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B Appendix B: Omitted Proofs

B.1 Proof of Lemma 2

Proof. In the main paper we slightly abuse notation by using pt both for the seller’s (possibly

mixed) strategy and the announced reserve price at a given history. This should not lead to

confusion in the main part but for this proof we make a formal distinction. We denote the

reserve price announced in period t by xt. A history is therefore given by ht = (x0, . . . , xt−∆).

Furthermore we denote by ht+ = (ht, xt) = (x0, . . . , xt−∆, xt) a history in which the reserve

prices x0, . . . , xt−∆ have been announced in periods t = 0, . . . , t − ∆ but no buyer has

bid in these periods, and the seller has announced xt in period t, but buyers have not

yet decided whether they bid or not. For any two histories ht = (x0, x∆, . . . , xt−∆) and

h′s = (x′0, x
′
∆, . . . , x

′
s−∆), with s ≤ t, we define a new history

ht ⊕ h′s = (x′0, x
′
∆, . . . , x

′
s−∆, xs, . . . , xt−∆).

That is, ht⊕h′s is obtained by replacing the initial period s sub-history in ht with h′s. Finally,

we can similarly define ht+ ⊕ h′s for s < t. With this notation we can state the proof of the

lemma.

Consider any equilibrium (p, b) ∈ E(∆) in which the seller randomizes on the equilibrium

path. The idea of the proof is that we can inductively replace randomization on the equilib-

rium path by a deterministic reserve price and at the same time weakly increase the seller’s

ex-ante revenue. We first construct an equilibrium (p0, b0) ∈ E(∆) in which the seller earns

the same expected profit as in (p, b), but does not randomize at t = 0. If the seller uses a

pure action at t = 0, we can set (p0, b0) = (p, b). Otherwise, if the seller randomizes over

several prices at t = 0, she must be indifferent between all prices in the support of p0(h0).

Therefore, we can define p0
0(h0) as the distribution that puts probability one on a single

price x0 ∈ supp p0(h0). If we leave the seller’s strategy unchanged for all other histories

(p0
t (ht) = pt(ht), for all t > 0 and all ht ∈ Ht) and set b0 = b, we have defined an equilibrium
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(p0, b0) that gives the seller the same payoff as (p, b) and specifies a pure action for the seller

at t = 0.

Next we proceed inductively. Suppose we have already constructed an equilibrium

(pm, bm) in which the seller does not randomize on the equilibrium path up to t = m∆,

but uses a mixed action on the equilibrium path at (m+1)∆. We want to construct an equi-

librium (pm+1, bm+1) with a pure action for the seller on the equilibrium path at (m+ 1)∆.

Suppose that in the equilibrium (pm, bm), the highest type in the posterior at (m + 1)∆

is some type β0
(m+1)∆ > 0. We select a price in the support of the seller’s mixed action

at (m + 1)∆, which we denote by x0
(m+1)∆, such that the expected payoff of β0

(m+1)∆ at

ht+ = (ht, x
0
(m+1)∆) is weakly smaller than the expected payoff at ht. In other words, we

pick a price that is (weakly) bad news for the buyer with type β0
(m+1)∆. This will be the

equilibrium price announced in period t = (m + 1)∆ in the equilibrium (pm+1, bm+1). The

formal construction of the equilibrium is rather complicated. The rough idea is that, first we

posit that after x0
(m+1)∆ was announced in period (m+1)∆, (pm+1, bm+1) prescribes the same

continuation as (pm, bm). Second, on the equilibrium path up to period m∆, we change the

reserve prices such that the same marginal types β0
t as before are indifferent between buying

immediately and waiting in all periods t = 0, . . . ,m∆. Since we have chosen x0
(m+1)∆ to be

bad news, this leads to (weakly) higher prices for t = 0, . . . ,m∆, and therefore we can show

that the seller’s expected profit increases weakly. Finally, we have to specify what happens

after a deviation from the equilibrium path by the seller in periods t = 0, . . . , (m + 1)∆.

Consider the on-equilibrium history ht in period t for (pm+1, bm+1). We identify a history ĥt

for which the posterior in the original equilibrium (p, b) is the same posterior as at ht in the

new equilibrium. If at ht, the seller deviates from pm+1 by announcing the reserve price x̂t,

then we define (pm+1, bm+1) after ht+ = (ht, x̂t) using the strategy prescribed by (p, b) for the

subgame starting at ĥt+ = (ĥt+ , x̂t). We will show that with this definition, the seller does

not have an incentive to deviate.

Next, we formally construct the sequence of equilibria (pm, bm) , m = 1, 2, . . ., and show

that this sequence converges to an equilibrium (p∞, b∞) in which the seller never randomizes

on the equilibrium path and achieves an expected revenue at least as high as the expected

revenue in (p, b). We first identify a particular equilibrium path of (p0, b0) with a sequence

of reserve prices h0
∞ = (x0

0, x
0
∆, . . .) and the corresponding buyer cutoffs β0 = (β0

0 , β
0
∆, . . .)

that specify the seller’s posteriors along the path h0
∞ = (x0

0, x
0
∆, . . .).

1 Then we construct

an equilibrium (pm, bm) such that the following properties hold: for t = 0, . . . ,m∆, the

1Note that the cutoffs β0
t are the equilibrium cutoffs which may be different from the cutoffs that would

arise if the seller used pure actions with prices x0
0, x

0
∆, . . . on the equilibrium path.

3



equilibrium prices xmt chosen by the seller are weakly higher than x0
t and the equilibrium

cutoffs βmt are exactly β0
t ; for t > m∆, or off the equilibrium path, the strategies coincide

with what (p0, b0) prescribes at some properly identified histories, so that the two strategy

profiles prescribe the same continuation payoffs at their respective histories.

In order to determine h0
∞ = (x0

0, x
0
∆, . . .) and β0 = (β0

0 , β
0
∆, . . .) we start at t = 0 and define

x0
0 as the seller’s pure action in period zero in the equilibrium (p0, b0) and set β0

0 = 1. Next

we proceed inductively. Suppose we have fixed x0
t and β0

t for t = 0,∆, . . .. To define x0
t+∆, we

select a price in the support of the seller’s mixed action at history h0
t+∆ = (x0

0, . . . , x
0
t ) in the

equilibrium (p0, b0) such that the expected payoff of the cutoff buyer type β0
t , conditional on

x0
t+∆ is announced, is no larger than this type’s expected payoff at the beginning of period

t + ∆ before a reserve price is announced.2 We then pick β0
t+∆ as the cutoff buyer type

following history
(
x0

0, . . . , x
0
t , x

0
t+∆

)
.

(p0, b0) was already defined. We proceed inductively and construct equilibrium (pm+1, bm+1)

for m = 0, 1, . . . as follows.

(1) On the equilibrium path at t = (m+ 1) ∆, the seller plays a pure action and announces

the reserve price xm+1
(m+1)∆ := x0

(m+1)∆.

(2) On the equilibrium path at t = 0,∆, . . . ,m∆, the seller’s pure action xm+1
t is chosen

such that the buyers’ on-path cutoff types in periods t = ∆, . . . , (m+ 1) ∆ is βm+1
t =

β0
t , where β0

t was defined above.

(3) On the equilibrium path at the history ht+ = (x0, . . . , xt) for t = 0,∆, . . . , (m+ 1) ∆,

each buyer bids if and only if vi ≥ βm+1
t = β0

t .

(4) at t > (m+ 1) ∆ : for any history ht = (x0, . . . , xt−∆) in which no deviation has oc-

curred at or before (m+ 1) ∆, the seller’s (mixed) action is pm+1 (ht) := p0
(
ht ⊕

(
x0

0, . . . , x
0
(m+1)∆

))
.

For any history ht+ = (x0, . . . , xt−∆, xt) in which no deviation has occurred at or before

(m+ 1) ∆, the buyer’s strategy is defined by bm+1 (ht+) := b0
(
ht+ ⊕

(
x0

0, . . . , x
0
(m+1)∆

))
.

(5) For any off-path history ht = (x0, . . . , xt−∆) in which the seller’s first deviation from the

equilibrium path occurs at s ≤ (m+ 1) ∆, the seller’s (mixed) action is prescribed by

pm+1 (ht) := p0
(
ht ⊕

(
x0

0, . . . , x
0
s−∆

))
. For any off-path history ht+ = (x0, . . . , xt−∆, xt)

in which the seller’s first deviation from the equilibrium path occurs in period s ≤
(m+ 1) ∆, the buyer’s strategy is bm+1 (ht+) := b0

(
ht+ ⊕

(
x0

0, . . . , x
0
s−∆

))
.

2If the seller plays a pure action at h0
t+∆, then x0

t+∆ the price prescribed with probability one by the pure
action. If the seller randomizes at h0

t+∆, there must be one realization, which, together with the continuation
following it, gives the buyer a payoff weakly smaller than the average.
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In this definition, (1) and (2) define the seller’s pure actions on the equilibrium path up

to (m+ 1) ∆. The prices defined in (1) and (2) are chosen such that bidding according to

the cutoffs βm+1
t is optimal for the buyers. Part (4) defines the equilibrium strategies for all

remaining on-path histories and after deviations that occur in periods after (m+1)∆, that is,

in periods where the seller can still mix on the equilibrium path. The equilibrium proceeds

as in (p0, b0) at the history where the seller used the prices x0
0, . . . , x

0
(m+1)∆ in the first m+ 1

periods. This ensures that the continuation strategy profile is taken from the continuation of

an on-path history of the equilibrium (p0, b0), where the seller’s posterior in period (m+1)∆

is the same as in the equilibrium (pm+1, bm+1). Finally, (5) defines the continuation after a

deviation by the seller at a period in which we have already defined a pure action. If the

seller deviates at a history ht =
(
xm0 , . . . , x

m
s−∆

)
, then we use the continuation strategy of

(p0, b0), at the history
(
x0

0, . . . , x
0
s−∆

)
.

We proceed by proving a series of claims showing that we have indeed constructed an

equilibrium.

Claim 1. The expected payoff of the cutoff buyer βm(m+1)∆ = β0
(m+1)∆ at the on-path history

hm(m+1)∆ = (xm0 , . . . , x
m
m∆) in the candidate equilibrium (pm, bm) is the same as its payoff at

the on-path history h0
(m+1)∆ = (x0

0, . . . , x
0
m∆) in the candidate equilibrium (p0, b0) .

Proof. This follows immediately from (1)–(3) above.

Claim 2. The expected payoff of the cutoff buyer βm+1
(m+1)∆ = β0

(m+1)∆ at the on-path history

hm+1

((m+1)∆)+ =
(
xm+1

0 , . . . , xm+1
m∆ , xm+1

(m+1)∆

)
in the candidate equilibrium (xm+1, xm+1) is the

same as this cutoff type’s expected payoff at the on-path history h0
((m+1)∆)+ =

(
x0

0, . . . , x
0
m∆, x

0
(m+1)∆

)
in the candidate equilibrium (p0, b0) .

Proof. By construction, xm+1
(m+1)∆ = x0

(m+1)∆. It follows from part (4) that (pm+1, bm+1) and

(p0, b0) are identical on the equilibrium path from period (m+ 2) ∆ onwards. The claim

follows.

Claim 3. The expected payoff of the cutoff buyer βm+1
(m+1)∆ = β0

(m+1)∆ at the on-path his-

tory hm+1
(m+1)∆ =

(
xm+1

0 , . . . , xm+1
m∆

)
in the candidate equilibrium (pm+1, bm+1) is weakly lower

than this cutoff type’s expected payoff at the on-path history h0
(m+1)∆ = (x0

0, . . . , x
0
m∆) in the

equilibrium (p0, b0) .

Proof. In the candidate equilibrium (pm+1, bm+1) , the cutoff type’s payoffs at histories hm+1
(m+1)∆

and hm+1

((m+1)∆)+ are the same because the seller plays a pure action in period (m+ 1) ∆. In
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the equilibrium (p0, b0), the cutoff type’s payoff at history hm+1

((m+1)∆)+ is weakly lower than

his payoff at history h0
(m+1)∆ because of the definition of x0

(m+1)∆ (which chosen to give the

cutoff type a lower expected payoff than the expected payoff at h0
(m+1)∆). The claim then

follows from Claim 2.

Claim 4. The expected payoff of the cutoff buyer βm+1
(m+1)∆ = β0

(m+1)∆ at the on-path history

hm+1
(m+1)∆ =

(
xm+1

0 , . . . , xm+1
m∆

)
in the candidate equilibrium (pm+1, bm+1) is weakly lower than

this cutoff type’s expected payoff at the on-path history hm(m+1)∆ = (xm0 , . . . , x
m
m∆) in the

candidate equilibrium (pm, bm) .

Proof. By Claim 1, the cutoff type’s expected payoff at the on-path history hm(m+1)∆ =

(xm0 , . . . , x
m
m∆) in the candidate equilibrium (pm, bm) is the same as its payoff at the on-path

history h0
(m+1)∆ = (x0

0, . . . , x
0
m∆) in the candidate equilibrium (p0, b0) . The claim then follows

from Claim 3.

Claim 5. For each m = 0, 1, . . . and t = 0, 1, . . . ,m∆, we have xm+1
t ≥ xmt .

Proof. By Claim 4, the cutoff type βm+1
(m+1)∆ = βm(m+1)∆ = β0

(m+1)∆ in period (m+ 1) ∆ on the

equilibrium path in the candidate equilibrium (pm+1, bm+1) has a weakly lower payoff than

its expected payoff in the candidate equilibrium (pm, bm) . To keep this cutoff indifferent in

period m∆ in both candidate equilibria, we must have xm+1
m∆ ≥ xmm∆. Then to keep the cutoff

type βm+1
m∆ = βmm∆ = β0

m∆ indifferent in period (m− 1) ∆, we must have xm+1
(m−1)∆ ≥ xm(m−1)∆.

The proof is then completed by induction.

Claim 6. The seller’s (time 0) expected payoff in the candidate equilibrium (pm+1, bm+1) is

weakly higher than the seller’s expected payoff in the equilibrium (p0, b0) .

Proof. By parts (1)–(3) of the construction, at t = 0, . . . ,m∆, (pm+1, bm+1) and (pm, bm)

have the same buyer cutoffs on the equilibrium path. At t = (m+ 1) ∆, the seller in

(pm+1, bm+1) chooses xm+1
(m+1)∆ that is in the support of the seller’s strategy in (pm, bm) in that

period (note that even though we haven’t show that (pm, bm) is an equilibrium, the seller is

indeed indifferent in (pm, bm) at (m+ 1) ∆ because play switches to (p0, b0) with identical

continuation payoffs by Part (4) of the construction). It then follows from Claim 5 that the

seller’s (time 0) expected payoff in (pm+1, bm+1) is weakly higher than the seller’s (time 0)

expected payoff in (pm, bm) . The claim is proved by repeating this argument.

Claim 7. For t = ∆, . . . , (m + 1)∆, the seller’s expected payoff at the on-path history(
xm+1

0 , . . . , xm+1
t−∆

)
, in the candidate equilibrium (pm+1, bm+1) is weakly higher than the seller’s

expected at the history
(
x0

0, . . . , x
0
t−∆

)
in equilibrium (p0, b0) .
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Proof. Denote mt = t/∆ so that t = mt∆ and consider (pmt , bmt) . By parts (1)–(3) of the

construction, the buyer’s cutoff type at
(
xmt

0 , . . . , xmt
t−∆

)
in this equilibrium is the same as

the buyer’s cutoff type at
(
x0

0, . . . , x
0
t−∆

)
in equilibrium (p0, b0) . By part (4) of the construc-

tion, the seller’s payoff at history
(
xmt

0 , . . . , xmt
t−∆

)
in (pmt , bmt) coincides with the seller’s

payoff at history
(
x0

0, . . . , x
0
t−∆

)
in equilibrium (p0, b0) . Now consider the candidate equilib-

rium (pmt+1, bmt+1) and the history
(
xmt+1

0 , . . . , xmt+1
t−∆

)
. By claim 5,

(
xmt+1

0 , . . . , xmt+1
t−∆

)
≥(

xmt
0 , . . . , xmt

t−∆

)
. Note that the candidate equilibrium (pmt+1, bmt+1) further differs from the

equilibrium (pmt , bmt) on the equilibrium path in period t + ∆. But xmt+1
t is in the support

of the seller’s randomization in (pmt , bmt) (which makes the seller indifferent by part (4)

of the equilibrium construction—see the proof in Claim 6). Therefore, the seller’s payoff at(
xmt+1

0 , . . . , xmt+1
t−∆

)
in the equilibrium (pmt+1, bmt+1) is weakly greater than at

(
xmt

0 , . . . , xmt
t−∆

)
in the equilibrium (pmt+1, bmt+1). This completes the proof of the claim.

Claim 8. For each m = 0, 1, . . . , (pm+1, bm+1) such constructed is indeed an equilibrium.

Proof. The buyer’s optimality condition follows immediately from the construction. Now

consider the seller. By part (5) of the construction, for any off-path history ht = (x0, . . . , xt−∆)

in which the seller’s first deviation from the equilibrium path occurs at s ≤ (m+ 1) ∆, the

continuation strategy profile prescribed by (pm+1, bm+1) is exactly that prescribed by (p0, b0)

at a corresponding history ht ⊕
(
x0

0, . . . , x
0
s−∆

)
with exactly the same expected payoff (the

payoff is the same due to the fact that the seller’s strategies coincide and the fact that the

buyer’s cutoff at ht in (pm+1, bm+1) is the same as that at ht ⊕
(
x0

0, . . . , x
0
s−∆

)
in (p0, b0)).

Hence there is no profitable deviation at ht in (pm+1, bm+1) just as there is no profitable

deviation at ht ⊕
(
x0

0, . . . , x
0
s−∆

)
in (p0, b0) .

By part (4) of the construction, at t > (m+ 1) ∆, for any history ht = (x0, . . . , xt−∆)

in which no deviation has occurred at or before (m+ 1) ∆, the seller’s strategy at ht in

(pm+1, bm+1) coincides with the seller’s strategy at ht ⊕
(
xm0 , . . . , x

m
(m+1)∆

)
, with exactly

the same continuation payoffs (see the previous paragraph). Hence there is no profitable

deviation at ht in (pm+1, bm+1) .

Now consider parts (1)–(3) of the construction, for t = 0, . . . , (m+ 1) ∆. By Claim 6 and

7, staying on the equilibrium path gives the seller a weakly higher payoff than that from

the equilibrium (p0, b0) at the corresponding history. But deviation from the equilibrium

path triggers a switch to (p0, b0) at a corresponding history. Since there is no deviation in

(p0, b0), deviation becomes even less desirable in (pm+1, bm+1) . This completes the proof of

the claim.
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So far, we have obtained a sequence of equilibria {(pm, bm)}∞m=0. We construct a limit

equilibrium candidate (p∞, b∞) as follows. First, note that for each t the on-path equilibrium

actions xmt of the seller are monotonically increasing as m→∞. Therefore we obtain a well-

defined limit path x∞t . For any history on the limit path, let (p∞, b∞) prescribe to follow

the limit path. Next consider a history ht off the limit path x∞t . Let s < t be the time of

the first deviation. Then, by monotonicity of the on-path actions of the seller, there exists

M > t such that for all m ≥M , ht is an off-path history for (pm, bm) and the first deviation

is at time s. Hence by definition, behavior converges at this history and we can define

p∞(ht) = pM(ht). We use an analogous construction for histories ht+ off the limit path.

It remains to show that (p∞, b∞) is an equilibrium. It is clear that buyers do not have an

incentive to deviate. For the seller, suppose the seller has a profitable deviation at some his-

tory hm∆. By the definition of (p∞, b∞) and the construction of the sequence {(pm, bm)}∞m=0 ,

the continuation play at ht in the candidate equilibrium (p∞, b∞) , where ht is a history with

hm∆ as its sub-history, will coincide with continuation play at ht prescribed by equilibrium(
pm
′
, bm

′)
for any m′ ≥ m, which is in turn described by p0

(
ht ⊕

(
x0

0, . . . , x
0
(m−1)∆

))
and

b0
(
ht+ ⊕

(
x0

0, . . . , x
0
(m−1)∆

))
by part (5) of the equilibrium construction. Since

(
pm
′
, bm

′)
is an equilibrium, this particular deviation is not profitable in the equilibrium

(
pm
′
, bm

′)
for

any m′ ≥ m. But the on-path payoff of
(
pm
′
, bm

′)
converges to that of (p∞, b∞) , and we have

just argued that the payoff after this particular deviation is the same for both
(
pm
′
, bm

′)
and

(p∞, b∞). This contradicts the assumption of profitable deviation.

B.2 Proof of Lemma 3

Proof. Fix a history ht. Note that if all buyers bid, then by the standard argument, it

is optimal for each buyer to bid their true values. Therefore, it is sufficient to show that

each buyer will submit a bid. By the skimming property (Lemma 1), we only need to

show βt(ht, pt) = 0. Suppose by contradiction that βt(ht, pt) > 0. Consider a positive type

βt(ht, pt) − ε, where ε > 0. By Lemma 1, if this type follows the equilibrium strategy and

waits, he wins only if his opponents all have types lower than βt(ht, pt)− ε, and he can only

win in period t + ∆ or later at a price no smaller than 0. If he deviates and bids his true

value in period t, it follows from Lemma 1 that he wins in period t at a price 0 if all of his

opponents have types lower than βt(ht, pt). Therefore, the deviation is strictly profitable for

type βt(ht, pt)− ε, contradicting the definition of βt(ht, pt).
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B.3 Proof of Proposition 1

Proof. Let δ(v) := e−rT (v) denote the discount factor for type v who trades at time T (v).

We can rewrite the auxiliary problem as a maximization problem with δ(v) as the choice

variable:

sup
δ

∫ 1

0

δ(v) J(v) f (n)(v) dv

s.t. δ(v) ∈ [0, 1], and non-decreasing,

∀v ∈ [0, 1] :

∫ v

0

δ(s) J(s|s ≤ v) f (n)(s) ds ≥ δ(v)

∫ v

0

J(s|s ≤ v) f (n)(s) ds. (1)

We show that (PF) is equivalent to (1). First suppose that (PF) holds. If v′ is not part of an

atom, i.e., T−1(T (v′)) = {v′}, then (PF) at t′ = T (v′) is equivalent to (1) at v′. If v′ is part

of an atom, Lemma 4 (slack PF before atom), implies that if (PF) holds for all t > T (v′) in

a neighborhood of T (v′), then (1) must hold for v′.

Conversely, suppose that (1) holds for all v ∈ [0, 1]. If t ∈ T ([0, 1]) then the (1) for vt

implies that (PF) holds at t. Next, suppose that t is in a “quiet period,” i.e., t /∈ T ([0, 1]).

Let t′ be the start of the quiet period, i.e., t′ = sup{s|vs > vt} . Let vm ↘ vt be a sequence

of valuations such that T (vm)→ t′ and hence δ(vm)→ δ+(vt). Since (1) holds for all vm, we

have ∫ vt

0

δ(s) J(s|s ≤ vt) f
(n)(s) ds ≥ δ+(vt)

∫ vt

0

J(s|s ≤ vt) f
(n)(s) ds.

But this is equivalent to (PF) for t′+. Since the RHS of (PF) is constant and the LHS is

increasing in the quiet period (t′, t], this implies that (PF) is satisfied for t.

To summarize, we have shown that the constraint set of the above problem is isomorphic

to the auxiliary problem (with δ(v) = e−rT (v)). This shows that existence of an optimal

function δ in the above problem implies existence of an optimal solution to the payoff floor

constraint which proves the Proposition.

Let π̄ be the supremum of this maximization problem and let (δk) be a sequence of

feasible solutions of this problem such that

lim
k→∞

∫ 1

0

δk(v) J(v) f (n)(v) dv = π̄. (2)

By Helly’s selection theorem, there exists a subsequence (δk`), and a non-decreasing function

δ̄ : [0, 1] → [0, 1] such that δk`(v) → δ̄(v) for all points of continuity of δ̄. Hence (after se-

lecting a subsequence), we can take (δk) to be almost everywhere convergent with a.e.-limit
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δ̄ (taking the subsequence does not change the limit in (2)). By Lebesgue’s dominated con-

vergence theorem, we also have convergence w.r.t. the L2-norm and hence weak convergence

in L2. Therefore∫ 1

0

δ̄(v) J(v) f (n)(v) dv = lim
k→∞

∫ 1

0

δk(v) J(v) f (n)(v) dv = π̄.

It remains to show that δ̄ satisfies the payoff floor constraint. Suppose not. Then there

exists v̂ ∈ [0, 1) such that∫ v̂

0

δ̄(s) J(s|s ≤ v̂) f (n)(s) ds < δ̄(v̂)

∫ v̂

0

J(s|s ≤ v̂) f (n)(s) ds.

Then there also exists v ≥ v̂ such that δ̄ is continuous at v, and∫ v

0

δ̄(s) J(s|s ≤ v) f (n)(s) ds < δ̄(v)

∫ v

0

J(s|s ≤ v) f (n)(s) ds.

Define

S := δ̄(v)

∫ v

0

J(s|s ≤ v) f (n)(s) ds−
∫ v

0

δ̄(s) J(s|s ≤ v) f (n)(s) ds.

Since v is a point of continuity we have δ̄(v) = limk→∞ δk(v). Therefore, there exists kv such

that for all k > kv,∣∣∣∣δ̄(v)

∫ v

0

J(s|s ≤ v) f (n)(s) ds− δk(v)

∫ v

0

J(s|s ≤ v) f (n)(s) ds

∣∣∣∣ < S

2
,

and furthermore, since δk → δ̄ weakly in L2, we can choose kv such for all k > kv also∣∣∣∣∫ v

0

δ̄(s) J(s|s ≤ v) f (n)(s) ds−
∫ v

0

δk(s) J(s|s ≤ v) f (n)(s) ds

∣∣∣∣ < S

2
.

Together, this implies that for all k > kv,∫ v

0

δk(s) J(s|s ≤ v) f (n)(s) ds < δk(v)

∫ v

0

J(s|s ≤ v) f (n)(s) ds,

which contradicts the assumption that δk is a feasible solution of the reformulated auxiliary

problem defined above.
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B.4 Proof of Lemma 4

Proof. Fix v ∈ (v+
t , vt]. We obtain a lower bound for the LHS of (A2) as follows:∫ v

0

e−r(T (x)−t)J(x|x ≤ v)dF (n)(x)

=

∫ v

v+
t

J(x|x ≤ v)dF (n)(x) +

∫ v+
t

0

e−r(T (x)−t)J(x|x ≤ v+
t )dF (n)(x)

−
∫ v+

t

0

e−r(T (x)−t)
(
F (v)− F (v+

t )

f(x)

)
dF (n)(x)

≥
∫ v

v+
t

J(x|x ≤ v)dF (n)(x) +

∫ v+
t

0

J(x|x ≤ v+
t )dF (n)(x)

−
∫ v+

t

0

e−r(T (x)−t)
(
F (v)− F (v+

t )

f(x)

)
dF (n)(x).

The equality follows because all types in (v+
t , v] trade at time t, and the inequality follows

from (A1). To prove (A2), it is sufficient to show that the RHS of (A2) is smaller than the

above lower bound. The RHS can be written as∫ v

v+
t

J(x|x ≤ v)dF (n)(x) +

∫ v+
t

0

J(x|x ≤ v+
t )dF (n)(x)−

∫ v+
t

0

(
F (v)− F (v+

t )

f(x)

)
dF (n)(x).

Comparing this with the above lower bound, we only need to show:

−
∫ v+

t

0

e−r(T (x)−t)
(
F (v)− F (v+

t )

f(x)

)
dF (n)(x) > −

∫ v+
t

0

(
F (v)− F (v+

t )

f(x)

)
dF (n)(x),

or equivalently ∫ v+
t

0

(1− e−r(T (x)−t))

(
F (v)− F (v+

t )

f(x)

)
dF (n)(x) > 0.

Since T (x) > t for x < v+
t and F (v) − F (v+

t ) > 0 for v > v+
t , the last inequality holds and

the proof is complete.

B.5 Proof of Lemma 5

Proof. Suppose by contradiction that for some t with vt > 0, we have T (v) = t for all

v ∈ [0, vt]. Then for all ε > 0 the payoff floor constraint at t− ε is∫ vt

0

e−rεJt−ε(v)dF
(n)
t−ε(v) +

∫ vt−ε

vt

e−r(T (v)−(t−ε))Jt−ε(v)dF
(n)
t−ε(v) ≥

∫ vt−ε

0

Jt−ε(v)dF
(n)
t−ε(v).
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Rearranging this we get∫ vt−ε

vt

(
e−r(T (v)−(t−ε)) − 1

)
Jt−ε(v)dF

(n)
t−ε(v) ≥

(
1− e−rε

) ∫ vt

0

Jt−ε(v)dF
(n)
t−ε(v).

The RHS is strictly positive for ε > 0 but sufficiently small because, by the left-continuity

of vt and continuity of Jt (v) in t, we have

lim
ε→0

∫ vt

0

Jt−ε(v)dF
(n)
t−ε(v) =

∫ vt

0

Jt(v)dF
(n)
t (v) > 0.

On the other hand, since Jt (vt) = vt > 0, we have Jt−ε (v) > 0 for v ∈ (vt, vt−ε) with ε > 0

but sufficiently small. Note that

T (v) ≥ t− ε for all v ∈ (vt, vt−ε)

Therefore, e−r(T (v)−(t−ε)) ≤ 1 for all v ∈ (vt, vt−ε), and thus the LHS is non-positive. A

contradiction.

B.6 Proof of Lemma 6

Proof. For t ∈ (a, b], the right-hand side of (PF) is independent of t since vt is constant. The

left-hand side is increasing in t, since t enters the discount factor. Feasibility of T implies

that (PF) is satisfied at a+ and therefore it must be strictly slack for t ∈ (a, b].

B.7 Proof of Lemma 7

Proof. Suppose by contradiction that T is feasible but T (v) =∞ for some v > 0. Since T is

non-increasing, there exists w ∈ (0, 1) such that T (v) = ∞ for all v ∈ [0, w) and T (v) < ∞
for all v ∈ (w, 1]. The left-hand side of the payoff floor constraint can be rewritten as, for

all t <∞, ∫ vt

0

e−r(T (x)−t)Jt(x)dF (n)(x) =

∫ vt

w

e−r(T (x)−t)Jt(x)dF (n)(x).

Since T (v) <∞ for all v ∈ (w, 1], we have vt → w as t→∞. Hence, as t→∞, the limit of

the left-hand side is zero:

lim
t→∞

∫ vt

w

e−r(T (x)−t)Jt(x)dF (n)(x) = 0.

12



The limit of right-hand side of the payoff floor constraint as t → ∞, however, is strictly

positive:

lim
t→∞

∫ vt

0

Jt(x)dF (n)(x) =

∫ w

0

J(x|x ≤ w)dF (n)(x) > 0.

Therefore, the payoff floor constraint must be violated for sufficiently large t, which contra-

dicts the feasibility of T .

B.8 Proof of Lemma 8

Proof. For t > b, T̂ satisfies the (PF) because T̂ (v) = T (v) for all v < vb. If v̂b = vb, the

same argument extends to t = b. If v̂b > vb, T̂ satisfies (PF) for all t > b. Therefore, Lemma

4 (slack PF before atom) implies that T̂ satisfies (PF) at t = b.

To show that T̂ satisfies the (PF) for t ≤ a, we define ψt(v) := Jt(v)f(v). For any t > 0,

(PF) can be written as

nert
∫ vt

0

Q(v)ψt(v)dv ≥ F (n)(vt)Π
E(vt).

For t ≤ a, v̂t = vt. Therefore the right-hand side does not change if we replace Q by Q̂.

Therefore, it suffices to show that

nert
∫ vt

0

Q̂(v)ψt(v)dv ≥ nert
∫ vt

0

Q(v)ψt(v)dv

for all t ≤ a. Defining Ψt(v) :=
∫ v

0
ψt(x)dx, this inequality is equivalent to∫ vt

0

Q̂(v)ψt(v)dv ≥
∫ vt

0

Q(v)ψt(v)dv

⇐⇒ Q̂(b)Ψt(b)− Q̂(a)Ψt(a)−
∫ vt

0

Ψt(v)dQ̂(v) ≥Q(b)Ψt(b)−Q(a)Ψt(a)

−
∫ vt

0

Ψt(v)dQ(v)

⇐⇒
∫ vt

0

Ψt(v)dQ̂(v) ≤
∫ vt

0

Ψt(v)dQ(v).

To obtain the first and third lines we have used that Q̂(v) = Q(v) for v /∈ (a, b).

To establish the last line note first that both Q and Q̂ are increasing, and hence up to an

affine transformation, they are distribution functions on [vb, va]. It follows from (A3) that

Q is a mean-preserving spread of Q̂. Second, note that ψt(v) = ψ0(v) + (1 − F (vt)). Since

13



ψ0(v) = J(v)f(v) is strictly increasing by assumption, φs is strictly increasing and Ψt is

strictly convex. Convexity of Ψ together with the mean-preserving spread implies that the

last line holds.

If (A3) is a strict inequality for a set with strictly positive measure, then all inequalities

are strict which implies that (PF) becomes a strict inequality for t ≤ a, and the ex-ante

revenue is strictly increased by replacing T with T̂ .

B.9 Proof of Proposition 3

Proof of Proposition 3. Let T be an optimal solution to the auxiliary problem with associ-

ated cutoffs vt, and suppose by contradiction that there exists s > 0 such that vs ∈ (0, v)

and the payoff floor constraint is slack at s. Define

s′ := inf {σ ∈ (T (v), s] | (PF) is a strict inequality for all t ∈ [σ, s]}

s′′ := sup {σ ≥ s | (PF) is a strict inequality for all t ∈ [s, σ]} .

Since vt is left-continuous everywhere, s′ < s and hence s′ < s′′. In the following, we consider

two cases:

Case 1: v+
s′ > vs′′

In this case, there exists an interval (a, b) ⊂ [s′, s′′] such that va > vb, and for a positive

measure of types v ∈ (vb, va), T (v) ∈ (a, b). In other words, (a, b) is not a “quiet period.”

We construct an alternative solution T̂ that satisfies the conditions of the MPS-Lemma

8 as follows:

T̂ (v) :=


T (v), if v /∈ (vb, va),

a, if v ∈ (w, va),

b, if v ∈ (vb, w].

We choose w such that∫ va

vb

(
e−rT̂ (v) − e−rT (v)

)
(F (v))n−1dv

=

∫ va

w

(
e−ra − e−rT (v)

)
(F (v))n−1dv +

∫ w

vb

(
e−rb − e−rT (v)

)
(F (v))n−1dv = 0. (3)

The existence of such w follows from the intermediate value theorem: The second line is

continuous in w. For w = va the first integral in the second line vanishes and the second is

negative. Conversely, for w = vb the second integral in the second line vanishes and the first
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is positive. Hence there exists w ∈ (vb, va) for which the second line is equal to zero.

Next, note that ∫ x

vb

(
e−rT̂ (v) − e−rT (v)

)
(F (v))n−1dv

is decreasing in x for x < w and increasing for x > w. This together with (3) implies that

T̂ satisfies the conditions of Lemma 8. There is a positive measure of types v ∈ (vb, va) for

which T (v) 6= T̂ (v). T̂ therefore satisfies the payoff floor constraint for t /∈ (a, b), and yields

strictly higher ex-ante profit than T .

For the contradiction, it remains to show that T̂ satisfies the payoff floor constraint for

t ∈ (a, b). Since (a, b) ∈ [s′, s′′], the payoff floor constraint with T is a strict inequality for all

t ∈ (a, b). By choosing the interval (a, b) sufficiently small, we can ensure that replacing T

by T̂ does not violate the payoff floor constraint on (a, b). This concludes the proof for Case

1.

Case 2: vt = vs′ for all t ∈ (s′, s′′].

In this case, the interval where the payoff floor constraint is slack is a “quiet period”

without trade. This implies that vt is discontinuous at s′′. Otherwise the payoff floor

constraint would be continuous in t at s′′ which would require that it is binding at s′′.

However, if the payoff floor is binding at the endpoint of the “quiet period,” it must be

violated for t ∈ (s′, s′′).3 Therefore vt must be discontinuous at s′′—i.e., vs′′ > v+
s′′ .

Similar to Case 1, we construct an alternative solution T̂ that satisfies the conditions of

the MPS-Lemma 8. The alternative solution is parametrized by two trading times a < s′′ < b

and a cutoff valuation w which we set to w = (vs′′ + v+
s′′)/2.

T̂ (v) :=


T (v), if v /∈ (vb, vs′′),

a, if v ∈ (w, vs′′),

b, if v ∈ (vb, w).

In words, we “split the atom” at w. For the higher types in the atom we set an earlier trading

time a and for the low types we delay the trading time to b. To preserve monotonicity we

also delay the trading times of all v ∈ (vb, v
+
s′′) to b.

If we fix b > s′′ we need to select a such that we preserve the mean preserving spread of

Q:

3For t ∈ (s′, s′′), the right-hand side of (PF) is independent of t whereas the left-hand side is increasing
in t.
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∫ va

w

(
e−ra − e−rT (v)

)
(F (v))n−1dv +

∫ w

vb

(
e−rb − e−rT (v)

)
(F (v))n−1dv = 0. (4)

The second integral is negative and decreasing in b and the first is positive and decreasing in

a. Therefore, for b sufficiently close to s′′ there is a unique a ∈ (s′, s′′) so that the equation

is satisfied. a ∈ (s′, s′′) implies that va = vs′′ so that T̂ is monotone. We have constructed

T̂ such that (A3) holds with equality for x = va and by a similar argument as in case 1

it is satisfied for all x ∈ [va, vb]. Therefore, by the MPS-Lemma 8, T̂ yields higher ex-ante

revenue than T and satisfies (PF) for all t /∈ (a, b). It remains to show that we can choose b

such that (PF) is satisfied for all t ∈ (a, b).

T satisfies (PF) for all t, and vt is discontinuous at s′′. Therefore, Lemma 5 (no final

atom) implies that v+
s′′ > 0 and we can apply Lemma 4 (slack PF before atom). This yields∫ w

0

e−r(T (v)−s′′)J(v|v ≤ w)dF (n)(v) >

∫ w

0

J(v|v ≤ w)dF (n).

If we choose b sufficiently close to s′′ this inequality also holds for T̂ . Moreover, a is decreasing

in b and a→ s′′ for b→ s′′, therefore we have∫ w

0

e−r(T (v)−a)J(v|v ≤ w)dF (n) >

∫ w

0

J(v|v ≤ w)dF (n).

This shows that T̂ satisfies (PF) for t = a+. Since the cutoff v̂t defined by T̂ is constant

on (a, b), this implies that the payoff floor constraint is satisfied for all t ∈ (a, b) (see footnote

3). This completes the proof for Case 2.

B.10 Proof of Lemma 9

Proof. We first show that vt is continuously differentiable for all t ∈ (a, b) where vt > 0. To

show this we establish several claims.

Claim 1. v+
a > vb and T is continuous on v ∈ (vb, v

+
a ).

Proof. v+
a = vb would imply a that (a, b) is a quiet period. By Lemma 6 (slack PF in quiet

period) this would required that (PF) is a strict inequality for t ∈ (a, b). Similarly, if T has a

discontinuity at v ∈ (vb, v
+
a ), then there is a quiet period (s, s′) which contradicts that (PF)

is binding for all t ∈ (a, b) by Lemma 6.

Claim 2. T is strictly decreasing for v ∈ (vb, v
+
a ).
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Proof. Suppose by contradiction, that there exists a trading time s ∈ (a, b) such that

T−1(s) = (v+
s , vs] where v+

s < vs. Since T is a feasible solution, Lemma 5 (no final atom)

implies that v+
s > 0. By Lemma 4 (slack PF before atom), this implies that (PF) is a strict

inequality at s which is a contradiction.

Claim 3. T is continuously differentiable with T ′(v) < 0 for all v ∈ (vb, v
+
a )

Proof. Since T is continuous and strictly decreasing for v ∈ (vb, v
+
a ), a binding payoff floor

constraint for all t ∈ (a, b) is equivalent to the condition that, for all v ∈ (vb, v
+
a ),∫ v

0

e−rT (x) J(x|x ≤ v) dF (n)(x) = e−rT (v)

∫ v

0

J(x|x ≤ v)dF (n)(x),

which can be rearranged into

e−rT (v) =

∫ v
0
e−rT (x) J(x|x ≤ v)dF (n)(x)∫ v

0
J(x|x ≤ v) dF (n)(x)

.

Continuity of T and continuous differentiability of F imply that the right-hand side of this

expression is continuously differentiable, and thus T is also continuously differentiable.

Differentiating with respect to v and solving for T ′(v) yields

T ′(v) =
1

r

[
f (n)(v)v −

∫ v
0

f(v)
f(x)

dF (n)(x)
] ∫ v

0
e−r(T (x)−T (v)) J(x|x ≤ v) dF (n)(x)(∫ v

0
J(x|x ≤ v) dF (n)(x)

)2

− 1

r

[
f (n)(v)v −

∫ v
0
e−r(T (x)−T (v)) f(v)

f(x)
dF (n)(x)

]
∫ v

0
J(x|x ≤ v) dF (n)(x)

=
1

r

[
f (n)(v)v −

∫ v
0

f(v)
f(x)

dF (n)(x)
] ∫ v

0
J(x|x ≤ v) dF (n)(x)(∫ v

0
J(x|x ≤ v) dF (n)(x)

)2

− 1

r

[
f (n)(v)v −

∫ v
0
e−r(T (x)−T (v)) f(v)

f(x)
dF (n)(x)

]
∫ v

0
J(x|x ≤ v) dF (n)(x)

=
f(v)

r

∫ v
0

(
e−r(T (x)−T (v)) − 1

)
1

f(x)
dF (n)(x)∫ v

0
J(x|x ≤ v) dF (n)(x)

.

where the second equality follows from the binding payoff floor constraint. In the last line,

the numerator is strictly negative and the denominator is positive. Therefore T ′(v) < 0.

Together Claims 1–3 imply that vt is continuously differentiable for t ∈ (a, b) where

vt > 0.
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Next we derive a differential equation for vt from the binding payoff floor constraint. In

the process we also show that vt is twice continuously differentiable.

Since vt is continuously differentiable on (a, b), we can differentiate (PF) on both sides

to obtain

e−rtvtf
(n)(vt)v̇t −

∫ vt

0

e−rT (x)f(vt)v̇t
f(x)

dF (n)(x)

=− re−rt
∫ vt

0

Jt(x)dF (n)(x) + e−rtvtf
(n)(vt)v̇t − e−rt

∫ vt

0

f(vt)v̇t
f(x)

dF (n)(x),

where we have used ∂Jt(x)
∂t

= −f(vt)v̇t
f(x)

, and T (vt) = t which follows from continuity of T (v).

This equation can be further simplified

−
∫ vt

0

e−rT (x)f(vt)v̇t
f(x)

dF (n)(x)

= −re−rt
∫ vt

0

Jt(x)dF (n)(x)− e−rt
∫ vt

0

f(vt)v̇t
f(x)

dF (n)(x).

Since T is continuously differentiable for all v ∈ (vb, v
+
a ) by Claim 3, v̇t < 0 for t ∈ (a, b). By

assumption, f(vt) > 0, so we can divide the previous equation by −f(vt)v̇t to obtain∫ vt

0

e−rT (x) 1

f(x)
dF (n)(x) =

re−rt

f(vt)v̇t

∫ vt

0

Jt(x)dF (n)(x) + e−rt
∫ vt

0

1

f(x)
dF (n)(x). (5)

This equation, together with our assumption that f(v) is continuously differentiable, implies

that vt is twice continuously differentiable. Differentiating (5) on both sides yields

e−rtnF n−1(vt)v̇t

=re−rt

vtf (n)(vt)v̇t − f (vt)
∫ vt

0
f (n)(x)
f(x)

dx v̇t

f (vt) v̇t


− re−rt


(
v̇t
f ′(vt)
f(vt)

+ v̈t
v̇t

+ r
) ∫ vt

0
Jt(x)f (n)(x)dx

f (vt) v̇t


− re−rt

∫ vt

0

1

f(x)
dF (n)(x) + e−rtnF n−1(vt)v̇t.
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Multiplying both side by f (vt) v̇t, and rearranging we get

v̈t
v̇t

+

(
f ′ (vt)

f (vt)
−
f (n)(vt)vt − 2f (vt)n

∫ vt
0
F n−1(x)dx∫ vt

0
Jt(x)f (n)(x)dx

)
︸ ︷︷ ︸

=:g(vt)

v̇t + r = 0.

Some further algebra yields∫ vt

0

Jt(x)f (n)(x)dx = (n− 1)n

∫ vt

0

(F (vt)− F (x))F n−2(x)f(x)xdx,

which implies

g(vt) =
f ′ (vt)

f (vt)
−

{
vtF

n−1 (vt)− 2
∫ vt

0
F n−1 (v) dv

}
f (vt)

(n− 1)
∫ vt

0
[F (vt)− F (v)]F n−2 (v) f (v) vdv

.

B.11 Proof of Lemma 10

Proof. Since f(v) is continuously differentiable limv→0 vf
′(v) exists. We first show that

limv→0 vf
′(v) = 0. Suppose by contradiction that limv→0 vf

′(v) = z 6= 0. If z > 0, we must

have f ′(v) ≥ z/(2v) for a neighborhood (0, ε), which implies that f(ε) = f(0)+
∫ ε

0
f ′(v)dv ≥

f(0) +
∫ ε

0
(z/(2v))dv =∞ which contradicts the assumption of a finite density. If z < 0, we

have f ′(v) ≤ z/(2v) for a neighborhood (0, ε), which implies that f(ε) = f(0)+
∫ ε

0
f ′(v)dv ≤

f(0)+
∫ ε

0
(z/(2v))dv = −∞ which contradicts f(v) > 0. Since f (0) > 0 and limv→0 vf

′(v) = 0

together imply φ = limv→0
vf ′(v)
f(v)

= 0, we have N (F ) := 1 +
√

2+φ
1+φ

= 1 +
√

2 ∈ (2, 3).

If f(0) = 0, we use a Taylor expansion of f(v) at zero to obtain

φ = lim
v→0

f ′(v)v

f(v)
= lim

v→0

f ′(v)v

f ′(0)v
= 1.

This implies N(F ) = 1 +
√

3/2 < 2.

B.12 Proof of Lemma 11

Proof. If Assumption 2 is satisfied, we can repeatedly use l’Hospital’s rule, and

lim
v→0

vf(v)

F (v)
= lim

v→0

f ′(v)v + f (v)

f(v)
= 1 + φ and lim

v→0

F (v)

vf(v)
=

1

1 + φ
,
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to get

κ := lim
v→0

g(v)v = φ− ((n− 1)φ+ n− 2) (nφ+ n+ 1)

(n− 1) (1 + φ)
.

Simple algebra shows that if φ > −1,

κ > −1 ⇐⇒ n < N(F ).

Next, we transform the ODE (16) using the change of variables y = v̇t. This yields

y′(v) + g(v)y(v) + r = 0.

The general solution is given by

y (v) = e−
∫ v
m g(x)dx

(
C −

∫ v

m

re
∫ w
m g(x)dxdw

)
, (6)

where m > 0.4 Feasibility requires that y(v) ≤ 0 for all v ∈ (0, v+
0 ). This implies that

∀v ∈ (0, v+
0 ) : C ≤

∫ v

m

re
∫ w
m g(x)dxdw,

Since the right-hand side is increasing in v this implies

C ≤ C := −
∫ m

0

re
∫ w
m g(x)dxdw

and

C = lim
v→0

∫ v

m

re
∫ w
m g(x)dxdw > −∞. (7)

(i) Suppose κ < −1. Since κ = limv→0 g(v)v, there must exist γ > 0 such that g(v) ≤ − 1
v

for all v ∈ (0, γ]. We may assume that 0 < m < γ. In this case, the limit in (7) can be

computed as follows:

lim
v→0

∫ v

m

re
∫ w
m g(x)dxdw = lim

v→0
−
∫ m

v

re−
∫m
w g(x)dxdw

≤ lim
v→0
−
∫ m

v

re
∫m
w

1
x
dxdw = lim

v→0
−
∫ m

v

r
m

w
dw = −∞.

4For m = 0, the solution candidate is not well defined for all κ because e−
∫ v
m

g(x)dx =∞.
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Given that C ≤ C there exits no finite C such that the general solution in (6) satisfies

y(v) ≤ 0 for all v ∈ (0, v+
0 ). This shows part (i).

To prove part (ii), we set C = C. We show that the resulting solution

y (v) = −e−
∫ v
m g(x)dx

∫ v

0

re
∫ w
m g(x)dxdw = −

∫ v

0

re−
∫ v
w g(x)dxdw, (8)

is negative and finite for all v. It is clear that y (v) < 0, so it suffices to rule out y (v) = −∞.

Since κ = limv→0 g(v)v > −1, there exist κ̂ > −1 and γ > 0 such that g(v) ≥ κ̂
v

for all

v ∈ (0, γ]. Hence the limit in (7) can be computed as (where we may again assume that

0 < m < γ):

lim
vt→0

∫ vt

m

re
∫ v
m g(x)dxdv = lim

vt→0
−
∫ m

vt

re−
∫m
v g(x)dxdv

≥ lim
vt→0
−
∫ m

vt

re−κ̂ ln m
v dv = lim

vt→0
−
∫ m

vt

r
( v
m

)κ̂
dv

= −rm−κ̂ 1

κ̂+ 1
lim
vt→0

(
mκ̂+1 − vκ̂+1

t

)
> −∞.

Therefore, y (v) is finite and y(v) < 0 for all v. Next we have to show that (8) can be

integrated to obtain a feasible solution of the auxiliary problem. It suffices to verify that the

following boundary condition from Lemma 7 (cutoffs converge to zero):

lim
t→∞

vt = 0, (9)

is satisfied. Recall that v̇t = y(vt). Therefore, we have

v̇t = −e−
∫ vt
m g(v)dv

(∫ vt

0

re
∫ v
m g(x)dxdv

)
.

We first show that, for any v+
0 ∈ [0, 1], the solution to this differential equation satisfies (9).

Since the term in the parentheses is strictly positive we have

e
∫ vt
m g(v)dv v̇t∫ vt

0
e
∫ v
m g(x)dxdv

= −r.

Integrating both sides with respect to t, we get

ln

∫ vt

0

e
∫ v
m g(x)dxdv − ln

∫ v+
0

0

e
∫ v
m g(x)dxdv = −rt.
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Now take t → ∞. The RHS diverges to −∞ and the second term on the LHS is constant,

so we must have

lim
t→∞

ln

∫ vt

0

e
∫ v
m g(x)dxdv = −∞

which holds if and only if limt→∞ vt = 0. Therefore, we have found a solution that satisfies

the boundary condition and is decreasing for all starting values v+
0 . This completes the proof

of part (ii).

(iii) Let v̂t be a decreasing solution to the binding payoff floor constraint that does not

satisfy (7). Then z(v) = ˙̂vt must be given by (6) for some C ≤ C. The solution vxt satisfies

(7). If we define yx(v) = v̇xt , yx(v) satisfies (8). Therefore we have

z(v) = y(v)−
(
C − C

)
e−

∫ v
m g(x)dx < y(v).

This implies that v̂t = vxt implies ˙̂vt < v̇xt . We have established a single crossing property:

For any x ∈ [0, 1], v̂t crosses vxt at most once, and from above.

Now we pick x so that we can apply the MPS-Lemma 8. Let Q̂(v) be the expected

discounted winning probability times associated with the cutoff path v̂t and Qx(v) the one

associated with vxt . Define

D(x) =

∫ 1

0

Qx(v)− Q̂(v)(v)dv.

ClearlyD(x) is continuous in x. x = 0 implies thatQx(v) = (F (v))(n−1) > (F (v))(n−1)e−rT̂ (v) =

Q̂(v) for all v < v̂+
t Therefore D(0) > 0. If we set x = v̂+

t , then vxt and v̂t intersect at t = 0

and the crossing property implies that vxt > v̂t for all t > 0. This implies Qx(v) < Q̂(v) for

all v < v̂+
t and thus D(v+

0 ) < 0. Hence, the intermediate value theorem implies that there

exists x∗ ∈ (0, vx0 ) such that D(x∗) = 0. Moreover, v̂t crosses vx
∗
t exactly once and from

above. This implies that Q̂(v) crosses Qx(v) once and from below. Therefore we must have∫ z

0

Qx∗(v)− Q̂(v)dv ≤ 0,∀z ∈ [0, 1].

Hence Lemma 8 implies that vxt yields strictly higher profit than v̂t.

B.13 Proof of Proposition 5

Proof. The lower bound follows directly from Lemma 3. For the upper bound, by Lemma

2, we can restrict attention to equilibria (pm, bm) in which the seller does not randomize on
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the equilibrium path.

We first define an ε-relaxed continuous-time auxiliary problem. We replace the payoff

floor constraint by ∫ vt

0

e−r (T (x)−t)Jt(v)dF (n)(v) ≥ (1− ε)F (n)(vt)Π
E(vt).

By similar arguments as in the proof of Proposition 1, there exists an optimal solution to

the ε-relaxed continuous-time auxiliary problem for every ε ≥ 0. Denote the value of this

problem by Vε. Clearly Vε is increasing in ε so that the limit limε→0 Vε exists. Moreover, by

similar arguments as in the proof of Proposition 1, there exists a sequence εm ↘ 0 such that

the corresponding optimal solutions converge to a feasible solution of the auxiliary problem

for ε = 0. Therefore we have

lim
ε→0

Vε = lim
m→∞

Vεm = V. (10)

The first equality follows from the existence of the first limit and the second follows because

the objective function is continuous.5

Next, we formulate a discrete version of the auxiliary problem. For given ∆, the feasible

set of this problem is given by

T : [0, 1]→ {0,∆, 2∆, . . .} non-increasing,

and

∫ vk∆

0

e−r (T (x)−k∆)Jk∆(v)dF (n)(v) ≥ F (n)(vk∆)ΠE(vk∆) ∀k ∈ N.

We denote the value of this problem by V (∆). Let Ed(∆) ⊂ E(∆) denote the set of equilibria

in which the seller does not randomize on the equilibrium path. The first constraint is clearly

satisfied for outcomes of any equilibrium in Ed(∆). The second constraint requires that in

each period, the seller’s continuation profit on the equilibrium path exceeds the revenue from

an efficient auction given the current posterior. Lemma 3 shows that this lower bound is

a necessary condition for an equilibrium. Therefore, the seller’s expected revenue in any

equilibrium (p, b) ∈ Ed(∆) cannot exceed V (∆). Moreover, for given ε, the feasible set of the

discrete auxiliary problem is contained in the feasible set of the ε-relaxed continuous-time

auxiliary problem if ∆ is sufficiently small. Formally, we have:

5As in the proof of Proposition 1, we need to formulate the problem in terms of δ(v) = e−rT (v) and then
use weak convergence. We omit replicating the rigorous argument here.
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Claim: Let ε > 0 and ∆ε = − ln(1− ε)/r. For all ∆ < ∆ε we have

sup
(p,b)∈Ed(∆)

Π∆(p, b) ≤ V (∆) ≤ Vε.

Proof of the claim: The first inequality has been shown in the text above. For the second,

let T∆ be an element of the feasible set of the discrete auxiliary problem for ∆ ≤ ∆ε. Let

v∆
t be the corresponding cutoff path. Note that for t ∈ (k∆, (k+ 1)∆] we have v∆

t = v∆
(k+1)∆

and hence ∫ v∆
t

0

e−r (T∆(v)−t)Jt(v)n(F (v))n−1f(v)dv

=e−r((k+1)∆−t)
∫ v∆

(k+1)∆

0

e−r (T∆(v)−(k+1)∆)J(k+1)∆(v)n(F (v))n−1f(v)dv

≥e−r∆
∫ v∆

(k+1)∆

0

e−r (T∆(v)−(k+1)∆)J(k+1)∆(v)n(F (v))n−1f(v)dv

≥e−r∆F (n)(v∆
(k+1)∆)ΠE(v∆

(k+1)∆)

=e−r∆F (n)(v∆
t )ΠE(v∆

t ) ≥ (1− ε)F (n)(v∆
t )ΠE(v∆

t ).

The first inequality holds because t ≥ k∆, the second inequality follows from the payoff

floor constraint of the discretized auxiliary problem, and the last inequality holds because

∆ ≤ ∆ε. Therefore, T∆ is a feasible solution for the ε-relaxed continuous time auxiliary

problem, and hence V (∆) ≤ Vε if ∆ < ∆ε. Thus the claim is proved.

To complete the proof for Proposition 5, it suffices to show Π∗ ≤ V . We have:

Π∗ = lim sup
∆→0

sup
(p,b)∈Ed(∆)

Π∆(p, b) ≤ lim
ε→0

Vε = V.

The first equality follows from Lemma 2 which shows that the maximal revenue can be

achieved without randomization on the equilibrium path by the seller. The previous claim

implies that inequality. The second equality was shown above (see (10)).

B.14 Proof of Lemma 12

Proof. The proof follows the same steps as in the proof of Lemma 11 but when taking the

limit κ = limv→0 g (v) v, we have to take into account that F (0) > 0. Applying l’Hospital’s
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rule, we can compute κ as

κ = φ− lim
v→0

(n− 1)v2f 2(v)F n−2(v) + v2f ′(v)F n−1(v)− 2 (f ′(v)v + f (v))
∫ v

0
F n−1 (s) ds

(n− 1)f (v)
∫ v

0
s F n−2(s)f(s) ds

Noting that F (0) > 0, we can again apply l’Hospital’s rule to obtain

lim
v→0

(n− 1)v2f 2(v)F n−2(v)

(n− 1)f (v)
∫ v

0
s F n−2(s)f(s) ds

= 2

and

lim
v→0

v2f ′(v)F n−1(v)− 2 (f ′(v)v + f (v))
∫ v

0
F n−1 (s) ds

(n− 1)f (v)
∫ v

0
s F n−2(s)f(s) ds

= −∞

It follows that

κ = lim
v→0

vg(v) = +∞.

The rest of the proof of part (i) follows from the proof of Part (ii) of Lemma 11. Part (ii) is

proven by the same steps as in the proof of Part (iii) of Lemma 11.

C Appendix C: Equilibrium Approximation of the So-

lution to the Binding Payoff Floor Constraint

C.1 Equilibrium Approximation (Proof of Proposition 6)

In this section we construct equilibria that approximate the solution to the binding payoff

floor constraint. We proceed in three steps. First, we show that if the binding payoff floor

constraint has a decreasing solution, then there exists a nearby solution for which the payoff

floor constraint is strictly slack. In particular, we show that for each K > 1 sufficiently small,

there exists a solution with a decreasing cutoff path to the following generalized payoff floor

constraint: ∫ vt

0

e−r(T (x)−t)Jt(x)dF
(n)
t (x) = K ΠE(vt). (11)

For K = 1, (11) reduces to the original payoff floor constraint in (PF) (divided by Ft(vt)).

Therefore, a decreasing solution that satisfies (11) for K > 1 is a feasible solution to the

auxiliary problem. Moreover, the slack in the original payoff floor constraint is proportional

to ΠE(vt).

Lemma 13. Suppose Assumption 2 holds and n < N(F ). Then there exists Γ > 1 such that
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for all K ∈ [1,Γ], there exists a feasible solution TK to the auxiliary problem that satisfies

(11). For K ↘ 1, TK(v) converges to T (v) for all v ∈ [0, 1], and the seller’s expected revenue

converges to the value of the auxiliary problem.

In the second step, we discretize the solution obtained in the first step so that all trades

take place at times t = 0,∆, 2∆, . . .. For givenK and ∆, we define the discrete approximation

TK,∆ of TK by delaying all trades in the time interval (k∆, (k + 1)∆] to (k + 1)∆:

TK,∆(v) := ∆ min
{
k ∈ N

∣∣ k∆ ≥ TK(v)
}
. (12)

In other words, we round up all trading times to the next integer multiple of ∆. Clearly, for

all v ∈ [0, 1] we have,

lim
K→1

lim
∆→0

TK,∆(v) = lim
∆→0

lim
K→1

TK,∆(v) = T (v),

and the seller’s expected revenue also converges. Therefore, if we show that the functions

TKm,∆m for some sequence (Km,∆m) describe equilibrium outcomes for a sequence of equi-

libria (pm, bm) ∈ E(∆m), we have obtained the desired approximation result.

The discretization changes the continuation revenue, but we can show that the approx-

imation loss vanishes as ∆ becomes small. In particular, if ∆ is sufficiently small, then the

approximation loss is less than half of the slack in the payoff floor constraint at the solution

TK . More precisely, we have the following lemma.

Lemma 14. Suppose Assumption 3 is satisfied and let n < N(F ). For each K ∈ [1,Γ],

where Γ satisfies the condition of Lemma 13, there exists ∆̄1
K > 0 such that for all ∆ < ∆̄1

K,

and all t = 0,∆, 2∆, . . .,

∫ vK,∆
t

0

e−r(T
K,∆(x)−t)Jt(x)dF

(n)
t (x) ≥ K + 1

2
ΠE(vK,∆t ).

This lemma shows that if ∆ is sufficiently small, at each point in time t = 0,∆, 2∆, . . .,

the continuation payoff of the discretized solution is at least as high as 1 + (K − 1)/2 times

the profit of the efficient auction.

In the final step, we show that the discretized solution TK,∆ can be implemented in

an equilibrium of the discrete time game. To do this, we use weak-Markov equilibria as a

threat to deter any deviation from the equilibrium path by the seller. The threat is effective

because the uniform Coase conjecture (Proposition 4.(ii)) implies that the profit of a weak-

Markov equilibrium is close to the profit of an efficient auction for any posterior along the
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equilibrium path. More precisely, let Π∆(p, b|v) be the continuation profit at posterior v for

a given equilibrium (p, b) ∈ E(∆) as before.6 Then Proposition 4.(ii) implies that for all

K ∈ [1,Γ], where Γ satisfies the condition of Lemma 13, there exists ∆̄2
K > 0 such that, for

all ∆ < ∆̄2
K , there exists an equilibrium (p, b) ∈ E(∆) such that, for all v ∈ [0, 1],

Π∆(p, b|v) ≤ K + 1

2
ΠE(v). (13)

Now suppose we have a sequence Km ↘ 1, where Km ∈ [1,Γ] as in Lemma 13. Define

∆̄K := min
{

∆̄1
K , ∆̄

2
K

}
. We can construct a decreasing sequence ∆m ↘ 0 such that for all

m, ∆m < ∆̄Km . By Lemma 14 and (13), there exists a sequence of (punishment) equilibria

(p̂m, b̂m) ∈ E(∆m) such that for all m and all t = 0,∆m, 2∆m, . . .

∫ vKm,∆m
t

0

e−r(T
Km,∆m (x)−t)Jt(x)dF (n)(x) ≥Km + 1

2
ΠE(vKm,∆m

t )

≥Π(p̂m, b̂m|vKm,∆m
t ). (14)

The left term is the continuation profit at time t on the candidate equilibrium path given by

TKm,∆m . This is greater or equal than the second expression by Lemma 14. The term on the

right is the continuation profit at time t if we switch to the punishment equilibrium. This

continuation profit is smaller than the middle term by Proposition 4.(ii). Therefore, for each

m, (p̂m, b̂m) can be used to support TKm,∆m as an equilibrium outcome of the game indexed

by ∆m. Denote the equilibrium that supports TKm,∆m by (pm, bm) ∈ E(∆m). It is defined as

follows: On the equilibrium path, the seller posts reserve prices given by TKm,∆m and (12). A

buyer with type v bids at time TKm,∆m(v) as long as the seller does not deviate. As argued in

Section IV.B, this is a best response to the seller’s on-path behavior because the prices given

by (12) implement the reading time function TKm,∆m . After a deviation by the seller, she

is punished by switching to the equilibrium (p̂m, b̂m). Since the seller anticipates the switch

to (p̂m, b̂m) after a deviation, her deviation profit is bounded above by Π(p̂m, b̂m|vKm,∆m
t ).

Therefore, (14) implies that the seller does not have a profitable deviation. To summarize,

we have an approximation of the solution to the binding payoff floor constraint by discrete

time equilibrium outcomes. This concludes the proof of Proposition 6.

6If the profit differs for different histories that lead to the same posterior, we could take the supremum,
but this complication does not arise with weak-Markov equilibria.
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C.2 Proof of Lemma 13

The key step of the approximation is to discretize the solution to the binding payoff floor

constraint. In order to do that, we first need to find a feasible solution such that the payoff

floor constraint is strictly slack. We have the following generalization of Lemma 9.

Lemma 15. Suppose T (x) satisfies (11) for all t ∈ (a, b) and suppose T is continuously

differentiable with −∞ < T ′(v) < 0 for all v ∈ (vb, va) and vt is continuously differentiable

for all t ∈ (a, b). Then vt is twice continuously differentiable on (a, b) and is characterized

by
v̈t
v̇t

+ g(vt, K)v̇t + h(vt, K) (v̇t)
2 + r = 0,

where

g(vt, K) =
f ′ (vt)

f (vt)
−
{(

2− 1
K

)
vtF

n−1 (vt)− 2
∫ vt

0
F n−1 (v) dv

}
f (vt)

(n− 1)
∫ vt

0
[F (vt)− F (v)]F n−2 (v) f (v) vdv

,

and

h(vt, K) =
K − 1

rK

F n−2 (vt) f
2 (vt) vt∫ vt

0
[F (vt)− F (v)]F n−2 (v) f (v) vdv

.

Proof. The proof follows similar steps as the proof of Lemma 9.

Repeatedly applying l’Hospital’s rule yields

Lemma 16. If Assumption 2 is satisfied, we have

κ := lim
v→0

g(v)v = φ− ((n− 1)φ+ n− 2) (nφ+ n+ 1)

(n− 1) (1 + φ)
, (15)

lim
v→0

g(v,K)v = κ− K − 1

K

(
nφ+ n+ 2 +

φ+ 2

(n− 1) (1 + φ)

)
, (16)

and

lim
v→0

h(v,K)v2 =
1

r

K − 1

K
(n+ φn+ 1)(n+ φn− φ). (17)

We use the change of variables y = v̇t to rewrite the ODE obtained in Lemma 15 as

y′(v) = −r − g(v,K)y(v)− h(v,K) (y(v))2 . (18)

Any solution to the above ODE with K > 1 would lead to a strictly slack payoff floor

constraint. Our goal is to show that the solution to the ODE exists for any K sufficiently

close to zero and converges to the solution given by (7) as K ↘ 1. We will verify below that

(7) satisfies the boundary condition limv→0 y(v) = 0. Given this observation, we want to show
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the existence of a solution yK(v) < 0 of (18) that satisfies the same boundary condition. If the

RHS is locally Lipschitz continuous in y for all v ≥ 0 the Picard-Lindelöf Theorem would

imply existence and uniqueness and moreover, Lipschitz continuity would imply that the

yK(v) is continuous in K. Unfortunately, although the RHS is locally Lipschitz continuous

for all v > 0, its Lipschitz continuity may fail at v = 0. Therefore, for v strictly away from 0,

the standard argument applies given Lipschitz continuity, but for neighborhood around 0, we

need a different argument. In what follows, we will center our analysis on the neighborhood

of v = 0.

We start by rewriting (18) by changing variables again, z(v) = y(v)vm:

z′ (v) = −rvm − (g(v,K)v −m)
z(v)

v
− h(v,K)

z(v)2

vm
. (19)

First, we show that the operator

LK(z)(v) =

∫ v

0

−rsm − (g(s,K)s−m)
z(s)

s
− h(s,K)

z(s)2

sm
ds. (20)

is a contraction mapping on a Banach space of solutions that includes (7). This extends the

Picard-Lindelöf Theorem to our setting and thus implies existence and uniqueness. Next,

we show that the fixed point of LK converges uniformly to the fixed point of L1 as K ↘ 1.

Finally, we show that we can obtain a sequence of solutions TK that converge (pointwise) to

the solution of the binding payoff floor constraint (with K = 1) and show that the revenue

of these solutions also converges to the value of the auxiliary problem.

Before we introduce the Banach space on which the contraction mapping is defined, we

first derive bounds for the RHS of (19).

Lemma 17. Suppose Assumption 2 is satisfied. For any κ > −1, there exist K > 1; an

integer m ≥ 0 given by m = bκc if κ ≥ 1, and m = 0 if κ ∈ (−1, 1); and strictly positive real

numbers α, η, ξ such that the following holds.

(a) m < |κ|+ η,

(b) (|κ|+η−m)α+ηα2+r
m+1

∈ [0, α],

(c) |κ|+η(1+2α)−m
m+1

∈ (0, 1),

(d) κ+η(1+α)−m
m+1

,κ−η(1+α)−m
m+1


∈ (0, 1) if κ > m

∈ (−1
2
, 1

2
) if κ = m

∈ (−1, 0) if κ < m

.

(e) |h(v,K)v2| < η for any v < ξ and K ∈ [1, K],
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(f) |g(v,K)v − κ| < η for any v < ξ and K ∈ [1, K],

Proof. The choice of m implies 0 ≤ m ≤ |κ| so that (a) is satisfied for any η > 0. In addition,

0 ≤ |κ|−m
m+1

< 1 and 0 ≤ |κ| < m + 1. Note that by the choice of m, κ < m if and only if

κ < 0; κ = m if and only if κ = 0, 1, . . . ; κ > m if and only if κ > 0 and κ is not an integer.

Next we choose α. Consider (b) . By the choice of m, the expression in (b) is non-negative

for any η, α > 0. Given this, Part (b) is equivalent to

ηα2 − (2m+ 1− |κ| − η)α + r ≤ 0.

Hence,
(2m+1−|κ|−η)−[(2m+1−|κ|−η)2−4rη]

1
2

2η
≤ α ≤ (2m+1−|κ|−η)+[(2m+1−|κ|−η)2−4rη]

1
2

2η
. Since 2m +

1− |κ| > 0, as η → 0, the upper bound of α goes to +∞ while the lower bound converge to
r

2m+1−|κ| by L’Hospital’s rule. We choose α = 2r
2m+1−|κ| . Then there exists η0 > 0 such that

Part (b) holds for any η ∈ (0, η0) .

For m,α,and η0 chosen above, since 0 ≤ |κ|−m
m+1

< 1, there exists η1 ∈ (0, η0) such that

Part (c) holds for any η ∈ (0, η1).

For Part (d), consider the limit

lim
η→0

κ± η(1 + α)−m
m+ 1

=
κ−m
m+ 1


∈ (0, 1) if κ > m

= 0 if κ = m

∈ (−1, 0) if κ < m

By continuity in both cases there exists η ∈ (0, η1) such that Part (f) holds.

Finally, given η chosen for Part (f) , it follows from Lemma 16 that we can choose ξ and

K jointly such that (e) and (f) hold. The proof of Lemma 16 shows that ξ can be chosen

independently of K if K < K.

Note that (K,m,α, η, ξ) in Lemma 17 only depend on the number of buyers n and the

distribution function F . Since Lemma 13 is a statement for a fixed distribution and fixed

n, we treat (K,m, α, η, ξ) as fixed constants for the rest of this section. In the following, we

slightly abuse notation by using n as an index for sequences. The number of buyers does not

show up in the notation in the remainder of this section except in the final proof of Lemma

13.

We define a space of real-valued functions

Z0 =

{
z : [0, ξ]→ R

∣∣∣∣ sup
v
| z(v)

vm+1
| ∈ R

}
,
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and equip it with the norm

||z||m = sup
v

∣∣∣∣ z(v)

vm+1

∣∣∣∣ .
Define a subset of Z0 by

Z = {z : [0, ξ]→ R | ||z||m ≤ α} .

Note that these definitions are independent of K < K.

Lemma 18. Suppose Assumption 2 is satisfied. Z0 is a Banach space with norm || · ||m and

Z is a complete subset of Z0.

Proof. For any γ1, γ2 ∈ R and z1, z2 ∈ Z0 and v ∈ [0, ξ], we have∣∣∣∣γ1z1(v) + γ2z2(v)

vm+1

∣∣∣∣ ≤ |γ1|
∣∣∣∣z1(v)

vm+1

∣∣∣∣+ |γ2|
∣∣∣∣z2(v)

vm+1

∣∣∣∣
≤ |γ1|||z1||m + |γ2|||z2||m
< ∞.

Therefore Z0 is a linear space. It’s straight forward to see that || · ||m is a norm on Z0. We

now show Z0 is complete. Consider a Cauchy sequence {zn} ⊂ Z0: for any ε > 0, there

exists Nε such that ||zn′ − zn||m < ε for any n′, n ≥ Nε.

First, notice that for any n > 0, ||zn||m ≤ β := maxn′≤Nε {||zn′ ||m} + ε < ∞. Next

we claim that zn converges pointwise. To see this, note that supv |
zn′ (v)−zn(v)

vm+1 | < ε implies

that | zn′ (v)−zn(v)

vm+1 | = | zn′ (v)

vm+1 − zn(v)
vm+1 | < ε for any v. Since | zn(v)

vm+1 | ≤ β, completeness of real interval

with the regular norm implies that there exists x (·) such that zn(v)
vm+1 → x(v) pointwise and

|x(v)| ≤ β. Now define z(v) = x(v)vm+1. It’s straightforward that zn(v)→ z(v) pointwise.

Finally, we show that zn converges under || · ||m. To see this notice that ||zn − z|| =

supv |
zn(v)
vm+1 − x(v)| ≤ ε for any n > Nε. In addition, since |x(v)| ≤ β, ||z||m ≤ β. This proves

that Z is complete. The same argument shows that Z is complete, by replacing the bound

β by α.

To study the ODE (19) for each K ∈ [1, K],we define an operator LK on Z as in (20).

Lemma 19. Suppose Assumption 2 is satisfied. The operator LK is a contraction mapping

on Z with a common contraction parameter ρ < 1 for all K ∈ [1, K].

Proof. First we show that LKZ ∈ Z. For any z ∈ Z and v ∈ [0, ξ],

|LK(z)(v)| =
∣∣∣∣∫ v

0

−rsm − (g(s,K)s−m)
z(s)

s
− h(s,K)s2 z(s)2

sm+2
ds

∣∣∣∣
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≤rv
m+1

m+ 1
+

∣∣∣∣∫ v

0

(g(s,K)s−m)
z(s)

s
ds

∣∣∣∣+ η (||z||m)2

∫ v

0

s2m+2−m−2ds

≤rv
m+1

m+ 1
+ sup

s∈[0,ξ]

|g(s,K)s−m| ||z||m
∫ v

0

sm+1

s
ds+ ηα2 v

m+1

m+ 1

≤rv
m+1

m+ 1
+ (|κ|+ η −m)α

vm+1

m+ 1
+ ηα2 v

m+1

m+ 1

=
(|κ|+ η −m)α + ηα2 + r

m+ 1
vm+1

≤αvm+1.

The first inequality follows from the triangle inequality of real numbers, Part (e) of Lemma

17 and |z(s)| ≤ ||z||msm+1. The second inequality follows from |z(s)| ≤ ||z||msm+1 and

||z||m ≤ α. The third inequality follows from Lemma 17: for any s ∈ [0, ξ] and K ∈ [1, K]:

|g(s,K)s−m| ≤ |g(s,K)s− κ|+ |κ−m|

≤

η + κ−m if κ ≥ 1

η + |κ| if κ ∈ (−1, 1)

= |κ|+ η −m.

We now show LK : Z → Z is a contraction mapping. For any z1, z2 ∈ Z and v ∈ [0, ξ],

|LK(z1)(v)− LK(z2)(v)|

=

∣∣∣∣∫ v

0

−(g(s,K)s−m)
z1(s)− z2(s)

s
− h(s,K)s2 z1(s)2 − z2(s)2

sm+2
ds

∣∣∣∣
≤
∫ v

0

sup
s∈[0,ξ]

|g(s,K)s−m| |z1(s)− z2(s)|
s

+ sup
s∈[0,ξ]

|h(s,K)s2| |z1(s) + z2(s)||z1(s)− z2(s)|
sm+2

ds

≤(|κ|+ η −m)

∫ v

0

||z1 − z2||m
sm+1

s
ds

+

∫ v

0

η(||z1||m + ||z2||m)||z1 − z2||m
s2m+2

sm+2
ds

≤(|κ|+ η −m)
vm+1

m+ 1
||z1 − z2||m + η2α

vm+1

m+ 1
||z1 − z2||m

=vm+1 |κ|+ η −m+ η2α

m+ 1
||z1 − z2||m

The first inequality follows from the triangle inequality for real numbers. The second inequal-
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ity follows from sup |g(s,K)s−m| < |κ|+η−m which was shown above, |z1(s)−z2(s)| ≤ ||z1−
z2||msm+1, sup |h(s,K)s2| < η, and |z1(s)+z2(s)| ≤ |z1(s)|+ |z2(s)| ≤ (||z1||m+ ||z2||m)sm+1.

The third inequality follows from ||z||m ≤ α.

It follows immediately that ||LK(z1) − LK(z2)||m ≤ |κ|+η−m+η2α
m+1

||z1 − z2||m. By Part (c)

of Lemma 17, ρ := |κ|+η−m+η2α
m+1

∈ (0, 1) , which is independent of K ∈ K. Hence LK is

contraction mapping on Z, with a common contraction parameter for all K ∈ [1, K].

Since LK : Z → Z is a contraction mapping, the Banach fixed point theorem implies

that there exists a unique fixed point of LK in Z. For any K ∈
[
1, K

]
, we denote the

fixed point by zK , i.e., zK = LK(zK) ∈ Z. By the Banach fixed point theorem we have

zK = limn→∞ L
n
K(0).

Lemma 20. Suppose Assumption 2 is satisfied. The fixed point of LK on Z, and hence the

solution to the ODE (19) must be strictly negative for v > 0.

Proof. Let ρ1 = κ+η−m+ηα
m+1

, ρ2 = κ−η−m−ηα
m+1

. We claim that there exists M1,M2 such that

M1 ≤
LnK(0) (v)

vm+1
≤M2 < 0 (21)

for any n ≥ 1.

For any n > 1,

LnK(0)(v) (22)

=− r

m+ 1
vm+1 −

∫ v

0

(g(s,K)s−m)
Ln−1
K (0) (s)

s
+ h(s,K)s2

(
Ln−1
K (0) (s)

)2

sm+2
ds

=− r

m+ 1
vm+1

+

∫ v

0

(
(g(s,K)s−m)

1

s
+ h(s,K)s2L

n−1
K (0) (s)

sm+2

)(
−Ln−1

K (0) (s)
)
ds

We prove separate the three cases κ > m, κ = m, κ < m (which is equivalent to κ < 0)

separately.

Case 1: κ > m. In this case, ρ1, ρ2 > 0 by Lemma 17. Let M1 = − r
m+1

and M2 =

− r
m+1

(1 − ρ1). By part (d) of Lemma 17: M1 ≤ −r
m+1

≤ M2 < 0. Therefore we have

L1
K(0) (v) = − r

m+1
vm+1 satisfying (21). We prove the desired result by induction. For n > 1,

consider (22):

LnK(0)(v) ≤ − r

m+ 1
vm+1 +

∫ v

0

(
κ−m+ η

s
+
ηαsm+1

sm+2

)(
−Ln−1

K (0)(s)
)
ds
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≤ − r

m+ 1
vm+1 + (κ−m+ η(1 + α))

∫ v

0

(
−M1

sm+1

s

)
ds

=

(
− r

m+ 1
− ρ1M1

)
vm+1

= M2v
m+1

The first inequality follows from −Ln−1
K (0) > 0, LK ∈ Z, and replacing the coefficient of

−Ln−1
K (0) by its upper bound. The second inequality follows from κ − m + η(1 + α) > 0

and replacing −Ln−1
K (0) with its upper bound −M1s

m+1 (by the induction hypothesis). In

addition,

LnK(0)(v) ≥ − r

m+ 1
vm+1 +

∫ v

0

(
κ−m− η

s
− ηαsm+1

sm+2

)(
−Ln−1

K (0) (s)
)
ds

≥ − r

m+ 1
vm+1 + (κ−m− η(1 + α))

∫ v

0

(
−M2

sm+1

s

)
ds

=

(
− r

m+ 1
− ρ2M2

)
vm+1

≥M1v
m+1

The first inequality follows from−Ln−1
K (0) (s) > 0 and replacing the coefficient of

(
−Ln−1

K (0) (s)
)

by its lower bound. The second inequality follows from κ−m− η(1 + α) > 0 and replacing

−Ln−1
K (0) with its upper bound −M2s

m+1 (by the induction hypothesis). The last inequality

follows from −ρ2M2 > 0 and the choice of M1.

Case 2: κ < m. In this case, ρ1, ρ2 ∈ (−1, 0) by part (d) of Lemma 17. Let M1 =

− r
m+1

1
1+ρ2

and M2 = − r
m+1

. ρ2 < 0 implies M1 ≤ − r
m+1

≤ M2 < 0. Therefore we have

L1
K(0) (v) = − r

m+1
vm+1 satisfying (21). For n > 1, consider (22) :

LnK(0)(v) ≤ − r

m+ 1
vm+1 + (κ−m+ η(1 + α))

∫ v

0

(
−M2

sm+1

s

)
ds

=

(
− r

m+ 1
− ρ1M2

)
vm+1

≤ − r

m+ 1
vm+1

= M2v
m+1

The first inequality follows from a similar derivation as in the case κ > m. However here

κ − m + η(1 + α) < 0, therefore −Ln−1
K (0) is replaced by its lower bound −M2s

m+1. The
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second inequality follows because ρ1M2 > 0. In addition,

LnK(0)(v) ≥ − r

m+ 1
vm+1 + (κ−m− η(1 + α))

∫ v

0

(
−M1

sm+1

s

)
ds

=

(
− r

m+ 1
− ρ2M1

)
vm+1

= M1v
m+1.

Case 3: κ = m. Then ρ1 = −ρ2 = η(1+α)
m+1

∈ (−1/2, 1/2) by part (d) of Lemma 17. Let

M1 = − r
m+1

1
1−ρ1

and M2 = − r
m+1

1−2ρ1

1−ρ1
. Since m ≥ 0 we have ρ1 ∈ (0, 1/2). This implies

M1 ≤ − r
m+1

≤ M2 < 0. Therefore we have L1
K(0) (v) = − r

m+1
vm+1 satisfying (21). For

n > 1, consider (22) :

LnK(0)(v) ≤ − r

m+ 1
vm+1 + η(1 + α)

∫ v

0

(
−M1

sm+1

s

)
ds

=

(
− r

m+ 1
− η(1 + α)

m+ 1
M1

)
vm+1

= M2v
m+1

To obtain the first inequality, we replace −Ln−1
K (0) by its upper bound −M1s

m+1 since

η(1 + α) > 0. In addition,

LnK(0)(v) ≥ − r

m+ 1
vm+1 − η(1 + α)

∫ v

0

(
−M1

sm+1

s

)
ds

=

(
− r

m+ 1
+
η(1 + α)

m+ 1
M1

)
vm+1

= M1v
m+1

To obtain the first inequality, we replace −Ln−1
K (0) (v) by its upper bound −M2s

m+1 since

−η(1 + α) < 0.

Lemma 21. Suppose Assumption 2 is satisfied. Then supv∈[0,ξ]

∣∣∣ zK(v)
vm
− z1(v)

vm

∣∣∣→ 0 as K → 1.

Proof. First note that for any ε > 0, it follows from Lemma 16 that g(v,K)v and h(v,K)v2

are bounded over v ∈ [0, ξ] and K ∈ [1, K]. Hence there exists Γ ∈
(
1, K

)
such that

sup
v∈[0,ξ],K∈[1,Γ]

|g(v,K)v − g(v, 1)v| < ε,

sup
v∈[0,ξ],K∈[1,Γ]

|h(v,K)v2 − h(v, 1)v2| < ε.
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Since supv∈[0,ξ]

∣∣∣ zK(v)
vm
− z1(v)

vm

∣∣∣ ≤ supv ||zK − z1||mvm+1

vm
≤ ξ||zK − z1||m, it’s sufficient to show

that limK→1 ||zK − z1||m = 0. The proof follows from Lee and Liu (2013, Lemma 13(b)). Let

ρ = |κ|+η−m+η2α
m+1

< 1 be the contraction parameter, which is independent of K. For all z ∈ Z
and K ∈ [1,Γ],

|LK(z)(v)− L1(z)(v)|

=

∣∣∣∣∫ v

0

(g(s,K)s− g(s, 1)s)
z(s)

s
+ (h(s,K)s2 − h(s, 1)s2)

z(s)2

sm+2
ds

∣∣∣∣
≤ε
∫ v

0

z(s)

s
ds+ ε

∫ v

0

z(s)2

sm+2
ds

≤ε
(
||z||m

vm+1

m+ 1
+ ||z||2m

vm+1

m+ 1

)
≤εα + α2

m+ 1
vm+1

Therefore, ||LK(z)− L1(z)||m ≤ εα+α2

m+1
.

For any n > 1,

||LnK(z)− Ln1 (z)||m
=||LK

(
Ln−1
K (z)

)
− L1

(
Ln−1
K (z)

)
+ L1

(
Ln−1
K (z)

)
− L1

(
Ln−1

1 (z)
)
||m

≤||LK
(
Ln−1
K (z)

)
− L1

(
Ln−1
K (z)

)
||+ ||L1

(
Ln−1
K (z)

)
− L1

(
Ln−1

1 (z)
)
||m

≤εα + α2

m+ 1
+ ρ||Ln−1

K (z)− Ln−1
1 (z)||m

≤εα + α2

m+ 1

n−1∑
k=0

ρk

≤εα + α2

m+ 1

1

1− ρ

Given zK = limn→∞ L
n
K(0), there exists Nε s.t. ∀n ≥ Nε, ||zK − LnK(0)|| ≤ ε:

||zK − z1||m ≤ ||zK − LnK(0)||m + ||z1 − Ln1 (0)||m + ||LnK(0)− Ln1 (0)||m

≤ 2ε+ ε
α + α2

m+ 1

1

1− ρ

=

(
2 +

α + α2

m+ 1

1

1− ρ

)
ε

Therefore limK→1 ||zK − z1||m = 0.
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Given definition z(v) = y(v)vm, let yK(v) = zK(v)
vm

, where zK is the fixed point of LK .

It follows from the previous two lemmas that yK(v) is negative and limK→1 ||yK − y1|| = 0

under standard sup norm. Now we have all the ingredients necessary to prove Lemma 13.

Proof of Lemma 13. The uniform convergence of yK implies that the cutoff sequence vKt

given by v (t) = v (0) +
∫ t

0
yK (v (s)) ds converges pointwise to the cutoff sequence vt = v1

t

associated with the trading time function T (v) = T 1 (v). Since vt is continuous and strictly

decreasing (by Lemma 9), this implies that the trading time function

TK (v) = sup
{
t : vKt ≥ v

}
converges pointwise to T (v). To see this, note that sup {t : vt ≥ v} = sup {t : vt > v}, since

vt is continuous and strictly decreasing. Now, for all t such that vt > v, there exists Kt such

that vKt > v for all K < Kt. Hence,

lim
K↘1

sup
{
t : vKt ≥ v

}
≥ sup {t : vt > v} .

Similarly, for all t such that vt < v, there exists Kt such that vKt < v for K < Kt. Hence,

lim
K↘1

sup
{
t : vKt ≥ v

}
≤ sup {t : vt ≥ v} .

Therefore, for all v, we have

lim
K↘1

sup
{
t : vKt ≥ v

}
= sup {t : vt ≥ v} ,

or equivalently,

lim
K↘1

TK(v) = T (v).

It remains to show that the seller’s ex ante revenue converges. Notice that the sequence

e−rT
K(v) is uniformly bounded by 1. Therefore, the dominated convergence theorem implies

that

lim
K↘1

∫ 1

0

e−rT
K(x)J(x)dF (n)(x) =

∫ 1

0

e−rT (x)J(x)dF (n)(x).
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C.3 Proof of Lemma 14

Proof. For t ∈ {0,∆, 2∆, . . .}, define

VK,∆t : =
{
v ∈

[
0, vK,∆t

]∣∣∣J(v|v ≤ vK,∆t ) ≥ 0
}
,

VK,∆t : =
[
0, vK,∆t

]
\ VK,∆t .

Consider the LHS of the payoff floor constraint at t = k∆, k ∈ N0. Notice that, for k > 0,

the new posterior at this point in time is equal to the old posterior at ((k−1)∆)+. Therefore,

we can approximate the LHS of the payoff floor at t = k∆ as:∫
[0,vK,∆

k∆ ]
e−r (TK,∆(v)−k∆)J(v|v ≤ vK,∆k∆ ) f (n)(v|v ≤ vK,∆k∆ )dv

=

∫
[0,vK,∆

k∆ ]
e−r (TK(v)−(k−1)∆)e−r (TK,∆(v)−TK(v)−∆)J(v|v ≤ vK,∆k∆ ) f (n)(v|v ≤ vK,∆k∆ )dv

=

∫
VK,∆
k∆

e−r (TK(v)−(k−1)∆)e−r (TK,∆(v)−TK(v)−∆)J(v|v ≤ vK,∆k∆ ) f (n)(v|v ≤ vK,∆k∆ )dv

+

∫
VK,∆
k∆

e−r (TK(v)−(k−1)∆)e−r (TK,∆(v)−TK(v)−∆)J(v|v ≤ vK,∆k∆ ) f (n)(v|v ≤ vK,∆k∆ )dv

≥
∫
VK,∆
k∆

e−r (TK(v)−(k−1)∆)J(v|v ≤ vK,∆k∆ ) f (n)(v|v ≤ vK,∆k∆ )dv

+

∫
VK,∆
k∆

e−r (TK(v)−(k−1)∆)er∆J(v|v ≤ vK,∆k∆ ) f (n)(v|v ≤ vK,∆k∆ )dv

=

∫
VK,∆
k∆

e−r (TK(v)−(k−1)∆)J(v|v ≤ vK,∆k∆ ) f (n)(v|v ≤ vK,∆k∆ )dv

+

∫
VK,∆
k∆

e−r (TK(v)−(k−1)∆)J(v|v ≤ vK,∆k∆ ) f (n)(v|v ≤ vK,∆k∆ )dv

−
∫
VK,∆
k∆

e−r (TK(v)−(k−1)∆)
(
1− er∆

)
J(v|v ≤ vK,∆k∆ ) f (n)(v|v ≤ vK,∆k∆ )dv

≥
∫

[0,vK,∆
k∆ ]

e−r (TK(v)−(k−1)∆)J(v|v ≤ vK,∆k∆ ) f (n)(v|v ≤ vK,∆k∆ )dv

−
∫
VK,∆
k∆

e−r (TK(v)−(k−1)∆)
(
1− er∆

)
J(v|v ≤ vK,∆k∆ ) f (n)(v|v ≤ vK,∆k∆ )dv.

Where we have used that TK,∆(v) − TK(v) −∆ ≤ 0 as well as the definitions of VK,∆k∆ and

VK,∆k∆ to obtain the first inequality. The first term in the last expression is equal to the LHS

of the payoff floor constraints at ((k − 1)∆)+ for the original solution vK . Hence it is equal
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to KΠE(vK,∆k∆ ). Therefore, we have

∫ vK,∆
k∆

0

e−r (TK,∆(v)−k∆)J(v|v ≤ vK,∆k∆ ) f (n)(v|v ≤ vK,∆k∆ )dv

=KΠE(vK,∆k∆ ) +
(
er∆ − 1

) ∫
VK,∆
k∆

e−r (TK(v)−(k−1)∆)J(v|v ≤ vK,∆k∆ ) f (n)(v|v ≤ vK,∆k∆ )dv

≥KΠE(vK,∆k∆ ) +
(
er∆ − 1

) ∫
VK,∆
k∆

J(v|v ≤ vK,∆k∆ ) f (n)(v|v ≤ vK,∆k∆ )dv

=KΠE(vK,∆k∆ )−
(
er∆ − 1

) [
Π̃M(vK,∆k∆ )− ΠE(vK,∆k∆ )

]
=KΠE(vK,∆k∆ )−

(
er∆ − 1

) [Π̃M(vK,∆k∆ )

ΠE(vK,∆k∆ )
− 1

]
ΠE(vK,∆k∆ ),

where

Π̃M(w) :=

∫
[0,w]

max {0, J(v|v ≤ w)} f (n)(v|v ≤ w)dv < w.

Next we show that
Π̃M (vK,∆

k∆ )

ΠE(vK,∆
k∆ )

− 1 is uniformly bounded. Recall that by Assumption 3,

there exist 0 < M ≤ 1 ≤ L <∞ and α > 0 such that Mvα ≤ F (v) ≤ Lvα for all v ∈ [0, 1].

This implies that the rescaled truncated distribution

F̃x(v) :=
F (vx)

F (x)
,

for all v ∈ [0, 1] is dominated by a function that is independent of x:

F̃x(v) ≤ Lvαxα

Mxα
=

L

M
vα.

Next, we observe that the revenue of the efficient auction can be written in terms of the

rescaled expected value of the second-highest order statistic of the rescaled distribution:

ΠE(v) =

∫ 1

0

vsdF̃ (n−1:n)
v (s).

If we define F̂ (v) := min
{

1, L
M
vα
}

and B :=
∫ 1

0
sdF̂ (n−1:n)(s), then given F̃x(v) ≤ L

M
vα we

can apply Theorem 4.4.1 in David and Nagaraja (2003) to obtain ΠE(v) ≥ Bv > 0. Since

Π̃M(v) ≤ v, we have

Π̃M(vK,∆k∆ )

ΠE(vK,∆k∆ )
− 1 ≤ 1

B
− 1.
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Therefore, LHS of the payoff floor at t = k∆ is bounded below by[
K −

(
er∆ − 1

)( 1

B
− 1

)]
ΠE(vK,∆k∆ ).

Clearly, for ∆ sufficiently small, the term in the square bracket is no less than (K+1)/2.
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