�
.

= �'2
k + �(⌘k, ⇢))

�
�'2

k + 2'k

�

= �(1 + �(⌘k, ⇢))'
2
k + �(⌘k, ⇢))2'k.

Notice that for positive �(⌘k, ⇢) and small 'k this is necessarily positive. How-
ever, as 'k ! 1 this approaches �(1 � �(⌘k, ⇢)) which is strictly negative for
⇢ < 1, so also for 'k < 1 but close to 1.

The proof shows that with quadratic cost given ⇢ < 1 if there are sufficiently
few committed voters, if V < (1/2)C(1) but close enough (intermediate size
prize), parties of similar enough size (small party not too small) and ✓ near
enough 1 (high monitoring costs) the small party is advantaged. This is the
same qualitatively as in the ⇢ = 0 case: however, quantitatively the criteria
are much more stringent.
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Endogenous versus Exogenous Uncertainty

Suppose that the probability of winning the election for party k is given
by P (bk, b�k) non-decreasing in bk. This must satisfy the identity P (bk, b�k) =

1 � P (b�k, bk). Suppose there is a common prize the value of which we may
normalize to 1 and common cost C('). The objective function of party k is
therefore P (bk, b�k)� ⌘kC(bk/⌘k).

Proposition 4. In any pure strategy equilibrium bk, b�k (if one exists) if
C 00(') > 0 then bL > bS and the large party receives strictly greater utility
than the small party; if bL  ⌘S and C 00(' < 0) then bS > bL and the small
party receives strictly greater utility than the large party.

Proof. In the convex case if bL > ⌘S then certainly L turns out more than Sy,
so in both cases we may assume bL  ⌘S. Consider that the utility to party
k from playing b�k rather than bk must not yield an improvement in utility.
That is

P (bk, b�k)� ⌘kC(bk/⌘k) � (1/2)� ⌘kC(b�k/⌘k)

or
P (bk, b�k)� (1/2) � ⌘kC(bk/⌘k)� ⌘kC(b�k/⌘k).

For party �k this reads

P (b�k, bk)� (1/2) � ⌘�kC(b�k/⌘�k)� ⌘�kC(bk/⌘�k)

and using P (b�k, bk) = 1� P (bk, b�k)

(1/2)� P (bk, b�k) � ⌘�kC(b�k/⌘�k)� ⌘�kC(bk/⌘�k)

or
P (bk, b�k)� 1/2  ⌘�kC(bk/⌘�k)� ⌘�kC(b�k/⌘�k)

so the inequalities for the two parties are

⌘kC(bk/⌘k)� ⌘kC(b�k/⌘k)  ⌘�kC(bk/⌘�k)� ⌘�kC(b�k/⌘�k).
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Suppose without loss of generality that bk � b�k so both sides are non-negative.
We work through the convex case. If k = S we see that we must have

⌘SC(bk/⌘S)� ⌘SC(b�k/⌘S)  ⌘LC(bk/⌘L)� ⌘LC(b�k/⌘L).

Consider the function ⌘kC(bk/⌘k) � ⌘kC(b�k/⌘k) and differentiate it with
respect to ⌘k to find

C(bk/⌘k)� C(b�k/⌘k)� ((bk/⌘k)C
0(bk/⌘k)� (b�k/⌘k)C

0(b�k/⌘k))

which may also be written as

C(bk/⌘k)� (bk/⌘k)C
0(bk/⌘k)� (C(b�k/⌘k)� (b�k/⌘k)C

0(b�k/⌘k)) .

Consider the function C(') � 'C 0(') and differentiate with respect to ' to
find

�'C 00(') < 0.

This implies

C(bk/⌘k)� (bk/⌘k)C
0(bk/⌘k)� (C(b�k/⌘k)� (b�k/⌘k)C

0(b�k/⌘k)) < 0

which in turn implies

⌘LC(bk/⌘L)� ⌘LC(b�k/⌘L) < ⌘SC(bk/⌘S)� ⌘SC(b�k/⌘S)

a contradiction, so we conclude that k = L, that is, bL > bS.
If bL > bS suppose that L were to lower its bid to bS. It would then have

a 1/2 chance of winning - at least the equilibrium utility of S - and a cost
lower than the equilibrium cost of S, so bidding bS yields L more than the
equilibrium utility of S. Hence the equilibrium utility of L must be larger
than that of S.

Finally if C(') is concave then the role of the two parties in determining
the equilibrium bids is reversed, so we conclude that bS > bL.
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Bounded Costs

We compare two participation cost functions: c(y), ⇠(y) where for some
⌘S/⌘L < y < 1 and y  y we have c(y) = ⇠(y) while for y < y  1 we have
c(y) < ⇠(y). The cost function c(y) is bounded, but we allow ⇠(1) = 1. It
follows that the corresponding expected cost functions C(y),⌅(y) share the
same property that y  y we have C(y) = ⌅(y) while for y < y  1 we have
C(y) < ⌅(y) and C(y) is bounded while ⌅(y) need not be

Proposition 5. If c is such that V > max{⌘LC(⌘S/⌘L), ⌘SC(1)} and ⇠ has
high costs ⌅(1) > V/⌘S then the large party is advantaged. The equilibrium
strategies and payoffs of the small party are the same for c, ⇠. For the large
party for low bids b  ⌘Sy the strategies are the same for c, ⇠. The probability
of a high bid under ⇠ is approximately the same as the atom at ⌘S under c

h
1� F ⇠

L(⌘Sy)
i
� F 0c

L (1) = ⌘S [C(1)� C(y)] /V

as are the equilibrium payoffs

⌘L (C(1)� C(y)) > U ⇠
L � U c

L > 0.

Proof. As L never bids more than ⌘S and y > ⌘S/⌘L only c is relevant for
computing the payoffs of L; this implies in particular that the strategy of S
is the same for c or ⇠. Moreover, L is advantaged for both c, ⇠. This follows
from V > ⌘LC(⌘S/⌘L) meaning L is willing to bid more than ⌘S which is the
most S can bid. Since L is advantaged for c, ⇠, S gets 0 in either case. For L

bids below ⌘Sy we have F c
L(b) = ⌘SC(b/⌘S)/V = ⌘S⌅(b/⌘S)/V = F ⇠

L(b).
Under c, S is willing to bid ⌘S (by high stakes) while under �, S is willing

to bid ⌘Sy < bS < ⌘S. The first part ⌘Sy < bS follows from V � ⌘S⌅(y) =

V � ⌘SC(y) > V � ⌘SC(1) > 0 and the second part bS < ⌘S follows from the
high cost assumption V � ⌘S⌅(1) < 0.

We now compute the probability L makes a high bid 1 � F ⇠
L(⌘Sy). Since

F ⇠
L(⌘Sy)V � ⌘SD(y) = 0 we have 1� F ⇠

L(⌘Sy) = 1� ⌘SC(y)/V . By contrast
F 0c
L (1) satisfies (1�F 0c

L (1))V � ⌘SC(1) = 0 so F 0c
L (1) = 1� ⌘SC(1)/V . These
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two give the desired result
h
1� F ⇠

L(⌘Sy)
i
� F 0c

L (1) = ⌘S [C(1)� C(y)] /V

Finally we compute U ⇠
L � U c

L = ⌘L
�
C(1)� C(bS/⌘S)

�
. Hence indeed

⌘L (C(1)� C(y)) > U ⇠
L � U c

L > 0
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