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B Supplementary Appendix B: Wald Benchmark Proofs

Proof of Lemma BO
A direct computation yields the following expressions for the conditional probabilities
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This establishes parts (1) and (2) of Lemma BO.
Taking the derivative of ¥ (o, G) with respect to s and rearranging terms we obtain
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where a < 0, since e R1(5—s) —g=R2(5—s) > 0 and R; — R, < 0, and a is independent of &. Similarly,
for w(o,G) we have
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where b > 0, since both eR2(5—s) —eR1(5—s) ~ 0 and RyeR2(5—s) —R;1eR1(5—%) > 0, and b is independent
of o. This proves parts (3) and (4).
Finally, taking the derivative of ¥(o,G) with respect to S we obtain
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where f < 0, since e Ri(5-5) _g~Ra2(5-5) > 0 and Rye R1(5-5) < 0 < Rye~R2(5-%) and f is indepen-
dent of o. Similarly, we have
dy(o,G)
0S

S_G)+R2(S_s)7eR2(S_G)+Rl(S—s) - B
(eR2<S—s)_eRl<s—s))2 = (R2—R1)
(R,—R1)e>°%¥(6,B) (R;—R1)¥(0,G)

T oRa(5-5) _gRi(5-s)  gRa(S5-s) _ gRi(5-s) =g¥(0,G) > 0.

e5—0 (gRa(0—s) _gRy(0—9)
( )
eR2(5-5) _gR1(5-9))?
( )

et <R2 — R]_) eRl(

where g > 0, since both R, — Ry > 0 and eR2(5—s) —eR1(5=s) > 0, and g does not depend on &. This
completes the proof of Lemma BO.

Proof of Lemma B1
We provide the most general characterization for the upper best reply Bj(s) for a player j who

gets a payoff ij (v?) in the good (bad) state and pays a cost of research c; per unit of time.

(i) First-Order Condition for the Upper Best Reply. By parts (1) and (2) of Lemma BO player
j’s expected payoff uj(o) can be written as
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By parts (5) and (6) of Lemma BO, taking the derivative with respect to S then yields
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which implies that, at an interior solution, the following first-order condition must be satisfied
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Equation establishes that Bj(s) is independent of o in the log-odds space, or, equivalently,
that Bj(s) is independent of q in the regular space. Furthermore, it implies that v? + e*SV? +

(1+e5) % > 0must hold at S = Bj(s). Two cases can, in fact, be distinguished: if e~> <va + 5) >
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v§+e> (v'l3 + ) + -1 > 0is again satisfied.

In the case of the evaluator, where c. = 0, simplifies into vG +e_5vB

Second-Order Condition for the Upper Best Reply. Differentiating (13) with respect to S we
have
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Equation (I4) then implies

d%u(o e°¥(0,G) [ _ cj\ [of1 dg of N
95(2) s B(>:${e *(4+7) {__Jr(l_f)]Jr(_g__g) (Lt )71}
:js




_e%(0.6) [ s/B Jf 1 Jdgl Jdf1l _\Cj
—W{e (5+9) Gsr a0 vo (585 5s7) are?

Some algebra yields
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which, by equation (I4), can be rewritten as
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Recalling from above that v& +e~SvE + (14e7%) I > 0 at S = Bj(s), we conclude that
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(ii) We now examine the slope of the upper best reply. First, we show that Bj(s) > s if s < 6
and Bj(s) = s otherwise. We start with computing the limit of 8“’( ) as S — s. Recall that
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Because lim f = —co and éim (f+g) =0, one sees that the sign of the limit above depends on
—s —s

the sign of vf + e*Sv?. Specifically, we have
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Having computed the limits at the two extremes of the domain of S, we now consider two dif-
ferent cases. First, assume s < Ge. Then, since I|m a“é(s %) — o and I|m 8“5'(56) = 07, by continuity
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Proof of Lemma B2
We provide the most general characterization for the lower best reply b;(S) for a player j who

gets a payoff v? (v?) in the good (bad) state and pays a cost of research cj per unit of time.

(i) First-Order Condition for the Lower Best Reply. By parts (3) and (4) of Lemma B0, taking
a derivative of (I2) with respect to s yields
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Hence, player j’s first order condition is
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which establishes that bj(S) is independent of o in the log-odds space and, thus, that bj(S) is inde-

pendent of g in the regular space. In the case of the informer, assuming viG = vB =y, the first order
condition (I7) simplifies into
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Second Order Condition for the Lower Best Reply. Taking a derivative with respect to s of
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the above expression simplifies to
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(i) Turn to the slope of the lower best reply. First, we show that b;(S) < S if S> &; and
b;j(S) =S otherwise. We start with computing the limit of 8“1( ) as's — S. Recall that
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Having computed the Iimlts at the two extremes of the domain of s, we now consider two differ-
ent cases. First, assume S > &. Then, since Iing% = —ocoand lim % =07, by continuity
S— S——o
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there must exist a solution to = 0, implying that in this case bj(S) < S. Next, suppose S < 6.
In this case we show that 8(5 ) > 0. To see this, assume by contradiction that there exists § such
that % e < 0. Since SIl_r)r; a”(‘)g ) — o and sﬂmw% = 07, by continuity there must exist an

interior solution s* >3 to a”é(s ) — 0 such that & “‘( ) " > 0, a contradiction. This establishes

st=
that bj(S) <SifS> &jand Bj(S) =S otherW|se.

Proof of Proposition 0
The Wald solution is characterized by the interior intersection of By, (s) and by (S), which always
exists by the properties established in Lemmas B1 and B2.

54



C Supplementary Appendix C: Technical Results

Lemma C1l The evaluator’s marginal value of anticipating rejection increases in the initial belief,

9%u
ﬁ > 0. (20)
Proof of Lemma C1
Using equation (16) from Appendix B for cj = 0 we have
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Overall, replacing in equation (2I), and using a < 0, we obtain (20).

Lemma C2 The evaluator’s marginal value of delaying approval increases in the initial belief,

PLITA
dSdo

> 0. (22)

s=bj(S)

Proof of Lemma C2
Using (8) from Appendix B we have
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Furthermore, for S < S" we have ‘39“59 (bi(S),S) > 0, so that

f <ve +e 5v§> e >vB > 0.
Overall we obtain (22).

Lemma C3 The evaluator’s marginal value of delaying approval decreases in the approval stan-
dard,

9°Ue
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s=bj(S)
Proof of Lemma C3
From
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Using the expression for the evaluator’s expected payoff (I2) for cj =0 and j = e, we now show
that the four terms in (24) are negative so that we have (23):

2
o Term 1: 2t (M) < 0. From
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Simple computations yield 5 92 - t+ab=a jizs s; e*FRé , from which the claim follows.

e Term 2: a“se 9°i(S) < 0. The evaluator s expected payoff is decreasing in s since the evaluator

e
does not pay for research. The claim then follows from aTbs(z—) > 0.

e Term 3: 23536 ab( ) < 0. Using the fact that f (VS +e5vB) —e~SvB > 0 for S < S", we have
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Given that bi(S) is increasing in S, the claim follows.

2 . .
o Term 4: 2Y% ~ 0. From derivations above, we have
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Using the fact that f (v +e>v8) —e>v8 > 0 for S < S" and that f < 0, we conclude

]I glf (v +e75vB) —e~SvB) < 0. Given that 9+ < 0 and 1 — f > 0 as shown above,
ollows.
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