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Appendix A Main Analytical Results

In this appendix, we provide the omitted proof of Theorem 1, derivation of waiting times,

and additional comparative results. To do that, we first provide a formal model of tissue-type

incompatibility: Each patient has a type, depending on against which subset of HLA tissue proteins

he has preformed antibodies. We study the limit as the number of types goes to infinity. First, fix

the number of types to a finite k. The probability that a patient is of type i is mi,k > 0, so that∑
imi,k = 1. Let θi,k be the tissue-type incompatibility probability between any donor and patient

of type i. If a donor is tissue-type compatible with a type i patient, then the donor is tissue-type

compatible with all patients of type i. We take the number of types, k, to infinity and make some

regularity assumptions on the growth of mi,k and θi,k in the limit. See Appendix F for details.

These assumptions hold for the special case when θi,k = θ < 1 and mi,k → 0 for every patient type

i as k →∞ (Lemma A-7). In the current appendix, as well as for the results in the main text, we

use this special case.

We also define steady states formally: A state is defined through the measures of type X − Y
pairs who have waited t years in the patient pool, denoted by (X−Y, t), and blood-type X unpaired

patients who have waited t years in the patient pool, denoted by (X, t), for all blood types X and

Y and waiting time t. We say that the population under a given policy of transplantation is at a

steady state when the measures of all (X − Y, t) and (X, t) are constant through time, i.e., the

state does not change over time.

A.1 Optimal Regular and Incentivized Exchange

We first formally categorize pair types in the following three classes. The naming of these

classes is based on the comparison of the flows of the type and its reciprocal type for ABO-i optimal

exchange (Assumptions 1 and 2). The types X−Y with a weakly lower flow than that of Y −X are

overdemanded, while the ones with the weakly higher flow are underdemanded. Remaining types

are referred to as self-demanded, as each such pair is matched with another pair of the same type

in ABO-i optimal exchange:

• Overdemanded Types: These are pair types X − Y such that Y . X and Y 6= X and pair

type A−B. There are six of these types, A−O, A−B, B−O, AB−O, AB−A and AB−B.
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• Self-demanded Types: These are pair types X − X. There are four of these types, O − O,

A− A, B −B, and AB − AB.

• Underdemanded Types: These are pair types X − Y such that X . Y and X 6= Y and pair

type B−A. There are six of these types, O−A, O−B, O−AB, A−AB, B−A, and B−AB.

The following lemma characterizes feasible exchanges. It is useful in the proof of Theorem 1. Similar

results also appear in Roth, Sönmez, and Ünver (2007) and Ünver (2010), so we skip its proof.

Lemma A-1 (Exchange blood-type feasibility) An underdemanded-type pair can be matched

only with an overdemanded-type pair in an exchange. An overdemanded-type pair can be matched

with pairs with types from each of the three categories. A self-demanded-type pair can be matched

with a same-type or overdemanded-type pair. In particular, the following results hold:

• An underdemanded-type O−A (or O−B) pair can be matched only with a pair from overdemanded

types A − O (or B − O) or AB − O. An underdemanded-type A − AB (or B − AB) pair can

be matched only with a pair from overdemanded types AB − A (or AB − B) or AB − O. An

underdemanded-type O−AB pair can be matched only with an overdemanded-type AB−O pair.

• An overdemanded-type A− B (or underdemanded-type B − A) pair can be matched only with a

pair from its reciprocal type B −A (or A−B); or from overdemanded types B −O (or A−O),

AB − A (or AB −B), or AB −O.

• A self-demanded-type X − X pair can be matched with a same-type pair. Additionally, a type

O−O pair can be matched only with a pair from overdemanded types A−O, B−O, or AB−O;

a type A−A (or B−B) pair can be matched only with a pair from overdemanded types AB−A
(or AB − B) or AB − O; and a type AB − AB pair can be matched only with a pair from

overdemanded types AB − A, AB −B, or AB −O.

Proof of Theorem 1. Suppose Assumptions 1 and 2 hold. Under the proposed policy, by Lemma

A-6 in Appendix F, all self-demanded-type pairs can be matched with their own-type pairs as soon

as they arrive.

Similarly, type A − B pairs, which have a weakly lower flow rate than that of type B − A

by Assumption 2, can be matched as soon as they arrive with type B − A pairs (Lemma A-4 in

Appendix F). Hence, under this policy some type B − A pairs will remain in the exchange pool.

These pairs can only be matched with some overdemanded-type pairs by Lemma A-1, as type A−B
pairs are already committed to other type B − A pairs.

Next consider underdemanded-type pairs except those of B − A. These are type Y − X pairs

such that Y 6= X and Y . X. By Assumption 1, we have θpY αXπX ≤ pXαYπY . By Lemma

A-1, they can only be matched with overdemanded-type pairs. Recall that the flow of each type

Y −X pair to the exchange pool is pXαYπY . Their reciprocal type X−Y , which is overdemanded,

has flow θpY αXπX ≤ pXαYπY . Hence, we can match all such overdemanded-type X − Y pairs

as soon as they enter the pool with their reciprocal-type pairs (Lemma A-5 in Appendix F). As

all overdemanded- and self-demanded-type pairs are matched as soon as they arrive, by Lemma

A-1, the proposed policy achieves the maximum measure of pairs matched. At steady state, as no

incompatible overdemanded-type or self-demanded-type pair waits in the pool (and moreover, get
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immediately matched and help one additional pair), the maximum mass of possible exchanges is

also conducted in this manner in any closed time interval.

On the other hand, if we do not conduct the exchanges immediately whenever they become

available but only after some time interval, then some of the patients will not survive. Hence, when

we do not conduct the exchanges as soon as possible, we will match a strictly smaller mass of pairs

than we would have matched under the proposed policy.

A.2 Finding Waiting Times for Transplantation

In this subsection of this appendix, we explain how we find waiting times for deceased-donor

and living-donor transplants at the steady state using our dynamic continuum model.

A.2.1 Only Deceased-Donor Transplantation

We start when the only available transplantation regime is deceased donation. In this case, at

any time the longest-waiting cohort of blood-type X patients receive the incoming blood-type X

deceased-donor kidneys. Let this cohort have arrived tdX years before the current time. Assuming

deceased-donor kidneys are the only source of transplants, at steady state we have

[πX + φdδX ]S(tdX) = δX .

Hence, the time spent on the blood-type X deceased-donor queue at steady state, or equivalently

the transplant waiting time for blood-type X patients, can be found as

tdX = S−1
(

δX
πX + φdδX

)
= S−1

(
sd,decX

)
.

A.2.2 Deceased-Donor/Direct Living-Donor Transplantation

When additionally direct living-donor transplantation is available, at any time the longest-

waiting cohort of blood-type X patients without compatible donors receive the incoming blood-type

X deceased-donor kidneys. Let this cohort have arrived tlX years before the current time. At steady

state, we have πl
XS(tlX) = δX , and therefore the time spent on the blood-type X deceased-donor

queue by the receiving cohort can be found as

tlX = S−1
(
δX
πl
X

)
= S−1

(
δX

πX + φdδX − (1− φl)λX

)
= S−1

(
sl,decX

)
.

All living-donor transplants are carried out instantaneously; thus, their waiting time is zero.

A.2.3 Adding Regular or Incentivized Exchange

Next, we derive waiting times for transplantations when regular or incentivized exchange is also

feasible in addition to deceased-donor and direct living-donor transplantation.

Recall that for all incentivized-exchange-eligible pairs, i.e., of all types X − Y such that Y . X,

Y 6= X, and the patient and donor have no tissue-type incompatibility, ρX−Y ∈ [0, 1] is the fraction

that participate in incentivized exchange. Let ρ = (ρX−Y )Y .X,Y 6=X be the vector of such fractions.

We use the terms “regular exchange” and “incentivized exchange with ρ = 0%” interchangeably.

To determine the steady-state outcomes, we introduce certain flow rates.1 For each blood type X

1Some of these were previously defined throughout Section 4.
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and each Y 6= X, let

πX−Y =

{
[θ + ρX−Y (1− θ)]pY αXπX if Y . X

pY αXπX otherwise
(1)

refer to the pair-type X − Y flow to the exchange pool. Let the incentivized pair flow relevant

for blood type X be given by

κX =
( ∑
Y : Y .X & Y 6=X

ρX−Y (1− θ)pY
)
αXπX . (2)

Observe that φlκX is the reentry flow of previously incentivized blood-type X patients to the

patient pool. These patients will be prioritized in the deceased-donor queue of blood type X and

will not wait upon reentry. Thus, the effective flow rate of deceased-donor kidneys for nonprioritized

blood-type X patients is δX − φlκX . We also have

πnp&u
X = (1− αX)πX︸ ︷︷ ︸

new unpaired

+ φdδX︸ ︷︷ ︸
reentry / deceased

+ φl[λX + εX + ιX − κX ]︸ ︷︷ ︸
reentry / all live minus incentivized

(3)

as the total nonprioritized and unpaired blood-type X patient flow.

We define the following ratios:

1. The ratio of the deceased-donor effective flow for nonprioritized patients to the nonprioritized

and unpaired patient flow is

rX =
δX − φlκX

πnp&u
X

. (4)

2. For each underdemanded type X − Y except B − A (i.e., X 6= Y and X . Y ), the ratio of the

flow of incompatible or incentivized type Y −X pairs to the total flow of type X − Y pairs is

rX−Y =
πY−X

πX−Y
=

[θ + ρY−X(1− θ)]pXαYπY

pY αXπX

.

3. For the remaining underdemanded type B −A, the ratio of type A−B flow to type B −A flow

is

rB−A =
πA−B

πB−A
=
pBαAπA

pAαBπB

.

The first ratio, rX , is less than one because of our assumption that there is a shortage of deceased-

donor kidneys for unpaired new entrants, i.e., (1 − αX)πX > δX . The second ratio, rX−Y , is less

than one by Assumption 3. Finally, the last ratio, rB−A, is less than or equal to one by Assumption

2. Ratio rX would be a service rate if we wanted to allocate all blood-type X deceased donors that

are reserved for nonprioritized patients to nonprioritized and unpaired blood-type X patients. For

an underdemanded type X − Y , ratio rX−Y would be a service rate for living-donor transplants if

type X−Y pairs did not receive any deceased-donor transplants but only participated in exchange.

In these cases, the waiting time for a deceased-donor transplant for nonprioritized and unpaired

blood-type X patients would be

tX = S−1
(δX − φlκX

πnp&u
X

)
,
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and the waiting time of underdemanded-type X − Y pairs would be

tX−Y = S−1
(πY−X

πX−Y

)
.

However, underdemanded-type pairs have another option besides exchange. If deceased donors

become available earlier than the exchange option, they will receive deceased-donor transplants. As

we mentioned in the main text, we assume that patients accept the first donor who is offered to

them, either through deceased-donor allocation or exchange. Hence, the patient of a type X − Y
pair will never wait for a type Y −X pair for exchange if a deceased donor becomes available first,

i.e., if tX−Y > tX . As waiting times are strictly decreasing functions of the r ratios defined above,

we need to compare these ratios in an iterative manner to decide whether pairs of one or more

underdemanded types will also receive deceased-donor transplants.

To this end, we first define X − Y1, . . . , X − Yk(X) as the ordered list of underdemanded types

according to ascending rX−Y ratios, where we have k(O) = 3, k(B) = 2, k(A) = 1, and k(AB) = 0

as the respective numbers of underdemanded pair types whose patients have blood types O, B, A,

and AB. We define the following potential pooling ratio for each ` = 0, . . . , k(X) :

rX,X−Y1,...,X−Y` =
δX − φlκX + πY1−X + . . .+ πY`−X

πnp&u
X + πX−Y1 + . . .+ πX−Y`

. (5)

Exchange regime iterative pooling procedure for unpaired and paired patients:

Fix a blood type X. We iteratively consider the following procedure starting with ` = 0.

Step `: Suppose types X − Y1, . . . , X − Y` have already been deemed to be receiving

both deceased-donor and exchange transplants.

• If rX−Y`+1
< rX,X−Y1,...,X−Y` then type X − Y`+1 pairs receive exchange and deceased-

donor transplants at the same time together with the nonprioritized and unpaired

blood-type X patients and type X − Y1, . . . , X − Y` pairs. We continue with Step

`+ 1.

• If rX−Y`+1
≥ rX,X−Y1,...,X−Y` then all type X − Y`+1, . . . , X − Yk(X) pairs only receive

exchange transplants but no transplants from deceased donors. We terminate the

procedure.

Based on this procedure, we state the following theorem:

Theorem A-1 (Waiting times under regular and incentivized exchange) Suppose As-

sumptions 2 and 3 hold. Consider the ABO-i deceased-donor allocation and incentivized-exchange

policies with a given incentivized-exchange participation-rate vector ρ = (ρX−Y )Y .X,Y 6=X (which can

possibly be zero). Consider a blood type X. Then the following statements hold:

1. Blood-type X patients, who are in overdemanded-type or self-demanded-type pairs and who have

either incompatible donors or are eligible and willing to participate in incentivized exchange,

participate in exchange immediately upon their arrival to the patient pool.

2. Suppose the patients in pairs of underdemanded types X − Y1, . . . , X − Y`(X) receive ex-

change and deceased-donor transplants, while the patients in pairs of underdemanded types
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X − Y`(X)+1, . . . , X − Yk(X) receive only exchange transplants for some `(X) ∈ {0, . . . , k(X)}.2

Then

• nonprioritized and unpaired blood-type X patients and the patients of type X−Y1, . . . , X−Y`(X)

pairs wait for a deceased-donor (or exchange) transplant for the duration

tiX = S−1
(
δX − φlκX + πY1−X + . . .+ πY`(X)−X

πnp&u
X + πX−Y1 + . . .+ πX−Y`(X)

)
, and, (6)

• for all ` ∈ {`(X) + 1, . . . , k(X)}, type X − Y` pairs are exclusively matched through exchange

and wait for an exchange transplant for the duration

tiX−Y` = S−1
(
πY`−X

πX−Y`

)
≤ tiX . (7)

The average waiting time to a transplant for all blood-type X patients is

ti,allX =

[
δX − φlκX +

∑`(X)
`=1 πY`−X

]
tiX +

∑k(X)
`=`(X)+1

[
πY`−X tiX−Y`

]
δX + λX + εX + ιX

(8)

Proof. The proof follows from the procedure discussed before the statement of the theorem. Since

blood-type X patients with compatible paired donors and blood-type X patients with incompatible

but blood-type-compatible donors have zero waiting time, Equation 8 is established.

When ρ = 0, we will refer to tiX as teX and ti,allX as te,allX .

A.3 Welfare Consequences of Transplant Regimes on Access of Patients

to Living-Donor Transplantation

We next present a result, which formulates how access to living-donor transplantation differs

across blood types with the introduction of each transplantation modality. For this analytical result,

we consider a baseline scenario where no blood type has an advantage over another for access to

transplantation beyond the asymmetry induced by blood-type compatibility and the impact of the

transplantation modalities analyzed. We present a corresponding result for access to deceased-donor

transplantation, formulated through waiting times, in the last subsection of this appendix.

Theorem A-2 Suppose Assumptions 2 and 3 hold. Let pA > pB. Suppose that αX = α for any

blood type X, and πX
pX

= πY
pY

for any two blood types X and Y . Suppose also that the fraction of

pairs taking the incentivized-exchange option is uniform at a fixed ρ < 1 for any eligible type. Then:

1. For direct living-donor transplantation, the access to living donation is ranked as

λO
πO

<
λB
πB

<
λA
πA

<
λAB
πAB

.

2. Kidney exchange, in addition to direct living-donor transplantation, by itself increases access to

living-donor transplantation for patients of blood type B the most, patients of blood type A next,

2`(X) = 0 refers to the case where no underdemanded type with blood-type X patient receives deceased-donor
transplant, and `(X) = k(X) refers to the case where all underdemanded types with blood-type X patients receive
both exchange and deceased-donor transplants.
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and patients of blood types AB and O equally and last: εB
πB

> εA
πA

> εAB
πAB

= εO
πO

. With the inclusion

of kidney exchange, overall access to living donation is ranked as

λO + εO
πO

<
λB + εB

πB

=
λA + εA

πA

<
λAB + εAB

πAB

= α.

3. Incentivized exchange, in addition to regular exchange and direct living-donor transplantation,

by itself increases access to living-donor transplantation for patients of blood type O the most,

patients of blood types A and B equally and next, and does not increase access for patients of

blood type AB: ιO
πO

> ιA
πA

= ιB
πB

> ιAB
πAB

= 0. With the inclusion of either version of incentivized

exchange, overall access to living donation is ranked as

λO + εO + ιO
πO

<
λB + εB + ιB

πB

=
λA + εA + ιB

πA

<
λAB + εAB + ιAB

πAB

= α.

Proof of Theorem A-2. Let pA > pB. Suppose that αX = α for any blood type X, and
πX
πY

= pX
pY

for any two blood types X and Y . Also assume that the fraction of pairs taking the

incentivized-exchange option is uniform at a fixed ρ < 1 for any eligible type.

1. We consider λX , the overall flows of pairs with blood-type X patients participating in direct

living-donor-transplantation regime for each blood type X:

λO
πO

=
(1− θ)pOαπO

πO

= (1− θ)pOα,

λA
πA

=
(1− θ)(pO + pA)απA

πA

= (1− θ)(pO + pA)α,

λB
πB

=
(1− θ)(pO + pB)απB

πB

= (1− θ)(pO + pB)α, and

λAB
πAB

=
(1− θ)απAB

πAB

= (1− θ)α.

Thus,
λO
πO

<
λA
πA

,
λB
πB

<
λAB
πAB

.

Moreover, since pB < pA, we have λB
πB

< λA
πA

.

2. We consider εX , the overall flows of pairs that have blood-type X patients and participate in

regular exchange, for each X:

εO
πO

=
θpOα(πO + πA + πB + πAB)

πO

= (θpO + θpA + θpB + θpAB)α = θα,

εA
πA

=
θpOαπA + θpAαπA + pBαπA + θpAαπAB

πA

= (θpO + θpA + pB + θpAB)α,

εB
πB

=
θpOαπB + pBαπA + θpBαπB + θpBαπAB

πB

= (θpO + pA + θpB + θpAB)α, and

εAB
πAB

=
θpOαπAB + θpAαπAB + θpBαπAB + θpABαπAB

πAB

= (θpO + θpA + θpB + θpAB)α = θα,

where the second equality in each line (except the last) follows from the assumption that pX
πX

is

constant among all X. Since θ < 1 and pA, pB > 0, we have
εO
πO

=
εAB
πAB

<
εA
πA

,
εB
πB

.

A-7



With the additional assumption pA > pB, we obtain εA
πA

< εB
πB

.

We consider each λX + εX , the flow of direct living-donor and exchange transplants in total.

We have
λO + εO

πO

=(1− θ)pOα + θ(pO + pA + pB + pAB)α = (pO + θpA + θpB + θpAB)α,

λA + εA
πA

=(1− θ)(pO + pA)α + (θpO + θpA + pB + θpAB)α = (pO + pA + pB + θpAB)α,

λB + εB
πB

=(1− θ)(pO + pB)α + (θpO + pA + θpB + θpAB)α = (pO + pA + pB + θpAB)α, and

λAB + εAB
πAB

=(1− θ)α + θα = α.

Since θ < 1 and pA, pB, pAB > 0,

λO + εO
πO

<
λA + εA

πA

=
λB + εB

πB

<
λAB + εAB

πAB

= α.

3. Next we consider ιX , the overall flow of pairs with blood-type X patients benefitting from

incentivized exchange for each blood type X:

ιO
πO

=
ρ(1− θ)pOαπA + ρ(1− θ)pOαπB + ρ(1− θ)pOαπAB

πO

= ρ(1− θ)(pA + pB + pAB)α,

ιA
πA

=
ρ(1− θ)pAαπAB

πA

= ρ(1− θ)pABα,

ιB
πB

=
ρ(1− θ)pBαπAB

πB

= ρ(1− θ)pABα, and

ιAB
πAB

= 0,

where the second equality in each line (except the last) follows from the assumption that pX
πX

is

constant among all X. Since ρ > 0, θ < 1, and pA, pB, pAB > 0,

0 =
ιAB
πAB

<
ιA
πA

=
ιB
πB

<
ιO
πO

.

We consider each λX + εX + ιX , i.e., direct living-donor, regular-exchange, and incentivized-

exchange transplants in total. We have

λO + εO + ιO
πO

=pOα + [θ + ρ(1− θ)] (pA + pB + pAB)α,

λA + εA + ιA
πA

=(pO + pA + pB)α + [θ + ρ(1− θ)] pABα,

λB + εB + ιB
πB

=(pO + pA + pB)α + [θ + ρ(1− θ)] pABα, and

λAB + εAB + ιAB
πAB

=α.

Since ρ, pAB, α > 0,

λO + εO + ιO
πO

<
λA + εA + ιA

πA

=
λB + εB + ιB

πB

<
λAB + εAB + ιAB

πAB

= α,

and they are all equal if and only if ρ = 1, because θ < 1.
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A.4 Consequences of Different Transplantation Regimes on Transplant

Waiting Times

In this subsection, we state and prove a lemma that formalizes the marginal effects of living-

donor exchange policies on the transplant waiting times of the following 29 groups of patients under

some reasonable assumptions. These 29 groups are nonprioritized and unpaired patients of each

blood type (4 groups), compatible pairs of overdemanded and self-demanded types (5 groups for

overdemanded types and 4 groups for self-demanded types; recall that the overdemanded type A−B
pairs are never compatible), incompatible pairs of overdemanded and self-demanded types (6 groups

for overdemanded types and 4 groups for self-demanded types), and pairs of underdemanded types

(6 groups).

In addition to Assumptions 2 and 3, we also assume that the tissue-type incompatibility proba-

bility θ and the reentry rate of living-donor-transplant recipients φl are sufficiently small. Formally,

“for a vector of sufficiently small parameters x, some claim holds” means that “there exists some

vector x � 0 (i.e., all entries of the vector are larger than 0) such that for all x, 0 ≤ x ≤ x, that

claim holds.” These assumptions guarantee that all underdemanded-type pairs, except possibly

type B − A, are pooled with their respective nonprioritized and unpaired patients for deceased-

donor transplantation under the regular-exchange regime. Furthermore, we also assume that the

difference between flows of pair types B − A and A− B is sufficiently small. This guarantees that

B − A pairs only participate in exchange and are never pooled for deceased-donor transplantation

in all of exchange regimes we consider. This lemma will be used to prove Theorem A-3, our last

result of this appendix in the next subsection.

Lemma A-2 (Consequences of regular and incentivized exchange) Suppose Assumptions

2 and 3 hold for a given incentivized-exchange participation-fraction profile ρ∗ = (ρ∗X−Y )Y .X & Y 6=X .

Suppose also that reentry fraction of living-donor-transplant recipients φl, inflow difference between

types B − A and A − B given as pAαBπB − pBαAπA, and tissue-type incompatibility probability θ

are sufficiently small. Then the following results hold:

• With respect to deceased-donor/direct living-donor transplantation regime, regular-exchange

regime causes steady-state transplant waiting times of all nonprioritized and unpaired patient

groups and all incompatible pair groups to decrease. In particular, in addition to compatible

pair groups, all incompatible overdemanded and self-demanded pair groups no longer wait for a

transplant and receive exchange transplants immediately upon entry to the patient pool.

• With respect to regular-exchange regime, incentivized-exchange regime causes the transplant wait-

ing times of

◦ all overdemanded- and self-demanded-type pair groups to stay at zero,

◦ all underdemanded-type pair groups except type B − A pairs to decrease,

◦ type B − A pairs not to change,

◦ nonprioritized and unpaired blood-type O, A, and B patient groups to decrease, and

◦ nonprioritized and unpaired blood-type AB patient group to increase.
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Proof of Lemma A-2. Suppose we fix an incentivized-exchange participation-fraction vector

ρ∗ = (ρ∗X−Y )Y .X & Y 6=X such that Assumptions 2 and 3 hold. Then under any of the exchange

policies (i.e., regular with ρ = 0 or incentivized with ρ = ρ∗) the flow of underdemanded-type

X − Y pairs and their reciprocal-type Y −X pairs (from Equation 1) satisfy:

πX−Y = pY αXπX ≥ πY−X =

{
[θ + ρY−X(1− θ)]pXαYπY if Y −X 6= A−B

pBαAπA otherwise
.

As we have established before, in the optimal, ABO-i exchange regime for regular and incentivized

exchange, none of the pairs of incompatible overdemanded and self-demanded types wait for a

transplant, as they immediately receive transplant through exchange.

In the rest of the proof, we focus on the other patient groups: underdemanded-type pairs and

nonprioritized and unpaired patients.

Suppose also that the tissue-type incompatibility probability, θ, and the inflow difference between

types B − A and A−B, pAαBπB − pBαAπA, are sufficiently small.

We prove the following claim first:

Claim 1. Under regular exchange, patients of all underdemanded-types pairs except that of

B − A are pooled with nonprioritized and unpaired deceased-donor-transplantation recipients of

the same blood type, while patients of type B − A pairs are never pooled with nonprioritized and

unpaired blood-type B patients under any exchange regime.

Proof of Claim 1. For a blood type X ∈ {O,A,B} (note that blood-type AB patients are

not in any underdemanded-type pairs), under regular exchange we have κX
∣∣
ρ=0

= 0. We also have

rX
∣∣
ρ=0

=
δX

πnp&u
X

∣∣
ρ=0

> rX−Y
∣∣
ρ=0

=
θpXαYπY

pY αXπX

(9)

for any underdemanded type X − Y 6= B − A, where the inequality follows from sufficiently small

θ assumption.

Recall that k(A) = 1 and k(O) = 3 are the numbers of underdemanded pair types with blood-

type A and O patients, respectively.

Thus, pairs of the only underdemanded type with blood-type A patient, A − AB, are pooled

with nonprioritized and unpaired blood-type A patients under regular exchange by Equation 9.

We order underdemanded pair types with patient blood type O according to the ascending order

of their r ratios as O − Y1, O − Y2, and O − Y3. Then, for ` = 1, 2,

rO,O−Y1,...,O−Y` |ρ=0 =
δO +

∑`
m=1 θpOαYmπYm

πnp&u
O

∣∣
ρ=0

+
∑`

m=1 pYmαOπO

>
θpOαY`+1

πY`+1

pY`+1
αOπO

= rO−Y`+1

∣∣
ρ=0 (10)

because of the assumption that θ is sufficiently small.

Thus, under regular exchange, underdemanded-type pairs with blood-type O patients are pooled

for deceased-donor transplantation with nonprioritized and unpaired blood-type O patients.

On the other hand, for the underdemanded pair type B − A, we have

rB−A =
pBαAπA

pAαBπB

> rB (11)
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for any ρ because of the assumption that the difference pAαBπB − pBαAπA is sufficiently small.

Thus, pairs of type B−A are never pooled with nonprioritized and unpaired blood-type B patients

under regular or incentivized exchange for any ρ.

Equation 9 with X = B and Equation 11 imply that pairs of type B − AB are pooled with

nonprioritized and unpaired blood-type B patients under regular exchange. �

We also assume that the fraction of living-donor-transplant recipients reentering the patient

pool, φl, is also sufficiently small in the rest of the proof.

Transition to Regular Exchange:

Consider a blood type X. The flow of pairs that benefit from direct living-donor transplant

regime is given by λX =
∑

Y :Y .X(1 − θ)pY αXπX . The flow of pairs that benefit from regular

exchange satisfies εX =
∑

Y :Y .X θpY αXπX +
∑

Y :X.Y,Y 6=X θpXαYπY + 1{
X∈{A,B}

}pBαAπA > 0.3

This is also the flow of patients that fall out of competition from the blood-type X deceased-donor

queue with respect to the deceased-donor/direct living-donor transplantation regime.

We consider the ratio of the available deceased-donor flow to the flow of patients who cannot

receive direct living donation, which we refer to as rlX , and rX,X−Y1,...,X−Y`(X)|ρ=0

∣∣
ρ=0

when pairs of

underdemanded types X−Y1, . . . , X−Y`(X)|ρ=0 are pooled for deceased-donor transplantation under

regular exchange. We have

rlX =
δX

πX −
∑
Y :Y .X

(1− θ)pY αXπX︸ ︷︷ ︸
=λX

+ φdδX + φlλX
and (12)

rX,X−Y1,...,X−Y`(X)

∣∣
ρ=0

=
δX +

∑`(X)|ρ=0

m=1 (θpXαYmπYm)

πX − αXπX + φdδX + φlλX + φlεX︸ ︷︷ ︸
=πnp&uX

∣∣
ρ=0

+
∑`(X)|ρ=0

m=1 (pYmαXπX)
. (13)

Claim 2. The transplant waiting time decreases with the addition of regular exchange to

deceased-donor/direct living-donor transplantation for unpaired patients and underdemanded-type

pairs.

Proof of Claim 2. For all X, we have from Equations 12 and 13 that, when φl = 0

rlX
∣∣
φl=0

=
δX

πX − (1− θ)
∑

Y :Y .X pY αXπX + φdδX
and

rX,X−Y1,...,X−Y`(X)

∣∣
ρ=0,φl=0

=
δX +

∑`(X)

∣∣
ρ=0,φl=0

m=1 (θpXαYmπYm)

πX − (1−
∑`(X)

∣∣
ρ=0,φl=0

m=1 pYm)αXπX + φdδX

.

Since B − A pairs are not pooled for deceased-donor transplantation by Claim 1, we have

B − A 6= X − Ym for any X and m. Thus, for each Ym, X . Ym and Ym 6= X. Thus, we obtain

3The indicator function 1{Z}gets value 1 if the event Z is true and value 0 if the event Z is false.
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1 −
∑`(X)

∣∣
ρ=0,φl=0

m=1 pYm ≥ 1 −
∑

Y :X.Y,Y 6=X pY . We also have 1 −
∑

Y :X.Y,Y 6=X pY =
∑

Y :Y .X pY >

(1− θ)
∑

Y :Y .X pY , as θ > 0. Thus,

rlX
∣∣
φl=0

< rX,X−Y1,...,X−Y`(X)

∣∣
ρ=0,φl=0

.

By the continuity of the r ratios in φl, for sufficiently small φl we have rlX < rX
∣∣
ρ=0

, implying that

tlX = S−1
(
rlX
)
> S−1

(
rX,X−Y1,...,X−Y`(X)

∣∣
ρ=0

)
= teX . (14)

Since by Claim 1 pairs of underdemanded types except B −A are pooled with deceased-donor-

transplant recipients under regular exchange, their transplant waiting times also decrease. Moreover,

the transplant waiting time of type B − A pairs decreases even more, as it is not pooled with

deceased-donor-transplant recipients by Claim 1.�

Transition to Incentivized Exchange:

Consider a blood type X ∈ {A,B,O}. Suppose ρ∗ is the participation profile for incentivized

exchange. The flow of pairs who benefit from incentivized exchange with any ρ in addition to

regular exchange satisfies

ιX =
∑

Y :X.Y,Y 6=X

ρY−X(1− θ)pXαYπY ,

while the flow of prioritized reentrants satisfies

φlκX = φl

( ∑
Y :Y .X,Y 6=X

ρX−Y (1− θ)pY αXπX

)
.

As a result, for some `(X) ∈ {0, . . . , k(X)}, pairs of underdemanded types X − Y1, . . . , X − Y`(X)

are pooled for deceased-donor transplantation at ρ, and thus, we have

rX,X−Y1,...,X−Y`(X)
=

δX − φlκX +
∑`(X)

m=1 ([θ + ρYm−X(1− θ)]pXαYmπYm)

πX − αXπX + φdδX + φlλX + φlεX + φlιX︸ ︷︷ ︸
=πnp&uX

+
∑`(X)

m=1 pYmαXπX

. (15)

Claim 3. The transplant waiting times decrease under incentivized exchange with respect to

regular exchange for nonprioritized and unpaired blood-type X patients and all underdemanded-

type pairs with blood-type X patients—except type B − A.

Proof of Claim 3. We will show that all ratios rX−Ym for all m = 1, . . . , k(X), such that

X − Ym 6= B − A, and ratio rX,X−Y1,...,X−Y`(X)
increase from ρ = 0 to ρ = ρ∗, and thus, the related

transplant waiting time decreases. We have `(X) = `(X)
∣∣
ρ=0

(i.e., the number of pooled types at

ρ = 0) for sufficiently small ρ profiles, since r ratios are continuous around ρ = 0 and there are no

sudden jumps in pooling by Claim 1. Thus, for sufficiently small ρ, when φl = 0

rX,X−Y1,...,X−Y`(X)

∣∣
φl=0

=
δX +

∑`(X)|
φl=0

m=1 ([θ + ρYm−X(1− θ)]pXαYmπYm)

πX − αXπX + φdδX +
∑`(X)|

φl=0

m=1 pYmαXπX
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and

rX−Ym =
[θ + ρYm−X(1− θ)]pXαYmπYm

pYmαXπX

are increasing in ρ. Suppose that we increase each ρW−Z from 0 to ρ∗W−Z in a steady speed equal to

ρ∗W−Z throughout so that ρ reaches ρ∗ at time t = 1. We can compare the rates of change in both

entities along this line as the inner product of their gradient vector and speed vector:(
∇ρrX,X−Y1,...,X−Y`(X)

)
· ρ∗
∣∣
φl=0

=

∑`(X)|
φl=0

m=1 ρ∗Ym−X(1− θ)pXαYmπYm

πX − αXπX + φdδX +
∑`(X)|

φl=0

m=1 pYmαXπX

<
ρ∗Ym−X(1− θ)pXαYmπYm

pYmαXπX

= (∇ρrX−Ym) · ρ∗,

for m = `(X)|φl=0, i.e., the r ratio for the pooled nonprioritized and unpaired patients and

underdemanded-type pairs changes slower than the largest of the r ratios of the underdemanded

types that are pooled when φl = 0. Thus, as ρ increases to ρ∗, either ρ reaches ρ∗ without `(X)|φl=0

changing or there will be a profile ρ1 such that 0 � ρ1 < ρ∗, at which `(X)|φl=0 decreases to

`(X)
∣∣
ρ=0,φl=0

− 1 so that pairs of the underdemanded type with the highest r ratio are no longer

pooled with the rest. Similarly, the resulting new r value relevant for the pool of nonprioritized and

unpaired patients and remaining underdemanded-type pairs will be increasing in ρ until ρ reaches a

new cutoff ρ2 ≤ ρ∗. At this new cutoff `(X)
∣∣
ρ=ρ2,φl=0

= `(X)
∣∣
ρ=0,φl=0

−2, and so on, so forth. Possi-

bly, no underdemanded pairs may remain pooled at sufficiently high ρ, implying that `(X)|φl=0 = 0,

and thus,
(
∇ρrX,X−Y1,...,X−Y`(X)

)
· ρ∗
∣∣
φl=0

= 0. Except after this last iteration, all r ratios strictly

increase at each iteration until t = 1 at different speeds when φl = 0.

In the end, for sufficiently small φl, by the continuity of the r ratios (and their gradients) in

φl and by the fact that all underdemanded-type pairs were pooled initially at ρ = 0, all gradients

are strictly positive at least for small ρ. Thus, we obtain that the r ratios strictly increase from

ρ = 0 to ρ = ρ∗. As the transplant waiting time is decreasing in its relevant r ratio for each patient

group, for all underdemanded types with blood-type X patient blood type—except type B−A—and

nonprioritized and unpaired blood-type X patients, the transplant waiting times strictly decrease

with respect to their levels at ρ = 0. �

On the other hand, all paired blood-type AB patients receive direct or exchange living-donor

transplants without waiting when ρ = 0. This fact does not change when ρ = ρ∗. Thus, in both

cases the flow of blood-type patients that enter the deceased-donor queue is the same. In particular,

as there are no underdemanded pair types with blood-type AB patients, Equation 15 implies

tiAB|ρ = S−1
(

δ − φlκAB|ρ
πX − (1− φl)αXπX + φdδX

)
.

Since κAB|ρ=ρ∗ > κAB|ρ=0 = 0,

tiAB|ρ=ρ∗ > tiAB|ρ=0,

i.e., the transplant waiting time of nonprioritized and unpaired blood-type AB patients strictly

increases from ρ = 0 to ρ = ρ∗ regardless of φl and θ.

For sufficiently small type B−A and type A−B flow difference, since pairs of type B−A are not
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pooled with nonprioritized and unpaired B patients regardless of ρ∗ by Claim 1, their transplant

waiting time remains unaffected for any ρ, including ρ = 0 and ρ = ρ∗.

A.5 Welfare Consequences of Different Transplant Regimes on

Deceased-Donor Queues

Our last result of this section formulates how access to deceased-donor transplantation differs

with the successive introduction of deceased-donor transplantation, living-donor transplantation,

kidney exchange, and incentivized exchange.

Theorem A-3 Suppose Assumptions 2 and 3 hold. Let pA > pB. Suppose that αX = α for any

blood type X, and δX
δY

= πX
πY

= pX
pY

for any two blood types X and Y . Suppose also that the fraction

of pairs taking the incentivized-exchange option is uniform at a fixed ρ < 1 for any eligible type.

Then:

1. With deceased-donor transplantation only, the transplant waiting time at each deceased-donor

queue is the same for any blood type X:

tdO = tdA = tdB = tdAB.

2. Introduction of direct living-donor transplantation reduces the transplant waiting time at each

deceased-donor queue. The changes in transplant waiting times and the transplant waiting times

are ranked as follows:

(tdAB − tlAB) > (tdA − tlA) > (tdB − tlB) > (tdO − tlO),

tlmax = tlO > tlB > tlA > tlAB = tlmin.

Further suppose that θ and φl are sufficiently small. Then:

3. Introduction of kidney exchange in addition to deceased-donor/direct living-donor transplantation

further reduces the transplant waiting time at each deceased-donor queue, but more for blood type

B than blood type A equalizing the deceased-donor queue transplant waiting times for these two

blood types. The combination of kidney exchange and living-donor transplantation reduces the

transplant waiting time at the blood-type AB deceased-donor queue the most, at the blood-type

A and B deceased-donor queues equally next, and at the blood-type O deceased-donor queue the

least:

(tdAB − teAB) > (tdA − teA) = (tdB − teB) > (tdO − teO).

The inclusion of kidney exchange with deceased-donor/direct living-donor transplantation results

in the following ranking of the transplant waiting times:

temax = teO > teB = teA > teAB = temin.

4. Inclusion of incentivized exchange with regular exchange and deceased-donor/direct living-donor

transplantation decreases the transplant waiting times at the blood-type O, A, and B deceased-

donor queues but increases it at the blood-type AB deceased-donor queue. The waits at the

blood-type A and B deceased-donor queues continue to be equal:

tiO < teO, tiA = tiB < teA = teB, tiAB > teAB.
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Proof of Theorem A-3. Suppose Assumptions 2 and 3 hold. Let pA > pB. Suppose that αX = α

for any blood type X, and δX
δY

= πX
πY

= pX
pY

for any two blood types X and Y . Also assume that the

fraction of pairs taking the incentivized-exchange option is uniform at a fixed ρ < 1 for any eligible

pair type.

1. With deceased-donor transplantation only , the transplant waiting time at each deceased-

donor queue is tdX = S−1
(

δX
πX+φdδX

)
= S−1

(
δX
πX

1+φd
δX
πX

)
for any blood type X. Since δX

πX
= δY

πY

for any two blood types X and Y , we have tdX = tdY .

2. Introduction of direct living-donor transplantation reduces the transplant waiting time

at each deceased-donor queue X, since tlX = S−1
(

δX
πX

1+φd
δX
πX
−(1−φl)plXα

)
< S−1

(
δX
πX

1+φd
δX
πX

)
= tdX .

Since the probability of being compatible with the paired donor conditional on having a living

donor satisfies for each blood type

plO = (1− θ)pO, plB = (1− θ)(pO + pB),

plA = (1− θ)(pO + pA), plAB = (1− θ)(pO + pA + pB + pAB) = (1− θ),

and pA > pB, we have plO < plB < plA < plAB. Thus, as tlX is decreasing in plX and δX
πX

is constant

among blood types, we have

tlAB < tlA < tlB < tlO.

Moreover, Part 1 implies that(
tdAB − tlAB

)
>
(
tdA − tlA

)
>
(
tdB − tlB

)
>
(
tdO − tlO

)
.

Further assume that θ and φl are sufficiently small in the rest of the proof. We also have the

flow difference between type B −A and type A−B as pBαπA − pAαπB = 0 since pA
pB

= πA
πB

. Thus,

hypothesis of Lemma A-2 holds.

3. Introduction of regular exchange , in addition to deceased-donor/direct living-donor trans-

plantation, causes the deceased-donor waiting times for all blood types to decrease by Lemma

A-2. By Claim 1 in the proof of the same lemma, pairs of all underdemanded types except B−A
are pooled for deceased-donor transplantation with unpaired patients of their patients’ blood

types. By Equation 13 and πX
πY

= pX
pY

for any two blood types X, Y , we obtain

rO,O−A,O−B,O−AB
∣∣
ρ=0

=
δO + (θpOαπA + θpOαπB + θpOαπAB)

πO − απO + φdδO + φl (λO + εO) + (pAαπO + pBαπO + pABαπO)

=

δO
πO

+ (θpAα + θpBα + θpABα)

1− α + φd δO
πO

+ φl
(

λO+εO
πO

)
+ (pAα + pBα + pABα)

,
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rA,A−AB
∣∣
ρ=0

=
δA + (θpAαπAB)

πA − απA + φdδA + φl (λA + εA) + (pABαπA)
=

δA
πA

+ (θpABα)

1− α + φd δA
πA

+ φl
(

λA+εA
πA

)
+ (pABα)

,

rB,B−AB
∣∣
ρ=0

=
δB + (θpBαπAB)

πB − απB + φdδB + φl (λB + εB) + (pABαπB)
=

δB
πB

+ (θpABα)

1− α + φd δB
πB

+ φl
(

λB+εB
πB

)
+ (pABα)

,

rAB =
δAB

πB − απAB + φdδAB + φl (λAB + εAB)
=

δAB
πAB

1− α + φd δAB
πAB

+ φl
(

λAB+εAB
πAB

) .
Since πX

πY
= δX

δY
for any two blood types X and Y , we have by Theorem A-2, λA+εA

πA
= λB+εB

πB
,

and thus, rA,A−AB
∣∣
ρ=0

= rB,B−AB
∣∣
ρ=0

implying that

teA = S−1
(
rA,A−AB

∣∣
ρ=0

)
= S−1

(
rB,B−AB

∣∣
ρ=0

)
= teB.

Suppose φl = 0. Then,

rO,O−A,O−B,O−AB
∣∣
ρ=0,φl=0

=

δO
πO

+ (θpAα + θpBα + θpABα)

1− α + φd δO
πO

+ (pAα + pBα + pABα)
,

rA,A−AB
∣∣
ρ=0,φl=0

=

δA
πA

+ (θpABα)

1− α + φd δA
πA

+ (pABα)
, and

rAB
∣∣
φl=0

=

δAB
πAB

1− α + φd δAB
πAB

.

Since for sufficiently small θ,
δX/πX

1−α+φdδX/πX
> θ for any X, we have that

δX/πX+θq(X)
1−α+φdδX/πX+q(X)

is decreasing in q(X) for any q(X) ≥ 0. Thus, we can rank the above entities as

rO,O−A,O−B,O−AB
∣∣
ρ=0,φl=0

< rA,A−AB
∣∣
ρ=0,φl=0

< rAB
∣∣
φl=0

. By the continuity of these r ratios

in φl, for sufficiently small φl we still have rO,O−A,O−B,O−AB
∣∣
ρ=0

< rA,A−AB
∣∣
ρ=0

< rAB. As the

generic transplant waiting time t = S−1(r) is decreasing in r, we can rank the waiting times for

deceased-donor transplantation in the queue under regular exchange as

teAB < teA = teB < teO,

and thus, by Part 1, (
tdAB − teAB

)
>
(
tdA − teA

)
=
(
tdB − teB

)
>
(
tdO − teO

)
.

4. Introduction of incentivized exchange , in addition to deceased-donor/direct living-donor

transplantation and regular exchange, causes the waiting time for a deceased-donor transplant

to decrease for all blood types except AB, for which it increases by Lemma A-2. Since pX
pY

= πX
πY

for any two blood types X and Y , the relevant r ratios for transplant waiting times in the

deceased-donor queue satisfy for each k = 0, . . . , k(X), such that X − Yk 6= B − A,

rX,X−Y1,...,X−Yk =

δX
πX
− φl κX

πX
+
∑k

m=1 ([θ + ρ(1− θ)]pYmα)

1− α + φd δX
πX

+ φlλX+εX+ιX
πX

+
∑k

m=1 pYmα
,

where λO+εO+ιO
πO

< λA+εA+ιA
πA

= λB+εB+ιB
πAB

< λAB+εAB+ιB
πB

= α by Theorem A-2, and

κO
πO

= 0 <
κA
πA

= ρ(1− θ)pOα =
κB
πB

= ρ(1− θ)pOα <
κAB
πAB

= ρ(1− θ)(pO + pA + pB)α.
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Moreover, we have that for all underdemanded types X − Y except type B − A, the r ratio

rX−Y =
[θ + ρ(1− θ)]pXαπY

pY απX

= θ + ρ(1− θ) (16)

is uniform. Define r̂X := rX,X−Y1,...,X−Y`(X)
. Thus, type A − AB pairs will be pooled with

nonprioritized and unpaired blood-type A patients if and only if type B − AB pairs will be

pooled with nonprioritized and unpaired blood-type B patients. This implies r̂A = r̂B and

tiA = S−1 (r̂A) = S−1 (r̂B) = tiB.

Appendix B Construction of Calibration Parameters for

Numerical Predictions of the Model

In this appendix, we explain how the calibration parameters, reported in Table 2 in Section 5

and used to generate the numerical model predictions, are constructed.

In Table A-1, we report the blood-type distribution for different ethnicities and fractions of these

ethnicities in the US population. Using these, we calculate an overall US blood-type distribution

(the last row of this table). We use this as the blood-type distribution of living donors, (pX), in our

model.

US Blood Type and Ethnicity Distribution Data

Ethnicities Blood Types Pop. %

O A B AB

African American 0.490 0.270 0.200 0.040 12.4%
Asian American 0.400 0.280 0.270 0.050 3.3%

Native American 0.790 0.160 0.040 0.010 0.8%
White American 0.450 0.400 0.110 0.040 83.4%

US population 0.456 0.378 0.126 0.040

Table A-1: The US ethnical blood type distribution and US ethnicity distribution are from Blood-
book.com (2018a,b). The blood-type distribution for the overall US population is constructed using the
ethnicity distribution and could be slightly different from the general distributions reported in other sources.

In Table A-2, we report the OPTN and SRTR data for average of deceased-donor queue ad-

ditions and deceased- and living-donor transplants between 2009-2017 (OPTN and SRTR, 2009-

2018a,b,c,d,e,f). We measure time in one year units and calculate the flows using the annual numbers

reported in this data. First, we observe that on average 2×7936
11714

= 1.4761 kidneys are harvested from

each deceased donor, since a total of 7936 deceased donors arrive while 11714 deceased-donor trans-

plants are conducted. The deceased-donor flows, (δX), are constructed by multiplying each entry

in the second to last row of the table with 1.4761. The row above, deceased-donation recipients, is

used as the de-facto deceased-donor flows, (δ′X), in the numerical calculations.
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The US OPTN and SRTR Kidney Data

O A B AB All

Patient Total Additions to the Queue 17,010 11,507 5,156 1,337 35,009
Arrivals Living-Donor-Transplant Recipients not on Queue 179 173 52 17 420

Reentrants 1,973 1,481 592 181 4,227

Total Direct Living-Donor Transplants 2,127 1,978 667 208 4,979
Transplants Other Living-Donor Transplants 421 283 112 27 842

Deceased-Donor Transplants 5,357 4,188 1,548 621 11,714

Deceased-Donor Arrivals 3,786 2,942 939 268 7,936

Average CPRA (for the year 2017) 6.79%

Table A-2: Arrival and transplant averages per year to and from the kidney deceased-donor queue for
2009-2017 entrants. Data is obtained from OPTN and SRTR using the “advanced report” option from
http://optn.transplant.hrsa.gov (on 10/30/2018) (OPTN and SRTR, 2009-2018a,b,c,d,e,f).

New patient arrival flows, (πX), are calculated as follows: We know the annual additions to

the deceased-donor queue (the first row of the table). However, some patients receive living-donor

transplants without even registering in the queue (the second row of the table). We add these two

numbers and subtract the number of reentrants (the third row of the table) from them to find πX

for each blood type X.

Reentry fractions, φl and φd, are assumed to be the same, as the data from OPTN and SRTR

(2009-2018e) do not distinguish reentrants based on their previous transplantation type. We divide

the total number of reentrants (the last cell of the third row of the table) by the total number of

transplants (the sum of the last cells of the fourth-sixth rows of the table).

The tissue-type incompatibility probability, θ, is taken as the average calculated panel reactive

antibody (CPRA), 0.0679, for the 2017 entrants (see Table A-6 in Appendix D for its calculation

using data from OPTN and SRTR, 2009-2018d). CPRA measures the percentage of the population

with which the patient is tissue-type incompatible. We chose year 2017 because the entry flow

CPRA has been increasing over time since 2009. We consider different θ values in our robustness

analyses as explained in in Section 5.2.

The calculation of paired-donor fractions, (αX), requires the knowledge of the total number of

patients who arrive with paired donors. However, this information is not available since only the

realized living-donor transplants are recorded in this database. Most of these transplants are direct

transplants, i.e., those from the compatible paired donor of a patient. A smaller percentage of those

are from exchanges or from non-directed altruistic living donors. In the fourth row of Table A-2,

we report the numbers of direct living-donor transplants conducted (i.e., each entry is λX in our

model). Assuming patients and living donors are paired initially as in our model, we calculate the

probability of having a compatible donor conditional on being paired with a living donor. These

probabilities are calculated as follows using the living-donor blood-type distribution, (pX), reported
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in the last row of Table A-1:

plO =(1− θ)pO = 0.4251, plB =(1− θ)(pO + pB) = 0.5424,

plA =(1− θ)(pO + pA) = 0.7773, and plAB =(1− θ) = 0.9321.

Then, we calculate αX = λX
plXπX

for each blood type X. These values are stated in Table 2.

The incentivized-exchange participation fraction for a compatible pair type X − Y with Y . X

and Y 6= X, ρX−Y , is our free calibration variable. We assume that this fraction is uniform for each

type, and we denote it as ρ. We consider five regimes with ρ = 10, 20, 30, 50, and 100 percent.

The calibration of the survival function is explained in Appendix C.

Appendix C Calibrating Transplant Waiting Times

In this appendix, we give the model calibration results under benchmark parameters regarding

transplant waiting times, using the analytical derivations in Appendix A. We start with the survival

function and then give the results using this survival function.

C.1 Calibration of the Survival Function

Survival rate function S(t) is obtained from Hart et al. (2018) for deceased-donor queue depar-

tures. We fit a piecewise linear function (for t measured in years) as

S(t) =
K∑
k=1

1{tk−1≤t<tk} ·
( tk − t
tk − tk−1

Sk−1 +
t− tk−1
tk − tk−1

Sk

)
with indicator function 1{Z} getting value one if Z is a true event and value zero otherwise. We

used the anchor survival rates S1, . . . , S6 and times t1, . . . , t6 reported in Table A-3.

Survival Rates in the Deceased-Donor Queue

Time in years (tk): 0.5 1 1.5 2 2.5 3

Surviving Fraction (Sk): 97.1% 94.5% 89.8% 83.0% 78.1% 70.0%

Table A-3: For 2013 entrants obtained from Figure K16 in OPTN and SRTR “2016 Annual Data Report:
Kidney” (Hart et al., 2018) through the following calculation: the ratio of the patients on the deceased-
donor queue to the total number of patients who did not receive transplant at the end of each of the time
periods reported above.

We use t0 = 0 and S0 = 100% for the initial anchors. We only have data for three years. For

the final interval at between t6 = 3 and t7, we assume the same slope as in the previous interval

from t5 = 2.5 to t6 = 3 continues (which is a slope of −15% per year). Thus, we obtain S7 = 0% at

t7 = 7.32 years.

C.2 Numerical Predictions of the Model: Transplant Waiting Times

Table A-4 reports the numerical predictions of our model for waiting times for nonprioritized

deceased-donor transplantation across all regimes. These waiting times are calculated conditional

on receiving a transplant.
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A more standard waiting time measure used by OPTN and SRTR in the US is the median

transplant waiting time, which is the time at which half of the patients of a given cohort have

received a transplant (for example see Hart et al., 2018). Some of the reported waiting times in

Table A-4 also correspond to the median transplant waiting time; those are the ones reported in

boldface. Other regimes do not have well-defined median transplant waiting times because more

than half of the patients of a steady-state cohort die without a transplant. As seen in the last

column of Table 6 in Section 5.1, always less than 50 percent of B blood-type patients receive

transplants under any regime. Therefore, there is no median transplant waiting time defined for

them. For the general patient population, median transplant time is well defined starting with the

availability of regular exchange. At this regime, the overall service rate is 50.1 percent of all new

and reentering patients. As noted before, this finding is consistent with the current situation in the

US, in which since 2005, no yearly cohort has an assigned overall median transplant waiting time

empirically. The median patient of 2005 cohort is still in the deceased-donor queue as of December

2018. Regular exchange technologies are not currently fully utilized in their full extent in the US

(see Agarwal et al., 2019). Our model predicts in such cases median transplant waiting time is not

well defined.

Numerical Predictions of the Model:
Time to Nonprioritized Deceased-Donor Transplant

Conditional on Receiving One / Unconditional
Median Time to Any Kind of Transplant (only in boldface)

O A B AB All O A B AB All

Deceased-Donor Transplantation Only All plus ρ = 20%-Incentivized E.
ABO-i 5.24 4.94 5.60 5.40 5.18 4.83 4.51 5.24 5.16 4.77

De-facto 5.32 5.02 5.41 4.43 5.18 4.91 4.60 5.01 4.06 4.77

Deceased/Direct Living All plus ρ = 30%-Incentivized E.
ABO-i 5.02 4.58 5.40 5.13 4.90 4.76 4.52 5.25 5.19 4.75

De-facto 5.11 4.66 5.20 4.04 4.90 4.85 4.61 5.03 4.09 4.75

Deceased/Direct Living & Exchange All plus ρ = 50%-Incentivized E.
ABO-i 4.95 4.47 5.20 5.11 4.81 4.65 4.56 5.29 5.24 4.71

De-facto 5.04 4.56 4.97 4.01 4.81 4.74 4.62 5.07 4.14 4.71

All plus ρ = 10%-Incentivized E. All plus ρ = 100%-Incentivized E.
ABO-i 4.89 4.49 5.22 5.14 4.79 4.58 4.62 5.37 5.38 4.71

De-facto 4.98 4.58 4.99 4.03 4.79 4.68 4.71 5.14 4.27 4.73

Table A-4: Numerical predictions of the model for waiting times for nonprioritized deceased-donor trans-
plantation conditional on receiving this type of a transplant (measured in years) under the benchmark
parameters. The transplant waiting times in boldface also refer the (unconditional) median waiting
time to either deceased-donor or living-donor transplant, i.e., the time at which half of a cohort have
received transplants. If an entry is not bold, it means that the median patient dies, i.e., less than half of
a cohort receive transplants, and thus, a median transplant waiting time cannot be calculated.

Nonprioritized deceased-donor-transplant waiting times (and thus, overall median transplant

waiting times) decrease with increasing participation rates of pairs to incentivized exchange. For

example, for each additional 10 percent participation increase, the overall transplant waiting time
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decreases about 0.04 years or two weeks up to ρ = 50 percent.

The largest waiting-time gap in only-deceased-donor transplantation regime with de-facto allo-

cation is between types B and AB, as 0.98 years (see Table A-4). This gap further increases to

1.16 years in the deceased-donor/direct living-donor transplantation regime. Addition of regular

exchange decreases the largest gap to 1.03 years (though for this regime the largest gap is between

types O and AB). For each ∆ρ = 10 percent increase in participation in incentivized exchange

further decreases the largest gap by about 6 days (i.e., 0.016 years) (which is between types B and

AB when incentivized exchange becomes available). Thus, besides its welfare improving effects,

incentivized exchange seems to alleviate also the transplant waiting time inequality across blood

types.

Waiting times for living-donor-transplant recipients conditional on receiving a transplant are

reported in Table A-5. For overdemanded and self-demanded pair types, waiting time for a living-

donor transplant is always zero. For underdemanded pair types, with increasing participation to

incentivized exchange, the transplant waiting times weakly decrease. For low participation rates,

most types are pooled with nonprioritized and unpaired patients and receive transplants at the

same time with nonprioritized deceased-donor-transplant recipients. On the other hand, they are

no longer pooled with nonprioritized and unpaired patients under full participation. An exception

is B − A. Pairs of this type get matched exclusively with A − B pairs as long as some form of

exchange is feasible. They wait for only 3.06 years with the availability of exchange.

Numerical Predictions of the Model : Time to Transplant for Blood-Type-Incompatible Pairs
Conditional on Receiving a Transplant

O −A O −B O −AB A−B A−AB B −A B −AB

Deceased/Direct Living pooled pooled pooled pooled pooled pooled pooled

Deceased/Direct Living & Exchange pooled pooled pooled 0 pooled 3.06 pooled

All ρ = 10% pooled pooled pooled 0 pooled 3.06 pooled

plus ρ = 20% pooled pooled pooled 0 pooled 3.06 pooled

Incentivized ρ = 30% pooled pooled pooled 0 pooled 3.06 pooled

Exchange ρ = 50% pooled 4.39 pooled 0 pooled/4.60 3.06 pooled

ρ = 100% 3.53 1.56 4.20 0 2.05 3.06 3.81

Table A-5: Numerical predictions of the model for time to transplant for blood-type-incompatible pair
types (measured in years) conditional on receiving a transplant. “Pooled” means type X − Y pairs are
pooled with nonprioritized and unpaired blood-type X patients under both ABO-i and de-facto deceased-
donor allocation policies. Thus, these paired patients wait as long as their nonprioritizded and unpaired
counterparts and receive either a deceased-donor transplant or a living-donor transplant through exchange
(only if exchange is available) at this time. One exception is noted: Type A − AB pairs are pooled with
nonprioritizded and unpaired blood-type A patients under ABO-i policy. On the other hand, after waiting
for 4.60 years they receive entirely living-donor transplants, as long as they can live that long, under de-
facto policy. Note that the “pooled” transplant waiting times are the same times as the ones reported in
Table A-4 for the respective patient blood types.

A-21



Appendix D Simulations

In addition to the numerical model predictions in Section 5, we also conduct simulations emulat-

ing the discrete paired- and unpaired-patient and deceased-donor arrival processes in real life. Our

goal in conducting these simulations is to assess the welfare and equity consequences of our policy

proposal, incentivized exchange, more accurately. Moreover, the simulations give us a chance to

assess the validity of our continuum model in conducting policy analysis. We also assess the impact

of alternative exchange technologies, such as three-way exchange in addition to two-way.

D.1 Simulation Methodology

In the simulations, we allocate deceased-donor kidneys according to the de-facto allocation

policy on a FIFO basis to a compatible patient. If no compatible patient is found in the queue,

the kidney immediately perishes. We evaluate our proposal under two exchange-size restrictions,

two-way exchange and two-and-three-way exchange: Each arriving eligible type X − Y pair waits

to match in the next run of the kidney-exchange mechanism. The exchange is run once in every

month, and, hence, 12 times a year. As most real-life kidney-exchange programs do, the exchange

mechanism myopically maximizes the number of transplants among the available pairs using the

considered exchange-size policy. It chooses one arbitrary maximum matching and implements it.

If a compatible pair that is participating in incentivized exchange cannot be matched after one

exchange run, then it is taken out of the exchange pool. In this case, the patient of the pair

receives a direct transplant. Nevertheless, the patient of such a pair is eligible for a prioritized

deceased-donor transplant if he reenters the patient pool.

We assume that patients are heterogenous in their tissue-type incompatibility probabilities. We

use the entrant CPRA distribution reported in Table A-6 to generate the tissue-type incompatibility

probability θi for each patient i. The mean of this distribution gives us the value of θ we use in the

benchmark numerical model predictions, 0.068 (or 6.8 percentage points in the CPRA reporting

metric), in Section 5. This table gives the fraction of entrants in five different CPRA intervals.

We assume that all patients uniformly and randomly take CPRA values in their assigned CPRA

intervals. For example, this table reports that 4.25 percent of all entrants have CPRA points

between 0 percent and 20 percent (the second column of this table). We first assume that a

simulated patient i is assigned to this group with probability 0.0425. Then his exact tissue-type

incompatibility probability θi is determined uniformly randomly from the interval (0, 0.2).

The US OPTN and SRTR Data for CPRA Distribution for Entrants

CPRA intervals (in % points)

0 (0,20) [20,80) [80,98) [98,100)

Fraction of Entrants 86.35% 4.25% 5.53% 2.22% 1.64%

Table A-6: Data obtained from OPTN and SRTR (2009-2018d) for the year 2017 from
http://optn.transplant.hrsa.gov (on 10/30/2018).

Our simulations use a scaled-down version of the calibrated inflow rates for new patients and
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deceased donors. The US consists of 13 transplant regions of various sizes. Deceased-donor kidneys

are first offered to patients within their arrival regions. If a suitable match cannot be found in

the region, then they are offered nationally. Our simulation roughly maps to one small region that

comprises 1/20 of the population of the US and reflects the same patient and donor characteristics

as the overall US population does. Thus, we obtain deceased-donor and new-patient arrival flows

by dividing the population flows δ′X and πX reported in Table 2 by 20. For the other parameters

of the simulation, (pX), (αX), φl, φd, and S(t), we use the same parameters reported in this table

and Table A-3 in Appendix C, respectively.

In each iteration, we simulate the evolution of the kidney-allocation process in such a region for

15 years.4 Each year is divided into finite periods so that in each period either only one new patient,

reentrant, or deceased donor arrives. Thus, the number of periods in each year equals the sum of the

total flow of new patients,
∑

X πX/20, the total flow of deceased-donor kidneys,
∑

X δ′X/20, and

the total number of reentrants. The number of reentrants in a year is calculated as the minimum of

(a) the reentry fraction φ multiplied by the number of total transplants in the previous year and (b)

the total number of patients who previously received a transplant and are still alive. The numbers

of patients waiting in the queue, periods per year, and reentrants per year stabilize after a number

of years passes. We report the averages of the last three years (years 13 − 15). We run a total of

100 simulations and report their averages and standard errors.

The new-patient, deceased-donor, and reentrant generation processes are as follows: Each new

patient is generated independently and randomly with the underlying blood-type, tissue-type in-

compatibility probability, and living-donor pairing probability distributions. We also randomly

determine his survival time while waiting for a transplant so that the population probability of

remaining alive after waiting for t years is S(t). Once a patient is deemed paired, his paired donor’s

blood type is also independently and randomly generated in a similar fashion using the living-donor

blood-type distribution. We determine whether they are compatible using their blood types and the

patient’s tissue-type incompatibility probability with a random donor. For a deceased-donor kidney,

we only generate its blood type according to the distribution dictated by (δ′X/20). A reentrant to

the patient pool is determined according to the reentry probability among the living transplanted

patients with uniform distribution. We use the following transplanted patient survival functions to

determine how long each patient lives after receiving a transplant:

• The living-donor-transplant recipient survival-probability function is Sl(t) = 1.00e−0.033t.5

• The deceased-donor-transplant recipient survival-probability function is Sd(t) = 0.99e−0.050t.6

They are obtained by non-linear least squares using the survival probabilities reported in Table A-7

including the survival rate 100 percent for t = 0.

4Note that according to our survival function a patient can remain alive at most for 7.7 years without receiving
a transplant, as reported in Appendix C.

5Using NLLS, the coefficients’ 95% confidence intervals are (0.9893, 1.011) for 1.00 and (−0.0378,−0.0286) for
−0.033. We also have R2 = 0.9905.

6Using NLLS, the coefficients’ 95% confidence intervals are (0.9773, 1.008) for 0.99 and (−0.05654,−0.04286) for
−0.050. We also have R2 = 0.9909.
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US Transplant Survival Rates

Time: 3 mo. 1 yr. 2 yr. 3 yr. 5 yr.

Living-Donor Transplant Recipient 98.9% 96.3% 94.3% 91.2% 84.1%
Deceased-Donor Transplant Recipient 97.1% 93.9% 90.4% 86.4% 76.8%

Table A-7: The reported survival rate are for patients who received transplants in 2011 and obtained
from the “2018 USRDS Annual Data Report” (United States Renal Data System, 2018), Volume 2, Table
5.3 of Chapter 5.

For a reentrant, we use his original tissue-type incompatibility probability and blood type. We

assume that he is now unpaired. We also randomize his new survival time using the same overall

survival probability function S(t).

We consider 13 regimes in our simulations. The first eight regimes are (1) only deceased-donor

transplantation, (2) deceased-donor/direct living-donor transplantation, (3) deceased-donor/direct

living-donor transplantation and regular exchange, and (4, 5, 6, 7, 8) deceased-donor/direct living-

donor transplantation, regular and incentivized exchange for uniform participation rates ρ = 10, 20,

30, 50, 100 percent. These are also used in our numerical model predictions. We also consider five

additional incentivized-exchange regimes in which compatible type X−X pairs are also incentivized.

In our continuum model, this incentivization scheme does not have additional welfare benefits, as

all incompatible type X − X pairs are matched with each other in regular exchange as soon as

they arrive. On the other hand, in our simulations, as pair arrivals are discrete and patients are

heterogenous in their tissue-type compatibility probabilities, there could be potential welfare gains

from the participation of compatible type X −X pairs in exchange with incompatible X −X pairs

already in the queue.

D.2 Simulation Results

The simulation results for service rates regarding two-way exchange are slightly lower than or

comparable to those of the calibrated-model predictions for the de-facto deceased-donor allocation

policy. Service rates are reported in Table A-8. The new regimes, incentivized exchange with

compatible type X −X pairs, fare better than the incentivized regimes without compatible-type-

X −X-pair participation. When compared with Table 6 in Section 5, the corresponding percent-

ages are slightly lower than calibrated-model results in all exchange regimes. The simulation and

calibration results are similar to each other for only deceased-donor transplantation regime and

deceased-donor/direct living-donor transplantation regime. This can be attributed to the fact that

overdemanded pairs with high-CPRA patients do not necessarily participate in an exchange in the

simulations while they do under the continuum-model assumptions.

The simulation results regarding two-and-three-way exchange are reported in Table A-9 for

service rates. We also plot the comparison of service rates for paired patients to receive a living-

donor transplant between two-way exchange and two-and-three-way exchange in Figure A-1 and for

all transplants in Figure A-2. In the first figure (as well as Tables A-8 and A-9), we observe that 67.7

percent of living donation candidates are served through two-and-three-way exchanges in addition
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to direct donation when X −X pairs are not incentivized. This rate is 66.5 percent under two-way

exchange. Under ρ = 30 percent participation in incentivized exchange, these rates go up to 75.5

percent and 72.1 percent, respectively (resulting in a 3.4 percent difference). There is a further

increase in the difference of the service rates at ρ = 50 percent. The marginal impact of three-way

exchange technology slightly decreases at ρ = 100 percent. This is expected as most gains from

exchange are utilized through higher incentivized participation rates. There is one contribution of

three-way exchange that higher incentivized participation rates cannot compensate under two-way

exchange: According to our model calibration, annually more B −A pairs arrive than A−B pairs

do. Thus, all type B − A pairs cannot be matched in our optimal two-way exchange policy. As

ρ increases, all remaining B − A pairs can be matched through three-way exchanges consisting of

pairs of types A−O, O−B, B−A or AB−B, B−A, A−AB (see Roth, Sönmez, and Ünver, 2007

for details). The figure also shows that once all the remaining B−A pairs can be matched through

three-way exchanges, even if ρ increases further, the marginal gains from three-way exchange no

longer increases. About 98.5 percent or more of all paired A, B, and AB patients are matched

under two-and-three-way exchange policy when ρ = 100 percent (see the last row of Table A-9),

while this rate is lower for B under two-way exchange (around 93.9 percent).

When compatible pairs of types X − X are also incentivized, we observe almost no difference

under two-and-three-way exchange. However, compatible-X − X-pair participation has a much

higher impact when three-way exchange technology is unavailable. For example, for ρ = 20 percent,

71.1 percent of all paired patients are matched when compatible X−X pairs are incentivized. When

they are not incentivized, the service rate is 70.3 percent. Differences stand for different ρ values.

The reason for this disparity is the flexibility provided by three-way exchanges. An incompatible

type X −X pair can potentially be inserted in a two-way exchange that includes a blood-type X

patient. For example, a two-way exchange of pair types (X − Y, Y − X) can be extended to a

three-way exchange as (X −X,X − Y, Y −X).7 Thus, such a couple of X − Y and Y −X pairs

plays a role similar to a single compatible X −X pair; they both help an incompatible X −X pair

to be matched through an exchange. Thus, the availability of three-way exchange almost perfectly

substitutes for compatible-X −X-pair participation in matching incompatible pairs.

We also give some absolute numbers from our simulations that are multiplied by 20, the simu-

lation scale parameter, to compare them with the continuum model’s predictions. We observe that

the simulations lead to an average of 4, 994 (with a standard error of 16.8) direct-living annual donor

transplants compared to the real-life number of 4, 979, which is our calibration parameter for the

continuum model. Two-way exchange and two-and-three-way exchange add, respectively, average

998 and 1, 100 transplants annually opposed to 1, 135 of the calibrated continuum model, which

exclusively uses two-way exchange. At each ∆ρ = 10 percent participation increase in incentivized

exchange, additional averages of 172/184 (depending on X −X pairs are incentivized or not) and

188 annual transplants are conducted under two-way and two-and-three-way exchange simulations,

7Even when the patient of the type X −Y pair is tissue-type incompatible with the donor of the type Y −X pair
and a two-way exchange is not feasible between these two pairs, the X −X pair potentially can be inserted to create
a three-way exchange benefitting three additional patients.
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respectively. Recall that this number was 180 in the continuum model calibrations. Thus, while

finite market simulations lead to slightly less regular exchange transplants due to the frictions in its

more realistic discrete setup, incentivized exchange protocols seem to overcome these frictions such

that simulations lead to at least as well or more added transplants than the continuum model’s

predictions. We explained its reasons in Section 5.2 in the main text before.
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Figure A-1: Simulation results for service rates for paired patients to receive living-donor transplants
under two-way vs two-and-three-way exchange. Dotted lines are 95% confidence intervals for the averages.
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Figure A-2: Simulation results for service rates for all transplants under two-way vs two-and-three-way
exchange. Dotted lines are 95% confidence intervals for the averages.
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Simulation Results: Service Rate for Transplantation in %
under De-facto Deceased-Donor Allocation and 2-way Exchange

Living-Donor Trans. Deceased-Donor Trans. All Transplants

O A B AB All O A B AB All O A B AB All

Deceased-Donor Transplantation Only (d)
32.5 37.6 30.8 46.5 34.4 32.5 37.6 30.8 46.5 34.4
(1.2) (1.6) (2.1) (5.0) (0.8) (1.2) (1.6) (2.1) (5.0) (0.8)

Deceased-/Direct Living-Donor Transplantation (l)
42.7 78.0 54.2 92.9 55.5 36.0 43.4 34.4 52.7 38.7 44.0 53.0 42.9 59.6 47.4
(1.9) (1.9) (3.7) (5.0) (1.3) (1.3) (1.9) (2.3) (5.6) (0.9) (1.3) (1.8) (2.2) (5.2) (0.9)

Deceased-/Direct Living-Donor Transplantation & Regular Exchange (e)
46.8 94.7 82.8 99.0 66.5 36.4 44.8 36.5 53.4 39.7 45.1 56.0 48.9 60.7 49.9
(2.0) (1.2) (5.3) (1.9) (1.5) (1.4) (2.1) (2.4) (6.0) (0.9) (1.4) (1.9) (2.2) (5.6) (0.9)

Deceased-/Direct Living-Donor Transplantation, Regular & ρ = 10%-Incentivized Exchange (i ρ = 10%)
49.9 95.1 83.3 99.2 68.4 36.7 44.9 36.5 53.1 39.9 45.9 56.1 49.0 60.5 50.3
(2.1) (1.2) (5.3) (2.0) (1.6) (1.4) (2.0) (2.6) (5.7) (0.9) (1.3) (1.9) (2.5) (5.3) (0.9)

Deceased-/Direct Living-Donor Transplantation, Regular & ρ = 20%-Incentivized Exchange (i ρ = 20%)
52.9 95.5 83.8 99.1 70.3 36.9 44.9 36.6 53.2 40.1 46.7 56.2 49.1 60.5 50.7
(2.2) (1.3) (5.1) (2.1) (1.7) (1.3) (2.1) (2.4) (5.7) (0.9) (1.3) (1.9) (2.3) (5.3) (0.9)

Deceased-/Direct Living-Donor Transplantation, Regular & ρ = 30%-Incentivized Exchange (i ρ = 30%)
55.5 96.2 84.7 99.2 72.0 37.2 45.0 36.6 53.4 40.2 47.3 56.4 49.2 60.8 51.1
(2.2) (1.3) (5.0) (1.8) (1.7) (1.4) (2.0) (2.6) (5.7) (0.9) (1.3) (1.9) (2.4) (5.2) (0.9)

Deceased-/Direct Living-Donor Transplantation, Regular & ρ = 50%-Incentivized Exchange (i ρ = 50%)
60.8 97.3 87.6 99.1 75.7 37.7 45.1 36.9 53.2 40.6 48.6 56.6 50.0 60.5 51.9
(2.2) (1.3) (5.2) (2.7) (1.8) (1.4) (2.0) (2.6) (5.8) (0.9) (1.3) (1.8) (2.4) (5.3) (0.9)

Deceased-/Direct Living-Donor Transplantation, Regular & ρ = 100%-Incentivized Exchange (i ρ = 100%)
76.2 98.8 94.3 99.2 85.6 39.3 45.2 37.5 53.4 41.5 52.6 56.8 51.3 60.8 54.1
(2.8) (1.3) (5.2) (2.2) (2.1) (1.4) (2.0) (2.6) (6.1) (1.0) (1.3) (1.8) (2.4) (5.6) (1.0)

Deceased-/Direct Living-Donor Trans., Regular & ρ = 10%-Incentivized Exchange with X −X (i ρ = 10%)
50.6 95.7 83.7 99.3 69.0 36.7 44.9 36.7 53.1 39.9 46.1 56.2 49.2 60.5 50.4
(2.2) (1.2) (5.2) (1.8) (1.6) (1.4) (2.0) (2.5) (5.7) (0.9) (1.4) (1.8) (2.4) (5.3) (0.9)

Deceased-/Direct Living-Donor Trans., Regular & ρ = 20%-Incentivized Exchange with X −X (i ρ = 20%)
54.0 96.1 84.3 99.2 71.1 37.1 44.9 36.6 53.4 40.1 47.0 56.3 49.2 60.7 50.9
(2.2) (1.3) (5.3) (2.1) (1.6) (1.4) (2.1) (2.6) (6.1) (0.9) (1.3) (1.9) (2.4) (5.5) (0.9)

Deceased-/Direct Living-Donor Trans., Regular & ρ = 30%-Incentivized Exchange with X −X (i ρ = 30%)
56.9 96.7 85.7 99.3 73.1 37.3 45.0 36.8 53.6 40.3 47.7 56.4 49.5 60.9 51.3
(2.2) (1.2) (5.3) (1.8) (1.7) (1.4) (2.0) (2.5) (5.9) (0.9) (1.3) (1.8) (2.4) (5.4) (0.9)

Deceased-/Direct Living-Donor Trans., Regular & ρ = 50%-Incentivized Exchange with X −X (i ρ = 50%)
62.8 97.6 88.6 99.3 77.0 37.9 45.1 36.9 53.5 40.7 49.2 56.6 50.1 60.8 52.2
(2.2) (1.3) (5.3) (2.3) (1.8) (1.4) (2.0) (2.7) (6.1) (0.9) (1.3) (1.9) (2.5) (5.7) (0.9)

Deceased-/Direct Living-Donor Trans., Regular & ρ = 100%-Incentivized Exchange with X −X (i ρ = 100%)
78.7 99.0 93.9 99.2 87.0 39.6 45.3 37.4 53.2 41.7 53.2 56.9 51.2 60.5 54.4
(2.7) (1.4) (5.2) (2.1) (2.1) (1.5) (2.0) (2.5) (5.9) (1.0) (1.3) (1.8) (2.4) (5.4) (1.0)

Table A-8: Simulation results for service rates for paired patients to receive living-donor transplants,
service rates for deceased-donor-queue participants, and overall service rates for patients to receive any kind
of transplant (all measured in %) under de-facto deceased-donor allocation policy and two-way exchange
when compatible X −X pairs are not incentivized (middle four rows) and incentivized (last four rows).
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Simulation Results: Service Rate for Transplantation in %
under De-facto Deceased-Donor Allocation and 2&3-way Exchange

Living-Donor Trans. Deceased-Donor Trans. All Transplants

O A B AB All O A B AB All O A B AB All

Deceased-Donor Transplantation Only (d)
32.5 37.6 30.8 46.5 34.4 32.5 37.6 30.8 46.5 34.4
(1.2) (1.6) (2.1) (5.0) (0.8) (1.2) (1.6) (2.1) (5.0) (0.8)

Deceased-/Direct Living-Donor Transplantation (l)
42.7 78.0 54.2 92.9 55.5 36.0 43.4 34.4 52.7 38.7 44.0 53.0 42.9 59.6 47.4
(1.9) (1.9) (3.7) (5.0) (1.3) (1.3) (1.9) (2.3) (5.6) (0.9) (1.3) (1.8) (2.2) (5.2) (0.9)

Deceased-/Direct Living-Donor Transplantation & Regular Exchange (e)
47.3 96.1 86.3 99.5 67.7 36.4 44.9 36.8 53.3 39.8 45.2 56.3 49.6 60.7 50.1
(2.1) (1.1) (5.2) (1.5) (1.6) (1.4) (2.0) (2.6) (6.3) (0.9) (1.4) (1.9) (2.4) (5.8) (0.9)

Deceased-/Direct Living-Donor Transplantation, Regular & ρ = 10%-Incentivized Exchange (i ρ = 10%)
50.8 96.9 92.4 99.6 70.7 36.7 45.0 37.5 53.4 40.1 46.1 56.4 51.1 60.7 50.8
(2.1) (1.2) (6.0) (1.3) (1.7) (1.4) (2.0) (2.7) (5.8) (0.9) (1.4) (1.8) (2.6) (5.3) (1.0)

Deceased-/Direct Living-Donor Transplantation, Regular & ρ = 20%-Incentivized Exchange (i ρ = 20%)
54.4 97.4 95.8 99.8 73.3 37.1 45.1 37.5 53.5 40.3 47.1 56.5 51.5 60.9 51.4
(2.3) (1.3) (4.9) (0.9) (1.8) (1.4) (2.0) (2.7) (6.0) (0.9) (1.4) (1.9) (2.5) (5.5) (0.9)

Deceased-/Direct Living-Donor Transplantation, Regular & ρ = 30%-Incentivized Exchange (i ρ = 30%)
57.9 97.9 96.2 99.7 75.5 37.4 45.1 37.7 53.6 40.6 47.9 56.6 51.8 60.9 51.9
(2.3) (1.4) (3.2) (1.3) (1.7) (1.4) (2.1) (2.6) (5.9) (0.9) (1.4) (1.9) (2.4) (5.4) (0.9)

Deceased-/Direct Living-Donor Transplantation, Regular & ρ = 50%-Incentivized Exchange (i ρ = 50%)
64.7 98.7 97.6 99.5 79.7 38.1 45.2 37.7 53.4 41.0 49.7 56.8 51.9 60.8 52.8
(2.3) (1.3) (2.5) (1.4) (1.7) (1.4) (2.0) (2.8) (6.1) (0.9) (1.3) (1.8) (2.5) (5.6) (0.9)

Deceased-/Direct Living-Donor Transplantation, Regular & ρ = 100%-Incentivized Exchange (i ρ = 100%)
80.0 99.7 98.9 99.6 88.6 39.7 45.3 37.9 53.4 41.8 53.5 57.0 52.2 60.7 54.7
(2.9) (0.7) (2.4) (1.5) (1.8) (1.5) (2.0) (2.6) (5.9) (1.0) (1.4) (1.8) (2.4) (5.4) (1.0)

Deceased-/Direct Living-Donor Trans., Regular & ρ = 10%-Incentivized Exchange with X −X (i ρ = 10%)
51.0 96.9 93.1 99.7 71.0 36.8 45.0 37.3 53.3 40.1 46.2 56.5 51.0 60.7 50.9
(2.1) (1.1) (5.7) (1.4) (1.7) (1.3) (2.0) (2.6) (5.7) (0.9) (1.3) (1.9) (2.5) (5.2) (0.9)

Deceased-/Direct Living-Donor Trans., Regular & ρ = 20%-Incentivized Exchange with X −X (i ρ = 20%)
54.7 97.4 95.9 99.8 73.5 37.1 45.1 37.6 53.5 40.4 47.1 56.6 51.6 60.9 51.4
(2.1) (1.2) (3.9) (1.1) (1.6) (1.3) (2.1) (2.6) (5.8) (0.9) (1.3) (1.9) (2.5) (5.3) (0.9)

Deceased-/Direct Living-Donor Trans., Regular & ρ = 30%-Incentivized Exchange with X −X (i ρ = 30%)
58.1 97.9 96.5 99.7 75.6 37.5 45.1 37.6 53.5 40.6 48.0 56.6 51.7 60.9 51.9
(2.3) (1.3) (2.6) (1.3) (1.7) (1.4) (2.1) (2.6) (6.0) (0.9) (1.4) (1.9) (2.4) (5.5) (0.9)

Deceased-/Direct Living-Donor Trans., Regular & ρ = 50%-Incentivized Exchange with X −X (i ρ = 50%)
64.8 98.8 97.8 99.6 79.8 38.1 45.2 37.7 53.4 41.0 49.7 56.8 52.0 60.7 52.8
(2.4) (1.3) (2.0) (1.5) (1.7) (1.4) (2.1) (2.7) (6.0) (0.9) (1.3) (1.9) (2.5) (5.5) (0.9)

Deceased-/Direct Living-Donor Trans., Regular & ρ = 100%-Incentivized Exchange with X −X (i ρ = 100%)
80.1 99.6 98.7 99.6 88.6 39.8 45.3 37.9 53.3 41.9 53.5 57.0 52.2 60.7 54.7
(2.8) (0.7) (2.7) (1.7) (1.7) (1.5) (2.0) (2.6) (5.8) (1.0) (1.5) (1.8) (2.4) (5.3) (1.0)

Table A-9: Simulation results for service rates for paired patients to receive living-donor transplants,
service rates for deceased-donor-queue participants, and overall service rates for patients to receive any
kind of transplant (all measured in %) under de-facto deceased-donor allocation policy and two-and-three-
way exchange when compatible X −X pairs are not incentivized (middle four rows) and incentivized (last
four rows).
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Appendix E Remaining Stress Tests
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Figure A-3: Stress tests for the numerical predictions of the model discussed in Section 5.2: Overall
service rate and service rate of paired patients to receive a living-donor transplant in changing θ assuming
(αX) is fixed at its benchmark level with the average 0.288.

We report the results of the remaining stress test discussed in Section 5.2. Note that Figure A-3

is already discussed in detail in Section 5.2.

Next we assume that θ is not precisely known. For each given θ, we find what lev-

els of (αX) will be necessary to support the observed direct living-donor transplant num-

bers (λX) in the data given in Table A-2. The set of corresponding (θ, α) pairs is

{(0.047, 0.282), (0.068, 0.288), (0.089, 0.295), (0.11, 0.301), (0.131, 0.309)}, where α is the mean prob-

ability of a random patient to have a paired donor for the calibrated (αX) values.

Increasing θ means that a lower number of patients can receive direct transplants from their

own donors. Since (λX) are kept constant, an increasing θ corresponds to higher (αX) values. As
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a result, the service rates and number of living transplants increase uniformly for all ρ values with

increasing θ and (αX) (see Figure A-4). Each 0.021 probability increase in θ that corresponds to

0.007 increase in pairing rate leads to 180 additional transplants per year, 3.6 percent of direct

living-donor transplants. The comparative static results regarding changes in ρ that we reported in

Section 5 remain intact for different (θ, α) pairs.

Thus, changes in θ accompanied with induced changes in (αX) to keep the number of direct

living-donor transplants constant at its observed level has no effect on the impact of incentivized

exchange, it only effects the number of patients that benefit from regular exchange.
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Figure A-4: Stress tests for the numerical predictions of the model discussed in Appendix E: Stress tests
of total service rate and total living-donor transplants in changing θ and (αX) assuming (λX) is fixed at
its benchmark level with the total

∑
λX = 4979.
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Appendix F Perfect Matching with (Heterogenous)

Tissue-Type Incompatibilities

In this appendix, we study the limit assumptions on the patient types under which different

populations of pairs can be matched or patients can be assigned deceased-donor kidneys. The

lemmas that we establish below are used in all results regarding steady states of the transplantation

policies.

F.1 Matching Deceased-Donor Kidneys

We first consider the case when deceased-donor kidneys are matched with patients. We make the

following regularity assumption on the frequency and incompatibility probability of patient types.

Assumption A-1 For every ε > 0, there exists k0 ∈ N, such that for every k > k0 and l ≤ k and

every permutation σ of patient types,

(1− ε)
∑l

i=1mσ(i),k ≤ 1−
∏l

i=1 θσ(i),k.

When ε → 0, the regularity assumption can be rewritten as
∑k

i=l+1mσ(i),k ≥
∏l

i=1 θσ(i),k. It

implies that if you take a set of patients and a set of kidneys with the same measure, then for any

set of patient types the measure of patients with those types is greater than or equal to the measure

of the set of kidneys that are tissue-type incompatible with all the other patient types.

Under this assumption, we get the following result.

Lemma A-3 Suppose Assumption A-1 holds. Consider a measurable set of patients and deceased-

donor kidneys that are blood-type compatible with all the patients such that both sets have the same

measure. Suppose these sets are formed randomly using the governing population distributions.

Then, as the number of patient types k goes to infinity, almost every patient can be matched with a

compatible kidney.

Proof. Without loss of generality, consider the case when the measures of the two sets are the

same and equal to one. Fix a small ε > 0. By Assumption A-1, there exists k0 such that, for every

k > k0, l ≤ k, and permutation σ,
1−

∏l
i=1 θσ(i),k∑l

i=1mσ(i),k
≥ 1− ε. Consider any such k.

We use Gale’s Supply-Demand Theorem (Gale, 1957) to show that 1− ε measure of the kidneys

can be matched with compatible patients. Consider a random measurable subset of patients with

measure 1− ε. Since the subset is chosen randomly, the compatibility of patients with the kidneys

can still be formed randomly using the governing population. We need to show that for any subset

of patients, the measure of kidneys that are compatible with at least one patient is weakly greater

than the measure of patients. Without loss of generality, instead of considering any set of patients

we can consider the set of all patients who have types from any given set. Let the set of patient

types be {σ(1), . . . , σ(l)}.
The measure of patients that have a type in this set is (1 − ε)

∑l
i=1mσ(i),k. The measure of

kidneys that are incompatible with all such types is
∏l

i=1 θσ(i),k because the measure of kidneys is
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one. Therefore, the measure of kidneys that are compatible with at least one patient in the set is

1−
∏n

i=1 θσ(i),k. The desired inequality holds by Assumption A-1. The claim of the lemma follows

by taking the limit as ε→ 0 and k →∞.

F.2 Matching Type A−B Pairs with Type B − A Pairs

We next consider the case when we match reciprocal pairs, A − B with B − A. For any such

pair, tissue-type compatibility is not known because the pair is blood-type incompatible. Therefore,

for any such pair, tissue-type incompatibility is determined randomly as in the overall population.

We make the following assumption on how the market grows, which guarantees that we can

match almost every patient in two measurable sets of A − B pairs and B − A pairs that have the

same measure.

Assumption A-2 For every ε > 0, there exists k0 ∈ N such that for every k > k0, l ≤ k, and

every permutation σ of patient types,

(1− ε)
∑l

i=1mσ(i),k ≤
∑k

i=1mσ(i),k[1−
∏l

j=1(1− (1− θσ(j),k)(1− θσ(i),k))].

Consider two measurable sets of A−B and B −A pairs with the same measure. As ε→ 0, the

assumption guarantees that for any measurable set of reciprocal-type pairs, say B−A, the measure

of this set is smaller than the measure of A−B pairs that are compatible with at least one B −A
pair in this set.

Lemma A-4 Suppose Assumption A-2 holds. Consider two measurable sets of A− B and B − A
pairs that have the same measure. Suppose these sets are formed randomly using the governing

population distributions. Then, as the number of patient types k goes to infinity, almost every pair

can be matched with a compatible pair.

Proof. Without loss of generality, consider the case when the measures of the two sets are the

same and equal to one. Fix a small ε > 0. By Assumption A-2, there exists k0 such that, for every

k > k0, l ≤ k, and permutation σ,
∑k
i=1mσ(i),k[1−

∏l
j=1(1−(1−θσ(j),k)(1−θσ(i),k))]∑l
i=1mσ(i),k

≥ 1− ε. Consider any such

k.

Like before, we use Gale’s Supply-Demand Theorem (Gale, 1957) to show that 1 − ε measure

of the B − A pairs can be matched with compatible A − B pairs. Consider a random measurable

subset of B − A pairs with measure 1 − ε. Since the subset is chosen randomly, the compatibility

of donors with patients can still be formed randomly using the governing population. We need to

show that for any subset of B − A pairs, the measure of A − B pairs who are compatible with at

least one B−A pair in the chosen set is weakly greater than the measure of the chosen set of B−A
pairs. Without loss of generality, instead of considering any set of B−A pairs, we can consider the

set of all B−A pairs with patients that have types from any given set. Let the set of patient types

be {σ(1), . . . , σ(l)}.
The measure of B − A pairs with patients that have a type in this set is (1 − ε)

∑l
i=1mσ(i),k.

The measure of A − B pairs with patient type σ(i) who are incompatible with all such pairs is
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mσ(i),k

∏l
j=1(1− (1− θσ(j),k)(1− θσ(i),k)). Therefore, the measure of A−B pairs with patient type

σ(i) who are compatible with at least one B − A pair from the chosen set is mσ(i),k[1 −
∏l

j=1(1 −
(1− θσ(j),k)(1− θσ(i),k))]. Hence, the measure of A−B pairs that are compatible with at least one

B − A pair in the chosen set is
∑k

i=1mσ(i),k[1 −
∏l

j=1(1 − (1 − θσ(j),k)(1 − θσ(i),k))]. This sum is

greater than the measure of chosen B − A pairs, (1− ε)
∑l

i=1mσ(i),k, by Assumption A-2.

Therefore, 1 − ε measure of B − A pairs can be matched with compatible A − B pairs. The

lemma follows by taking ε→ 0 and k →∞.

F.3 Matching Overdemanded-Type Pairs Except A − B Pairs with

Underdemanded-Type Pairs Except B − A Pairs

We next consider the case when we match overdemanded-type pairs except A − B pairs with

underdemanded-type pairs except B − A pairs. In the rest of this subsection, when we mention

overdemanded-type pairs we exclude A−B pairs, and similarly, when we mention underdemanded-

type pairs we exclude B − A pairs.

We make the following assumption on the frequency and incompatibility probability of patient

types.

Assumption A-3 For every ε > 0, there exists k0 ∈ N such that for every k > k0, l ≤ k, 0 ≤ ρ ≤ 1,

and every permutation σ of patient types,

(1− ε)
l∑

i=1

mσ(i),k(θσ(i),k + ρ(1− θσ(i),k))
M

≤
k∑
i=1

mσ(i),k[1−
l∏

j=1,j 6=i

(1− (1− θσ(j),k)(1− θσ(i),k))],

where M =
∑k

i=1mσ(i),k(θσ(i),k + ρ(1− θσ(i),k)).

For overdemanded-type pairs, only tissue-type-incompatible ones participate in the regular ex-

change. However, in the incentivized exchange, compatible pairs also participate. As a result,

a fraction of the overdemanded pairs are compatible, while the rest are incompatible. Here, ρ

is the participation rate of compatible pairs. The assumption guarantees that, for any set of

overdemanded-type pairs, the set of underdemanded pairs that are compatible with at least one

pair in the set has a greater measure as ε→ 0.

Lemma A-5 Suppose Assumption A-3 holds. Consider two measurable sets of overdemanded X−Y
pairs and underdemanded Y −X pairs with the same measure. Suppose that a fraction of overde-

manded X−Y pairs are known to be tissue-type incompatible and the rest are known to be tissue-type

compatible, but otherwise these sets are formed randomly using the governing population distribu-

tions. Then, as the number of patient types k goes to infinity, almost every pair can be matched

with a compatible pair.

Proof. Without loss of generality, consider the case when the measures of the two sets are the

same and equal to one. Then, for underdemanded Y −X pairs, mi,k measure of the patients have

type i for every i. For overdemanded X − Y pairs, some are known to be tissue-type compatible
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while others are tissue-type incompatible. The measure of compatible pairs is proportional to

ρmi,k(1 − θi,k) and the measure of incompatible pairs is proportional to mi,kθi,k. Therefore, the

measure of overdemanded X − Y pairs with patient type i is
mσ(i),k(θσ(i),k+ρ(1−θσ(i),k))

M
where M =∑k

i=1mσ(i),k(θσ(i),k + ρ(1− θσ(i),k)).
Fix a small ε > 0. Consider any k that satisfies Assumption A-3. Like before, we use Gale’s

Supply-Demand Theorem (Gale, 1957) to show that 1 − ε measure of the overdemanded X − Y

pairs can be matched with compatible underdemanded Y −X pairs. Consider a random measurable

subset of overdemanded X − Y pairs with measure 1− ε. Since the subset is chosen randomly, the

compatibility of pairs can still be formed randomly using the governing population. We need to

show that, for any subset of overdemanded X − Y pairs, the measure of underdemanded Y − X
pairs who are compatible with at least one overdemanded X − Y pair is weakly greater than the

measure of overdemanded X − Y pairs. In this calculation, we use a lower bound for the measure

of such underdemanded Y − X pairs by assuming that if their patient has type i, then they are

incompatible with overdemanded X−Y pairs with patient type i. Without loss of generality, instead

of considering any set of overdemanded X − Y pairs, we can consider the set of all overdemanded

X − Y pairs with patients who have tissue types from any given set. Let the set of patient types

be {σ(1), . . . , σ(l)}.
The measure of overdemanded X − Y pairs with patients who have types in the set is

(1− ε)
∑l

i=1

mσ(i),k(θσ(i),k+ρ(1−θσ(i),k))
M

. The measure of underdemanded Y −X pairs with patient type

σ(i) for i ≤ l who are incompatible with all such pairs is mσ(i),k

∏l
j=1,j 6=i(1− (1−θσ(j),k)(1−θσ(i),k)).

Note that we are assuming that these pairs are incompatible with overdemanded X − Y pairs with

patient of type σ(i). On the other hand, if i > l, then the measure of underdemanded Y −X pairs

with patient type σ(i) who are incompatible with all such pairs is mσ(i),k

∏l
j=1(1− (1− θσ(j),k)(1−

θσ(i),k)). Hence, the measure of underdemanded Y −X pairs that are compatible with at least one

overdemanded X −Y pair in the chosen set is at least
∑k

i=1mσ(i),k[1−
∏l

j=1,j 6=i(1− (1− θσ(j),k)(1−
θσ(i),k))]. This sum is greater than the measure of chosen overdemanded X − Y pairs Assumption

A-3.

The proof that 1− ε measure of overdemanded X−Y pairs can be matched follows. The lemma

follows by taking k →∞ and ε→ 0.

F.4 Matching Self-Demanded-Type Pairs

In this section, we consider the case when we match self-demanded type pairs. Fix any self-

demanded-type pair X −X for some blood type X. Any such pair in the exchange pool is tissue-

type incompatible. We match these pairs with each other. Therefore, in contrast with the previous

sections, this is a one-sided matching problem.

We make the following assumption to show that almost every pair can be matched in the limit.

Assumption A-4 For every ε > 0, there exists k0 ∈ N such that for every k > k0, l ≤ k, and

every permutation σ of patient types,

(1− ε)
∑l

i=1mσ(i),kθσ(i),k ≤
∑k

i=1mσ(i),kθσ(i),k[1−
∏l

j=1,j 6=i(1− (1− θσ(j),k)(1− θσ(i),k))].
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Our next result shows that under this assumption almost all self-demanded pairs can be matched.

Lemma A-6 Suppose Assumption A-4 holds. Consider a set of self-demanded-type pairs X − X
that are tissue-type incompatible. Assume that this set is formed randomly using the governing

population distributions. Then, as the number of patient types k goes to infinity, almost every pair

can be matched with a compatible pair.

Proof. Since the pairs are tissue-type incompatible, but otherwise formed randomly using the

governing population distributions, for each patient type i, the measure of pairs with patient type

i is proportional to miθi.

Fix a small ε > 0. Consider any k that satisfies Assumption A-4.

We use Gale’s Supply-Demand Theorem (Gale, 1957) to show that 1 − ε fraction of the self-

demanded X−X pairs can be matched with compatible self-demanded X−X pairs. To show this,

we first construct a two-sided matching problem with these pairs. For any patient type i, we split

the set of pairs with patient type i into two sets with equal measure. These sets are then added

to different sides of the market. As a result, we get a two-sided matching problem where each side

has X −X pairs where those with patient type i have a measure proportional to miθi. For ease of

exposition, suppose that the measure is exactly miθi.

Consider one side of the market. To apply Gale’s Supply-Demand Theorem, take a random

measurable subset of pairs on this side of the market that has measure 1 − ε fraction of all pairs

on this side. Since the subset is chosen randomly, the compatibility of patients can still be formed

randomly using the governing population. We need to show that for any subset of pairs, the measure

of pairs on the other side of the market that are compatible with at least one pair in the set is weakly

greater than the measure of chosen pairs. Without loss of generality, instead of considering any set

of patient types, we can consider the set of all patients that have types from any given set. Let this

set be {σ(1), . . . , σ(l)}.
The measure of the set of pairs that have patient types from this set is (1− ε)

∑l
i=1mσ(i),kθσ(i),k.

The measure of pairs that have patient type σ(i) on the other side that are incompatible with

all such types is mσ(i),kθσ(i),k
∏l

j=1,j 6=i(1 − (1 − θσ(j),k)(1 − θσ(i),k)). The measure of pairs that

have patient type σ(i) on the other side that are compatible with at least one type in the set is

mσ(i),kθσ(i),k[1−
∏l

j=1,j 6=i(1− (1− θσ(j),k)(1− θσ(i),k))]. Therefore, the measure of pairs on the other

side that are compatible with at least one pair in the chosen set is
∑k

i=1mσ(i),kθσ(i),k[1−
∏l

j=1,j 6=i(1−
(1 − θσ(j),k)(1 − θσ(i),k))]. This sum is greater than the measure of pairs that are chosen, which is

(1− ε)
∑l

i=1mσ(i),kθσ(i),k by Assumption A-4.

Therefore, 1− ε fraction of pairs on both sides of the market can be matched. As we take ε→ 0

and k → ∞, we establish the desired result that almost every pair is matched with a compatible

pair.

F.5 Sufficient Limit Conditions

In the next lemma, we provide sufficient conditions under which all of the limit assumptions

hold.
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Lemma A-7 Suppose that θi,k = θ < 1 and mi,k → 0 for every i ≤ k as k →∞. Then Assumptions

A-1, A-2, A-3, and A-4 hold.

Proof. When θi,k = θ for every i ≤ k, Assumption A-1 reduces to

(1− ε)
l∑

i=1

mσ(i),k ≤ 1− θl

under the same conditions as stated therein. Likewise, Assumption A-2 reduces to

(1− ε)
l∑

i=1

mσ(i),k ≤ 1− (1− (1− θ)2)l,

and Assumptions A-3 and A-4 reduce to

(1− ε)
l∑

i=1

mσ(i),k ≤
l∑

i=1

mσ(i),k[1− (1− (1− θ)2)l−1] +
k∑

i=l+1

mσ(i),k[1− (1− (1− θ)2)l].

If we show that (1 − ε)
∑l

i=1mσ(i),k ≤
∑l

i=1mσ(i),k[1 − βl−1] +
∑k

i=l+1mσ(i),k[1 − βl] for every

β < 1 under the conditions stated in these assumptions, then we will be done. This inequality can

be rewritten as

(βl−1 − ε)
l∑

i=1

mσ(i),k ≤
k∑

i=l+1

mσ(i),k[1− βl]. (17)

For a fixed ε such that 1 > ε > 0, there exists a natural number n such that βn−1 ≥ ε > βn.

Then Inequality 17 holds for l > n for every k because the left side of the inequality is negative

whereas the right side is positive. Furthermore, as k →∞ Inequality 17 holds also for every l ≤ n

because mi,k → 0 for every i and n is a fixed natural number which does not depend on k. In this

case, the left side converges to zero and the right side is always positive.
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