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This Online Appendix describes additional empirical and theoretical results on foreign bond returns in U.S.

dollars.

• Section I presents robustness checks on the main time-series results reported in the paper:

– subsection A reports the details of the time-series predictability results discussed in the main text;

– subsection B reports time-series predictability results using standard asymptotic inference;

– subsection C reports time-series predictability results using inflation and sovereign credit as addi-

tional controls;

– subsection D proposes a different decomposition of the dollar bond returns into its exchange rate

component (−∆st+1) and the local currency bond return difference, r(10),∗ − r(10) (instead of excess

returns);

– subsection E reports time-series predictability results with GBP as base currency;

– subsection F reports additional individual country time-series predictability results obtained on dif-

ferent time-windows (10/1983–12/2007, 1/1975–12/2007, 10/1983–12/2015) and investment horizons

(three months).

• Section II presents additional robustness checks for the cross-sectional portfolio results reported in the

paper.

– subsection A reports portfolio statistics for different time-windows (10/1983–12/2007, 1/1975–12/2007,

10/1983—12/2015);

– subsection B focuses on currency portfolios sorted on the deviation of interest rates from their 10-

year rolling means and reports statistics for different sample periods, different holding periods and

different sets of currencies;

– subsection C focuses on currency portfolios sorted on interest rate levels and reports statistics for

different sample periods, different holding periods and different sets of currencies;

– subsection D focuses on currency portfolios sorted on yield curve slopes and reports statistics for

different sample periods, different holding periods and different sets of currencies.
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• Section III reports additional results obtained with zero-coupon bonds for our benchmark sample of G10

countries and a larger sample of developed countries.

• Section IV reports additional theoretical results on dynamic term structure models, starting with the

simple Vasicek (1977) model, before turning to their k-factor extensions and the model studied in Lustig,

Roussanov, and Verdelhan (2014).

• Section V presents the details of pricing kernel decomposition for three classes of structural models:

models with external habit formation, models with long run risks, and models with rare disasters.

• Section VI reports additional proofs of preference-free results.

• Section VII presents two additional preference-free implications of our findings: a lower bound on the

cross-country correlations of the permanent SDF components and a new benchmark for holding bond

returns.

• Section VIII compares finite to infinite maturity bond returns in the benchmark Joslin, Singleton, and

Zhu (2011) term structure model.
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I Robustness Checks on Time-Series Results

A Time-Series Predictability

Table A1 reports additional information regarding the regressions presented in Table 1 of the main text.

Similarly, Table A2 reports additional information regarding the properties of the long-short bond portfolio

returns presented in Table 2 of the main text.

B Time-Series Predictability using Standard Asymptotic Inference

Table A3 refers to the same regressions as Table 1 in the main text, with the difference being that we report

Newey and West (1987) standard errors calculated with a kernel bandwidth equal to S = 6, the value indicated

by the benchmark “textbook” rule S = 0.75T 1/3, and that we discuss statistical significance using the standard

asymptotic distributions. When we use interest rate differentials as the forecasting variable (Panel A), we find no

predictability for dollar bond return differentials, with the exception of Japan, consistent with our discussion of

Table 1 in the main text. Jointly testing all slope coefficients of individual country regressions, we find marginal

significance (at the 5%, but not the 1% level) because of Japan. However, the panel slope coefficient is not

statistically significant. Finally, our findings on predictability using yield curve slope differentials (Panel B) are

not materially different from those in Table 1.

C Time-Series Predictability with Additional Controls

Table A4 presents additional time-series predictability results when using inflation and sovereign credit rating

as additional controls. In particular, we include as regressors the difference (foreign minus domestic) in realized

inflation between t and t+ 1 as well as the difference (foreign minus domestic) in the sovereign credit rating at

t. These results should be compared to Table 1 in the paper. The slope coefficients are quite similar.

D Time Series Regressions: Exchange Rate Changes and Local Bond Returns (Instead

of Excess Returns)

Table A5 proposes a different decomposition of the dollar bond returns into its exchange rate component

(−∆st+1) and the local currency bond return difference, r(10),∗ − r(10). When we regress the local currency
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Table A1: Time-Series Predictability Regressions

Bond dollar return diff. Currency excess return Bond local currency return diff. SlopeObs.

rx(10),$ − rx(10) rxFX rx(10),∗ − rx(10) Diff.

α s.e. p-val β s.e. p-valR2(%) α s.e. p-val β s.e. p-valR2(%) α s.e. p-val β s.e. p-valR2(%) p-val

Panel A: Short-Term Interest Rates

Australia 0.01 [0.02] 0.69 -0.15 [0.91] 0.87 -0.20 -0.02 [0.02] 0.29 1.29 [0.55] 0.03 0.56 0.03 [0.01] 0.04 -1.44 [0.52] 0.01 1.51 0.20 492

Canada 0.02 [0.02] 0.27 -1.10 [0.69] 0.13 0.11 -0.01 [0.02] 0.49 1.22 [0.58] 0.05 0.46 0.03 [0.01] 0.01 -2.32 [0.52] 0.00 3.64 0.02 492

Germany 0.01 [0.02] 0.60 1.52 [1.18] 0.22 0.37 0.02 [0.02] 0.37 2.49 [1.05] 0.03 1.71 -0.01 [0.01] 0.59 -0.97 [0.40] 0.03 0.48 0.55 492

Japan 0.06 [0.03] 0.11 2.37 [0.71] 0.00 1.13 0.07 [0.03] 0.04 3.11 [0.70] 0.00 3.48 -0.01 [0.02] 0.43 -0.74 [0.41] 0.09 0.13 0.47 492

New Zealand -0.03 [0.05] 0.50 0.69 [1.06] 0.53 -0.03 -0.07 [0.03] 0.05 2.23 [0.44] 0.00 3.14 0.04 [0.03] 0.25 -1.54 [0.88] 0.10 1.62 0.20 492

Norway -0.02 [0.02] 0.45 0.72 [0.57] 0.23 0.08 -0.02 [0.02] 0.22 1.74 [0.55] 0.00 2.26 0.01 [0.01] 0.60 -1.02 [0.34] 0.01 0.97 0.22 492

Sweden -0.00 [0.02] 0.94 -0.64 [0.86] 0.47 -0.02 -0.02 [0.02] 0.49 0.89 [0.88] 0.34 0.25 0.01 [0.01] 0.26 -1.53 [0.52] 0.01 2.02 0.23 492

Switzerland 0.02 [0.02] 0.37 1.16 [0.90] 0.23 0.33 0.05 [0.02] 0.03 2.45 [0.79] 0.01 2.43 -0.03 [0.01] 0.02 -1.29 [0.44] 0.01 1.69 0.30 492

U.K. -0.02 [0.03] 0.52 1.02 [1.03] 0.34 0.04 -0.05 [0.03] 0.13 2.69 [1.24] 0.04 2.44 0.03 [0.02] 0.08 -1.67 [0.49] 0.00 1.39 0.32 492

Panel – – – 0.65 [0.50] 0.23 -0.05 – – – 1.98 [0.49] 0.00 1.82 – – – -1.34 [0.33] 0.00 1.37 0.00 4428

Joint zero p-val 0.82 0.19 0.15 0.00 0.08 0.00 0.32

Panel B: Yield Curve Slopes

Australia 0.06 [0.03] 0.04 3.84 [1.69] 0.04 1.54 0.00 [0.02] 0.90 -1.00 [1.16] 0.41 -0.02 0.05 [0.02] 0.00 4.84 [0.96] 0.00 7.65 0.03 492

Canada 0.04 [0.02] 0.04 4.04 [1.23] 0.00 2.25 -0.00 [0.01] 0.98 -0.72 [0.79] 0.39 -0.07 0.04 [0.01] 0.00 4.76 [0.81] 0.00 9.09 0.00 492

Germany 0.00 [0.02] 0.93 0.50 [1.57] 0.76 -0.18 -0.01 [0.02] 0.78 -3.05 [1.37] 0.04 1.15 0.01 [0.01] 0.45 3.55 [0.82] 0.00 4.07 0.11 492

Japan 0.00 [0.02] 0.90 -0.32 [1.12] 0.78 -0.19 -0.01 [0.02] 0.62 -4.18 [0.94] 0.00 2.91 0.01 [0.01] 0.24 3.85 [0.81] 0.00 3.96 0.02 492

New Zealand 0.08 [0.05] 0.17 2.94 [2.35] 0.24 1.26 -0.01 [0.04] 0.71 -1.60 [1.28] 0.24 0.62 0.09 [0.04] 0.02 4.55 [1.41] 0.00 7.41 0.11 492

Norway -0.00 [0.02] 0.88 0.59 [0.98] 0.56 -0.12 -0.01 [0.02] 0.52 -2.03 [0.97] 0.05 1.33 0.01 [0.01] 0.46 2.62 [0.52] 0.00 3.35 0.07 492

Sweden 0.02 [0.02] 0.51 3.12 [1.21] 0.02 2.12 -0.00 [0.02] 0.98 -0.13 [1.02] 0.90 -0.20 0.02 [0.01] 0.19 3.25 [0.82] 0.00 5.29 0.06 492

Switzerland 0.00 [0.03] 0.95 0.97 [1.05] 0.38 -0.06 -0.02 [0.03] 0.41 -3.59 [1.27] 0.01 1.97 0.02 [0.01] 0.09 4.55 [1.00] 0.00 8.82 0.01 492

U.K. 0.02 [0.02] 0.47 1.59 [1.28] 0.24 0.17 -0.02 [0.03] 0.48 -3.17 [1.62] 0.07 2.11 0.04 [0.01] 0.01 4.75 [0.85] 0.00 7.95 0.03 492

Panel – – – 1.94 [0.96] 0.06 0.42 – – – -2.02 [0.82] 0.02 0.83 – – – 3.96 [0.66] 0.00 6.08 0.00 4428

Joint zero p-val 0.48 0.08 1.00 0.01 0.01 0.00 0.00

Notes: The table reports regression results of the bond dollar return difference (rx
(10),$
t+1 − rx(10)

t+1 , left panel) or the currency excess return

(rxFXt+1, middle panel) or the bond local currency return difference (rx
(10),∗
t+1 − rx(10)

t+1 , right panel) on the difference between the foreign nominal

interest rate and the U.S. nominal interest rate (rf,∗t − rft , Panel A) or difference between the foreign nominal yield curve slope and the U.S.

nominal yield curve slope ([y
(10,∗)
t − y(1,∗)

t ] − [y
(10)
t − y(1)

t ], Panel B). The column “Slope Diff.” presents the p-value of the test for equality
between the slope coefficient in the bond dollar return difference regression and the slope coefficient in the currency excess return regression for
each country. The last line in each panel presents the p-value of the joint test that all individual-country regression coefficients in the respective
column are zero. We use returns on 10-year coupon bonds. The holding period is one month and returns are sampled monthly. The log
returns and the yield curve slope differentials are annualized. The sample period is 1/1975–12/2015. The balanced panel consists of Australia,
Canada, Japan, Germany, Norway, New Zealand, Sweden, Switzerland, and the U.K. In individual country regressions, standard errors are
obtained with a Newey and West (1987) approximation of the spectral density matrix, with the lag truncation parameter (kernel bandwidth)
equal to 29. Panel regressions include country fixed effects, and standard errors are obtained using the Driscoll and Kraay (1998) methodology,
with the lag truncation parameter (kernel bandwidth) equal to 29. All p-values are fixed-b p-values, calculated using the approximation of the
corresponding fixed-b asymptotic distribution in Vogelsang (2011, 2012).
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Table A2: Dynamic Long-Short Foreign and U.S. Bond Portfolios

Bond dollar return difference Currency excess return Bond local currency return diff.

rx(10),$ − rx(10) rxFX rx(10),∗ − rx(10)

Mean s.e. Std. SR s.e. Mean s.e. Std. SR s.e. Mean s.e. Std. SR s.e.

Panel A: Short-Term Interest Rates

Australia 1.28 [2.23] 14.27 0.09 [0.16] 3.55 [1.75] 11.40 0.31 [0.16] -2.27 [1.34] 8.46 -0.27 [0.15]

Canada -0.46 [1.42] 9.10 -0.05 [0.16] 0.86 [1.13] 6.97 0.12 [0.16] -1.31 [0.85] 5.50 -0.24 [0.15]

Germany 2.19 [1.93] 12.45 0.18 [0.16] 3.86 [1.72] 11.13 0.35 [0.16] -1.67 [1.16] 7.30 -0.23 [0.16]

Japan 0.93 [2.19] 14.31 0.07 [0.16] 1.54 [1.73] 11.31 0.14 [0.16] -0.61 [1.43] 9.03 -0.07 [0.16]

New Zealand 0.65 [2.56] 16.91 0.04 [0.16] 3.84 [1.87] 12.25 0.31 [0.17] -3.19 [1.76] 11.47 -0.28 [0.16]

Norway 0.69 [1.98] 13.00 0.05 [0.16] 3.17 [1.60] 10.61 0.30 [0.16] -2.48 [1.42] 8.99 -0.28 [0.16]

Sweden -0.40 [2.03] 12.85 -0.03 [0.15] 2.30 [1.73] 11.14 0.21 [0.16] -2.71 [1.38] 8.68 -0.31 [0.16]

Switzerland 0.57 [2.05] 12.84 0.04 [0.16] 1.14 [1.97] 12.22 0.09 [0.15] -0.57 [1.13] 7.62 -0.07 [0.16]

United Kingdom 0.89 [2.00] 12.76 0.07 [0.15] 3.09 [1.59] 10.26 0.30 [0.16] -2.20 [1.25] 8.21 -0.27 [0.15]

Equally-weighted 0.70 [1.00] 6.36 0.11 [0.16] 2.59 [0.87] 5.55 0.47 [0.17] -1.89 [0.60] 3.73 -0.51 [0.16]

Panel B: Yield Curve Slopes

Australia -1.88 [2.22] 14.26 -0.13 [0.16] 2.89 [1.80] 11.41 0.25 [0.17] -4.76 [1.34] 8.37 -0.57 [0.14]

Canada -2.07 [1.41] 9.08 -0.23 [0.15] 1.23 [1.10] 6.97 0.18 [0.16] -3.30 [0.83] 5.43 -0.61 [0.16]

Germany 1.98 [1.92] 12.46 0.16 [0.16] 5.17 [1.71] 11.09 0.47 [0.16] -3.19 [1.14] 7.25 -0.44 [0.15]

Japan -0.71 [2.21] 14.31 -0.05 [0.16] 4.60 [1.73] 11.24 0.41 [0.16] -5.31 [1.42] 8.90 -0.60 [0.16]

New Zealand -0.18 [2.57] 16.91 -0.01 [0.16] 3.49 [1.90] 12.26 0.28 [0.17] -3.67 [1.77] 11.45 -0.32 [0.15]

Norway -0.56 [2.05] 13.00 -0.04 [0.15] 2.84 [1.73] 10.61 0.27 [0.16] -3.40 [1.39] 8.97 -0.38 [0.15]

Sweden -3.62 [1.99] 12.81 -0.28 [0.16] 1.32 [1.75] 11.15 0.12 [0.17] -4.94 [1.38] 8.60 -0.57 [0.16]

Switzerland 0.47 [2.00] 12.84 0.04 [0.15] 4.80 [1.91] 12.15 0.40 [0.15] -4.33 [1.17] 7.51 -0.58 [0.16]

United Kingdom -2.73 [1.95] 12.73 -0.21 [0.16] 2.06 [1.61] 10.29 0.20 [0.16] -4.79 [1.30] 8.12 -0.59 [0.16]

Equally-weighted -1.03 [1.24] 7.82 -0.13 [0.16] 3.16 [1.08] 6.68 0.47 [0.16] -4.19 [0.80] 5.04 -0.83 [0.16]

Notes: For each country, the table presents summary return statistics of investment strategies that go long the foreign country bond and short
the U.S. bond when the foreign short-term interest rate is higher than the U.S. interest rate (or the foreign yield curve slope is lower than the
U.S. yield curve slope), and go long the U.S. bond and short the foreign country bond when the U.S. interest rate is higher than the country’s
interest rate (or the U.S. yield curve slope is lower than the foreign yield curve slope). Results based on interest rate levels are reported in
Panel A and results based on interest rate slopes are reported in Panel B. The table reports the mean, standard deviation and Sharpe ratio
(denoted SR) for the currency excess return (rxFX , middle panel), for the foreign bond excess return on 10-year government bond indices
in foreign currency (rx(10),∗ − rx(10), right panel) and for the foreign bond excess return on 10-year government bond indices in U.S. dollars
(rx(10),$ − rx(10), left panel). The holding period is one month. The table also presents summary return statistics for the equally-weighted
average of the individual country strategies. The slope of the yield curve is measured by the difference between the 10-year yield and the
one-month interest rate. The standard errors (denoted s.e. and reported between brackets) were generated by bootstrapping 10,000 samples
of non-overlapping returns. The log returns are annualized. The data are monthly and the sample is 1/1975–12/2015.
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Table A3: Dollar Bond Return Differential Predictability

Bond dollar return difference Currency excess return Bond local currency return diff. Slope Diff. Obs.

rx(10),$ − rx(10) rxFX rx(10),∗ − rx(10)

α s.e. β s.e. R2(%) α s.e. β s.e. R2(%) α s.e. β s.e. R2(%) p-value

Panel A: Short-Term Interest Rates

Australia 0.01 [0.03] -0.15 [0.97] -0.20 -0.02 [0.02] 1.29 [0.62] 0.56 0.03 [0.02] -1.44 [0.60] 1.51 0.21 492

Canada 0.02 [0.02] -1.10 [0.69] 0.11 -0.01 [0.01] 1.22 [0.53] 0.46 0.03 [0.01] -2.32 [0.46] 3.64 0.01 492

Germany 0.01 [0.02] 1.52 [1.21] 0.37 0.02 [0.02] 2.49 [0.99] 1.71 -0.01 [0.01] -0.97 [0.60] 0.48 0.53 492

Japan 0.06 [0.03] 2.37 [0.84] 1.13 0.07 [0.02] 3.11 [0.67] 3.48 -0.01 [0.02] -0.74 [0.52] 0.13 0.49 492

New Zealand -0.03 [0.04] 0.69 [0.87] -0.03 -0.07 [0.03] 2.23 [0.49] 3.14 0.04 [0.03] -1.54 [0.66] 1.62 0.12 492

Norway -0.02 [0.02] 0.72 [0.62] 0.08 -0.02 [0.02] 1.74 [0.57] 2.26 0.01 [0.01] -1.02 [0.41] 0.97 0.23 492

Sweden -0.00 [0.02] -0.64 [0.91] -0.02 -0.02 [0.02] 0.89 [0.91] 0.25 0.01 [0.01] -1.53 [0.49] 2.02 0.23 492

Switzerland 0.02 [0.02] 1.16 [0.82] 0.33 0.05 [0.02] 2.45 [0.78] 2.43 -0.03 [0.01] -1.29 [0.43] 1.69 0.25 492

United Kingdom -0.02 [0.03] 1.02 [1.18] 0.04 -0.05 [0.02] 2.69 [0.95] 2.44 0.03 [0.02] -1.67 [0.66] 1.39 0.27 492

Panel – – 0.65 [0.49] -0.05 – – 1.98 [0.44] 1.82 – – -1.34 [0.30] 1.37 0.00 4428

Joint zero (p-value) 0.44 0.04 0.00 0.00 0.00 0.00 0.04

Panel B: Yield Curve Slopes

Australia 0.06 [0.02] 3.84 [1.56] 1.54 0.00 [0.02] -1.00 [1.17] -0.02 0.05 [0.02] 4.84 [0.92] 7.65 0.01 492

Canada 0.04 [0.02] 4.04 [0.98] 2.25 -0.00 [0.01] -0.72 [0.66] -0.07 0.04 [0.01] 4.76 [0.63] 9.09 0.00 492

Germany 0.00 [0.02] 0.50 [1.77] -0.18 -0.01 [0.02] -3.05 [1.37] 1.15 0.01 [0.01] 3.55 [0.97] 4.07 0.11 492

Japan 0.00 [0.02] -0.32 [1.38] -0.19 -0.01 [0.02] -4.18 [1.08] 2.91 0.01 [0.01] 3.85 [0.82] 3.96 0.03 492

New Zealand 0.08 [0.04] 2.94 [2.04] 1.26 -0.01 [0.03] -1.60 [1.18] 0.62 0.09 [0.03] 4.55 [1.19] 7.41 0.05 492

Norway -0.00 [0.02] 0.59 [1.03] -0.12 -0.01 [0.02] -2.03 [0.92] 1.33 0.01 [0.01] 2.62 [0.59] 3.35 0.06 492

Sweden 0.02 [0.02] 3.12 [1.23] 2.12 -0.00 [0.02] -0.13 [1.14] -0.20 0.02 [0.01] 3.25 [0.71] 5.29 0.05 492

Switzerland 0.00 [0.02] 0.97 [1.17] -0.06 -0.02 [0.02] -3.59 [1.26] 1.97 0.02 [0.01] 4.55 [0.78] 8.82 0.01 492

United Kingdom 0.02 [0.03] 1.59 [1.53] 0.17 -0.02 [0.02] -3.17 [1.37] 2.11 0.04 [0.01] 4.75 [0.83] 7.95 0.02 492

Panel – – 1.94 [0.84] 0.42 – – -2.02 [0.73] 0.83 – – 3.96 [0.50] 6.08 0.00 4428

Joint zero (p-value) 0.07 0.00 0.96 0.00 0.00 0.00 0.00

Notes: The table reports regression results of the bond dollar return difference (rx
(10),$
t+1 − rx(10)

t+1 , left panel) or the currency excess return

(rxFXt+1, middle panel) or the bond local currency return difference (rx
(10),∗
t+1 − rx(10)

t+1 , right panel) on the difference between the foreign nominal

interest rate and the U.S. nominal interest rate (rf,∗t − rft , Panel A) or difference between the foreign nominal yield curve slope and the U.S.

nominal yield curve slope ([y
(10,∗)
t − y(1,∗)

t ] − [y
(10)
t − y(1)]

t , Panel B). The column “Slope Diff.” presents the p-value of the test for equality
between the slope coefficient in the bond dollar return difference regression and the slope coefficient in the currency excess return regression
for each country. The last line in each panel presents the p-value of the joint test that all individual-country regression coefficients in the
respective column are zero. We use returns on 10-year coupon bonds. The holding period is one month and returns are sampled monthly.
The log returns and the yield curve slope differentials are annualized. The sample period is 1/1975–12/2015. The balanced panel consists of
Australia, Canada, Japan, Germany, Norway, New Zealand, Sweden, Switzerland, and the U.K. In individual country regressions, standard
errors are obtained with a Newey and West (1987) approximation of the spectral density matrix, with the lag truncation parameter (kernel
bandwidth) equal to 6. Panel regressions include country fixed effects, and standard errors are obtained using the Driscoll and Kraay (1998)
methodology, with the lag truncation parameter (kernel bandwidth) equal to 6.
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Table A4: Dollar Bond Return Differential Predictability – Controlling for Inflation and Credit Ratings

Bond dollar return difference Currency excess return Bond local currency return diff. Slope Diff. Obs.

rx(10),$ − rx(10) rxFX rx(10),∗ − rx(10)

α s.e. β s.e. R2(%) α s.e. β s.e. R2(%) α s.e. β s.e. R2(%) p-value

Panel A: Short-Term Interest Rates

Australia -0.02 [0.03] 0.62 [0.97] 1.72 -0.04 [0.02] 1.72 [0.61] 1.37 0.02 [0.03] -1.10 [0.62] 2.29 0.33 492

Canada 0.02 [0.02] -1.13 [0.73] -0.28 -0.01 [0.02] 1.36 [0.59] 0.16 0.03 [0.01] -2.49 [0.46] 3.54 0.01 492

Germany 0.01 [0.02] 1.81 [1.14] 0.30 0.03 [0.02] 2.75 [1.02] 1.92 -0.01 [0.01] -0.94 [0.54] 0.38 0.54 492

Japan 0.10 [0.03] 2.96 [0.84] 1.50 0.10 [0.03] 3.37 [0.66] 3.65 0.00 [0.02] -0.41 [0.54] 0.23 0.70 492

New Zealand -0.10 [0.05] 1.53 [0.82] 2.36 -0.11 [0.03] 2.53 [0.53] 3.95 0.01 [0.04] -1.00 [0.65] 2.99 0.31 492

Norway -0.01 [0.02] 0.74 [0.61] 0.35 -0.01 [0.02] 1.78 [0.56] 3.22 0.00 [0.02] -1.04 [0.42] 0.64 0.21 492

Sweden -0.01 [0.02] -0.63 [0.90] -0.21 -0.02 [0.02] 0.94 [0.92] 0.09 0.01 [0.01] -1.56 [0.52] 1.64 0.23 492

Switzerland 0.02 [0.03] 1.69 [0.79] 0.79 0.07 [0.03] 2.85 [0.81] 2.78 -0.05 [0.01] -1.16 [0.46] 2.93 0.31 492

United Kingdom -0.02 [0.03] 0.87 [1.22] -0.30 -0.05 [0.03] 2.83 [1.00] 2.09 0.03 [0.02] -1.96 [0.65] 1.39 0.21 492

Panel – – 0.81 [0.46] 0.24 – – 2.07 [0.44] 1.98 – – -1.26 [0.31] 1.45 0.00 4428

Joint zero (p-value) 0.07 0.00 0.00 0.00 0.00 0.00 0.09

Panel B: Yield Curve Slopes

Australia 0.03 [0.03] 3.00 [1.55] 2.62 -0.02 [0.02] -1.53 [1.12] 0.54 0.05 [0.02] 4.52 [0.95] 7.85 0.02 492

Canada 0.05 [0.02] 4.80 [1.10] 2.24 -0.00 [0.02] -0.99 [0.80] -0.39 0.05 [0.01] 5.80 [0.70] 10.70 0.00 492

Germany 0.00 [0.02] 0.24 [1.74] -0.46 0.00 [0.02] -3.47 [1.39] 1.36 0.00 [0.01] 3.71 [0.95] 4.15 0.10 492

Japan 0.02 [0.03] -0.91 [1.35] -0.27 0.01 [0.02] -4.72 [1.08] 3.23 0.01 [0.02] 3.81 [0.87] 3.65 0.03 492

New Zealand -0.01 [0.06] 2.14 [1.96] 2.34 -0.08 [0.04] -1.96 [1.16] 1.54 0.07 [0.04] 4.10 [1.19] 7.47 0.07 492

Norway 0.01 [0.02] 0.45 [1.02] 0.11 0.00 [0.02] -2.20 [0.93] 2.45 0.01 [0.01] 2.65 [0.60] 3.05 0.05 492

Sweden 0.01 [0.02] 3.10 [1.20] 1.81 -0.01 [0.02] -0.25 [1.13] -0.38 0.02 [0.01] 3.35 [0.74] 5.00 0.04 492

Switzerland -0.01 [0.02] 0.51 [1.19] -0.17 -0.02 [0.02] -3.97 [1.29] 2.03 0.01 [0.01] 4.48 [0.83] 9.47 0.01 492

United Kingdom 0.02 [0.03] 1.62 [1.53] -0.07 -0.02 [0.02] -3.18 [1.40] 1.81 0.04 [0.02] 4.80 [0.84] 7.67 0.02 492

Panel – – 1.81 [0.81] 0.54 – – -2.10 [0.71] 0.99 – – 3.91 [0.50] 6.07 0.00 4428

Joint zero (p-value) 0.29 0.00 0.67 0.00 0.00 0.00 0.00

Notes: The table reports regression results of the bond dollar return difference (rx
(10),$
t+1 − rx(10)

t+1 , left panel) or the currency excess return

(rxFXt+1, middle panel) or the bond local currency return difference (rx
(10),∗
t+1 − rx(10)

t+1 , right panel) on the difference between the foreign nominal

interest rate and the U.S. nominal interest rate (rf,∗t − rft , Panel A) or difference between the foreign nominal yield curve slope and the U.S.

nominal yield curve slope ([y
(10,∗)
t − y(1,∗)

t ] − [y
(10)
t − y(1)]

t , Panel B). In each regression, we also include the realized inflation differential
(foreign minus domestic) between t and t+ 1, as well as the credit rating differential (foreign minus domestic) at t as regressors. The column
“Slope Diff.” presents the p-value of the test for equality between the slope coefficient in the bond dollar return difference regression and the
slope coefficient in the currency excess return regression for each country. The last line in each panel presents the p-value of the joint test that
all individual-country regression coefficients in the respective column are zero. We use returns on 10-year coupon bonds. The holding period
is one month and returns are sampled monthly. The log returns and the yield curve slope differentials are annualized. The sample period is
1/1975–12/2015. The balanced panel consists of Australia, Canada, Japan, Germany, Norway, New Zealand, Sweden, Switzerland, and the
U.K. In individual country regressions, standard errors are obtained with a Newey and West (1987) approximation of the spectral density
matrix, with the lag truncation parameter (kernel bandwidth) equal to 6. Panel regressions include country fixed effects, and standard errors
are obtained using the Driscoll and Kraay (1998) methodology, with the lag truncation parameter (kernel bandwidth) equal to 6.
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log return differential (instead of the excess returns) on the interest rate differential, there is no evidence of

predictability (Panel A). This decomposition does not suffer from any mechanical link between the right- and

left-hand side variables. But its drawback is that it does not show the currency excess return predictability in

the middle columns. Instead, it reports the usual U.I.P slope coefficient in a regression of exchange rate changes

on the interest rate differential (Panel A). There is of course a simple mapping between those coefficients and

those of Table 1 in the paper. A zero slope coefficient in a regression of exchange rate changes on interest rate

differences is equivalent to a slope coefficient of one in a regression of currency excess returns on interest rate

differences. Table A5 shows that the slope of the yield curve predicts significantly the bond return differential

(in local currencies). The predictability results on dollar bond returns are the same as in Table 1 in the paper.

E Time Series Predictability with GBP as Base Currency

Table A6 presents the results obtained when using the GBP as the base currency. We start by considering the

interest rate as a predictor. U.I.P. deviations are weaker when the base currency is the GBP. The panel regression

coefficient is 1.60 (instead of 1.98). On the other hand, there is less predictability of the local currency bond

excess return differential when using the interest rate spread as the predictor. The panel regression coefficient

is −0.60 (instead of −1.34). The net effect is a slope coefficient of 1.00, which is significant only at the 10%

level. However, when we use the slope of the yield curve as a predictor, the slope coefficient is −2.10 (−2.02

with USD as base currency) for the currency excess return, but 2.53 (3.96 with USD as base currency) for

the local currency bond excess return differential. The net effect is a slope coefficient of 0.43, which is not

statistically significantly different from zero. To summarize, the slope and interest evidence is qualitatively

similar. The slope evidence is entirely in line with our hypothesis. The interest rate evidence suggests there is

some predictability left in the dollar bond excess returns.

However, there is no economically significant predictability. In particular, to assess the economic significance

of these results, Table A7 presents the results obtained when an investor exploits interest rate and slope

predictability by going long U.K. bonds and shorts foreign bonds when the interest rate difference (slope

difference) is positive (negative), and reverses the position otherwise. The equally-weighted return on the

interest rate strategy in the top panel is only 1.41% per annum, not significant at conventional significance

levels. The Sharpe ratio is only 0.22. Similarly, the equally-weighted return on the slope strategy reported

9



Table A5: Dollar Bond Return Differential Predictability: Exchange Rate Changes and Local Bond Return
Differentials

Bond dollar return difference Exchange rate change Bond local currency return diff. Slope Diff. Obs.

r(10),$ − r(10) −∆st+1 r(10),∗ − r(10)

α s.e. β s.e. R2(%) α s.e. β s.e. R2(%) α s.e. β s.e. R2(%) p-value

Panel A: Short-Term Interest Rates

Australia 0.01 [0.03] -0.15 [0.97] -0.20 -0.02 [0.02] 0.29 [0.62] -0.16 0.03 [0.02] -0.44 [0.60] -0.04 0.70 492

Canada 0.02 [0.02] -1.10 [0.69] 0.11 -0.01 [0.01] 0.22 [0.53] -0.18 0.03 [0.01] -1.32 [0.46] 1.08 0.13 492

Germany 0.01 [0.02] 1.52 [1.21] 0.37 0.02 [0.02] 1.49 [0.99] 0.49 -0.01 [0.01] 0.03 [0.60] -0.20 0.99 492

Japan 0.06 [0.03] 2.37 [0.84] 1.13 0.07 [0.02] 2.11 [0.67] 1.53 -0.01 [0.02] 0.26 [0.52] -0.16 0.81 492

New Zealand -0.03 [0.04] 0.69 [0.87] -0.03 -0.07 [0.03] 1.23 [0.49] 0.84 0.04 [0.03] -0.54 [0.66] 0.02 0.59 492

Norway -0.02 [0.02] 0.72 [0.62] 0.08 -0.02 [0.02] 0.74 [0.57] 0.25 0.01 [0.01] -0.02 [0.41] -0.20 0.98 492

Sweden 0.00 [0.02] -0.64 [0.91] -0.02 -0.02 [0.02] -0.11 [0.91] -0.20 0.01 [0.01] -0.53 [0.49] 0.07 0.68 492

Switzerland 0.02 [0.02] 1.16 [0.82] 0.33 0.05 [0.02] 1.45 [0.78] 0.73 -0.03 [0.01] -0.29 [0.43] -0.11 0.80 492

United Kingdom -0.02 [0.03] 1.02 [1.18] 0.04 -0.05 [0.02] 1.69 [0.95] 0.86 0.03 [0.02] -0.67 [0.66] 0.06 0.66 492

Panel – – 0.65 [0.49] -0.05 – – 0.98 [0.44] 0.45 – – -0.34 [0.30] 0.17 0.26 4428

Joint zero (p-value) 0.44 0.04 0.00 0.00 0.00 0.19 0.95

Panel B: Yield Curve Slopes

Australia 0.06 [0.02] 3.84 [1.56] 1.54 -0.01 [0.02] 0.43 [1.14] -0.17 0.06 [0.02] 3.42 [0.95] 3.77 0.08 492

Canada 0.04 [0.02] 4.04 [0.98] 2.25 -0.00 [0.01] 0.49 [0.66] -0.14 0.04 [0.01] 3.55 [0.66] 5.12 0.00 492

Germany 0.00 [0.02] 0.50 [1.77] -0.18 0.00 [0.02] -1.89 [1.37] 0.32 -0.00 [0.01] 2.39 [1.01] 1.74 0.29 492

Japan 0.00 [0.02] -0.32 [1.38] -0.19 0.01 [0.02] -2.94 [1.07] 1.37 -0.01 [0.01] 2.61 [0.82] 1.72 0.13 492

New Zealand 0.08 [0.04] 2.94 [2.04] 1.26 -0.03 [0.03] -0.39 [1.09] -0.15 0.10 [0.03] 3.33 [1.25] 3.95 0.15 492

Norway -0.00 [0.02] 0.59 [1.03] -0.12 -0.02 [0.02] -0.66 [0.91] -0.04 0.01 [0.01] 1.25 [0.59] 0.61 0.36 492

Sweden 0.02 [0.02] 3.12 [1.23] 2.12 -0.01 [0.02] 1.05 [1.13] 0.15 0.02 [0.01] 2.07 [0.73] 2.07 0.21 492

Switzerland 0.00 [0.02] 0.97 [1.17] -0.06 0.01 [0.02] -2.43 [1.28] 0.81 -0.01 [0.01] 3.40 [0.82] 4.92 0.05 492

United Kingdom 0.02 [0.03] 1.59 [1.53] 0.17 -0.03 [0.02] -2.38 [1.34] 1.12 0.05 [0.01] 3.96 [0.86] 5.53 0.05 492

Panel – – 1.94 [0.84] 0.42 – – -0.82 [0.72] 0.13 – – 2.75 [0.52] 3.10 0.00 4428

Joint zero (p-value) 0.07 0.00 0.75 0.03 0.00 0.00 0.00

Notes: The table reports regression results of the bond dollar return difference (r
(10),$
t+1 −r(10)

t+1 , left panel) or the exchange rate change (−∆st+1,

middle panel) or the bond local currency return difference (r
(10),∗
t+1 − r(10)

t+1 , right panel) on the difference between the foreign nominal interest

rate and the U.S. nominal interest rate (rf,∗t − rft , Panel A) or difference between the foreign nominal yield curve slope and the U.S. nominal

yield curve slope ([y
(10,∗)
t − y(1,∗)

t ] − [y
(10)
t − y(1)]

t , Panel B). The column “Slope Diff.” presents the p-value of the test for equality between
the slope coefficient in the bond dollar return difference regression and the slope coefficient in the currency excess return regression for each
country. The last line in each panel presents the p-value of the joint test that all individual-country regression coefficients in the respective
column are zero. We use returns on 10-year coupon bonds. The holding period is one month and returns are sampled monthly. The log returns
and the yield curve slope differentials are annualized. The sample period is 1/1975–12/2015. The balanced panel consists of Australia, Canada,
Japan, Germany, Norway, New Zealand, Sweden, Switzerland, and the U.K. In individual country regressions, standard errors are obtained
with a Newey and West (1987) approximation of the spectral density matrix, with the lag truncation parameter (kernel bandwidth) equal to
6. Panel regressions include country fixed effects, and standard errors are obtained using the Driscoll and Kraay (1998) methodology, with the
lag truncation parameter (kernel bandwidth) equal to 6.
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Table A6: Dollar Bond Return Differential Predictability – GBP as base currency

Bond dollar return difference Currency excess return Bond local currency return diff. Slope Diff. Obs.

rx(10),$ − rx(10) rxFX rx(10),∗ − rx(10)

α s.e. β s.e. R2(%) α s.e. β s.e. R2(%) α s.e. β s.e. R2(%) p-value

Panel A: Short-Term Interest Rates

Australia -0.01 [0.02] 1.64 [0.97] 0.41 -0.01 [0.02] 1.89 [0.69] 0.98 -0.00 [0.01] -0.24 [0.61] -0.15 0.84 492

Canada 0.02 [0.02] 2.33 [1.17] 0.73 0.02 [0.02] 3.54 [0.95] 2.82 -0.00 [0.01] -1.20 [0.90] 0.54 0.43 492

Germany 0.03 [0.03] 0.96 [0.89] 0.17 0.02 [0.02] 1.16 [0.63] 0.68 0.00 [0.01] -0.20 [0.44] -0.15 0.85 492

Japan 0.08 [0.05] 1.76 [1.01] 0.52 0.08 [0.05] 2.11 [0.90] 1.28 -0.00 [0.01] -0.34 [0.37] -0.10 0.80 492

New Zealand 0.00 [0.03] -0.33 [0.83] -0.17 -0.01 [0.02] 1.15 [0.52] 0.58 0.01 [0.02] -1.48 [0.58] 1.65 0.13 492

Norway -0.00 [0.02] 1.12 [0.67] 0.70 -0.00 [0.01] 1.08 [0.45] 0.99 -0.00 [0.01] 0.04 [0.46] -0.20 0.96 492

Sweden -0.02 [0.02] 0.14 [1.05] -0.20 -0.01 [0.01] 0.93 [0.77] 0.30 -0.01 [0.01] -0.79 [0.52] 0.55 0.54 492

Switzerland 0.06 [0.03] 1.58 [0.78] 1.22 0.06 [0.03] 1.68 [0.58] 1.87 -0.00 [0.01] -0.09 [0.33] -0.17 0.92 492

United States 0.02 [0.03] 1.02 [1.18] 0.04 0.05 [0.02] 2.69 [0.95] 2.44 -0.03 [0.02] -1.67 [0.66] 1.39 0.27 492

Panel – – 1.00 [0.54] 0.15 – – 1.60 [0.37] 1.16 – – -0.60 [0.31] 0.34 0.05 4428

Joint zero (p-value) 0.41 0.03 0.06 0.00 0.82 0.03 0.86

Panel B: Yield Curve Slopes

Australia 0.00 [0.02] 0.20 [1.51] -0.20 -0.00 [0.02] -2.48 [1.01] 0.72 0.01 [0.01] 2.68 [1.02] 2.71 0.14 492

Canada -0.00 [0.02] 0.50 [1.47] -0.17 -0.00 [0.02] -2.85 [1.37] 1.53 0.00 [0.01] 3.35 [0.79] 4.91 0.10 492

Germany 0.01 [0.02] -1.48 [1.24] 0.18 0.01 [0.02] -2.45 [0.94] 1.48 0.00 [0.01] 0.96 [0.62] 0.37 0.54 492

Japan 0.02 [0.03] -2.24 [1.47] 0.39 0.01 [0.02] -3.53 [1.19] 1.93 0.00 [0.01] 1.29 [0.62] 0.57 0.50 492

New Zealand 0.05 [0.03] 3.46 [1.09] 2.75 0.01 [0.02] -0.67 [0.59] -0.02 0.05 [0.01] 4.13 [0.75] 9.88 0.00 492

Norway -0.01 [0.02] -0.71 [0.99] -0.03 -0.00 [0.01] -1.54 [0.66] 0.96 -0.00 [0.01] 0.82 [0.63] 0.49 0.49 492

Sweden -0.02 [0.02] 0.93 [1.38] 0.03 -0.01 [0.01] -1.25 [1.01] 0.42 -0.01 [0.01] 2.18 [0.65] 3.69 0.20 492

Switzerland 0.00 [0.02] -2.73 [1.19] 1.04 0.00 [0.02] -3.92 [0.91] 3.13 -0.00 [0.01] 1.19 [0.55] 1.24 0.43 492

United States -0.02 [0.03] 1.59 [1.53] 0.17 0.02 [0.02] -3.17 [1.37] 2.11 -0.04 [0.01] 4.75 [0.83] 7.95 0.02 492

Panel – – 0.43 [0.82] -0.15 – – -2.10 [0.56] 1.06 – – 2.53 [0.44] 3.67 0.00 4428

Joint zero (p-value) 0.67 0.01 0.98 0.00 0.03 0.00 0.00

Notes: The table reports regression results of the bond British pound return difference (rx
(10),$
t+1 − rx(10)

t+1 , left panel) or the currency excess

return (rxFXt+1, middle panel) or the bond local currency return difference (rx
(10),∗
t+1 − rx(10)

t+1 , right panel) on the difference between the foreign

nominal interest rate and the U.K. nominal interest rate (rf,∗t − rft , Panel A) or difference between the foreign nominal yield curve slope and

the U.K. nominal yield curve slope ([y
(10,∗)
t − y(1,∗)

t ] − [y
(10)
t − y(1)]

t , Panel B). The column “Slope Diff.” presents the p-value of the test for
equality between the slope coefficient in the bond pound return difference regression and the slope coefficient in the currency excess return
regression for each country. The last line in each panel presents the p-value of the joint test that all individual-country regression coefficients in
the respective column are zero. We use returns on 10-year coupon bonds. The holding period is one month and returns are sampled monthly.
The log returns and the yield curve slope differentials are annualized. The sample period is 1/1975–12/2015. The balanced panel consists of
Australia, Canada, Japan, Germany, Norway, New Zealand, Sweden, Switzerland, and the U.S. In individual country regressions, standard
errors are obtained with a Newey and West (1987) approximation of the spectral density matrix, with the lag truncation parameter (kernel
bandwidth) equal to 6. Panel regressions include country fixed effects, and standard errors are obtained using the Driscoll and Kraay (1998)
methodology, with the lag truncation parameter (kernel bandwidth) equal to 6.
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in the bottom panel is 0.45% per annum and the annualized Sharpe ratio is 0.07. Thus, there is no evidence

of economically significant time variation in GBP bond excess returns, consistent with our hypothesis, in line

with (but quantitatively different than) our conclusions for USD bond returns.

Table A7: Dynamic Long-Short Foreign and U.S. Bond Portfolios – GBP as Base Currency

Bond dollar return difference Currency excess return Bond local currency return diff.

rx(10),$ − rx(10) rxFX rx(10),∗ − rx(10)

Mean s.e. Std. SR s.e. Mean s.e. Std. SR s.e. Mean s.e. Std. SR s.e.

Panel A: Short-Term Interest Rates

Australia 3.81 [2.31] 14.91 0.26 [0.16] 3.70 [1.91] 12.36 0.30 [0.16] 0.11 [1.19] 7.54 0.01 [0.16]

Canada 2.03 [1.89] 12.44 0.16 [0.16] 2.96 [1.62] 10.44 0.28 [0.16] -0.94 [1.07] 7.17 -0.13 [0.16]

Germany 0.12 [1.76] 11.28 0.01 [0.15] 1.50 [1.36] 8.91 0.17 [0.15] -1.38 [0.93] 5.99 -0.23 [0.15]

Japan 0.19 [2.22] 14.65 0.01 [0.16] 1.18 [1.89] 12.19 0.10 [0.16] -0.99 [1.16] 7.40 -0.13 [0.17]

New Zealand 0.14 [2.40] 15.66 0.01 [0.15] 3.02 [1.82] 12.07 0.25 [0.16] -2.88 [1.56] 10.10 -0.29 [0.15]

Norway 3.48 [1.65] 10.52 0.33 [0.15] 2.80 [1.38] 8.80 0.32 [0.16] 0.68 [0.93] 6.09 0.11 [0.15]

Sweden 1.30 [1.80] 11.41 0.11 [0.16] 2.52 [1.49] 9.33 0.27 [0.16] -1.22 [0.99] 6.51 -0.19 [0.16]

Switzerland 0.73 [1.81] 11.66 0.06 [0.16] 0.72 [1.57] 10.24 0.07 [0.16] 0.01 [0.73] 4.73 0.00 [0.16]

United States 0.89 [2.00] 12.76 0.07 [0.15] 3.09 [1.59] 10.26 0.30 [0.16] -2.20 [1.25] 8.21 -0.27 [0.15]

Equally-weighted 1.41 [0.98] 6.33 0.22 [0.16] 2.39 [0.80] 5.11 0.47 [0.17] -0.98 [0.52] 3.41 -0.29 [0.16]

Panel B: Yield Curve Slopes

Australia 0.41 [2.34] 14.95 0.03 [0.16] 3.48 [1.94] 12.37 0.28 [0.17] -3.07 [1.20] 7.48 -0.41 [0.15]

Canada -2.42 [1.95] 12.44 -0.19 [0.16] 1.56 [1.70] 10.47 0.15 [0.16] -3.98 [1.10] 7.08 -0.56 [0.15]

Germany 1.38 [1.72] 11.27 0.12 [0.16] 2.88 [1.37] 8.88 0.32 [0.16] -1.50 [0.95] 5.99 -0.25 [0.15]

Japan 3.04 [2.39] 14.62 0.21 [0.16] 3.57 [1.96] 12.15 0.29 [0.16] -0.53 [1.17] 7.40 -0.07 [0.16]

New Zealand -2.96 [2.34] 15.64 -0.19 [0.15] 2.43 [1.85] 12.08 0.20 [0.16] -5.39 [1.60] 10.02 -0.54 [0.13]

Norway 0.89 [1.67] 10.57 0.08 [0.16] 2.72 [1.43] 8.80 0.31 [0.16] -1.83 [0.94] 6.07 -0.30 [0.15]

Sweden 1.53 [1.80] 11.41 0.13 [0.15] 3.66 [1.48] 9.30 0.39 [0.16] -2.13 [1.00] 6.49 -0.33 [0.16]

Switzerland 4.88 [1.79] 11.58 0.42 [0.15] 6.38 [1.57] 10.08 0.63 [0.15] -1.50 [0.70] 4.71 -0.32 [0.16]

United States -2.73 [1.95] 12.73 -0.21 [0.16] 2.06 [1.61] 10.29 0.20 [0.16] -4.79 [1.30] 8.12 -0.59 [0.16]

Equally-weighted 0.45 [1.05] 6.59 0.07 [0.16] 3.19 [0.92] 5.65 0.57 [0.16] -2.75 [0.55] 3.45 -0.80 [0.15]

Notes: For each country, the table presents summary return statistics of investment strategies that go long the foreign country bond and short
the British bond when the foreign short-term interest rate is higher than the U.K. interest rate (or the foreign yield curve slope is lower than
the U.K. yield curve slope), and go long the British bond and short the foreign country bond when the U.K. interest rate is higher than the
country’s interest rate (or the U.K. yield curve slope is lower than the foreign yield curve slope). Results based on interest rate levels are
reported in Panel A and results based on interest rate slopes are reported in Panel B. The table reports the mean, standard deviation and
Sharpe ratio (denoted SR) for the currency excess return (rxFX , middle panel), for the foreign bond excess return on 10-year government
bond indices in foreign currency (rx(10),∗ − rx(10), right panel) and for the foreign bond excess return on 10-year government bond indices
in U.K. pounds (rx(10),$ − rx(10), left panel). The holding period is one month. The table also presents summary return statistics for the
equally-weighted average of the individual country strategies. The slope of the yield curve is measured by the difference between the 10-year
yield and the one-month interest rate. The standard errors (denoted s.e. and reported between brackets) were generated by bootstrapping
10,000 samples of non-overlapping returns. The log returns are annualized. The data are monthly and the sample is 1/1975–12/2015.
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F Individual Country Time-Series Predictability Results

Tables A8 and A9 report the time-series regression results when we end the sample in 2007: Table A8 considers

the shorter 10/1983-12/2007 sample period, whereas Table A9 considers the 1/1975-12/2007 sample period.

The first column looks at dollar return differential predictability. The panel slope coefficient for the interest

rate regressions is 1.05 in the short sample, compared to 0.65 in the full sample, and we find marginal evidence

in favor of interest rate predictability of the dollar return differential, driven mainly by Japan. The R2s in

these regressions are extremely low. However, the evidence for yield curve slope predictability is weaker in

this shorter sample; the panel slope coefficient of 0.58 is no longer statistically different from zero. When we

look at the 1/1975-12/2007 sample, the panel slope coefficient for the interest rate regression is 0.86 and not

statistically significant, while the panel slope coefficient for the slope regression is 1.54, marginally statistically

significant. As happens for our benchmark sample period, the latter coefficient for this sample period also

has the opposite sign from what the standard slope carry trade would imply. Finally, Table A10 reports the

predictability regression results for the sample period 10/1983-12/2105. We find that the slope coefficient in

the interest rate predictability panel regression is 0.81 and non-significant, whereas the slope coefficient in the

yield curve slope predictability panel regression is 1.26 and also not statistically significant.

Tables A11, A12 and A13 explore whether there is economically significant evidence of return predictability.

Note that, as regards the first two of those tables, leaving out the recent financial crisis would have to influence

average returns if one believes that carry trade returns compensate investors for taking on non-diversifiable

risk (see Lustig and Verdelhan, 2007, for an early version of this perspective). In the shorter 10/1983-12/2007

sample (Table A11), the equally-weighted dollar return on the dynamic strategy that exploits interest rate

predictability is 2.57% per annum, with a standard error of 1.17%. Not surprisingly, this increase in the dollar

return is due to a higher currency excess return of 3.89% per annum in the sample that leaves out the crisis;

the currency excess return only 2.59% in the full sample. That difference largely explains why this strategy

produces statistically significant returns in the shorter sample. On the other hand, the equally-weighted dollar

return on the dynamic strategy that exploits slope predictability is 1.53% per annum, with a standard error of

1.58%. In the longer 1/1975-12/2007 sample (Table A12), the equally-weighted dollar return on the dynamic

strategy that exploits interest rate predictability is 1.38% per annum, with a standard error of 1.02%. Thus,

in this longer sample, the dollar return differential is no longer significant. The equally-weighted dollar return

13



Table A8: Dollar Bond Return Differential Predictability (10/1983 - 12/2007 Sample Period)

Bond dollar return difference Currency excess return Bond local currency return diff. Slope Diff. Obs.

rx(10),$ − rx(10) rxFX rx(10),∗ − rx(10)

α s.e. β s.e. R2(%) α s.e. β s.e. R2(%) α s.e. β s.e. R2(%) p-value

Panel A: Short-Term Interest Rates

Australia -0.00 [0.04] 0.71 [1.16] -0.17 -0.02 [0.03] 1.71 [0.71] 1.48 0.02 [0.02] -1.00 [0.67] 0.85 0.46 291

Canada 0.03 [0.02] -0.89 [0.74] -0.04 0.01 [0.02] 1.05 [0.55] 0.50 0.02 [0.01] -1.93 [0.48] 3.16 0.04 291

Germany 0.01 [0.03] 1.06 [1.42] -0.05 0.03 [0.02] 2.07 [1.26] 1.08 -0.02 [0.01] -1.01 [0.84] 0.45 0.60 291

Japan 0.09 [0.04] 3.58 [1.16] 1.64 0.12 [0.04] 4.27 [1.10] 4.15 -0.03 [0.02] -0.69 [0.59] -0.14 0.66 291

New Zealand -0.05 [0.05] 1.32 [0.85] 0.47 -0.06 [0.03] 2.27 [0.54] 4.70 0.01 [0.03] -0.96 [0.65] 0.68 0.34 291

Norway -0.01 [0.03] 1.15 [0.84] 0.41 -0.00 [0.02] 1.50 [0.77] 1.49 -0.01 [0.02] -0.34 [0.54] -0.20 0.76 291

Sweden 0.02 [0.03] -0.06 [0.99] -0.34 0.00 [0.03] 1.20 [1.10] 0.79 0.02 [0.02] -1.26 [0.52] 2.04 0.40 291

Switzerland 0.02 [0.03] 2.06 [1.16] 0.92 0.06 [0.04] 2.88 [1.23] 2.48 -0.04 [0.02] -0.82 [0.70] 0.29 0.63 291

United Kingdom -0.02 [0.03] 1.07 [1.37] -0.08 -0.03 [0.03] 2.69 [1.23] 1.96 0.01 [0.02] -1.61 [0.65] 1.48 0.38 291

Panel – – 1.05 [0.61] 0.14 – – 2.03 [0.56] 2.14 – – -0.98 [0.36] 0.73 0.01 2619

Joint zero (p-value) 0.29 0.02 0.02 0.00 0.05 0.00 0.52

Panel B: Yield Curve Slopes

Australia 0.04 [0.03] 1.61 [1.91] -0.03 0.00 [0.02] -2.11 [1.30] 0.63 0.04 [0.02] 3.72 [0.99] 5.44 0.11 291

Canada 0.04 [0.02] 2.95 [1.08] 1.54 0.02 [0.01] -0.95 [0.73] 0.04 0.02 [0.01] 3.90 [0.66] 7.49 0.00 291

Germany 0.00 [0.02] -0.07 [1.97] -0.35 0.01 [0.02] -3.22 [1.77] 1.19 -0.01 [0.01] 3.16 [1.23] 3.07 0.23 291

Japan -0.01 [0.03] -2.42 [1.71] 0.09 -0.02 [0.02] -6.05 [1.56] 3.96 0.01 [0.02] 3.63 [0.96] 2.28 0.12 291

New Zealand 0.04 [0.05] 0.84 [2.66] -0.22 -0.01 [0.04] -2.55 [1.54] 2.07 0.06 [0.03] 3.39 [1.52] 4.56 0.27 291

Norway 0.01 [0.03] -0.47 [1.35] -0.30 0.01 [0.02] -1.86 [1.37] 0.67 -0.00 [0.02] 1.39 [0.85] 0.49 0.47 291

Sweden 0.04 [0.03] 1.70 [1.30] 0.54 0.02 [0.02] -1.09 [1.55] 0.09 0.02 [0.02] 2.79 [0.81] 5.11 0.17 291

Switzerland -0.02 [0.02] -0.41 [1.35] -0.32 -0.02 [0.02] -3.45 [1.58] 1.83 -0.00 [0.01] 3.04 [0.78] 4.36 0.14 291

United Kingdom 0.01 [0.03] 0.33 [1.70] -0.33 -0.02 [0.03] -3.41 [1.62] 1.49 0.03 [0.02] 3.74 [0.98] 4.50 0.11 291

Panel – – 0.58 [1.01] -0.22 – – -2.49 [0.91] 1.30 – – 3.08 [0.59] 3.76 0.00 2619

Joint zero (p-value) 0.29 0.20 0.87 0.00 0.03 0.00 0.00

Notes: The table reports regression results of the bond dollar return difference (rx
(10),$
t+1 − rx(10)

t+1 , left panel) or the currency excess return

(rxFXt+1, middle panel) or the bond local currency return difference (rx
(10),∗
t+1 − rx(10)

t+1 , right panel) on the difference between the foreign nominal

interest rate and the U.S. nominal interest rate (rf,∗t − rft , Panel A) or difference between the foreign nominal yield curve slope and the U.S.

nominal yield curve slope ([y
(10,∗)
t − y(1,∗)

t ] − [y
(10)
t − y(1)]

t , Panel B). The column “Slope Diff.” presents the p-value of the test for equality
between the slope coefficient in the bond dollar return difference regression and the slope coefficient in the currency excess return regression
for each country. The last line in each panel presents the p-value of the joint test that all individual-country regression coefficients in the
respective column are zero. We use returns on 10-year coupon bonds. The holding period is one month and returns are sampled monthly.
The log returns and the yield curve slope differentials are annualized. The sample period is 10/1983–12/2007. The balanced panel consists
of Australia, Canada, Japan, Germany, Norway, New Zealand, Sweden, Switzerland, and the U.K. In individual country regressions, standard
errors are obtained with a Newey and West (1987) approximation of the spectral density matrix, with the lag truncation parameter (kernel
bandwidth) equal to 5. Panel regressions include country fixed effects, and standard errors are obtained using the Driscoll and Kraay (1998)
methodology, with the lag truncation parameter (kernel bandwidth) equal to 5.
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Table A9: Dollar Bond Return Differential Predictability (1/1975 - 12/2007 Sample Period)

Bond dollar return difference Currency excess return Bond local currency return diff. Slope Diff. Obs.

rx(10),$ − rx(10) rxFX rx(10),∗ − rx(10)

α s.e. β s.e. R2(%) α s.e. β s.e. R2(%) α s.e. β s.e. R2(%) p-value

Panel A: Short-Term Interest Rates

Australia 0.01 [0.03] -0.14 [1.01] -0.25 -0.02 [0.02] 1.42 [0.57] 1.07 0.03 [0.02] -1.56 [0.63] 1.81 0.18 396

Canada 0.03 [0.02] -1.09 [0.68] 0.16 -0.00 [0.01] 1.24 [0.50] 0.96 0.03 [0.01] -2.32 [0.47] 3.86 0.01 396

Germany 0.02 [0.02] 1.80 [1.29] 0.62 0.04 [0.02] 2.89 [1.04] 2.77 -0.01 [0.01] -1.08 [0.64] 0.60 0.51 396

Japan 0.11 [0.03] 3.45 [0.93] 2.21 0.12 [0.03] 4.07 [0.72] 5.55 -0.01 [0.02] -0.62 [0.59] -0.05 0.60 396

New Zealand -0.05 [0.05] 1.00 [0.86] 0.15 -0.09 [0.03] 2.55 [0.46] 5.78 0.04 [0.03] -1.54 [0.68] 1.60 0.11 396

Norway -0.01 [0.02] 0.95 [0.60] 0.37 -0.01 [0.02] 1.92 [0.56] 3.80 0.01 [0.02] -0.97 [0.42] 0.94 0.23 396

Sweden 0.00 [0.02] -0.47 [0.93] -0.14 -0.02 [0.02] 1.10 [0.92] 0.65 0.02 [0.01] -1.57 [0.50] 2.15 0.23 396

Switzerland 0.03 [0.03] 1.28 [0.88] 0.42 0.07 [0.03] 2.84 [0.88] 3.48 -0.05 [0.02] -1.55 [0.47] 2.34 0.21 396

United Kingdom -0.01 [0.03] 1.15 [1.27] 0.07 -0.06 [0.03] 3.09 [1.03] 3.38 0.04 [0.02] -1.95 [0.71] 1.79 0.23 396

Panel – – 0.86 [0.51] 0.06 – – 2.26 [0.46] 2.96 – – -1.40 [0.33] 1.53 0.00 3564

Joint zero (p-value) 0.05 0.00 0.00 0.00 0.00 0.00 0.03

Panel B: Yield Curve Slopes

Australia 0.05 [0.02] 3.87 [1.67] 1.67 -0.00 [0.02] -1.56 [1.01] 0.36 0.05 [0.02] 5.43 [1.00] 9.37 0.01 396

Canada 0.04 [0.01] 3.44 [0.96] 2.17 0.00 [0.01] -1.29 [0.61] 0.51 0.04 [0.01] 4.72 [0.66] 9.61 0.00 396

Germany 0.01 [0.02] 0.11 [1.90] -0.25 0.01 [0.02] -3.68 [1.47] 2.04 -0.00 [0.01] 3.80 [1.06] 4.62 0.11 396

Japan 0.01 [0.03] -0.87 [1.54] -0.18 0.01 [0.02] -5.04 [1.18] 3.95 0.01 [0.02] 4.17 [0.95] 4.06 0.03 396

New Zealand 0.07 [0.05] 2.54 [2.13] 0.92 -0.04 [0.03] -2.29 [1.18] 1.94 0.11 [0.03] 4.83 [1.28] 7.94 0.05 396

Norway 0.00 [0.02] -0.23 [0.91] -0.24 0.00 [0.02] -2.76 [0.84] 3.44 0.00 [0.02] 2.53 [0.63] 3.31 0.04 396

Sweden 0.01 [0.02] 2.62 [1.25] 1.70 0.00 [0.02] -0.67 [1.14] -0.07 0.01 [0.01] 3.29 [0.73] 5.61 0.05 396

Switzerland -0.01 [0.02] 0.88 [1.23] -0.12 -0.02 [0.02] -3.89 [1.32] 2.73 0.01 [0.01] 4.77 [0.85] 10.15 0.01 396

United Kingdom 0.03 [0.03] 1.37 [1.57] 0.07 -0.02 [0.03] -3.54 [1.41] 3.05 0.05 [0.02] 4.90 [0.87] 8.75 0.02 396

Panel – – 1.54 [0.86] 0.21 – – -2.58 [0.72] 1.77 – – 4.12 [0.54] 6.65 0.00 3564

Joint zero (p-value) 0.10 0.00 0.97 0.00 0.00 0.00 0.00

Notes: The table reports regression results of the bond dollar return difference (rx
(10),$
t+1 − rx(10)

t+1 , left panel) or the currency excess return

(rxFXt+1, middle panel) or the bond local currency return difference (rx
(10),∗
t+1 − rx(10)

t+1 , right panel) on the difference between the foreign nominal

interest rate and the U.S. nominal interest rate (rf,∗t − rft , Panel A) or difference between the foreign nominal yield curve slope and the U.S.

nominal yield curve slope ([y
(10,∗)
t − y(1,∗)

t ] − [y
(10)
t − y(1)]

t , Panel B). The column “Slope Diff.” presents the p-value of the test for equality
between the slope coefficient in the bond dollar return difference regression and the slope coefficient in the currency excess return regression
for each country. The last line in each panel presents the p-value of the joint test that all individual-country regression coefficients in the
respective column are zero. We use returns on 10-year coupon bonds. The holding period is one month and returns are sampled monthly.
The log returns and the yield curve slope differentials are annualized. The sample period is 1/1975–12/2007. The balanced panel consists of
Australia, Canada, Japan, Germany, Norway, New Zealand, Sweden, Switzerland, and the U.K. In individual country regressions, standard
errors are obtained with a Newey and West (1987) approximation of the spectral density matrix, with the lag truncation parameter (kernel
bandwidth) equal to 6. Panel regressions include country fixed effects, and standard errors are obtained using the Driscoll and Kraay (1998)
methodology, with the lag truncation parameter (kernel bandwidth) equal to 6.
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Table A10: Dollar Bond Return Differential Predictability (10/1983 - 12/2015 Sample Period)

Bond dollar return difference Currency excess return Bond local currency return diff. Slope Diff. Obs.

rx(10),$ − rx(10) rxFX rx(10),∗ − rx(10)

α s.e. β s.e. R2(%) α s.e. β s.e. R2(%) α s.e. β s.e. R2(%) p-value

Panel A: Short-Term Interest Rates

Australia -0.01 [0.03] 0.63 [1.10] -0.15 -0.02 [0.03] 1.54 [0.74] 0.67 0.02 [0.02] -0.91 [0.64] 0.63 0.49 387

Canada 0.02 [0.02] -1.03 [0.76] 0.01 -0.00 [0.02] 0.98 [0.58] 0.10 0.02 [0.01] -2.01 [0.48] 2.99 0.04 387

Germany 0.00 [0.02] 0.87 [1.34] -0.09 0.01 [0.02] 1.74 [1.18] 0.53 -0.01 [0.01] -0.87 [0.72] 0.29 0.62 387

Japan 0.03 [0.03] 2.13 [1.01] 0.62 0.06 [0.03] 2.80 [0.94] 2.01 -0.02 [0.02] -0.68 [0.51] -0.03 0.62 387

New Zealand -0.03 [0.04] 0.99 [0.86] 0.13 -0.04 [0.03] 1.98 [0.54] 2.34 0.02 [0.03] -0.99 [0.66] 0.79 0.33 387

Norway -0.02 [0.03] 0.97 [0.84] 0.13 -0.02 [0.02] 1.41 [0.77] 0.86 -0.01 [0.02] -0.44 [0.51] -0.06 0.70 387

Sweden 0.01 [0.02] -0.19 [0.95] -0.24 -0.00 [0.02] 1.01 [1.05] 0.32 0.01 [0.01] -1.20 [0.49] 1.76 0.40 387

Switzerland 0.01 [0.03] 1.89 [1.06] 0.67 0.04 [0.03] 2.46 [1.05] 1.47 -0.03 [0.01] -0.58 [0.63] 0.04 0.70 387

United Kingdom -0.02 [0.03] 0.82 [1.26] -0.11 -0.03 [0.02] 2.29 [1.12] 1.36 0.01 [0.01] -1.47 [0.56] 1.32 0.38 387

Panel – – 0.81 [0.58] -0.00 – – 1.76 [0.52] 1.16 – – -0.94 [0.33] 0.65 0.00 3483

Joint zero (p-value) 0.87 0.15 0.24 0.00 0.04 0.00 0.53

Panel B: Yield Curve Slopes

Australia 0.05 [0.03] 2.08 [1.80] 0.20 0.01 [0.02] -1.23 [1.49] -0.04 0.04 [0.02] 3.31 [0.95] 4.11 0.16 387

Canada 0.03 [0.02] 3.88 [1.16] 1.90 0.01 [0.01] -0.09 [0.82] -0.26 0.03 [0.01] 3.97 [0.64] 6.96 0.01 387

Germany -0.00 [0.02] 0.46 [1.80] -0.24 -0.00 [0.02] -2.48 [1.55] 0.47 0.00 [0.01] 2.93 [1.00] 2.57 0.22 387

Japan -0.02 [0.03] -1.62 [1.56] -0.04 -0.03 [0.02] -5.07 [1.36] 2.92 0.01 [0.01] 3.45 [0.88] 2.33 0.10 387

New Zealand 0.05 [0.05] 1.53 [2.57] 0.12 0.00 [0.03] -1.75 [1.56] 0.57 0.05 [0.02] 3.28 [1.43] 4.40 0.28 387

Norway 0.01 [0.03] 0.91 [1.53] -0.14 0.01 [0.02] -0.85 [1.46] -0.11 0.00 [0.02] 1.76 [0.80] 0.88 0.41 387

Sweden 0.04 [0.02] 2.51 [1.28] 1.19 0.01 [0.02] -0.28 [1.50] -0.24 0.02 [0.01] 2.79 [0.75] 4.66 0.16 387

Switzerland -0.01 [0.02] -0.10 [1.27] -0.26 -0.02 [0.02] -3.07 [1.42] 1.06 0.01 [0.01] 2.97 [0.71] 3.61 0.12 387

United Kingdom 0.00 [0.03] 0.61 [1.64] -0.22 -0.02 [0.02] -2.82 [1.56] 0.93 0.02 [0.02] 3.44 [0.83] 3.90 0.13 387

Panel – – 1.26 [1.01] -0.00 – – -1.77 [0.92] 0.41 – – 3.03 [0.54] 3.46 0.00 3483

Joint zero (p-value) 0.26 0.03 0.87 0.00 0.00 0.00 0.01

Notes: The table reports regression results of the bond dollar return difference (rx
(10),$
t+1 − rx(10)

t+1 , left panel) or the currency excess return

(rxFXt+1, middle panel) or the bond local currency return difference (rx
(10),∗
t+1 − rx(10)

t+1 , right panel) on the difference between the foreign nominal

interest rate and the U.S. nominal interest rate (rf,∗t − rft , Panel A) or difference between the foreign nominal yield curve slope and the U.S.

nominal yield curve slope ([y
(10,∗)
t − y(1,∗)

t ] − [y
(10)
t − y(1)]

t , Panel B). The column “Slope Diff.” presents the p-value of the test for equality
between the slope coefficient in the bond dollar return difference regression and the slope coefficient in the currency excess return regression
for each country. The last line in each panel presents the p-value of the joint test that all individual-country regression coefficients in the
respective column are zero. We use returns on 10-year coupon bonds. The holding period is one month and returns are sampled monthly.
The log returns and the yield curve slope differentials are annualized. The sample period is 10/1983–12/2015. The balanced panel consists
of Australia, Canada, Japan, Germany, Norway, New Zealand, Sweden, Switzerland, and the U.K. In individual country regressions, standard
errors are obtained with a Newey and West (1987) approximation of the spectral density matrix, with the lag truncation parameter (kernel
bandwidth) equal to 6. Panel regressions include country fixed effects, and standard errors are obtained using the Driscoll and Kraay (1998)
methodology, with the lag truncation parameter (kernel bandwidth) equal to 6.
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on the dynamic strategy that exploits slope predictability is −0.65% per annum, also not significant, as its

standard error is 1.30%. To summarize, the main difference seems to be an increase in carry trade returns if

we exclude the financial crisis. Finally, in the 10/1983-12/2015 sample period (Table A13), neither the interest

rate nor the yield curve slope equally-weighted strategy yields statistically significant dollar bond returns: the

former has an average annualized return of 1.42% with a standard error of 1.16% and the latter has an average

annualized return of 0.51% with a standard error of 1.47%. Overall, our main findings continue to hold.

Finally, we check the robustness of our time-series predictability results by considering a horizon of three

months. Tables A14 and A15 report the output of three-month return predictability regressions for bond and

currency excess returns over our benchmark sample period (1/1975–12/2015), for both coupon bonds (balanced

sample) and zero-coupon bonds (unbalanced sample). As we can see, while we find no statistical evidence or

USD bond return predictability using slopes, there is some evidence for interest rate predictability, both using

coupon bonds and zero-coupon bonds. However, as seen in Tables A16 and A17 that evaluate the economic

significant of interest rate and slope predictability, neither interest rate- nor slope-based portfolio strategies can

achieve statistically significant USD bond returns, in line with our hypothesis.
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Table A11: Dynamic Long-Short Foreign and U.S. Bond Portfolios (10/1983 - 12/2007 Sample Period)

Bond dollar return difference Currency excess return Bond local currency return diff.

rx(10),$ − rx(10) rxFX rx(10),∗ − rx(10)

Mean s.e. Std. SR s.e. Mean s.e. Std. SR s.e. Mean s.e. Std. SR s.e.

Panel A: Short-Term Interest Rates

Australia 3.95 [2.86] 14.25 0.28 [0.21] 5.41 [2.18] 10.62 0.51 [0.22] -1.46 [1.52] 7.75 -0.19 [0.20]

Canada 0.76 [1.64] 8.18 0.09 [0.21] 2.13 [1.16] 5.83 0.36 [0.21] -1.37 [1.08] 5.28 -0.26 [0.20]

Germany 2.16 [2.41] 12.18 0.18 [0.21] 3.20 [2.13] 10.87 0.29 [0.21] -1.04 [1.42] 7.17 -0.15 [0.21]

Japan 2.02 [2.82] 14.49 0.14 [0.20] 1.88 [2.23] 11.51 0.16 [0.20] 0.14 [1.73] 8.86 0.02 [0.20]

New Zealand 2.72 [3.46] 17.23 0.16 [0.21] 6.45 [2.43] 11.98 0.54 [0.23] -3.73 [2.24] 11.22 -0.33 [0.19]

Norway 3.70 [2.48] 12.36 0.30 [0.22] 5.11 [2.06] 10.29 0.50 [0.22] -1.41 [1.78] 8.52 -0.17 [0.20]

Sweden 4.22 [2.30] 11.61 0.36 [0.21] 5.68 [2.11] 10.57 0.54 [0.23] -1.46 [1.59] 7.69 -0.19 [0.20]

Switzerland 2.20 [2.44] 12.42 0.18 [0.20] 1.00 [2.28] 11.62 0.09 [0.20] 1.20 [1.41] 6.99 0.17 [0.20]

United Kingdom 1.43 [2.50] 12.12 0.12 [0.21] 4.19 [2.08] 10.33 0.41 [0.21] -2.76 [1.45] 6.99 -0.39 [0.21]

Equally-weighted 2.57 [1.17] 5.63 0.46 [0.22] 3.89 [0.95] 4.69 0.83 [0.24] -1.32 [0.73] 3.56 -0.37 [0.21]

Panel B: Yield Curve Slopes

Australia 2.00 [2.95] 14.29 0.14 [0.21] 4.92 [2.22] 10.64 0.46 [0.21] -2.92 [1.56] 7.71 -0.38 [0.20]

Canada -1.16 [1.72] 8.18 -0.14 [0.21] 2.35 [1.18] 5.82 0.40 [0.21] -3.51 [1.08] 5.20 -0.68 [0.21]

Germany 3.46 [2.28] 12.15 0.28 [0.21] 6.64 [2.07] 10.74 0.62 [0.21] -3.18 [1.41] 7.11 -0.45 [0.20]

Japan 2.93 [2.83] 14.48 0.20 [0.21] 6.65 [2.17] 11.36 0.59 [0.22] -3.72 [1.81] 8.80 -0.42 [0.21]

New Zealand 2.53 [3.63] 17.23 0.15 [0.21] 6.22 [2.51] 11.99 0.52 [0.23] -3.69 [2.30] 11.22 -0.33 [0.19]

Norway 1.06 [2.58] 12.40 0.09 [0.20] 3.19 [2.07] 10.35 0.31 [0.21] -2.14 [1.75] 8.51 -0.25 [0.20]

Sweden 0.77 [2.42] 11.67 0.07 [0.20] 4.44 [2.13] 10.62 0.42 [0.21] -3.67 [1.52] 7.63 -0.48 [0.20]

Switzerland 2.42 [2.61] 12.42 0.19 [0.20] 5.11 [2.29] 11.53 0.44 [0.21] -2.69 [1.47] 6.95 -0.39 [0.20]

United Kingdom -0.20 [2.45] 12.13 -0.02 [0.20] 2.63 [2.10] 10.37 0.25 [0.21] -2.82 [1.42] 6.99 -0.40 [0.20]

Equally-weighted 1.53 [1.58] 7.54 0.20 [0.20] 4.68 [1.23] 6.11 0.77 [0.22] -3.15 [1.06] 5.18 -0.61 [0.21]

Notes: For each country, the table presents summary return statistics of investment strategies that go long the foreign country bond and short
the U.S. bond when the foreign short-term interest rate is higher than the U.S. interest rate (or the foreign yield curve slope is lower than the
U.S. yield curve slope), and go long the U.S. bond and short the foreign country bond when the U.S. interest rate is higher than the country’s
interest rate (or the U.S. yield curve slope is lower than the foreign yield curve slope). Results based on interest rate levels are reported in
Panel A and results based on interest rate slopes are reported in Panel B. The table reports the mean, standard deviation and Sharpe ratio
(denoted SR) for the currency excess return (rxFX , middle panel), for the foreign bond excess return on 10-year government bond indices
in foreign currency (rx(10),∗ − rx(10), right panel) and for the foreign bond excess return on 10-year government bond indices in U.S. dollars
(rx(10),$ − rx(10), left panel). The holding period is one month. The table also presents summary return statistics for the equally-weighted
average of the individual country strategies. The slope of the yield curve is measured by the difference between the 10-year yield and the
one-month interest rate. The standard errors (denoted s.e. and reported between brackets) were generated by bootstrapping 10,000 samples
of non-overlapping returns. The log returns are annualized. The data are monthly and the sample is 10/1983–12/2007.
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Table A12: Dynamic Long-Short Foreign and U.S. Bond Portfolios (1/1975 - 12/2007 Sample Period)

Bond dollar return difference Currency excess return Bond local currency return diff.

rx(10),$ − rx(10) rxFX rx(10),∗ − rx(10)

Mean s.e. Std. SR s.e. Mean s.e. Std. SR s.e. Mean s.e. Std. SR s.e.

Panel A: Short-Term Interest Rates

Australia 1.39 [2.61] 14.44 0.10 [0.18] 4.06 [1.83] 10.24 0.40 [0.18] -2.67 [1.54] 9.03 -0.30 [0.17]

Canada 0.02 [1.48] 8.48 0.00 [0.17] 1.61 [1.00] 5.65 0.29 [0.17] -1.60 [1.00] 5.75 -0.28 [0.18]

Germany 2.12 [2.21] 12.82 0.17 [0.17] 3.99 [1.86] 10.95 0.36 [0.17] -1.87 [1.37] 7.76 -0.24 [0.18]

Japan 1.48 [2.68] 15.13 0.10 [0.17] 2.20 [2.06] 11.60 0.19 [0.18] -0.72 [1.69] 9.47 -0.08 [0.17]

New Zealand 0.46 [3.04] 17.20 0.03 [0.18] 4.30 [1.99] 11.29 0.38 [0.19] -3.84 [2.13] 12.35 -0.31 [0.17]

Norway 2.31 [2.24] 12.68 0.18 [0.18] 4.97 [1.73] 9.97 0.50 [0.18] -2.66 [1.66] 9.38 -0.28 [0.17]

Sweden 1.10 [2.27] 12.84 0.09 [0.18] 4.19 [1.82] 10.59 0.40 [0.19] -3.10 [1.66] 9.28 -0.33 [0.17]

Switzerland 1.34 [2.21] 12.94 0.10 [0.17] 1.62 [2.05] 12.14 0.13 [0.17] -0.28 [1.39] 7.98 -0.03 [0.17]

United Kingdom 2.19 [2.28] 13.00 0.17 [0.18] 4.57 [1.80] 10.40 0.44 [0.18] -2.38 [1.55] 8.77 -0.27 [0.18]

Equally-weighted 1.38 [1.02] 5.65 0.24 [0.18] 3.50 [0.81] 4.55 0.77 [0.19] -2.12 [0.64] 3.66 -0.58 [0.18]

Panel B: Yield Curve Slopes

Australia -2.52 [2.53] 14.43 -0.17 [0.17] 3.24 [1.81] 10.27 0.32 [0.19] -5.77 [1.59] 8.91 -0.65 [0.16]

Canada -1.99 [1.51] 8.46 -0.23 [0.17] 2.07 [1.00] 5.64 0.37 [0.17] -4.06 [0.95] 5.65 -0.72 [0.18]

Germany 2.80 [2.19] 12.80 0.22 [0.18] 6.94 [1.88] 10.83 0.64 [0.18] -4.14 [1.32] 7.69 -0.54 [0.17]

Japan -0.13 [2.79] 15.14 -0.01 [0.17] 5.95 [2.09] 11.49 0.52 [0.18] -6.07 [1.63] 9.31 -0.65 [0.19]

New Zealand -0.52 [3.08] 17.20 -0.03 [0.17] 3.85 [2.02] 11.30 0.34 [0.19] -4.37 [2.22] 12.34 -0.35 [0.17]

Norway 0.76 [2.14] 12.69 0.06 [0.17] 4.56 [1.72] 9.99 0.46 [0.18] -3.80 [1.60] 9.34 -0.41 [0.17]

Sweden -2.98 [2.23] 12.82 -0.23 [0.17] 2.60 [1.84] 10.63 0.24 [0.18] -5.58 [1.62] 9.18 -0.61 [0.17]

Switzerland 0.23 [2.17] 12.94 0.02 [0.17] 5.54 [2.08] 12.04 0.46 [0.18] -5.30 [1.32] 7.83 -0.68 [0.17]

United Kingdom -1.50 [2.29] 13.00 -0.12 [0.17] 3.68 [1.81] 10.42 0.35 [0.17] -5.18 [1.52] 8.66 -0.60 [0.17]

Equally-weighted -0.65 [1.30] 7.28 -0.09 [0.18] 4.27 [1.04] 5.79 0.74 [0.18] -4.92 [0.89] 5.12 -0.96 [0.18]

Notes: For each country, the table presents summary return statistics of investment strategies that go long the foreign country bond and short
the U.S. bond when the foreign short-term interest rate is higher than the U.S. interest rate (or the foreign yield curve slope is lower than the
U.S. yield curve slope), and go long the U.S. bond and short the foreign country bond when the U.S. interest rate is higher than the country’s
interest rate (or the U.S. yield curve slope is lower than the foreign yield curve slope). Results based on interest rate levels are reported in
Panel A and results based on interest rate slopes are reported in Panel B. The table reports the mean, standard deviation and Sharpe ratio
(denoted SR) for the currency excess return (rxFX , middle panel), for the foreign bond excess return on 10-year government bond indices
in foreign currency (rx(10),∗ − rx(10), right panel) and for the foreign bond excess return on 10-year government bond indices in U.S. dollars
(rx(10),$ − rx(10), left panel). The holding period is one month. The table also presents summary return statistics for the equally-weighted
average of the individual country strategies. The slope of the yield curve is measured by the difference between the 10-year yield and the
one-month interest rate. The standard errors (denoted s.e. and reported between brackets) were generated by bootstrapping 10,000 samples
of non-overlapping returns. The log returns are annualized. The data are monthly and the sample is 1/1975–12/2007.
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Table A13: Dynamic Long-Short Foreign and U.S. Bond Portfolios (10/1983 - 12/2015 Sample Period)

Bond dollar return difference Currency excess return Bond local currency return diff.

rx(10),$ − rx(10) rxFX rx(10),∗ − rx(10)

Mean s.e. Std. SR s.e. Mean s.e. Std. SR s.e. Mean s.e. Std. SR s.e.

Panel A: Short-Term Interest Rates

Australia 3.17 [2.52] 14.09 0.23 [0.18] 4.42 [2.11] 11.95 0.37 [0.19] -1.25 [1.30] 7.26 -0.17 [0.17]

Canada -0.03 [1.60] 9.07 -0.00 [0.18] 1.04 [1.25] 7.40 0.14 [0.18] -1.07 [0.88] 5.06 -0.21 [0.17]

Germany 2.24 [2.06] 11.86 0.19 [0.18] 3.23 [1.92] 11.12 0.29 [0.18] -0.99 [1.21] 6.69 -0.15 [0.17]

Japan 1.19 [2.40] 13.57 0.09 [0.17] 1.11 [1.94] 11.16 0.10 [0.17] 0.07 [1.49] 8.42 0.01 [0.17]

New Zealand 2.40 [3.02] 16.85 0.14 [0.18] 5.33 [2.20] 12.98 0.41 [0.19] -2.93 [1.89] 10.27 -0.29 [0.17]

Norway 1.29 [2.29] 12.87 0.10 [0.18] 2.79 [1.88] 10.99 0.25 [0.18] -1.49 [1.48] 8.21 -0.18 [0.18]

Sweden 1.54 [2.16] 11.97 0.13 [0.18] 2.91 [1.94] 11.29 0.26 [0.18] -1.37 [1.30] 7.22 -0.19 [0.17]

Switzerland 1.00 [2.16] 12.43 0.08 [0.17] 0.54 [2.09] 11.86 0.05 [0.18] 0.46 [1.20] 6.74 0.07 [0.18]

United Kingdom -0.03 [2.21] 12.02 -0.00 [0.18] 2.40 [1.76] 10.17 0.24 [0.18] -2.44 [1.23] 6.63 -0.37 [0.17]

Equally-weighted 1.42 [1.16] 6.53 0.22 [0.18] 2.64 [1.01] 5.88 0.45 [0.19] -1.22 [0.66] 3.68 -0.33 [0.17]

Panel B: Yield Curve Slopes

Australia 1.70 [2.45] 14.11 0.12 [0.18] 4.05 [2.12] 11.96 0.34 [0.18] -2.35 [1.27] 7.24 -0.33 [0.18]

Canada -1.47 [1.59] 9.06 -0.16 [0.18] 1.21 [1.34] 7.40 0.16 [0.18] -2.68 [0.89] 5.01 -0.53 [0.18]

Germany 2.25 [2.13] 11.86 0.19 [0.17] 4.47 [1.98] 11.09 0.40 [0.18] -2.22 [1.20] 6.66 -0.33 [0.17]

Japan 1.43 [2.43] 13.57 0.11 [0.17] 4.77 [1.97] 11.08 0.43 [0.18] -3.34 [1.48] 8.37 -0.40 [0.18]

New Zealand 2.20 [3.05] 16.85 0.13 [0.18] 5.17 [2.39] 12.99 0.40 [0.19] -2.97 [1.81] 10.27 -0.29 [0.18]

Norway -0.69 [2.25] 12.88 -0.05 [0.18] 1.35 [2.01] 11.01 0.12 [0.18] -2.04 [1.45] 8.20 -0.25 [0.18]

Sweden -0.98 [2.11] 11.97 -0.08 [0.17] 2.37 [2.03] 11.30 0.21 [0.18] -3.34 [1.31] 7.17 -0.47 [0.18]

Switzerland 2.18 [2.30] 12.42 0.18 [0.18] 4.28 [2.23] 11.80 0.36 [0.18] -2.10 [1.23] 6.72 -0.31 [0.18]

United Kingdom -2.07 [2.13] 12.00 -0.17 [0.18] 0.83 [1.80] 10.19 0.08 [0.17] -2.91 [1.17] 6.61 -0.44 [0.18]

Equally-weighted 0.51 [1.47] 8.15 0.06 [0.18] 3.17 [1.30] 7.10 0.45 [0.19] -2.66 [0.92] 5.05 -0.53 [0.19]

Notes: For each country, the table presents summary return statistics of investment strategies that go long the foreign country bond and short
the U.S. bond when the foreign short-term interest rate is higher than the U.S. interest rate (or the foreign yield curve slope is lower than the
U.S. yield curve slope), and go long the U.S. bond and short the foreign country bond when the U.S. interest rate is higher than the country’s
interest rate (or the U.S. yield curve slope is lower than the foreign yield curve slope). Results based on interest rate levels are reported in
Panel A and results based on interest rate slopes are reported in Panel B. The table reports the mean, standard deviation and Sharpe ratio
(denoted SR) for the currency excess return (rxFX , middle panel), for the foreign bond excess return on 10-year government bond indices
in foreign currency (rx(10),∗ − rx(10), right panel) and for the foreign bond excess return on 10-year government bond indices in U.S. dollars
(rx(10),$ − rx(10), left panel). The holding period is one month. The table also presents summary return statistics for the equally-weighted
average of the individual country strategies. The slope of the yield curve is measured by the difference between the 10-year yield and the
one-month interest rate. The standard errors (denoted s.e. and reported between brackets) were generated by bootstrapping 10,000 samples
of non-overlapping returns. The log returns are annualized. The data are monthly and the sample is 10/1983–12/2015.
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Table A14: Dollar Bond Return Differential Predictability, Interest Rates, Three-month Horizon

Bond dollar return difference Currency excess return Bond local currency return diff. Slope Diff. Obs.

rx(10),$ − rx(10) rxFX rx(10),∗ − rx(10)

α s.e. β s.e. R2(%) α s.e. β s.e. R2(%) α s.e. β s.e. R2(%) p-value

Panel A: Coupon Bonds

Australia -0.02 [0.03] 0.94 [0.81] 0.56 -0.03 [0.02] 1.37 [0.52] 2.23 0.00 [0.02] -0.43 [0.57] 0.29 0.65 490

Canada 0.01 [0.02] -0.37 [0.56] -0.08 -0.01 [0.01] 1.21 [0.47] 1.91 0.02 [0.01] -1.57 [0.34] 7.31 0.03 490

Germany 0.01 [0.02] 1.34 [1.08] 1.19 0.01 [0.02] 1.77 [0.88] 2.57 -0.00 [0.01] -0.43 [0.53] 0.21 0.76 490

Japan 0.06 [0.02] 2.48 [0.78] 4.09 0.06 [0.02] 2.71 [0.61] 7.06 -0.00 [0.01] -0.22 [0.52] -0.11 0.82 490

New Zealand -0.06 [0.04] 1.26 [0.75] 1.22 -0.06 [0.03] 1.94 [0.46] 6.94 0.00 [0.03] -0.68 [0.58] 0.71 0.44 490

Norway -0.02 [0.02] 1.02 [0.57] 1.36 -0.02 [0.02] 1.51 [0.54] 4.69 -0.00 [0.01] -0.49 [0.37] 0.64 0.53 490

Sweden -0.01 [0.02] -0.46 [0.92] 0.04 -0.01 [0.02] 0.33 [0.98] -0.04 0.00 [0.01] -0.78 [0.45] 1.47 0.56 490

Switzerland 0.02 [0.02] 1.36 [0.77] 2.05 0.04 [0.02] 1.99 [0.69] 4.82 -0.02 [0.01] -0.63 [0.41] 1.09 0.54 490

United Kingdom -0.04 [0.03] 1.78 [1.11] 1.71 -0.03 [0.02] 2.06 [0.92] 3.86 -0.00 [0.01] -0.29 [0.61] -0.07 0.84 490

Panel – – 1.06 [0.46] 0.91 – – 1.63 [0.43] 3.64 – – -0.57 [0.28] 0.90 0.04 4410

Joint zero (p-value) 0.12 0.00 0.01 0.00 0.39 0.00 0.66

Panel B: Zero-Coupon Bonds

Australia -0.04 [0.03] 2.17 [1.28] 2.88 -0.01 [0.03] 1.45 [0.83] 1.55 -0.03 [0.02] 0.72 [0.91] 0.54 0.64 344

Canada 0.00 [0.02] 0.49 [0.77] -0.12 -0.00 [0.02] 1.47 [0.53] 2.15 0.01 [0.01] -0.98 [0.56] 1.56 0.29 357

Germany 0.01 [0.02] 1.53 [0.93] 1.36 0.01 [0.02] 1.72 [0.81] 2.42 0.00 [0.01] -0.19 [0.59] -0.16 0.88 490

Japan 0.02 [0.03] 1.88 [1.02] 1.61 0.06 [0.03] 2.66 [0.94] 4.73 -0.03 [0.02] -0.78 [0.57] 0.48 0.57 369

New Zealand -0.02 [0.06] 1.31 [2.02] 0.18 0.03 [0.06] 0.28 [2.03] -0.30 -0.05 [0.03] 1.03 [1.20] 0.49 0.72 309

Norway -0.04 [0.03] 1.90 [1.68] 1.22 0.00 [0.03] 0.43 [1.78] -0.36 -0.05 [0.02] 1.47 [1.03] 2.05 0.55 213

Sweden -0.01 [0.02] 1.95 [1.28] 1.82 -0.01 [0.02] 1.52 [1.18] 1.33 0.00 [0.01] 0.43 [0.92] -0.13 0.81 274

Switzerland -0.00 [0.02] 1.91 [0.97] 2.42 0.02 [0.02] 2.51 [1.08] 4.59 -0.03 [0.01] -0.60 [0.74] 0.29 0.68 333

United Kingdom -0.05 [0.03] 2.28 [1.32] 2.36 -0.03 [0.02] 1.84 [1.04] 3.18 -0.03 [0.02] 0.45 [0.80] -0.04 0.79 441

Panel – – 1.81 [0.63] 1.83 – – 1.72 [0.64] 2.31 – – 0.08 [0.35] 0.05 0.81 3130

Joint zero (p-value) 0.53 0.02 0.58 0.00 0.02 0.38 0.98

Notes: The table reports regression results obtained when regressing the bond dollar return difference, defined as the difference between the log
return on foreign bonds (expressed in U.S. dollars) and the log return of U.S. bonds in U.S. dollars, or the currency excess return, defined as the
difference between the log return on foreign Treasury bills (expressed in U.S. dollars) and the log return of U.S. Treasury bills in U.S. dollars, or
the bond local currency return difference, defined as the difference between the log return on foreign bonds (expressed in local currency terms)
and the log return of U.S. bonds in U.S. dollars, on the corresponding interest rate differential, defined as the difference between the foreign
nominal interest rate and the U.S. nominal interest rate. Panel A uses 10-year coupon bonds, whereas Panel B uses zero-coupon bonds. The
holding period is three months and returns are sampled monthly. The log returns and the interest rate differentials are annualized. The sample
period is 1/1975–12/2015. In individual country regressions, standard errors are obtained with a Newey and West (1987) approximation of the
spectral density matrix, with the lag truncation parameter (kernel bandwidth) equal to 6. Panel regressions include country fixed effects, and
standard errors are obtained using the Driscoll and Kraay (1998) methodology, with the lag truncation parameter (kernel bandwidth) equal to
6.
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Table A15: Dollar Bond Return Differential Predictability, Yield Curve Slopes, Three-Month Horizon

Bond dollar return difference Currency excess return Bond local currency return diff. Slope Diff. Obs.

rx(10),$ − rx(10) rxFX rx(10),∗ − rx(10)

α s.e. β s.e. R2(%) α s.e. β s.e. R2(%) α s.e. β s.e. R2(%) p-value

Panel A: Coupon Bonds

Australia 0.01 [0.02] 0.71 [1.28] -0.03 -0.00 [0.02] -1.52 [0.96] 1.01 0.02 [0.01] 2.24 [0.77] 5.18 0.16 490

Canada 0.02 [0.01] 2.18 [0.76] 2.34 -0.00 [0.01] -0.99 [0.57] 0.62 0.02 [0.01] 3.17 [0.44] 17.47 0.00 490

Germany -0.00 [0.02] 0.15 [1.53] -0.20 -0.00 [0.02] -2.06 [1.14] 1.55 0.00 [0.01] 2.21 [0.85] 4.99 0.25 490

Japan -0.00 [0.02] -1.25 [1.21] 0.31 -0.01 [0.02] -3.82 [0.95] 6.57 0.01 [0.01] 2.56 [0.75] 5.75 0.10 490

New Zealand 0.05 [0.04] 2.10 [2.06] 1.69 -0.00 [0.03] -1.11 [1.13] 0.91 0.06 [0.02] 3.21 [1.16] 9.72 0.17 490

Norway -0.01 [0.02] -0.48 [0.91] -0.05 -0.01 [0.02] -1.80 [0.86] 2.96 -0.00 [0.01] 1.32 [0.52] 2.60 0.29 490

Sweden 0.01 [0.02] 2.73 [1.22] 4.64 0.01 [0.02] 0.73 [1.25] 0.25 0.01 [0.01] 2.01 [0.66] 5.85 0.25 490

Switzerland -0.01 [0.02] 0.04 [0.99] -0.20 -0.02 [0.02] -2.76 [1.00] 3.49 0.01 [0.01] 2.80 [0.50] 9.66 0.05 490

United Kingdom 0.01 [0.02] 0.44 [1.45] -0.13 -0.01 [0.02] -2.27 [1.26] 2.91 0.02 [0.01] 2.70 [0.64] 7.40 0.16 490

Panel – – 0.85 [0.78] 0.17 – – -1.55 [0.67] 1.55 – – 2.41 [0.41] 6.90 0.00 4410

Joint zero (p-value) 0.78 0.07 0.98 0.00 0.00 0.00 0.00

Panel B: Zero-Coupon Bonds

Australia 0.02 [0.03] -0.28 [2.08] -0.27 0.01 [0.03] -1.49 [1.80] 0.37 0.01 [0.02] 1.21 [1.33] 0.52 0.66 344

Canada 0.02 [0.02] 1.43 [1.05] 0.43 0.00 [0.01] -1.39 [0.67] 0.86 0.02 [0.01] 2.82 [0.68] 7.74 0.02 357

Germany 0.01 [0.02] 0.58 [0.98] -0.06 -0.01 [0.02] -1.55 [0.86] 1.16 0.01 [0.01] 2.12 [0.74] 3.77 0.10 490

Japan -0.03 [0.03] -1.77 [1.33] 0.60 -0.04 [0.02] -5.01 [1.22] 9.02 0.01 [0.02] 3.24 [0.85] 6.53 0.07 369

New Zealand 0.04 [0.04] 1.82 [2.35] 0.34 0.05 [0.04] 0.83 [2.47] -0.16 -0.00 [0.02] 0.98 [1.09] 0.19 0.77 309

Norway -0.02 [0.03] -0.57 [1.83] -0.37 0.01 [0.03] 0.29 [1.99] -0.44 -0.03 [0.02] -0.86 [1.22] 0.09 0.75 213

Sweden 0.01 [0.02] 1.20 [2.03] 0.03 -0.00 [0.02] -0.51 [2.06] -0.28 0.02 [0.02] 1.71 [1.21] 1.49 0.56 274

Switzerland -0.03 [0.02] -0.49 [1.03] -0.18 -0.03 [0.02] -2.59 [1.26] 3.31 0.00 [0.01] 2.10 [0.84] 4.82 0.20 333

United Kingdom 0.00 [0.03] 0.12 [1.64] -0.22 -0.01 [0.02] -1.64 [1.42] 1.39 0.02 [0.02] 1.76 [0.95] 1.51 0.42 441

Panel – – 0.10 [0.80] -0.01 – – -1.75 [0.91] 1.33 – – 1.85 [0.48] 2.48 0.00 3130

Joint zero (p-value) 0.65 0.81 0.56 0.00 0.29 0.00 0.12

Notes: The table reports regression results obtained when regressing the bond dollar return difference, defined as the difference between the
log return on foreign bonds (expressed in U.S. dollars) and the log return of U.S. bonds in U.S. dollars, or the currency excess return, defined
as the difference between the log return on foreign Treasury bills (expressed in U.S. dollars) and the log return of U.S. Treasury bills in U.S.
dollars, or the bond local currency return difference, defined as the difference between the log return on foreign bonds (expressed in local
currency terms) and the log return of U.S. bonds in U.S. dollars, on the corresponding yield curve slope differential, defined as the difference
between the foreign nominal yield curve slope and the U.S. nominal yield curve slope. Panel A uses 10-year coupon bonds, whereas Panel
B uses zero-coupon bonds. The holding period is three months and returns are sampled monthly. The log returns and the yield curve slope
differentials are annualized. The sample period is 1/1975–12/2015. In individual country regressions, standard errors are obtained with a
Newey and West (1987) approximation of the spectral density matrix, with the lag truncation parameter (kernel bandwidth) equal to 6. Panel
regressions include country fixed effects, and standard errors are obtained using the Driscoll and Kraay (1998) methodology, with the lag
truncation parameter (kernel bandwidth) equal to 6.
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Table A16: Dynamic Long-Short Interest Rate Foreign and U.S. Bond Portfolios, Three-Month Holding Period

Bond dollar return difference Currency excess return Bond local currency return diff.

rx(10),$ − rx(10) rxFX rx(10),∗ − rx(10)

Mean s.e. Std. SR s.e. Mean s.e. Std. SR s.e. Mean s.e. Std. SR s.e.

Panel A: Coupon Bonds

Australia 2.63 [2.02] 14.36 0.18 [0.16] 3.31 [1.68] 11.68 0.28 [0.17] -0.69 [1.19] 8.21 -0.08 [0.15]

Canada 0.14 [1.29] 8.38 0.02 [0.15] 1.07 [1.04] 6.67 0.16 [0.16] -0.93 [0.68] 4.61 -0.20 [0.15]

Germany 2.50 [1.95] 12.22 0.20 [0.16] 3.25 [1.85] 11.35 0.29 [0.16] -0.75 [1.15] 7.15 -0.10 [0.16]

Japan 0.55 [2.18] 14.51 0.04 [0.16] 1.14 [1.92] 12.14 0.09 [0.16] -0.59 [1.39] 8.70 -0.07 [0.15]

New Zealand -0.02 [2.90] 18.42 -0.00 [0.15] 3.31 [1.91] 12.62 0.26 [0.16] -3.33 [1.87] 12.28 -0.27 [0.15]

Norway 2.21 [2.15] 13.55 0.16 [0.16] 3.43 [1.75] 11.24 0.31 [0.16] -1.23 [1.49] 8.85 -0.14 [0.15]

Sweden 1.35 [2.09] 13.53 0.10 [0.16] 2.64 [1.84] 11.69 0.23 [0.16] -1.29 [1.47] 8.89 -0.15 [0.15]

Switzerland -0.09 [2.01] 12.79 -0.01 [0.15] 0.60 [2.03] 12.49 0.05 [0.16] -0.69 [1.23] 7.75 -0.09 [0.16]

United Kingdom 1.56 [1.97] 13.81 0.11 [0.15] 2.58 [1.69] 10.97 0.23 [0.15] -1.02 [1.27] 8.41 -0.12 [0.16]

Equally-weighted 1.20 [1.01] 6.63 0.18 [0.16] 2.37 [0.90] 5.94 0.40 [0.17] -1.17 [0.58] 3.54 -0.33 [0.15]

Panel B: Zero-Coupon Bonds

Australia 4.51 [2.50] 13.50 0.33 [0.19] 5.13 [2.14] 11.78 0.44 [0.20] -0.62 [1.58] 8.80 -0.07 [0.19]

Canada 0.17 [1.77] 9.70 0.02 [0.19] 1.31 [1.35] 7.43 0.18 [0.19] -1.15 [0.96] 5.67 -0.20 [0.18]

Germany 2.86 [2.10] 13.05 0.22 [0.16] 3.40 [1.82] 11.27 0.30 [0.16] -0.54 [1.44] 9.15 -0.06 [0.16]

Japan 0.07 [2.49] 13.98 0.00 [0.18] -0.31 [2.26] 12.12 -0.03 [0.18] 0.38 [1.70] 9.22 0.04 [0.18]

New Zealand 2.24 [2.70] 12.92 0.17 [0.20] 4.08 [2.20] 11.73 0.35 [0.21] -1.84 [1.61] 8.01 -0.23 [0.20]

Norway -0.17 [3.36] 13.48 -0.01 [0.24] 0.68 [2.79] 11.88 0.06 [0.24] -0.85 [1.96] 8.60 -0.10 [0.24]

Sweden 3.86 [2.65] 12.70 0.30 [0.21] 4.47 [2.25] 11.17 0.40 [0.22] -0.60 [1.68] 8.46 -0.07 [0.21]

Switzerland 1.67 [2.33] 11.66 0.14 [0.19] 1.70 [2.24] 11.36 0.15 [0.19] -0.03 [1.56] 7.85 -0.00 [0.19]

United Kingdom 2.04 [2.43] 15.57 0.13 [0.17] 2.75 [1.76] 10.88 0.25 [0.17] -0.71 [1.86] 11.32 -0.06 [0.17]

Equally-weighted 1.56 [1.14] 6.68 0.23 [0.19] 2.28 [1.17] 6.58 0.35 [0.22] -0.72 [0.67] 3.76 -0.19 [0.18]

Notes: For each country, the table presents summary return statistics of investment strategies that go long the foreign country bond and
short the U.S. bond when the foreign short-term interest rate is higher than the U.S. interest rate, and go long the U.S. bond and short the
foreign country bond when the U.S. interest rate is higher than the country’s interest rate. The table reports the mean, standard deviation
and Sharpe ratio (denoted SR) for the currency excess return (rxFX , middle panel), for the foreign bond excess return on 10-year government
bond indices in foreign currency (rx(10),∗ − rx(10), right panel) and for the foreign bond excess return on 10-year government bond indices in
U.S. dollars (rx(10),$ − rx(10), left panel). Panel A uses 10-year coupon bonds, whereas Panel B uses zero-coupon bonds. The holding period
is three months. The table also presents summary return statistics for the equally-weighted average of the individual country strategies. The
standard errors (denoted s.e. and reported between brackets) were generated by bootstrapping 10,000 samples of non-overlapping returns. The
log returns are annualized. The data are monthly and the sample is 1/1975–12/2015 (or largest subset available), with the exception of the
equally-weighted portfolio of zero-coupon bonds, which refers to the sample period 4/1985–12/2015.
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Table A17: Dynamic Long-Short Yield Curve Slope Foreign and U.S. Bond Portfolios, Three-Month Holding
Period

Bond dollar return difference Currency excess return Bond local currency return diff.

rx(10),$ − rx(10) rxFX rx(10),∗ − rx(10)

Mean s.e. Std. SR s.e. Mean s.e. Std. SR s.e. Mean s.e. Std. SR s.e.

Panel A: Coupon Bonds

Australia 0.71 [2.08] 14.42 0.05 [0.16] 2.58 [1.77] 11.73 0.22 [0.16] -1.87 [1.19] 8.16 -0.23 [0.15]

Canada -0.93 [1.29] 8.37 -0.11 [0.16] 1.48 [1.05] 6.65 0.22 [0.16] -2.41 [0.66] 4.47 -0.54 [0.15]

Germany 1.08 [1.96] 12.28 0.09 [0.16] 3.36 [1.89] 11.35 0.30 [0.16] -2.27 [1.07] 7.07 -0.32 [0.15]

Japan 0.65 [2.17] 14.51 0.04 [0.16] 4.22 [1.90] 11.97 0.35 [0.16] -3.57 [1.31] 8.52 -0.42 [0.16]

New Zealand -0.23 [2.84] 18.42 -0.01 [0.15] 3.11 [1.93] 12.63 0.25 [0.16] -3.34 [1.83] 12.27 -0.27 [0.15]

Norway 0.40 [2.12] 13.59 0.03 [0.16] 2.54 [1.78] 11.30 0.23 [0.16] -2.14 [1.41] 8.80 -0.24 [0.16]

Sweden -2.32 [2.03] 13.49 -0.17 [0.15] 0.53 [1.85] 11.76 0.05 [0.16] -2.86 [1.50] 8.79 -0.33 [0.14]

Switzerland 1.70 [1.95] 12.76 0.13 [0.16] 4.66 [1.96] 12.27 0.38 [0.16] -2.96 [1.21] 7.62 -0.39 [0.15]

United Kingdom -1.55 [2.07] 13.81 -0.11 [0.15] 1.48 [1.74] 11.02 0.13 [0.15] -3.03 [1.35] 8.29 -0.36 [0.16]

Equally-weighted -0.05 [1.26] 8.04 -0.01 [0.15] 2.66 [1.13] 7.10 0.38 [0.16] -2.72 [0.79] 4.71 -0.58 [0.14]

Panel B: Zero-Coupon Bonds

Australia 3.81 [2.53] 13.55 -0.28 [0.19] 5.16 [2.10] 11.77 -0.44 [0.20] -1.34 [1.58] 8.78 0.15 [0.19]

Canada -0.57 [1.76] 9.70 0.06 [0.18] 1.69 [1.33] 7.41 -0.23 [0.20] -2.26 [0.94] 5.59 0.40 [0.18]

Germany 1.08 [2.11] 13.12 -0.08 [0.16] 3.81 [1.83] 11.23 -0.34 [0.16] -2.73 [1.42] 9.05 0.30 [0.16]

Japan 2.00 [2.52] 13.94 -0.14 [0.18] 4.89 [2.25] 11.87 -0.41 [0.19] -2.89 [1.67] 9.11 0.32 [0.18]

New Zealand 0.66 [2.69] 12.96 -0.05 [0.20] 3.18 [2.23] 11.80 -0.27 [0.20] -2.52 [1.59] 7.97 0.32 [0.21]

Norway -0.86 [3.36] 13.47 0.06 [0.24] -0.16 [2.80] 11.88 0.01 [0.24] -0.70 [1.92] 8.60 0.08 [0.25]

Sweden 0.82 [2.70] 12.84 -0.06 [0.21] 2.25 [2.29] 11.33 -0.20 [0.21] -1.42 [1.70] 8.43 0.17 [0.21]

Switzerland 1.78 [2.33] 11.65 -0.15 [0.20] 4.28 [2.20] 11.19 -0.38 [0.20] -2.50 [1.55] 7.75 0.32 [0.19]

United Kingdom -0.52 [2.45] 15.60 0.03 [0.16] 2.17 [1.76] 10.91 -0.20 [0.17] -2.69 [1.85] 11.25 0.24 [0.17]

Equally-weighted 1.60 [1.40] 8.35 -0.19 [0.18] 4.40 [1.38] 7.84 -0.56 [0.21] -2.80 [0.95] 5.62 0.50 [0.19]

Notes: For each country, the table presents summary return statistics of investment strategies that go long the foreign country bond and short
the U.S. bond when the foreign yield curve slope is lower than the U.S. yield curve slope, and go long the U.S. bond and short the foreign
country bond when the U.S. yield curve slope is lower than the foreign yield curve slope. The table reports the mean, standard deviation and
Sharpe ratio (denoted SR) for the currency excess return (rxFX , middle panel), for the foreign bond excess return on 10-year government bond
indices in foreign currency (rx(10),∗ − rx(10), right panel) and for the foreign bond excess return on 10-year government bond indices in U.S.
dollars (rx(10),$−rx(10), left panel). Panel A uses 10-year coupon bonds, whereas Panel B uses zero-coupon bonds. The holding period is three
months. The table also presents summary return statistics for the equally-weighted average of the individual country strategies. The slope of
the yield curve is measured by the difference between the 10-year yield and the one-month interest rate. The standard errors (denoted s.e.
and reported between brackets) were generated by bootstrapping 10,000 samples of non-overlapping returns. The log returns are annualized.
The data are monthly and the sample is 1/1975–12/2015 (or largest subset available), with the exception of the equally-weighted portfolio of
zero-coupon bonds, which refers to the sample period 4/1985–12/2015.
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II Robustness Checks on Cross-sectional Portfolio Results

This section consider further robustness checks for the cross-sectional results by extending the sample of coun-

tries, by sorting on the level of interest rates, and by sorting on the slope of the yield curve.

A Portfolio Cross-Sectional Evidence: Different Sample Periods

We start by considering different sample periods. Table A18 reports the results for the pre-crisis 10/1983-

12/2007 sample, Table A19 for the pre-crisis 1/1975-12/2007 sample and Table A20 for the 10/1983-12/2015

sample. In all three tables, we focus on the benchmark set of G-10 countries and we consider currency portfolios

sorted either on deviations of the short-term interest rate from its 10-year rolling mean or on the level of the

yield curve slope. The results are consistent across sample periods and also consistent with the findings reported

in the benchmark sample: the long-short portfolios do not produce statistically significant dollar bond returns.

B Sorting by Interest Rate Deviations

This section reports results for currency portfolios sorted on the deviation of the short-term interest rate from

its 10-year rolling mean. We first consider the benchmark G-10 sample, but then we consider a more extended

sample of developed and emerging market countries.

B.1 Benchmark G-10 Sample

Figure A1 plots the composition of the three currency portfolios sorted on interest rate deviations, ranked from

low (Portfolio 1) to high (Portfolio 3), for the long 1/1951–12/2015 sample period.

Figure A2 corresponds to the top right panel of Figure 1 in the main text. It presents the cumulative

one-month log excess returns on investments in foreign Treasury bills and foreign 10-year bonds. Over the

entire 1/1951 – 12/2015 sample period, the average currency log excess return of the carry trade strategy (long

Portfolio 3, short Portfolio 1) is 2.52% per year, whereas the local currency bond log excess return is −3.81%

per year. Thus, the interest rate carry trade implemented using 10-year bonds yields an average annualized

dollar return of −1.29%, which is not statistically significant (bootstrap standard error of 0.94%). The average

inflation rate of Portfolio 1 is 3.56% and its average credit rating is 1.44 (1.51 when adjusted for outlook), while

the average inflation rate of Portfolio 3 is 4.72% and its average credit rating is 1.46 (1.81 when adjusted for
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Table A18: Cross-sectional Predictability: Bond Portfolios (10/1983 - 12/2007 Sample Period)

Sorted by Short-Term Interest Rates Sorted by Yield Curve Slopes

Portfolio 1 2 3 3− 1 1 2 3 1− 3

Panel A: Portfolio Characteristics

Inflation rate Mean 2.23 2.39 3.79 1.56 4.01 2.70 1.70 2.30

s.e. [0.17] [0.18] [0.21] [0.23] [0.22] [0.19] [0.16] [0.22]

Std 0.84 0.89 1.07 1.13 1.08 0.93 0.81 1.12

Rating Mean 1.59 1.36 1.51 -0.09 1.58 1.47 1.40 0.18

s.e. [0.03] [0.02] [0.03] [0.06] [0.02] [0.03] [0.03] [0.04]

Rating (adj. for outlook) Mean 1.64 1.40 1.69 0.05 1.73 1.53 1.46 0.27

s.e. [0.04] [0.02] [0.03] [0.07] [0.03] [0.03] [0.03] [0.05]

y
(10),∗
t − r∗,ft Mean 1.20 0.70 -0.55 -1.74 -0.99 0.67 1.68 -2.67

Panel B: Currency Excess Returns

−∆st+1 Mean 0.46 2.18 1.73 1.26 1.30 2.02 1.06 0.25

rf,∗t − rft Mean 0.42 0.73 2.84 2.42 3.94 0.81 -0.75 4.69

rxFXt+1 Mean 0.88 2.92 4.57 3.69 5.24 2.83 0.30 4.94

s.e. [1.55] [1.82] [1.87] [1.51] [1.86] [1.68] [1.66] [1.64]

SR 0.12 0.33 0.50 0.50 0.56 0.34 0.04 0.61

Panel C: Local Currency Bond Excess Returns

rx
(10),∗
t+1 Mean 3.32 2.72 0.12 -3.19 -0.57 2.32 4.42 -4.98

s.e. [0.85] [0.86] [0.98] [1.03] [0.99] [0.81] [0.92] [1.02]

SR 0.78 0.64 0.03 -0.62 -0.12 0.58 0.96 -1.01

Panel D: Dollar Bond Excess Returns

rx
(10),$
t+1 Mean 4.20 5.64 4.69 0.49 4.67 5.15 4.72 -0.05

s.e. [1.89] [2.08] [2.09] [1.78] [2.04] [1.96] [2.01] [1.93]

SR 0.45 0.55 0.45 0.06 0.45 0.54 0.47 -0.01

rx
(10),$
t+1 − rx(10)

t+1 Mean 0.32 1.77 0.82 0.49 0.79 1.27 0.84 -0.05

s.e. [2.02] [2.08] [2.29] [1.78] [2.20] [2.07] [1.99] [1.93]

Notes: The countries are sorted by the level of their short term interest rates in deviation from the 10-year mean into three portfolios (left
section) or the slope of their yield curves (right section). The slope of the yield curve is measured by the difference between the 10-year yield
and the one-month interest rate. The standard errors (denoted s.e. and reported between brackets) were generated by bootstrapping 10,000
samples of non-overlapping returns. The table reports the average inflation rate, the standard deviation of the inflation rate, the average credit
rating, the average credit rating adjusted for outlook, the average slope of the yield curve (y(10),∗ − r∗,f ), the average change in exchange
rates (∆s), the average interest rate difference (rf,∗ − rf ), the average currency excess return (rxFX), the average foreign bond excess return
on 10-year government bond indices in foreign currency (rx(10),∗) and in U.S. dollars (rx(10),$), as well as the difference between the average
foreign bond excess return in U.S. dollars and the average U.S. bond excess return (rx(10),$ − rx(10)). For the excess returns, the table also
reports their Sharpe ratios (denoted SR). The holding period is one month. The log returns are annualized. The balanced panel consists
of Australia, Canada, Japan, Germany, Norway, New Zealand, Sweden, Switzerland, and the U.K. The data are monthly and the sample is
10/1983–12/2007.
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Table A19: Cross-sectional Predictability: Bond Portfolios (1/1975 - 12/2007 Sample Period)

Sorted by Short-Term Interest Rates Sorted by Yield Curve Slopes

Portfolio 1 2 3 3− 1 1 2 3 1− 3

Panel A: Portfolio Characteristics

Inflation rate Mean 3.15 3.94 5.79 2.65 5.79 3.95 3.15 2.64

s.e. [0.18] [0.21] [0.25] [0.23] [0.25] [0.20] [0.21] [0.21]

Std 1.05 1.25 1.44 1.31 1.39 1.14 1.23 1.27

Rating Mean 1.44 1.26 1.37 -0.06 1.43 1.35 1.30 0.13

s.e. [0.03] [0.02] [0.02] [0.04] [0.02] [0.02] [0.02] [0.03]

Rating (adj. for outlook) Mean 1.48 1.41 1.77 0.29 1.79 1.49 1.38 0.41

s.e. [0.03] [0.02] [0.03] [0.05] [0.02] [0.02] [0.02] [0.04]

y
(10),∗
t − r∗,ft Mean 1.50 0.86 -0.68 -2.18 -1.09 0.78 1.99 -3.08

Panel B: Currency Excess Returns

−∆st+1 Mean 0.17 0.74 -0.12 -0.29 -0.41 0.83 0.37 -0.78

rf,∗t − rft Mean -0.53 0.37 2.96 3.49 3.65 0.39 -1.24 4.89

rxFXt+1 Mean -0.37 1.11 2.84 3.21 3.24 1.21 -0.87 4.11

s.e. [1.43] [1.51] [1.51] [1.31] [1.55] [1.47] [1.52] [1.48]

SR -0.04 0.13 0.33 0.43 0.37 0.15 -0.10 0.52

Panel C: Local Currency Bond Excess Returns

rx
(10),∗
t+1 Mean 3.62 2.18 -1.09 -4.71 -1.77 1.99 4.49 -6.25

s.e. [0.75] [0.74] [0.86] [0.92] [0.81] [0.73] [0.75] [0.85]

SR 0.84 0.51 -0.22 -0.89 -0.38 0.47 0.97 -1.23

Panel D: Dollar Bond Excess Returns

rx
(10),$
t+1 Mean 3.25 3.29 1.75 -1.50 1.47 3.20 3.61 -2.14

s.e. [1.75] [1.77] [1.79] [1.55] [1.80] [1.71] [1.85] [1.71]

SR 0.32 0.32 0.17 -0.17 0.15 0.33 0.34 -0.23

rx
(10),$
t+1 − rx(10)

t+1 Mean 0.84 0.88 -0.66 -1.50 -0.94 0.79 1.20 -2.14

s.e. [1.82] [1.80] [1.97] [1.55] [2.02] [1.81] [1.90] [1.71]

Notes: The countries are sorted by the level of their short term interest rates in deviation from the 10-year mean into three portfolios (left
section) or the slope of their yield curves (right section). The slope of the yield curve is measured by the difference between the 10-year yield
and the one-month interest rate. The standard errors (denoted s.e. and reported between brackets) were generated by bootstrapping 10,000
samples of non-overlapping returns. The table reports the average inflation rate, the standard deviation of the inflation rate, the average credit
rating, the average credit rating adjusted for outlook, the average slope of the yield curve (y(10),∗ − r∗,f ), the average change in exchange
rates (∆s), the average interest rate difference (rf,∗ − rf ), the average currency excess return (rxFX), the average foreign bond excess return
on 10-year government bond indices in foreign currency (rx(10),∗) and in U.S. dollars (rx(10),$), as well as the difference between the average
foreign bond excess return in U.S. dollars and the average U.S. bond excess return (rx(10),$ − rx(10)). For the excess returns, the table also
reports their Sharpe ratios (denoted SR). The holding period is one month. The log returns are annualized. The balanced panel consists
of Australia, Canada, Japan, Germany, Norway, New Zealand, Sweden, Switzerland, and the U.K. The data are monthly and the sample is
1/1975–12/2007.
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Table A20: Cross-sectional Predictability: Bond Portfolios (10/1983 - 12/2015 Sample Period)

Sorted by Short-Term Interest Rates Sorted by Yield Curve Slopes

Portfolio 1 2 3 3− 1 1 2 3 1− 3

Panel A: Portfolio Characteristics

Inflation rate Mean 2.15 2.16 3.04 0.89 3.30 2.33 1.71 1.59

s.e. [0.15] [0.16] [0.19] [0.20] [0.18] [0.16] [0.15] [0.20]

Std 0.86 0.90 1.11 1.11 1.07 0.97 0.86 1.12

Rating Mean 1.57 1.32 1.63 0.06 1.68 1.48 1.36 0.32

s.e. [0.03] [0.02] [0.02] [0.04] [0.02] [0.02] [0.02] [0.04]

Rating (adj. for outlook) Mean 1.62 1.36 1.79 0.17 1.81 1.53 1.43 0.38

s.e. [0.03] [0.02] [0.03] [0.05] [0.02] [0.02] [0.02] [0.04]

y
(10),∗
t − r∗,ft Mean 1.30 0.81 -0.28 -1.58 -0.66 0.79 1.71 -2.37

Panel B: Currency Excess Returns

−∆st+1 Mean -0.38 1.02 0.66 1.04 0.19 1.15 -0.05 0.24

rf,∗t − rft Mean 0.65 0.87 2.47 1.82 3.49 0.91 -0.41 3.90

rxFXt+1 Mean 0.26 1.89 3.13 2.86 3.68 2.06 -0.46 4.14

s.e. [1.48] [1.70] [1.64] [1.27] [1.78] [1.54] [1.54] [1.34]

SR 0.03 0.20 0.34 0.40 0.37 0.24 -0.05 0.55

Panel C: Local Currency Bond Excess Returns

rx
(10),∗
t+1 Mean 3.28 3.13 0.90 -2.38 0.10 2.62 4.59 -4.49

s.e. [0.78] [0.80] [0.82] [0.83] [0.84] [0.72] [0.82] [0.82]

SR 0.75 0.69 0.20 -0.51 0.02 0.63 0.99 -0.99

Panel D: Dollar Bond Excess Returns

rx
(10),$
t+1 Mean 3.55 5.02 4.03 0.48 3.79 4.68 4.13 -0.34

s.e. [1.69] [1.83] [1.81] [1.46] [1.88] [1.68] [1.76] [1.50]

SR 0.37 0.49 0.39 0.06 0.36 0.48 0.41 -0.04

rx
(10),$
t+1 − rx(10)

t+1 Mean -0.43 1.04 0.05 0.48 -0.19 0.70 0.15 -0.34

s.e. [1.82] [1.87] [1.94] [1.46] [2.05] [1.78] [1.83] [1.50]

Notes: The countries are sorted by the level of their short term interest rates in deviation from the 10-year mean into three portfolios (left
section) or the slope of their yield curves (right section). The slope of the yield curve is measured by the difference between the 10-year yield
and the one-month interest rate. The standard errors (denoted s.e. and reported between brackets) were generated by bootstrapping 10,000
samples of non-overlapping returns. The table reports the average inflation rate, the standard deviation of the inflation rate, the average credit
rating, the average credit rating adjusted for outlook, the average slope of the yield curve (y(10),∗ − r∗,f ), the average change in exchange
rates (∆s), the average interest rate difference (rf,∗ − rf ), the average currency excess return (rxFX), the average foreign bond excess return
on 10-year government bond indices in foreign currency (rx(10),∗) and in U.S. dollars (rx(10),$), as well as the difference between the average
foreign bond excess return in U.S. dollars and the average U.S. bond excess return (rx(10),$ − rx(10)). For the excess returns, the table also
reports their Sharpe ratios (denoted SR). The holding period is one month. The log returns are annualized. The balanced panel consists
of Australia, Canada, Japan, Germany, Norway, New Zealand, Sweden, Switzerland, and the U.K. The data are monthly and the sample is
10/1983–12/2015.
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Figure A1: Composition of Interest Rate-Sorted Portfolios — The figure presents the composition of portfolios of 9 currencies
sorted by the deviation of their short-term interest rates from the corresponding 10-year rolling mean. The portfolios are rebalanced monthly.
Data are monthly, from 1/1951 to 12/2015.

outlook). Therefore, countries with high local currency bond term premia have low inflation and high credit

ratings on average, whereas countries with low term premia have high average inflation rates and low average

credit ratings, which suggests that the offsetting effect of the local currency bond excess returns is not due to

compensation for inflation or credit risk. As seen in Table 3 of the main text, our findings are very similar

when we consider only the post-Bretton Woods period (1/1975 – 12/2015). Finally, we turn to the 7/1989 –

12/2015 period. The one-month average currency excess return of the carry trade strategy is 2.33%, largely

offset by the local currency bond excess return of −1.33%. As a result, the average dollar bond excess return is

1.00%, which is not statistically significant, as its bootstrap standard error is 1.47%. Portfolio 1 has an average

inflation rate of 1.91% and an average credit rating of 1.67 (1.72 when adjusted for outlook), whereas Portfolio

3 has an average inflation rate of 2.05% and an average credit rating of 1.67 (1.73 when adjusted for outlook).

We find very similar results when we increase the holding period k from 1 to 3 or 12 months: there

is no evidence of statistically significant differences in dollar bond premia across the currency portfolios. In

particular, for the entire 1/1951 – 12/2015 period, the annualized dollar excess return of the carry trade strategy

implemented using 10-year bonds is a non-significant −0.68% (bootstrap standard error of 1.12%) for the 3-

month holding period, as the average currency risk premium of 2.04% is offset by the average local currency

bond premium of −2.72%. For the 12-month horizon, the average currency risk premium is 1.52%, which is
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Figure A2: The Carry Trade and Term Premia – The figure presents the cumulative one-month log excess returns on
investments in foreign Treasury bills and foreign 10-year bonds. The benchmark panel of countries includes Australia, Canada,
Japan, Germany, Norway, New Zealand, Sweden, Switzerland, and the U.K. Countries are sorted every month into three portfolios
by the level of the deviation of their one-month interest rate from its 10-year rolling mean. The returns correspond to a strategy
going long in the Portfolio 3 and short in Portfolio 1. The sample period is 1/1951–12/2015.
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almost fully offset by the average local currency bond premium of −1.68%, yielding an average dollar bond

premium of −0.15% (bootstrap standard error of 1.08%). The corresponding average dollar bond premium for

the post-Bretton Woods sample (1/1975 – 12/2015) is −0.88% for the 3-month holding period (average currency

risk premium of 1.81%, average local currency bond premium of −2.68%) and −0.57% for the 12-month holding

period (average currency risk premium of 1.28%, average local currency bond premium of −1.85%), neither of

which is statistically significant (the bootstrap standard error is 1.39% and 1.55%, respectively). Finally, we

consider the 7/1989 – 12/2015 period. The average dollar bond premium is 0.68% for the 3-month horizon

(average currency risk premium of 1.39%, average local currency bond premium of −0.71%) and 0.86% for the

12-month horizon (average currency risk premium of 1.37%, average local currency bond premium of −0.51%).

Neither of those average dollar bond premia is statistically significant, as their bootstrap standard error is

1.58% and 1.62%, respectively.

B.2 Developed Countries

Very similar patterns of risk premia emerge using larger sets of countries. In the sample of 20 developed

countries (Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Greece, Ireland, Italy,

Japan, the Netherlands, New Zealand, Norway, Portugal, Spain, Sweden, Switzerland, and the U.K.), we sort

currencies in four portfolios, the composition of which is plotted in Figure A3.

We start with 1-month holding period returns. Over the long sample period (1/1951 – 12/2015), the average

currency log excess return of the carry trade is 1.32% per year, whereas the local currency bond log excess return

is −4.77% per year. Therefore, the 10-year bond carry trade strategy yields a marginally significant average

annualized return of −3.45% (bootstrap standard error of 1.97%). The average inflation rate of Portfolio 1

is 4.04% and its average credit rating is 2.68 (2.58 when adjusted for outlook); in comparison, the average

inflation rate of Portfolio 4 is 5.05% and its average credit rating is 2.24 (2.41 when adjusted for outlook). We

find similar results when we focus on the post-Bretton Woods sample: the average currency log excess return

is 1.38% per year, offset by a local currency bond log excess return of −2.85%, so the 10-year bond carry trade

strategy yields a statistically not significant annualized dollar excess return of −1.47% (bootstrap standard

error of 1.15%). The average inflation rate of Portfolio 1 is 3.72% and its average credit rating is 2.71 (2.64

adjusted for outlook), whereas the average inflation rate of Portfolio 4 is 5.11% and its average credit rating is
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Figure A3: Composition of Interest Rate-Sorted Portfolios — The figure presents the composition of portfolios of 20 currencies
sorted by their short-term interest rates. The portfolios are rebalanced monthly. Data are monthly, from 1/1951 to 12/2015.

2.31 (2.49 adjusted for outlook).

We now turn to longer holding periods. For the 1/1951 – 12/2015 sample, the annualized dollar excess

return of the carry trade strategy implemented using 10-year bonds is a non-significant −1.15% (bootstrap

standard error of 2.02%) for the 3-month holding period and a non-significant 0.45% (bootstrap standard error

of 2.17%) for the 12-month holding period. The corresponding dollar excess returns for the post-Bretton Woods

period are −0.11% for the 3-month holding period and 0.26% for the 12-month holding period, neither of which

is statistically significant, as the bootstrap standard error is 3.21% and 1.61%, respectively.

B.3 Developed and Emerging Countries

Finally, we consider the sample of developed and emerging countries (Australia, Austria, Belgium, Canada,

Denmark, Finland, France, Germany, Greece, India, Ireland, Italy, Japan, Mexico, Malaysia, the Netherlands,
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New Zealand, Norway, Pakistan, the Philippines, Poland, Portugal, South Africa, Singapore, Spain, Sweden,

Switzerland, Taiwan, Thailand, and the United Kingdom), and sort currencies into five portfolios.

In particular, at the one-month horizon the average currency log excess return of the carry trade is 2.40%

per year over the long sample period (1/1951 – 12/2015), which is more than offset by the local currency

bond log excess return of −7.05% per year. As a result, the carry trade implemented using 10-year bonds

yields a statistically significant average annualized return of 4.65% (the bootstrap standard error is 2.01%).

The average inflation rate of Portfolio 1 is 4.59% and its average credit rating is 5.51 (4.96 when adjusted for

outlook), whereas the average inflation rate of Portfolio 5 is 5.66% and its average credit rating is 4.70 (4.89

when adjusted for outlook). When we consider the post-Bretton Woods period (1/1975 – 12/2015), we get very

similar results: the average currency log excess return is 3.04% per year, which is offset by a local currency

bond log excess return of −6.36%, so the 10-year bond carry trade strategy yields a statistically significant

annualized dollar return of −3.33% (bootstrap standard error of 1.29%). The average inflation rate of Portfolio

1 is 4.47% and its average credit rating is 5.45 (5.06 adjusted for outlook), whereas the average inflation rate

of Portfolio 5 is 6.43% and its average credit rating is 4.78 (4.84 adjusted for outlook).

When we increase the holding period to 3 or 12 months, similar results emerge. For the long sample

(1/1951 – 12/2015), the annualized dollar excess return of the carry trade strategy implemented using 10-year

bonds is a non-significant −2.11% (bootstrap standard error of 2.07%) for the 3-month horizon and a non-

significant −0.63% (bootstrap standard error of 2.18%) for the 12-month horizon. The corresponding dollar

excess returns for the post-Bretton Woods period are −1.63% for the 3-month holding period and −0.70% for

the 12-month holding period, both of which are marginally significant (bootstrap standard error of 1.47% and

1.62%, respectively).

C Sorting by Interest Rate Levels

We now turn to currency portfolios sorted on interest rate levels (not in deviation from the 10-year rolling mean).

We first consider the benchmark G-10 sample, but then we consider a more extended sample of developed and

emerging market countries.
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C.1 Benchmark Sample

Figure A4 plots the composition of the three interest rate-sorted currency portfolios, ranked from low (Port-

folio 1) to high (Portfolio 3) interest rate currencies, for the long 1/1951–12/2015 sample period. Typically,

Switzerland and Japan (after 1970) are funding currencies in Portfolio 1, while Australia and New Zealand are

the carry trade investment currencies in Portfolio 3. The other currencies switch between portfolios quite often.
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Figure A4: Composition of Interest Rate-Sorted Portfolios — The figure presents the composition of portfolios of 9 currencies
sorted by their short-term interest rates. The portfolios are rebalanced monthly. Data are monthly, from 1/1951 to 12/2015.

Over the entire 1/1951 – 12/2015 period, the average currency log excess return of the carry trade is 3.23%

per year, whereas the local currency bond log excess return is −2.55% per year. As a result, the interest

rate carry trade implemented using 10-year bonds yields an average annualized return of 0.68%, which is not

statistically significant, as its bootstrap standard error is 1.07%. The average inflation rate of Portfolio 1 is

2.81% and its average credit rating is 1.33 (1.39 when adjusted for outlook), whereas the average inflation rate

of Portfolio 3 is 5.15% and its average credit rating is 1.57 (1.92 when adjusted for outlook). Our findings are

very similar when we consider only the post-Bretton Woods period (1/1975 – 12/2015): the average currency

log excess return is 3.50% per year, largely offset by a local currency bond log excess return of −2.51%, so

the 10-year bond carry trade strategy yields a statistically not significant annualized dollar return of 0.99%

(bootstrap standard error of 1.57%). The average inflation rate of Portfolio 1 is 2.00% and its average credit

rating is 1.36 (1.41 when adjusted for outlook), whereas the average inflation rate of Portfolio 3 is 5.32% and
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its average credit rating is 1.60 (1.93 when adjusted for outlook).

We find very similar results when we increase the holding period: there is no evidence of statistically

significant differences in dollar bond risk premia across the currency portfolios. In particular, for the entire

1/1951 – 12/2015 period, the annualized dollar excess return of the carry trade strategy implemented using 10-

year bonds is a non-significant 1.03% (bootstrap standard error of 1.12%) for the 3-month holding period and a

non-significant 1.23% (bootstrap standard error of 1.20%) for the 12-month holding period. The corresponding

dollar excess returns for the post-Bretton Woods period are 1.15% for the 3-month holding period and 1.18%

for the 12-month holding period, neither of which is statistically significant (bootstrap standard error of 1.65%

and 1.69%, respectively).

C.2 Developed Countries

With coupon bonds, we consider two additional sets of countries: first, a larger sample of 20 developed countries

(Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Japan, the

Netherlands, New Zealand, Norway, Portugal, Spain, Sweden, Switzerland, and the U.K.), and second, a

large sample of 30 developed and emerging countries (the same as above, plus India, Mexico, Malaysia, the

Netherlands, Pakistan, the Philippines, Poland, South Africa, Singapore, Taiwan, and Thailand). We also

construct an extended version of the zero-coupon dataset which, in addition to the countries of the benchmark

sample, includes the following countries: Austria, Belgium, the Czech Republic, Denmark, Finland, France,

Hungary, Indonesia, Ireland, Italy, Malaysia, Mexico, the Netherlands, Poland, Portugal, Singapore, South

Africa, and Spain. The data for the aforementioned extra countries are sourced from Bloomberg. The starting

dates for the additional countries are as follows: 12/1994 for Austria, Belgium, Denmark, Finland, France,

Ireland, Italy, the Netherlands, Portugal, Singapore, and Spain, 12/2000 for the Czech Republic, 3/2001 for

Hungary, 5/2003 for Indonesia, 9/2001 for Malaysia, 8/2003 for Mexico, 12/2000 for Poland, and 1/1995 for

South Africa.

We now turn to the sample of 20 developed countries. Figure A5 plots the composition of the four interest

rate-sorted currency portfolios. As we can see, Switzerland and Japan (after 1970) are funding currencies in

Portfolio 1, while Australia and New Zealand are carry trade investment currencies in Portfolio 4.

We start with 1-month holding period returns. Over the long sample period (1/1951 – 12/2015), the
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Figure A5: Composition of Interest Rate-Sorted Portfolios — The figure presents the composition of portfolios of 20 currencies
sorted by their short-term interest rates. The portfolios are rebalanced monthly. Data are monthly, from 1/1951 to 12/2015.

average currency log excess return of the carry trade is 2.73% per year, whereas the local currency bond log

excess return is −2.15% per year. Therefore, the interest rate carry trade implemented using 10-year bonds

yields a non-statistically significant average dollar annualized return of 0.58% (the bootstrap standard error

is 0.90%). The average inflation rate of Portfolio 1 is 3.04% and its average credit rating is 1.50 (1.54 when

adjusted for outlook); the average inflation rate of Portfolio 4 is 5.73% and its average credit rating is 2.93 (3.02

when adjusted for outlook). We get very similar results when we focus on the post-Bretton Woods sample:

the average currency log excess return is 2.81% per year, offset by a local currency bond log excess return

of −1.37%, so the 10-year bond carry trade strategy yields a statistically not significant annualized return of

1.44% (bootstrap standard error of 1.33%). The average inflation rate of Portfolio 1 is 2.30% and its average

credit rating is 1.55 (1.61 adjusted for outlook), whereas the average inflation rate of Portfolio 4 is 6.07% and

its average credit rating is 2.97 (3.03 adjusted for outlook).
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When we increase the holding period, we get very similar results. For the 1/1951 – 12/2015 sample,

the annualized dollar excess return of the carry trade strategy implemented using 10-year bonds is a non-

significant 1.15% (bootstrap standard error of 0.94%) for the 3-month holding period and a non-significant

1.48% (bootstrap standard error of 0.99%) for the 12-month holding period. The corresponding dollar excess

returns for the post-Bretton Woods period are 1.92% for the 3-month holding period and 1.90% for the 12-

month holding period, neither of which is statistically significant, as the bootstrap standard errors are 1.37%

and 1.50%, respectively.

C.3 Developed and Emerging Countries

Finally, we consider the sample of developed and emerging countries and sort currencies into five portfolios.

We start by focusing on one-month returns. Over the long sample period (1/1951 – 12/2015), the average

currency log excess return of the carry trade is 4.92% per year, largely offset by the local currency bond log

excess return of −4.18% per year. As a result, the interest rate carry trade implemented using 10-year bonds

yields a non-statistically significant average annualized return of 0.74% (the bootstrap standard error is 0.90%).

The average inflation rate of Portfolio 1 is 3.17% and its average credit rating is 2.91 (2.75 when adjusted for

outlook), whereas the average inflation rate of Portfolio 5 is 6.82% and its average credit rating is 6.59 (6.07

when adjusted for outlook). When we focus on the post-Bretton Woods sample, our findings are very similar:

the average currency log excess return is 5.73% per year, which is offset by a local currency bond log excess

return of −3.80%, so the 10-year bond carry trade strategy yields a statistically non-significant annualized

return of 1.92% (the bootstrap standard error is 1.33%). The average inflation rate of Portfolio 1 is 2.49% and

its average credit rating is 2.95 (2.90 adjusted for outlook); the average inflation rate of Portfolio 5 is 7.78%

and its average credit rating is 6.60 (6.03 adjusted for outlook).

We now consider longer holding periods. For the long sample (1/1951 – 12/2015), the annualized dollar

excess return of the carry trade strategy implemented using 10-year bonds is a non-significant 1.33% (bootstrap

standard error of 1.01%) for the 3-month horizon and a marginally significant 1.94% (bootstrap standard error

of 1.10%) for the 12-month horizon. The corresponding dollar excess returns for the post-Bretton Woods

period are 2.56% for the 3-month holding period and 2.80% for the 12-month holding period, both of which are

marginally significant (bootstrap standard error of 1.50% and 1.69%, respectively).
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D Sorting by Yield Curve Slopes

This section presents additional evidence on slope-sorted currency portfolios. We first consider the benchmark

G-10 sample, but then we consider a more extended sample of developed and emerging market countries.

D.1 Benchmark Sample

Figure A6 presents the composition over time of the slope-sorted currency portfolios for the long sample period

of 1/1951–12/2015.
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Figure A6: Composition of Slope-Sorted Portfolios — The figure presents the composition of portfolios of the currencies in the
benchmark sample sorted by the slope of their yield curves. The portfolios are rebalanced monthly. The slope of the yield curve is measured
by the spread between the 10-year bond yield and the one-month interest rate. Data are monthly, from 1/1951 to 12/2015.

Figure A7 corresponds to the lower left panel of Figure 1 in the main text. It presents the cumulative

one-month log excess returns on investments in foreign Treasury bills and foreign 10-year bonds, starting in

1951. The returns correspond to an investment strategy going long in Portfolio 1 (flat yield curves, mostly high

short-term interest rates) and short in Portfolio 3 (steep yield curves, mostly low short-term interest rates).

Over the entire 1/1951 – 12/2015 period, the average currency log excess return of the slope carry trade is 3.01%

per year, whereas the local currency bond log excess return is −5.46% per year. Therefore, the slope carry

trade implemented using 10-year bonds results in an average return of −2.45% per year, which is statistically

significant (bootstrap standard error of 0.98%). It is worth noting that neither inflation risk nor credit risk

seem to be able to explain this offsetting effect: the average inflation rate of Portfolio 1, which has a low average
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term premium, is 4.71% and its average credit rating is 1.52 (1.84 when adjusted for outlook), whereas the

average inflation rate of Portfolio 3, which has a high average term premium, is 3.51% and its average credit

rating is 1.28 (1.37 when adjusted for outlook). As seen in Table 3 of the main text, we get similar results

when we focus only on the post-Bretton Woods period (1/1975 – 12/2015). Finally, we consider the 7/1989

– 12/2015 sample period. The one-month average currency excess return of the slope carry trade strategy is

4.41%, largely offset by the local currency bond excess return of −3.40%. As a result, the average dollar bond

excess return is 1.02%, which is not statistically significant, as its bootstrap standard error is 1.32%. Portfolio

1 has an average inflation rate of 2.31% and an average credit rating of 1.71 (1.75 when adjusted for outlook),

whereas Portfolio 3 has an average inflation rate of 1.51% and an average credit rating of 1.43 (1.49 when

adjusted for outlook).

We now consider longer holding periods. Overall, we find no evidence of statistically significant differences

in dollar bond risk premia across the currency portfolios. For the full 1/1951 – 12/2015 period, the annualized

dollar excess return of the slope carry trade strategy implemented using 10-year bonds is a non-significant

−1.58% (bootstrap standard error of 0.99%) for the 3-month holding period, as the average currency risk

premium of 2.53% is more than offset by the average local currency term premium of −4.12%. For the 12-month

holding period, the average currency risk premium is 1.98%, which is offset by the average local currency term

premium of −3.15%, yielding an average non-significant dollar term premium of −1.17% (bootstrap standard

error of 1.00%). The corresponding dollar excess returns for the post-Bretton Woods period (1/1975 – 12/2015)

are −0.88% for the 3-month holding period (average currency risk premium of 2.95%, average local currency

term premium of −3.83%) and −0.50% for the 12-month holding period (average currency risk premium of

2.19%, average local currency term premium of −2.68%), neither which are is significant, as the bootstrap

standard error is 1.43% and 1.46%, respectively. Finally, we turn to the 7/1989 – 12/2015 period. The average

dollar bond premium is 0.98% for the 3-month horizon (average currency risk premium of 3.14%, average local

currency bond premium of −2.16%) and 1.35% for the 12-month horizon (average currency risk premium of

2.75%, average local currency bond premium of −1.39%). Both of those dollar bond premia are non-significant,

as their bootstrap standard error is 1.52% and 1.71%, respectively.
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Figure A7: The Carry Trade and Term Premia: Conditional on the Slope of the Yield Curve – The figure presents
the cumulative one-month log returns on investments in foreign Treasury bills and foreign 10-year bonds. The benchmark panel of
countries includes Australia, Canada, Japan, Germany, Norway, New Zealand, Sweden, Switzerland, and the U.K. Countries are
sorted every month by the slope of their yield curves into three portfolios. The slope of the yield curve is measured by the spread
between the 10-year bond yield and the one-month interest rate. The returns correspond to an investment strategy going long in
Portfolio 1 and short in the Portfolio 3. The sample period is 1/1951–12/2015.

D.2 Developed Countries

In the sample of developed countries, the flat-slope currencies (Portfolio 1) are typically those of Australia, New

Zealand, Denmark and the U.K., while the steep-slope currencies (Portfolio 4) are typically those of Germany,

the Netherlands, and Japan. The portfolio compositions are plotted in Figure A8.

At the one-month horizon, the 2.50% spread in currency excess returns obtained in the full sample period

(1/1951 – 12/2015) is more than offset by the −6.73% spread in local term premia. This produces a statistically

significant average dollar excess return of −4.22% (bootstrap standard error of 1.02%) on a position that is

long in the high yielding, low slope currencies (Portfolio 1) and short in the low yielding, high slope currencies
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Figure A8: Composition of Slope-Sorted Portfolios — The figure presents the composition of portfolios of 20 currencies sorted
by their yield curve slopes. The portfolios are rebalanced monthly. Data are monthly, from 1/1951 to 12/2015.

(Portfolio 4). The average inflation rate of Portfolio 1 is 5.13% and its average credit rating is 2.20 (2.34 when

adjusted for outlook), whereas the average inflation rate of Portfolio 4 is 3.97% and its average credit rating

is 2.88 (2.97 when adjusted for outlook). Those results are essentially unchanged in the post-Bretton Woods

period: the average currency excess return is 3.04%, more than offset by the average local currency bond excess

return of −7.60%, so the slope carry trade yields an average excess return of −4.56%, which is statistically

significant (bootstrap standard error of 1.48%). The average inflation rate of Portfolio 1 is 5.36% and its average

credit rating is 2.21 (2.34 when adjusted for outlook), whereas the average inflation rate of Portfolio 4 is 3.49%

and its average credit rating is 3.04 (3.16 when adjusted for outlook).

We now turn to longer holding periods. In the 3-month horizon, investing in Portfolio 1 and shorting

Portfolio 4 during the long sample period (1/1951 – 12/2015) yields an average currency excess return of

2.03% and an average local currency bond excess return of −5.13%, resulting in a statistically significant dollar
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bond excess return of −3.10% (bootstrap standard error of 1.11%). In the same period, the 12-month average

currency excess return is 1.86% and the average local currency bond excess return is −3.53%, so the average

dollar bond excess return is a non-significant −1.67% (bootstrap standard error of 1.42%). Similar results

emerge when we focus on the post-Bretton Woods period. In the 3-month horizon, the average currency excess

return is 2.31% and the average local currency bond excess return is −5.32%, yielding an average dollar bond

excess return of −3.00%, which is marginally statistically significant (bootstrap standard error of 1.63%). In

the 12-month horizon, the average currency excess return is 1.90% and the average local currency bond excess

return is −3.42%, so the average dollar bond excess return is a non-significant −1.52% (bootstrap standard

error of 2.22%).

D.3 Developed and Emerging Countries

In the entire sample of countries, the difference in currency risk premia at the one-month horizon is 3.44% per

year, which is more than offset by a −9.84% difference in local currency term premia. As a result, investors

earn a statistically significant −6.41% per annum (the bootstrap standard error is 1.06%) on a long-short bond

position. As before, this involves going long the bonds of flat-yield-curve currencies (Portfolio 1), typically high

interest rate currencies, and shorting the bonds of the steep-slope currencies (Portfolio 5), typically the low

interest rate ones. The average inflation rate of Portfolio 1 is 5.77% and its average credit rating is 4.77 (4.74

when adjusted for outlook), whereas the average inflation rate of Portfolio 5 is 4.54% and its average credit

rating is 5.62 (5.33 when adjusted for outlook). When we focus on the post-Bretton Woods period (1/1975 –

12/2015), we get very similar results: the average currency log excess return is 4.59% per year, which is more

than offset by a local currency bond log excess return difference of −11.53%, so the 10-year bond carry trade

strategy yields a statistically significant annualized return of −6.94% (bootstrap standard error of 1.51%). The

average inflation rate of Portfolio 1 is 6.16% and its average credit rating is 4.79 (4.69 adjusted for outlook),

whereas the average inflation rate of Portfolio 5 is 4.43% and its average credit rating is 5.73 (5.55 adjusted for

outlook).

When we increase the holding period to 3 or 12 months, similar results emerge. For the long sample (1/1951

– 12/2015), the average annualized dollar excess return of the slope carry trade strategy (long Portfolio 1, short

Portfolio 5) implemented using 10-year bonds is a statistically significant −5.32% (bootstrap standard error of
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1.17%) for the 3-month horizon: the average currency excess return is 2.76%, more than offset by the average

local currency bond excess return of −8.08%. For the 12-month horizon, the average currency excess return is

2.47% and the local currency bond excess return is −5.48%, so the average dollar excess return for the slope

carry trade is −3.01% (statistically significant, as the bootstrap standard error is 1.29%). Finally, for the post-

Bretton Woods period, the average 3-month currency excess return is 3.55% and the average local currency

bond excess return is −9.22%, so the dollar excess return of the slope carry trade is −5.66% (statistically

significant, as the bootstrap standard error is 1.73%). For the same period, the average 12-month currency

excess return is 3.06% and the average local currency bond excess return is −5.83%, resulting in an average

dollar excess return of −2.78% (not significant, given a bootstrap standard error of 1.97%).
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III Foreign Bond Returns Across Maturities

This section reports additional results obtained with zero-coupon bonds. We start with the bond risk premia

in our benchmark sample of G10 countries and then turn to a larger set of developed countries. We then show

that holding period returns on zero-coupon bonds, once converted to a common currency (the U.S. dollar, in

particular), become increasingly similar as bond maturities approach infinity.

A Benchmark Countries

Figure A9 reports results for all maturities. The figure shows the local currency bond log excess returns in

the top panels, the currency log excess returns in the middle panels, and the dollar bond log excess returns

in the bottom panels. The top panels show that countries with the steepest local yield curves (Portfolio 3,

center) exhibit local bond excess returns that are higher, and increase faster with maturity, than the flat yield

curve countries (Portfolio 1, left). Thus, ignoring the effect of exchange rates, investors should invest in the

short-term and long-term bonds of steep yield curve currencies.

Including the effect of currency fluctuations, by focusing on dollar returns, radically alters the results. The

bottom panels of Figure A9 show that the dollar excess returns of Portfolio 1 are on average higher than those

of Portfolio 3 at the short end of the yield curve, consistent with the carry trade results of Ang and Chen

(2010). Yet, an investor who would attempt to replicate the short-maturity carry trade strategy at the long

end of the maturity curve would incur losses on average: the long-maturity excess returns of flat yield curve

currencies are lower than those of steep yield curve currencies, as currency risk premia more than offset term

premia. This result is apparent in the lower panel on the right, which is the same as Figure 2 in the main text.

Figure A10 shows the results when sorting by the level of interest rates. The term structure is flat but not

statistically significantly different from zero at longer horizons. The term structure is flat but not statistically

significantly different from zero at longer horizons: the carry premium is 3.71% per annum (with a standard

error of 1.80%), while the local currency 15-year bond premium is only -0.21% per annum (with a standard

error of 1.76%), so the long-maturity dollar bond premium is 3.50% (with a standard error of 2.32%). Interest

rates (in levels) do not predict bond excess returns in the cross-section in the second half of our sample (see

Figure 1 in the main text).
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B Developed Countries

When we tuning to the entire sample of developed countries, the results are very similar to those attained in

our benchmark sample. An investor who buys the short-term bonds of flat-yield curve currencies and shorts the

short-term bonds of steep-yield-curve currencies realizes a statistically significant dollar excess return of 4.20%

per year on average (bootstrap standard error of 1.50%). However, at the long end of the maturity structure,

this strategy generates negative and insignificant excess returns: the average annualized dollar excess return

of an investor who pursues this strategy using 15-year bonds is −2.30% (bootstrap standard error of 2.49%).

Our findings are presented graphically in Figure A11, which shows the local currency bond log excess returns

in the top panels, the currency log excess returns in the middle panels, and the dollar bond log excess returns

in the bottom panels as a function of maturity.
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Figure A9: Dollar Bond Risk Premia Across Maturities— The figure shows the log excess returns on foreign bonds in local
currency in the top panel, the currency excess return in the middle panel, and the log excess returns on foreign bonds in U.S. dollars in the
bottom panel as a function of the bond maturities. The left panel focuses on Portfolio 1 (flat yield curve currencies) excess returns, while the
middle panel reports Portfolio 3 (steep yield curve currencies) excess returns. The middle panels also report the Portfolio 1 excess returns in
dashed lines for comparison. The right panel reports the difference. Data are monthly, from the zero-coupon dataset, and the sample window is
4/1985–12/2015. The unbalanced panel consists of Australia, Canada, Japan, Germany, Norway, New Zealand, Sweden, Switzerland, and the
U.K. The countries are sorted by the slope of their yield curves into three portfolios. The slope of the yield curve is measured by the difference
between the 10-year yield and the 3-month interest rate at date t. The holding period is one quarter. The returns are annualized. The shaded
areas correspond to one standard deviation above and below each point estimate. Standard deviations are obtained by bootstrapping 10,000
samples of non-overlapping returns.
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Figure A10: Long-Minus-Short Foreign Bond Risk Premia in U.S. Dollars— The figure shows the dollar log excess returns
as a function of the bond maturities. Dollar excess returns correspond to the holding period returns expressed in U.S. dollars of investment
strategies that go long and short foreign bonds of different countries. The unbalanced panel of countries consists of Australia, Canada, Japan,
Germany, Norway, New Zealand, Sweden, Switzerland, and the U.K. At each date t, the countries are sorted by the slope of their yield curves
into three portfolios. The first portfolio contains countries with flat yield curves while the last portfolio contains countries with steep yield
curves. The slope of the yield curve is measured by the difference between the 10-year yield and the 3-month interest rate at date t. The level of
interest rates is measured by the difference between the 10-year yield and the 3-month interest rate at date t.The holding period is one quarter.
The returns are annualized. The dark (light) shaded area corresponds to the 90% (95%) confidence interval. Standard deviations are obtained
by bootstrapping 10,000 samples of non-overlapping returns. Zero-coupon data are monthly, and the sample window is 4/1985–12/2015.
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Figure A11: Dollar Bond Risk Premia Across Maturities: Extended Sample — The figure shows the local currency log
excess returns in the top panel, and the dollar log excess returns in the bottom panel as a function of the bond maturities. The left panel
focuses on Portfolio 1 (flat yield curve currencies) excess returns, while the middle panel reports Portfolio 5 (steep yield curve currencies) excess
returns. The middle panels also report the Portfolio 1 excess returns in dashed lines for comparison. The right panel reports the difference.
Data are monthly, from the zero-coupon dataset, and the sample window is 5/1987–12/2015. The unbalanced sample includes Australia,
Austria, Belgium, Canada, the Czech Republic, Denmark, Finland, France, Germany, Hungary, Indonesia, Ireland, Italy, Japan, Malaysia,
Mexico, the Netherlands, New Zealand, Norway, Poland, Portugal, Singapore, South Africa, Spain, Sweden, Switzerland, and the U.K. The
countries are sorted by the slope of their yield curves into five portfolios. The slope of the yield curve is measured by the difference between
the 10-year yield and the 3-month interest rate at date t. The holding period is one quarter. The returns are annualized. The shaded areas
correspond to one standard deviation above and below each point estimate. Standard deviations are obtained by bootstrapping 10,000 samples
of non-overlapping returns.
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IV Dynamic Term Structure Models

This section of the Appendix presents the details of pricing kernel decomposition for four classes of dynamic

term structure models. Condition 1 is a diagnostic tool that can be applied to richer models. We apply it to

several reduced-form term structure models, from the simple one-factor Vasicek (1977) and Cox, Ingersoll and

Ross (1985) models to their multi-factor versions. In order to save space, we summarize the restrictions implied

by Condition 1 in Table A21.

A Vasicek (1977)

In the Vasicek model, the log SDF evolves as:

−mt+1 = y1,t +
1

2
λ2σ2 + λεt+1,

where y1,t denotes the short-term interest rate. It is affine in a single factor:

xt+1 = ρxt + εt+1, εt+1 ∼ N
(
0, σ2

)
y1,t = δ + xt.

In this model, xt is the level factor and εt+1 are shocks to the level of the term structure. The Jensen term is

there to ensure that Et (Mt+1) = exp (−y1,t). Bond prices are exponentially affine. For any maturity n, bond

prices are equal to P
(n)
t = exp (−Bn

0 −Bn
1 xt). The price of the one-period risk-free note (n = 1) is naturally:

P
(1)
t = exp (−y1,t) = exp

(
−B1

0 −B1
1xt
)
,

with B1
0 = δ,B1

1 = 1, where the coefficients satisfy the following recursions:

Bn
0 = δ +Bn−1

0 − 1

2
σ2(Bn−1

1 )2 − λBn−1
1 σ2,

Bn
1 = 1 +Bn−1

1 ρ.

We first implement the Alvarez and Jermann (2005) approach. The temporary pricing component of the
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pricing kernel is:

ΛT
t = lim

n→∞

βt+n

Pnt
= lim

n→∞
βt+neB

n
0 +Bn1 xt ,

where the constant β is chosen in order to satisfy Assumption 1 in Alvarez and Jermann (2005):

0 < lim
n→∞

Pnt
βn

<∞.

The limit of Bn
0 −B

n−1
0 is finite: limn→∞B

n
0 −B

n−1
0 = δ − 1

2σ
2(B∞1 )2 − λB∞1 σ2, where B∞1 is 1/(1− ρ). As a

result, Bn
0 grows at a linear rate in the limit. We choose the constant β to offset the growth in Bn

0 as n becomes

very large. Setting β = e−δ+
1
2
σ2(B∞1 )2+λB∞1 σ2

guarantees that Assumption 1 in Alvarez and Jermann (2005) is

satisfied. The temporary pricing component of the pricing kernel is thus equal to:

ΛT
t+1

ΛT
t

= βeB
∞
1 (xt+1−xt) = βe

1
1−ρ (ρ−1)xt+

1
1−ρ εt+1 = βe

−xt+ 1
1−ρ εt+1 .

The martingale component of the pricing kernel is then:

ΛP
t+1

ΛP
t

=
Λt+1

Λt

(
ΛT
t+1

ΛT
t

)−1

= β−1e
xt− 1

1−ρ εt+1−δ−xt− 1
2
λ2σ2−λεt+1 = β−1e

−δ− 1
2
λ2σ2−( 1

1−ρ+λ)εt+1 .

In the case of λ = −B∞1 = − 1
1−ρ , the martingale component of the pricing kernel is constant and all the shocks

that affect the pricing kernel are transitory.

The expected log excess return of an infinite maturity bond is then:

Et[rx
(∞)
t+1 ] = −1

2
σ2(B∞1 )2 − λB∞1 σ2.

The first term is a Jensen term. The risk premium is constant and positive if λ is negative. The SDF is

homoskedastic. The expected log currency excess return is therefore constant:

Et[−∆st+1] + y∗t − yt =
1

2
V art(mt+1)− 1

2
V art(m

∗
t+1) =

1

2
λσ2 − 1

2
λ∗σ∗2.

51



When λ = −B∞1 = − 1
1−ρ , the martingale component of the pricing kernel is constant and all the shocks that

affect the pricing kernel are transitory. By using the expression for the bond risk premium in Alvarez and

Jermann (2005), it is straightforward to verify that the expected log excess return of an infinite maturity bond

is in this case:

Et[rx
(∞)
t+1 ] =

1

2
σ2λ2.

We start by examining the case in which each country has its own factor. We assume the foreign pricing kernel

has the same structure, but it is driven by a different factor with different shocks:

− logM∗t+1 = y∗1,t +
1

2
λ∗2σ∗2 + λ∗ε∗t+1,

x∗t+1 = ρx∗t + ε∗t+1, ε∗t+1 ∼ N
(
0, σ∗2

)
y1,t = δ∗ + x∗t .

The expected log currency excess return is constant: Et[rx
FX
t+1] = 1

2V art(mt+1) − 1
2V art(m

∗
t+1) = 1

2λ
2σ2 −

1
2λ

2∗σ∗2. In a Vasicek model with country-specific factors, the long bond uncovered return parity holds only

if the model parameters satisfy the following restriction: λ = − 1
1−ρ . Under these conditions, there is no

martingale component in the pricing kernel and the foreign term premium on the long bond expressed in home

currency is simply Et[rx
(∗,∞)
t+1 ] = 1

2λ
2σ2. This expression equals the domestic term premium. The nominal

exchange rate is stationary.1

B Multi-Factor Vasicek Models

Under some conditions, the previous results can be extended to a more k-factor model. The standard k−factor

essentially affine model in discrete time generalizes the Vasicek (1977) model to multiple risk factors. The log

SDF is given by:

− logMt+1 = y1,t +
1

2
Λ′tΣΛt + Λ′tεt+1

1 Alternatively, we can assume that the single state variable xt is global. In this case, the countries trivially have the same
pricing kernels.
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To keep the model affine, the law of motion of the risk-free rate and of the market price of risk are:

y1,t = δ0 + δ′1xt,

Λt = Λ0 + Λ1xt,

where the state vector (xt ∈ Rk) is:

xt+1 = Γxt + εt+1, εt+1 ∼ N (0,Σ) .

xt is a k × 1 vector, and so are εt+1, δ1, Λt, and Λ0, while Γ, Λ1, and Σ are k × k matrices.2

We assume that the market price of risk is constant (Λ1 = 0), so that we can define orthogonal temporary

shocks. We decompose the shocks into two groups: the first h < k shocks affect both the temporary and

the permanent pricing kernel components and the last k − h shocks are temporary.3 The parameters of the

temporary shocks satisfy B∞′1k−h = (Ik−h − Γk−h)−1δ′1k−h = −Λ′0k−h. This ensures that these shocks do not

affect the permanent component of the pricing kernel.

Now we assume that xt is a global state variable:

− logM∗t+1 = y∗1,t +
1

2
Λ∗′t ΣΛ∗t + Λ∗′t εt+1,

y1,t = δ∗0 + δ∗′1 xt,

Λ∗t = Λ∗0,

xt+1 = Γxt + εt+1, εt+1 ∼ N (0,Σ) .

In a multi-factor Vasicek model with global factors and constant risk prices, long bond uncovered return parity

obtains only if countries share the same Λh and δ1h, which govern exposure to the permanent, global shocks.

This condition eliminates any differences in permanent risk exposure across countries.4 The nominal exchange

2Note that if k = 1 and Λ1 = 0, we are back to the Vasicek (1977) model with one factor and a constant market price of risk.
The Vasicek (1977) model presented in the first section is a special case where Λ0 = λ, δ′0 = δ, δ′0 = 1 and Γ = ρ.

3A block-diagonal matrix whose blocks are invertible is invertible, and its inverse is a block diagonal matrix (with the inverse of
each block on the diagonal). Therefore, if Γ is block-diagonal and (I − Γ) is invertible, we can decompose the shocks as described

4The terms δ′1 and δ∗′1h do not appear in the single-factor Vasicek (1977) model of the first section because that single-factor
model assumes δ1 = δ∗1h = 1.
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rate has no permanent component
(

SP
t

SP
t+1

= 1
)

. From Backus, Foresi, and Telmer (2001), the expected log

currency excess return is equal to:

Et[rx
FX
t+1] =

1

2
V art(mt+1)− 1

2
V art(m

∗
t+1) =

1

2
Λ′0ΣΛ0 −

1

2
Λ∗′0 ΣΛ∗0.

Non-zero currency risk premia will be only due to variation in the exposure to transitory shocks (Λ∗0k−h).

C Cox, Ingersoll, and Ross (1985) Model

The Cox, Ingersoll and Ross (1985) model (denoted CIR) is defined by the following two equations:

− logMt+1 = α+ χzt +
√
γztut+1, (1)

zt+1 = (1− φ)θ + φzt − σ
√
ztut+1,

where M denotes the stochastic discount factor. In this model, log bond prices are affine in the state variable

z: p
(n)
t = −Bn

0 − Bn
1 zt. The price of a one period-bond is: P (1) = Et(Mt+1) = e−α−(χ− 1

2
γ)zt . Bond prices are

defined recursively by the Euler equation: P
(n)
t = Et(Mt+1P

(n−1)
t+1 ). Thus the bond price coefficients evolve

according to the following second-order difference equations:

Bn
0 = α+Bn−1

0 +Bn−1
1 (1− φ)θ, (2)

Bn
1 = χ− 1

2
γ +Bn−1

1 φ− 1

2

(
Bn−1

1

)2
σ2 + σ

√
γBn−1

1 .

We first implement the Alvarez and Jermann (2005) approach. The temporary pricing component of the

pricing kernel is:

ΛT
t = lim

n→∞

βt+n

P
(n)
t

= lim
n→∞

βt+neB
n
0 +Bn1 zt ,

where the constant β is chosen in order to satisfy Assumption 1 in Alvarez and Jermann (2005):

0 < lim
n→∞

P
(n)
t

βn
<∞.
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The limit of Bn
0 − B

n−1
0 is finite: limn→∞B

n
0 − B

n−1
0 = α + B∞1 (1 − φ)θ, where B∞1 is defined implicitly in a

second-order equation above. As a result, Bn
0 grows at a linear rate in the limit. We choose the constant β to

offset the growth in Bn
0 as n becomes very large. Setting β = e−α−B

∞
1 (1−φ)θ guarantees that Assumption 1 in

Alvarez and Jermann (2005) is satisfied. The temporary pricing component of the pricing kernel is thus equal

to:

ΛT
t+1

ΛT
t

= βeB
∞
1 (zt+1−zt) = βeB

∞
1 [(φ−1)(zt−θ)−σ

√
ztut+1].

As a result, the martingale component of the pricing kernel is then:

ΛP
t+1

ΛP
t

=
Λt+1

Λt

(
ΛT
t+1

ΛT
t

)−1

= β−1e−α−χzt−
√
γztut+1e−B

∞
1 [(φ−1)(zt−θ)−σ

√
ztut+1]. (3)

The expected log excess return is thus given by:

Et[rx
(n)
t+1] = [−1

2

(
Bn−1

1

)2
σ2 + σ

√
γBn−1

1 ]zt.

The expected log excess return of an infinite maturity bond is then:

Et[rx
(∞)
t+1 ] = [−1

2
(B∞1 )2 σ2 + σ

√
γB∞1 ]zt,

= [B∞1 (1− φ)− χ+
1

2
γ]zt.

The −1
2 (B∞1 )2 σ2 is a Jensen term. The term premium is driven by σ

√
γB∞1 zt, where B∞1 is defined implicitly

in the second order equation B∞1 = χ− 1
2γ +B∞1 φ− 1

2 (B∞1 )2 σ2 + σ
√
γB∞1 .

Consider the special case of B∞1 (1−φ) = χ. In this case, the expected term premium is simply Et[rx
(∞)
t+1 ] = 1

2γzt,

which is equal to one-half of the variance of the log stochastic discount factor.

Suppose that the foreign pricing kernel is specified as in Equation (1) with the same parameters. However, the

foreign country has its own factor z∗. As a result, the difference between the domestic and foreign log term

premia is equal to the log currency risk premium, which is given by Et[rx
FX
t+1] = 1

2γ(zt − z∗t ). In other words,

the expected foreign log holding period return on a foreign long bond converted into U.S. dollars is equal to

the U.S. term premium: Et[rx
(∞),∗
t+1 ] + Et[rx

FX
t+1] = 1

2γzt.

This special case corresponds to the absence of permanent shocks to the pricing kernel: when B∞1 (1− φ) = χ,
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the permanent component of the stochastic discount factor is constant. To see this result, let us go back to the

implicit definition of B∞1 in Equation (3):

0 =
1

2
(B∞1 )2 σ2 + (1− φ− σ√γ)B∞1 − χ+

1

2
γ,

0 =
1

2
(B∞1 )2 σ2 − σ√γB∞1 +

1

2
γ,

0 = (σB∞1 −
√
γ)2 .

In this special case, B∞1 =
√
γ/σ. Using this result in Equation (3), the permanent component of the pricing

kernel reduces to:

MP
t+1

MP
t

=
Mt+1

Mt

(
MT
t+1

MT
t

)−1

= β−1e−α−χzt−
√
γztut+1e−B

∞
1 [(φ−1)(zt−θ)−σ

√
ztut+1] = β−1e−α−χθ,

which is a constant.5

The expected bond excess return is:

Et(r
(n)
t+1)− rft +

1

2
vart(r

(n)
t+1) = −covt(p(n−1)

t+1 ,mt+1) = Bn−1
1 σ

√
γzt. (4)

Recall that the risk-free rate is:

rft = −Et(logMt+1)− 1

2
V art(logMt+1) = α+ (χ− 1

2
γ)zt. (5)

In order to replicate the U.I.P. puzzle, risk-free rates must be low when stochastic discount factors are volatile,

implying that χ < 1
2γ: the risk-free rate is decreasing in the state variable. Since χ < 1

2γ, Equation (3) implies

recursively that all Bn
1 coefficients are negative. The bond risk premium is thus decreasing in the state variable.

The slope of the yield curve is y
(n)
t − rft = −p(n)

t /n− rft = Bn
0 /n+Bn

1 /n zt − α− (χ− 1
2γ)zt. Its cyclicality is

not immediately obvious from this expression, but we verified that in our simulations the slope and the level of

5 Alternatively, we assume that all the shocks are global and that zt is a global state variable (and thus σ = σ∗, φ = φ∗, θ = θ∗).
Condition 1 requires that: √

γ +B∞1 σ =
√
γ∗ +B∞∗1 σ

Note that B∞1 depends on χ and γ, as well as on the global parameters φ and σ. The two countries have perfectly correlated pricing
kernels.
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the yield curve move in opposite directions. This property appears clearly when considering infinite-maturity

bonds. In the limit of long-term bonds, the slope of the yield curve is y
(∞)
t − rft = −B∞1 (1− φ)θ − (χ− 1

2γ)zt.

As the infinite maturity yield is constant, the infinite maturity slope moves in opposite direction as the risk-free

rate. Bringing everything together, note that when the state variable is low, the risk-free rate is high, the slope

of the yield curve is low, and the bond risk premium (Equation (4)) is high. In the data, the risk-free rate

and slope of the yield move in opposite directions across countries, but high-slope portfolios correspond to high

bond risk premia. This simple one-factor model cannot reproduce our empirical evidence.

We now consider the two-country version of the Cox, Ingersoll and Ross (1985) model. It is defined by the

following law of motions for the SDFs:

− log
Λt+1

Λt
= α+ χzt +

√
γztut+1,

zt+1 = (1− φ)θ + φzt − σ
√
ztut+1,

− log
Λ∗t+1

Λ∗t
= α∗ + χ∗z∗t +

√
γ∗z∗t u

∗
t+1,

z∗t+1 = (1− φ∗)θ∗ + φ∗z∗t − σ∗
√
z∗t u
∗
t+1,

where zt and z∗t are the two state variables that govern the volatilities of the normal shocks ut+1 and u∗t+1. In

this two-country model, Condition 1 requires that

(
√
γ −B∞1 σ) zt =

(√
γ∗ −B∞∗1 σ∗

)
z∗t .

There are two ways to ensure that this condition is satisfied, depending on whether the shocks are either

country-specific or common.

First, let us consider a model with only country-specific shocks and factors. Let us assume that these

countries share all of the parameters. Since zt and z∗t will differ, a necessary and sufficient condition is that

B∞1 =
√
γ/σ, and B∞,∗1 =

√
γ∗/σ∗. In this case, there are no permanent shocks to the pricing kernel. Long

bond prices absorb the full, cumulative effect of the shock the pricing kernel. To see why, note that in this case

B∞1 = χ/(1 − φ). The log currency risk premium is given by Et[rx
FX
t+1] = 1

2γ(zt − z∗t ) and the expected term

premium is simply Et[rx
(∞)
t+1 ] = 1

2γzt. The expected foreign log holding period return on a foreign long bond
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converted into U.S. dollars is equal to the U.S. term premium: Et[rx
(∞),∗
t+1 ]+Et[rx

FX
t+1] = 1

2γzt. In a two-country

Cox, Ingersoll and Ross (1985) model with country-specific shocks, Condition 1 implies some restrictions on

the model parameters, and more crucially, the absence of permanent shocks in the SDFs and thus in exchange

rates: exchange rates are stationary in levels. The case of country-specific shocks, however, is not the most

interesting as such shocks can be diversified away.

Second, let us consider a model with common shocks and common factors: zt = z∗t is a global state variable.

In this case, the two countries share the parameters σ = σ∗, φ = φ∗, θ = θ∗ which govern the dynamics of zt

and z∗t . Condition 1 then requires that
√
γ + B∞1 σ =

√
γ∗ + B∞∗1 σ. Note that B∞1 depends on χ and γ, as

well as on the global parameters φ and σ. Hence, we also need γ = γ∗ and χ = χ∗. In this case, Condition 1

requires that both countries have the same pricing kernel. This case illustrates the tension between the carry

trade at the short and the long end of the yield curve: in order to replicate the carry trade on Treasury bills,

the two-country Cox, Ingersoll and Ross (1985) model needs to feature heterogeneous exposure to common

shocks; yet, in order to replicate the absence of carry trade returns on long term bonds, this model needs to

satisfy Condition 1 that prohibits such heterogeneous exposure to common shocks.

Long-Run U.I.P

Result 1. In the two-country CIR model, the transitory component of the exchange rate is given by:

sTt = s0 +
(
B∞1 (zt − z0)−B∞,∗1 (z∗t − z∗0)

)
.

When the pricing kernel is not subject to permanent shocks, B∞1 =
√
γ
σ = χ

1−φ , the exchange rate is stationary

and hence st = sTt :

st = s0 +

(
χ

1− φ
(zt − z0)− χ∗

1− φ∗
(z∗t − z∗0)

)
.

The expected rate of depreciation is

lim
k→∞

Et[∆st→t+k] =
χ

1− φ
zt −

χ∗

1− φ∗
z∗t = − lim

k→∞
k
(
y

(k)
t − y

(k),∗
t

)
.

Long-run U.I.P. holds for all transitory shocks the pricing kernel: the long-run response of the exchange

rate to transitory innovations equals the response of the long rate today, and hence this response can be read
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off the yield curve.

Our analysis sheds light on the recent empirical findings of Engel (2016), Valchev (2018), and Dahlquist

and Penasse (2016). Engel (2016) finds that an increase in the short-term interest rate initially cause exchange

rates to appreciate, but they subsequently depreciate on average. Because the risk premia on long bonds

are equalized, shocks to the quantity or price of risk (e.g., an increase in risk aversion) cannot have long-run

effects; long-run U.I.P. holds for these shocks. As a result, our preference-free condition constrains the long-run

response of exchange rates to transitory shocks to be equal to the instantaneous response of long-term interest

rates. For example, countries which have experienced an adverse transitory shock, with higher than average

long-term interest rates, always have stronger currencies (the level of the exchange rate is temporarily high),

because their exchange rates are expected to revert back to the mean and depreciate in the long run by the long

run interest rate difference (see Dornbusch, 1976; Frankel, 1979, for early contributions on the relation between

the level of the exchange rate and interest rates). Thus, an increase in a country’s short and long interest rates

which causes an appreciation in the short run has to be more than offset by future depreciations.

To develop some intuition, consider a symmetric version of the two-country CIR model in which the 2

countries share all of the parameters. The restrictions B∞1 =
√
γ
σ = χ

1−φ have a natural interpretation as

restrictions on the long-run loadings of the exchange rate on the risk factors:
∑∞

i=1Et[∆st+i] =
∑∞

i=1Et[mt+i−

m∗t+i] =
∑∞

i=1 φ
i−1χ(z∗t − zt). As can easily be verified, these two restrictions imply that the long-run loading

of the exchange rate on the factors equals the loading of long-term interest rates:

lim
k→∞

Et[∆st→t+k] =
χ

(1− φ)
(z∗t − zt) = lim

k→∞
k
(
y

(k),∗
t − y(k)

t

)
.

Hence, in the context of this model, our restrictions enforce long-run U.I.P. An increase in risk abroad causes

the long rates to go up abroad and the foreign exchange rate to depreciate in the long run, but given these

long-run restrictions, the initial expected exchange rate impact has to have the same sign (χ > 0), thus violating

the empirical evidence, as we explain below.

Our preference-free conditions constrains the sum of slope regression coefficients in a regression of future

exchange rate changes ∆st+i on the current interest rate spread rf,$,∗t − rf,$t to be equal to the response of

long-term interest rates. Engel (2016), Valchev (2018), and Dahlquist and Penasse (2016) study these slope

coefficients and find that they switch signs with the horizon i: an increase in the short-term interest rate initially
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cause exchange rates to appreciate, but they subsequently depreciate on average.

Result 2. In the symmetric two-country CIR model without permanent shocks B∞1 =
√
γ
σ = χ

1−φ , the slope

coefficients in a regression of ∆st+i on the rf,$,∗t − rf,$t , given by φi−1χ

χ− 1
2
γ

decline geometrically as i increases, and

their infinite sum equals
B∞1
χ− 1

2
γ

.

When (χ− 1
2γ) < 0, the model can match the short-run forward premium puzzle: when the foreign short rate

increases, the currency subsequently appreciates, but it continues to appreciate as long rates decline abroad. As

a result, this model cannot match the sign switch in these regression coefficients. A richer version of the factor

model with multiple country-specific risk factors can generate richer dynamics.Consider the same model with

two country-specific risk factors. The long-run impulse responses of the exchange rate to short-term interest

rate shocks is driven by:

∞∑
i=1

Et[∆st+i] =
∞∑
i=1

Et[mt+i −m∗t+i] =
∞∑
i=1

[
φi−1

1 χ1(z1,∗
t − z1

t ) + φi−1
2 χ2(z2,∗

t − z2
t )
]
.

The slope coefficients in a regression of future exchange rate changes on the current interest rate spread

rf,$,∗t − rf,$t are given by

Et∆st+i =
φi−1

1 χ1(χ1 − 1
2γ1) + φi−1

2 χ2(χ2 − 1
2γ2)

(χ1 − 1
2γ1)2 + (χ2 − 1

2γ2)2

(
rf,$,∗t − rf,$t

)
.

These coefficients can switch signs as we increase the maturity i if the risk factors have sufficiently heterogeneous

persistence (φ1, φ2), and provided that (χ1 − 1
2γ1) and (χ2 − 1

2γ2) have opposite signs.
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D Gaussian Dynamic Term Structure Models

The k−factor heteroskedastic Gaussian Dynamic Term Structure Model (DTSM) generalizes the CIR model.

When market prices of risk are constant, the log SDF is given by:

−mt+1 = y1,t +
1

2
Λ′V (xt)Λ + Λ′V (xt)

1/2εt+1,

xt+1 = Γxt + V (xt)
1/2εt+1, εt+1 ∼ N (0, I) ,

y1,t = δ0 + δ′1xt,

where V (x) is a diagonal matrix with entries Vii(xt) = αi + β′ixt. To be clear, xt is a k × 1 vector, and so are

εt+1, Λ, δ1, and βi. But Γ and V are k× k matrices. A restricted version of the model would impose that βi is

a scalar and Vii(xt) = αi + βixit— this is equivalent to assuming that the price of shock i only depends on the

state variable i.

The price of a one period-bond is:

P
(1)
t = Et(Mt+1) = e−δ0−δ

′
1xt .

For any maturity n, bond prices are exponentially affine, P
(n)
t = exp (−Bn

0 −Bn′
1 xt). Note that Bn

0 is a scalar,

while Bn
1 is a k×1 vector. The one period-bond corresponds to B1

0 = δ0, B′1 = δ′1, and the bond price coefficients

satisfy the following difference equation:

Bn
0 = δ0 +Bn−1

0 − 1

2
Bn−1′

1 V (0)Bn−1
1 − Λ′V (0)Bn−1

1 ,

Bn′
1 = δ′1 +Bn−1′

1 Γ− 1

2
Bn−1′

1 VxB
n−1
1 − Λ′VxB

n−1
1 ,

where Vx denotes all the diagonal slope coefficients βi of the V matrix.

The CIR model studied in the previous pages is a special case of this model. It imposes that k = 1, σ = −
√
β,

and Λ = − 1
σ

√
γ. Note that the CIR model has no constant term in the square root component of the log SDF,

but that does not imply V (0) = 0 here as the CIR model assumes that the state variable has a non-zero mean

(while it is zero here).

From there, we can define the Alvarez and Jermann (2005) pricing kernel components as for the Vasicek model.
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The limit of Bn
0 − B

n−1
0 is finite: limn→∞B

n
0 − B

n−1
0 = δ0 − 1

2B
∞′
1 V (0)B∞1 − Λ′0V (0)B∞1 , where B∞′1 is the

solution to the second-order equation above. As a result, Bn
0 grows at a linear rate in the limit. We choose

the constant β to offset the growth in Bn
0 as n becomes very large. Setting β = e−δ0+ 1

2
B∞′1 V (0)B∞1 +Λ′V (0)B∞1

guarantees that Assumption 1 in Alvarez and Jermann (2005) is satisfied. The temporary pricing component

of the pricing kernel is thus equal to:

ΛT
t+1

ΛT
t

= βeB
∞′
1 (xt+1−xt) = βeB

∞′
1 (Γ−1)xt+B∞′1 V (xt)1/2εt+1 .

The martingale component of the pricing kernel is then:

ΛP
t+1

ΛP
t

=
Λt+1

Λt

(
ΛT
t+1

ΛT
t

)−1

= β−1e−B
∞
1 (Γ−1)xt−B∞′1 V (xt)1/2εt+1−y1,t− 1

2
Λ′V (xt)Λt−Λ′V (xt)1/2εt+1

= β−1e−B
∞
1 (Γ−1)xt−δ0−δ′1xt−

1
2

Λ′V (xt)Λ−(Λ′+B∞′1 )V (xt)1/2εt+1 .

For the martingale component to be constant, we need that Λ′ = −B∞′1 and B∞1 (Γ−1)+δ′1 + 1
2Λ′VxΛ = 0. Note

that the second condition is automatically satisfied if the first one holds: this result comes from the implicit

value of B∞′1 implied by the law of motion of B1. As a result, the martingale component is constant as soon as

Λ = −B∞1 .

The expected log holding period excess return is:

Et[rx
(n)
t+1] = −δ0 +

(
−Bn−1′

1 Γ +Bn′
1 − δ′1

)
xt.

The term premium on an infinite-maturity bond is therefore:

Et[rx
(∞)
t+1 ] = −δ0 +

(
(1− Γ)B∞′1 − δ′1

)
xt.

The expected log currency excess return is equal to:

Et[−∆st+1] + y∗t − yt =
1

2
V art(mt+1)− 1

2
V art(m

∗
t+1) =

1

2
Λ′V (xt)Λ−

1

2
Λ∗′V (x∗t )Λ

∗.

We assume that all the shocks are global and that xt is a global state variable (Γ = Γ∗ and V = V ∗, no country-
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specific parameters in the V matrix— cross-country differences will appear in the vectors Λ). Let us decompose

the shocks into two groups: the first h < k shocks affect both the temporary and the permanent pricing kernel

components and the last k − h shocks are temporary. Temporary shocks are such that Λk−h = −B∞1,k−h (i.e.,

they do not affect the value of the permanent component of the pricing kernel).

The risk premia on the domestic and foreign infinite-maturity bonds (once expressed in the same currency) will

be the same provided that the entropy of the domestic and foreign permanent components is the same:

(Λ′h +B∞′1h )V (0)(Λh +B∞1h) = (Λ∗′h +B∗∞′1h )V (0)(Λ∗h +B∞∗1h ),

(Λ′h +B∞′1h )Vx(Λh +B∞1h) = (Λ∗′h +B∗∞′1h )Vx(Λ∗h +B∞∗1h ).

To compare these conditions to the results obtained in the one-factor CIR model, recall that σCIR = −
√
β,

and Λ = − 1
σCIR

√
γCIR. Differences in Λh in the k-factor model are equivalent to differences in γ in the CIR

model: in both cases, they correspond to different loadings of the log SDF on the “permanent” shocks. As in

the CIT model, differences in term premia can also come form differences in the sensitivity of infinite-maturity

bond prices to the global “permanent” state variable (B∞′1h ), which can be traced back to differences in the

sensitivity of the risk-free rate to the “permanent” state variable (i.e., different δ1 parameters).

Let us start with the special case of no permanent innovations: h = 0, the martingale component is constant.

Two conditions need to be satisfied for the martingale component to be constant: Λ′ = −B∞′1 and B∞1 (Γ −

1) + δ′1 + 1
2Λ′VxΛ = 0. The second condition imposes that the cumulative impact on the pricing kernel of an

innovation today given by
(
δ′1 + 1

2Λ′VxΛ
)

(1 − Γ)−1 equals the instantaneous impact of the innovation on the

long bond price. The second condition is automatically satisfied if the first one holds, as can be verified from

the implicit value of B∞′1 implied by the law of motion of B1. As a result, the martingale component is constant

as soon as Λ = −B∞1 .

Using Alvarez and Jermann (2005), the term premium on an infinite-maturity zero coupon bond is:

Et[rx
(∞)
t+1 ] = −δ0 +

(
(1− Γ)B∞′1 − δ′1

)
xt. (6)

In the absence of permanent shocks, when Λ = −B∞1 , this log bond risk premium equals half of the stochastic

discount factor variance Et[rx
(∞)
t+1 ] = 1

2Λ′V (xt)Λ; it attains the upper bound on log risk premia. Consistent
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with the result in Equation (7) in the main text, the expected log currency excess return is equal to:

Et
[
rxFXt+1

]
=

1

2
Λ′V (xt)Λ−

1

2
Λ∗′V (xt)Λ

∗. (7)

Differences in the market prices of risk Λ imply non-zero currency risk premia. Adding the previous two

expressions in Equations (6) and (7), we obtain the foreign bond risk premium in dollars. The foreign bond

risk premium in dollars equals the domestic bond premium in the absence of permanent shocks: Et

[
rx

(∞),∗
t+1

]
+

Et
[
rxFXt+1

]
= 1

2Λ′V (xt)Λ.

In general, there is a spread between dollar returns on domestic and foreign bonds. We describe a general

condition for long-run uncovered return parity in the presence of permanent shocks. In a GDTSM with global

factors, the long bond uncovered return parity condition holds only if the countries’ SDFs share the parameters

Λh = Λ∗h and δ1h = δ∗1h, which govern exposure to the permanent global shocks.

The log risk premia on the domestic and foreign infinite-maturity bonds (once expressed in the same currency)

are identical provided that the entropies of the domestic and foreign permanent components are the same:

(Λ′h +B∞′1h )V (0)(Λh +B∞1h) = (Λ∗′h +B∗∞′1h )V (0)(Λ∗h +B∞∗1h ),

(Λ′h +B∞′1h )Vx(Λh +B∞1h) = (Λ∗′h +B∗∞′1h )Vx(Λ∗h +B∞∗1h ).

These conditions are satisfied if that these countries share Λh = Λ∗h and δ1h = δ∗1h which govern exposure to the

global shocks. In this case, the expected log currency excess return is driven entirely by differences between the

exposures to transitory shocks: Λk−h and Λ∗k−h. If there are only permanent shocks (h = k), then the currency

risk premium is zero.6

E An Example: A Reduced-Form Factor Model

This section provides details on the properties of bond and currency premia in the Lustig, Roussanov and

Verdelhan (2014) model. We now turn to a flexible N -country, reduced-form model that can both replicate the

6To compare these conditions to the results obtained in the CIR model, recall that we have constrained the parameters in the
CIR model such that: σCIR = −

√
β, and Λ = − 1

σCIR

√
γCIR. Differences in Λh in the k-factor model are equivalent to differences

in γ in the CIR model: in both cases, they correspond to different loadings of the log pricing kernel on the “permanent” shocks.
Differences in term premia can also come form differences in the sensitivity of the risk-free rate to the permanent state variable
(i.e., different δ1 parameters). These correspond to differences in χ in the CIR model.
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deviations from U.I.P. and generate large currency carry trade returns on currency portfolios. To replicate the

portfolio evidence, as Lustig, Roussanov and Verdelhan (2011) show, no arbitrage models need to incorporate

global shocks to the SDFs along with country heterogeneity in the exposure to those shocks. Following Lustig,

Roussanov and Verdelhan (2014), we consider a world with N countries and currencies in a setup inspired by

classic term structure models.7 In the model, the risk prices associated with country-specific shocks depend only

on country-specific factors, but the risk prices of world shocks depend on world and country-specific factors.

To describe these risk prices, the authors introduce a common state variable zwt , shared by all countries,

and a country-specific state variable zit. The country-specific and world state variables follow autoregressive

square-root processes:

zit+1 = (1− φ)θ + φzit − σ
√
zitu

i
t+1,

zwt+1 = (1− φw)θw + φwzwt − σw
√
zwt u

w
t+1.

Lustig, Roussanov and Verdelhan (2014) assume that in each country i, the logarithm of the real SDF m̃i

follows a three-factor conditionally Gaussian process:

−m̃i
t+1 = α+ χzit +

√
γzitu

i
t+1 + τzwt +

√
δizwt u

w
t+1 +

√
κzitu

g
t+1,

where uit+1 is a country-specific SDF shock, while uwt+1 and ugt+1 are common to all countries’ SDFs. All three

innovations are i.i.d. Gaussian, with zero mean and unit variance. To be parsimonious, Lustig, Roussanov and

Verdelhan (2014) limit the heterogeneity in the SDF parameters to the different loadings δi on the world shock

uwt+1; all the other parameters are identical for all countries. Therefore, the model is a restricted version of

the multi-factor dynamic term structure models, and there exist closed form solutions for bond yields and risk

premia.

There are two types of common shocks. The first type, uwt+1, is priced proportionally to country exposure δi,

and since δi is a fixed characteristic of country i, differences in such exposure are permanent. The second type,

ugt+1, is priced proportionally to zit, so heterogeneity with respect to this innovation is transitory: all countries

7In the Online Appendix, we cover a wide range of term structure models, from the seminal Vasicek (1977) model to the classic
Cox, Ingersoll and Ross (1985) model and to the most recent, multi-factor dynamic term structure models. To save space, we focus
here on their most recent international finance version, illustrated in Lustig, Roussanov and Verdelhan (2014).
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are equally exposed to this shock on average, but conditional exposures vary over time and depend on country-

specific economic conditions. Finally, the real risk-free rate is r̃f,it = α+
(
χ− 1

2(γ + κ)
)
zit +

(
τ − 1

2δ
i
)
zwt .

Country i’s inflation process is given by πit+1 = π0 + ηwzwt + σπε
i
t+1, where the inflation innovations εit+1

are i.i.d. Gaussian. It follows that the log nominal risk-free rate in country i is given by rf,it = π0 + α +(
χ− 1

2(γ + κ)
)
zit +

(
τ + ηw − 1

2δ
i
)
zwt − 1

2σ
2
π. The nominal bond prices in logs are affine in the state variable z

and zw: p
(n),i
t = −Cn,$,i0 −Cn,$1 zt−Cn,$,i2 zwt , where the loadings (Cn,$,i0 , Cn,$1 , Cn,$,i0 ) are defined in the Appendix.

Equation (7) in the main text implies that the foreign currency risk premium is given by:

Et(rx
FX,i
t+1 ) = −1

2
(γ + κ)(zit − zt) +

1

2
(δ − δi)zwt .

Investors obtain high foreign currency risk premia when investing in currencies with relative small exposure to

the two global shocks. That is the source of short-term carry trade risk premia.

SDF Decomposition The log nominal bond prices are affine in the state variable z and zw: p
i,(n)
t = −Ci,n0 −

Cn1 zt − Ci,n2 zwt . To calculate the parameter set (Ci,n0 , Ci,n1 , Ci,n2 ), we follow the usual recursive process. In

particular, the price of a one-period nominal bond is:

P i,(1) = Et(M
i
t+1) = Et

(
e−α−χzt−τz

w
t −
√
γzitu

i
t+1−
√
δizwt u

w
t+1−
√
κzitu

g
t+1−π0−ηwzwt −σπεit+1

)
.

As a result, C1
0 = α+ π0 − 1

2σ
2
π, C1

1 = χ− 1
2(γ + κ), and Ci,12 = τ − 1

2δ
i + ηw.

The rest of the bond prices are calculated recursively using the Euler equation: P
i,(n)
t = Et(M

i,$
t+1P

i,(n−1)
t+1 ).

This leads to the following difference equations:

−Ci,n0 − C
n
1 zt − C

i,n
2 zwt = −α− χzt − τzwt − Cn−1

0 − Cn−1
1 [(1− φ)θ + φzt]− Ci,n−1

2 [(1− φw)θw + φwzwt ]

+
1

2
(γ + κ)zt +

1

2

(
Cn−1

1

)2
σ2zt − σ

√
γCn−1

1 zt

+
1

2
δizwt +

1

2

(
Ci,n−1

2

)2
(σw)2 zwt − σw

√
δiCi,n−1

2 zwt

− π0 − ηwzwt +
1

2
σ2
π
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Solving the equations above, we recover the set of bond price parameters:

Ci,n0 = α+ π0 −
1

2
σ2
π + Cn−1

0 + Cn−1
1 (1− φ)θ + Ci,n−1

2 (1− φw)θw,

Cn1 = χ− 1

2
(γ + κ) + Cn−1

1 φ− 1

2

(
Cn−1

1

)2
σ2 + σ

√
γCn−1

1

Ci,n2 = τ − 1

2
δi + ηw + Ci,n−1

2 φw − 1

2

(
Ci,n−1

2

)2
(σw)2 + σw

√
δiCi,n−1

2 .

The temporary pricing component of the pricing kernel is:

ΛT
t = lim

n→∞

βt+n

Pnt
= lim

n→∞
βt+neC

i,n
0 +Cn1 zt+C

i,n
2 zwt ,

where the constant β is chosen in order to satisfy Assumption 1 in Alvarez and Jermann (2005): 0 <

limn→∞
Pnt
βn <∞. The temporary pricing component of the SDF is thus equal to:

ΛT
t+1

ΛT
t

= βeC
∞
1 (zt+1−zt)+Ci,∞2 (zwt+1−zwt ) = βe

C∞1

[
(φ−1)(zit−θ)−σ

√
zitu

i
t+1

]
+Ci,∞2 [(φw−1)(zwt −θw)−σ

√
zwt u

w
t+1].

The martingale component of the SDF is then:

ΛP
t+1

ΛP
t

=
Λt+1

Λt

(
ΛT
t+1

ΛT
t

)−1

= β−1e−α−χz
i
t−
√
γzitu

i
t+1−τzwt −

√
δizwt u

w
t+1−
√
κzitu

g
t+1

e
C∞1

[
(φ−1)(zit−θ)−σ

√
zitu

i
t+1

]
+Ci,∞2 [(φw−1)(zwt −θw)−σ

√
zwt u

w
t+1].

As a result, we need χ = C∞1 (1 − φ) to make sure that the country-specific factor does not contribute a

martingale component. This special case corresponds to the absence of permanent shocks to the SDF: when

C∞1 (1− φ) = χ and κ = 0, the permanent component of the stochastic discount factor is constant. To see this

result, let us go back to the implicit definition of B∞1 in Equation (3):

0 = −1

2
(γ + κ)− 1

2
(C∞1 )2 σ2 + σ

√
γC∞1

0 = (σC∞1 −
√
γ)2 ,

where we have imposed κ = 0. In this special case, C∞1 =
√
γ/σ. Using this result in Equation (3), the
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permanent component of the SDF reduces to:

ΛP
t+1

ΛP
t

=
Λt+1

Λt

(
ΛT
t+1

ΛT
t

)−1

= β−1e−τz
w
t −
√
δizwt u

w
t+1eC

i,∞
2 [(φw−1)(zwt −θw)−σ

√
zwt u

w
t+1].

Bond Premia The expected log excess return on a zero coupon bond is thus given by:

Et[rx
(n)
t+1] = [−1

2

(
Cn−1

1

)2
σ2 + σ

√
γCn−1

1 ]zt + [−1

2

(
Ci,n−1

2

)2
σ2 + σ

√
δ
i
Ci,n−1

2 ]zwt .

The expected log excess return of an infinite maturity bond is then:

Et[rx
(∞)
t+1 ] = [−1

2
(C∞1 )2 σ2 + σ

√
γC∞1 ]zt + [−1

2

(
Ci,∞2

)2
σ2 + σ

√
δ
i
Ci,∞2 ]zwt .

The −1
2 (C∞1 )2 σ2 is a Jensen term. The term premium is driven by σ

√
γC∞1 zt, where C∞1 is defined implicitly

in the second order equation B∞1 = χ − 1
2(γ + κ) + C∞1 φ − 1

2 (C∞1 )2 σ2 + σ
√
γC∞1 . Consider the special case

of C∞1 (1 − φ) = χ and κ = 0 and Ci,∞2 (1 − φ) = τ . In this case, the expected term premium is simply

Et[rx
(∞)
t+1 ] = 1

2(γzt + δzwt ), which is equal to one-half of the variance of the log stochastic discount factor.

Currency Premia The expected log excess return of the infinite maturity bond of country i is:

Et[rx
(∞),i
t+1 ] =

[
C∞1 (1− φ)− χ+

1

2
(γ + κ)

]
zit +

[
Ci,∞2 (1− φw)− τ +

1

2
δi − ηw

]
zwt .

The foreign currency risk premium is given by:

Et[rx
FX,i
t+1 ] = −1

2
(γ + κ)(zit − zt) +

1

2
(δ − δi)(zwt ).

Investors obtain high foreign currency risk premia when investing in currencies whose exposure to the global

shocks is smaller. That is the source of short-term carry trade risk premia. The foreign bond risk premium in
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dollars is simply given by the sum of the two expressions above:

Et[rx
(∞),i
t+1 ] + Et[rx

FX,i
t+1 ] =

[
1

2
(γ + κ)zt + (C∞1 (1− φ)− χ)zit

]
+

[
1

2
δ + Ci,∞2 (1− φw)− τ − ηw

]
zwt .

Simulation Results We simulate the Lustig, Roussanov and Verdelhan (2014) model, obtaining a panel of

T = 33, 600 monthly observations and N = 30 countries. The calibration parameters are reported in Table

A22 and the simulation results in Table A23. Each month, the 30 countries are ranked by their interest rates

(Section I) or by the slope of the yield curves (Section II) into six portfolios. Low interest rate currencies

on average have higher exposure δ to the world factor. As a result, these currencies appreciate in case of an

adverse world shock. Long positions in these currencies earn negative excess returns rxfx of −3.66% on average

per annum. On the other hand, high interest rate currencies typically have high δ. Long positions in these

currencies earn positive excess returns (rxFX) of 2.45% on average per annum. At the short end, the carry

trade strategy, which goes long in the sixth portfolio and short in the first one, delivers an excess return of

6.12% and a Sharpe ratio of 0.51.

This spread is not offset by higher local currency bond risk premia in the low interest rate countries with

higher δ. The log excess return on the 30-year zero coupon bond is 0.62% in the first portfolio compared to

0.89 % in the last portfolio. At the 30-year maturity, the high-minus-low carry trade strategy still delivers a

profitable excess return of 6.39% and a Sharpe ratio of 0.47. This large currency risk premium at the long end

of the curve stands in stark contrast to the data. Similar results obtain when sorting countries by the slopes

of their yield curves. Countries with flat yield curves tend to be countries with high short-term interest rates,

while countries with steep yield curves tend to be countries with low short-term interest rates. As a result,

the currency carry trade is long the last portfolio in Section II and short the first portfolio. At the 30-year

maturity, the carry trade strategy still delivers a profitable excess return of 5.93% and a Sharpe ratio of 0.43.

Our theoretical results help explain the shortcomings of this simulation. In the Lustig, Roussanov and

Verdelhan (2014) calibration, the conditions for long run bond parity are not satisfied. First, global shocks

have permanent effects in all countries, because Ci,∞2 (1− φw) < τ + ηw for all i = 1, . . . , 30. Second, the global

shocks are not symmetric, because δ varies across countries. The heterogeneity in δ’s across countries generates
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substantial dispersion in exposure to the permanent component. As a result, our long-run uncovered bond

parity condition is violated.

Table A22: Parameter Estimates

Stochastic discount factor

α (%) χ τ γ κ δ

0.76 0.89 0.06 0.04 2.78 0.36

State variable dynamics

φ θ (%) σ (%) φw θw (%) σw (%)

0.91 0.77 0.68 0.99 2.09 0.28

Inflation dynamics Heterogeneity

ηw π0 (%) σπ (%) δh δl

0.25 −0.31 0.37 0.22 0.49

Implied SDF dynamics

E(Stdt(m̃)) Std(Stdt(m̃)) (%) E(Corr(m̃t+1, m̃
i
t+1)) Std(z) (%) Std(zw) (%)

0.59 4.21 0.98 0.50 1.32

Notes: This table reports the parameter values for the estimated version of the model. The model is defined by the following set of equations:

−m̃it+1 = α+ χzit +
√
γzitu

i
t+1 + τzwt +

√
δizwt u

w
t+1 +

√
κzitu

g
t+1,

zit+1 = (1− φ)θ + φzit − σ
√
zitu

i
t+1,

zwt+1 = (1− φw)θw + φwzwt − σw
√
zwt u

w
t+1,

πit+1 = π0 + ηwzwt + σπε
i
t+1.

All countries share the same parameter values except for δi, which is distributed uniformly on [δh, δl]. The home country exhibits the average
δ, which is equal to 0.36.

Finally, the Lustig, Roussanov and Verdelhan (2014) model has country-specific and common shocks and

carry trade risk premia arise from asymmetric exposures to global shocks. If the entropy of the permanent

SDF component cannot differ across countries, then all countries’ pricing kernels need the same loadings on

the permanent component of the global factors. In the Lustig, Roussanov and Verdelhan (2014) model, the
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Table A23: Simulated Excess Returns on Carry Strategies in the Lustig, Roussanov, and Verdelhan (2014)
Model

Low 2 3 4 5 High

Section I: Sorting by Interest Rate Levels

Panel A: Exchange Rates, Interest Rates, and Bond Returns

∆s 1.43 0.33 −0.19 −0.26 −0.43 −0.98

σ∆s 11.18 9.57 9.11 8.90 8.94 9.40

rf,∗ − rf −2.23 −1.28 −0.69 −0.15 0.39 1.47

rx(30),∗ 0.62 0.71 0.78 0.82 0.86 0.89

Panel B: Carry Returns with Short-Term Bills

rxFX −3.66 −1.62 −0.50 0.11 0.82 2.45

Panel C: Carry Returns with Long-Term Bonds

rx(30),$ −3.04 −0.91 0.27 0.93 1.68 3.35

Section II: Sorting by Interest Rate Slopes

Panel A: Exchange Rates, Interest Rate Slopes, and Bond Returns

∆s −2.27 −1.47 −0.90 −0.13 0.20 1.44

σ∆s 11.13 9.42 8.89 8.80 8.96 10.12

y10 − y1/4 −0.89 −0.44 −0.15 0.10 0.36 1.02

rx(30),∗ 0.82 0.83 0.82 0.76 0.78 0.79

Panel B: Carry Returns with Short-Term Bills

rxFX 3.40 2.09 1.19 0.13 −0.51 −2.50

Panel C: Carry Returns with Long-Term Bonds

rx(30),$ 4.22 2.92 2.01 0.89 0.28 −1.71

Notes: The table reports summary statistics on simulated data from the Lustig, Roussanov and Verdelhan (2014) model. Data are obtained
from a simulated panel with T = 33, 600 monthly observations and N = 30 countries. In Section I, countries are sorted by interest rates into
six portfolios. In Section II, they are sorted by the slope of their yield curves (defined as the difference between the 10-year yield and the
three-month yield). In each section, Panel A reports the average change in exchange rate (∆s), the average interest rate difference (rf,∗ − rf )
(or the average slope, y10− y1/4), the average foreign bond excess returns for bonds of 30-year maturities in local currency (rx(30),∗). Panel B
reports the average log currency excess returns (rxFX). Panel C reports the average foreign bond excess returns for bonds of 30-year maturities
in home currency (rx(30),$). The moments are annualized.
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permanent component of the SDF is given by:

log
ΛP
t+1

ΛP
t

= log β−1 − α− χzit −
√
γzitu

i
t+1 − τzwt −

√
δizwt u

w
t+1 −

√
κzitu

g
t+1

C∞,$1

[
(φ− 1)(zit − θ)− σ

√
zitu

i
t+1

]
+ C∞,$,i2

[
(φw − 1)(zwt − θw)− σ

√
zwt u

w
t+1

]
.

The U.S. term premium is simply Et[rx
(∞)
t+1 ] = 1

2(γzt + δzwt ), which is equal to one-half of the variance of the

log stochastic discount factor. The foreign long bond risk premium in dollars is then simply:

Et[rx
(∞),∗
t+1 ] + Et[rx

FX,∗
t+1 ] =

[
1

2
(γ + κ)zt + (C∞,$1 (1− φ)− χ)z∗t

]
+

[
1

2
δ + C∞,$,∗2 (1− φw)− τ − ηw

]
zwt ,

where C∞,$1 , C∞,$2 represent the loadings of the nominal long rates on the two factors. Condition 1 thus holds

if C∞,$1 (1− φ) = χ, κ = 0, and C∞,$,∗2 (1− φw) = τ + ηw. The first two restrictions rule out permanent effects

of country-specific shocks, while the last restriction rules out permanent effects of global shocks (uw). When

these restrictions are satisfied, the pricing kernel is not subject to permanent shocks, and the expected foreign

log holding period return on a foreign long-term bond converted into U.S. dollars is equal to the U.S. term

premium: Et[rx
(∞),∗
t+1 ] + Et[rx

FX,∗
t+1 ] = 1

2(γzt + δzwt ). The higher foreign currency risk premium for investing in

high δ countries is exactly offset by the lower bond risk premium. As all these models show, Proposition 1 and

Condition 1 in the main text offer a simple diagnostic to assess the term structure of currency carry trade risk

premia in no-arbitrage models.

The restrictions C∞,$1 (1 − φ) = χ, κ = 0, and C∞,$,∗,2 (1 − φw) = τ + ηw have a natural interpretation as

restrictions on the long-run loadings of the exchange rate on the risk factors:
∑∞

i=1Et[∆st+i] =
∑∞

i=1Et[mt+i−

m∗t+i] =
∑∞

i=1 φ
i−1χ(z∗t − zt). As can easily be verified, these two restrictions imply that the long-run loading

of the exchange rate on the factors equals the loading of long-term interest rates:

lim
k→∞

Et[∆st→t+k] =
χ

(1− φ)
(z∗t − zt) = C∞,$1 (z∗t − zt) = lim

k→∞
k
(
y

(k),∗
t − y(k)

t

)
,

where we have used C∞,$2 = C∞,$,∗2 = τ + ηw. Hence, in the context of this model, our restrictions enforce

long-run U.I.P.8 In this special case, χ
(1−φ) = C∞1 =

√
γ/σ > 0. An increase in risk abroad causes the long

8When all innovations have an impact on risk, as is the case in this model, Condition 1 rules out permanent shocks.
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rates to go up abroad and the foreign exchange rate to depreciate in the long run, but given these long-run

restrictions, the initial expected exchange rate impact has to have the same sign (χ > 0), thus violating the

empirical evidence, as we explain below.

Our preference-free conditions constrains the sum of slope regression coefficients in a regression of future

exchange rate changes ∆st+i on the current interest rate spread rf,$,∗t − rf,$t to be equal to the response of

long-term interest rates. Engel (2016), Valchev (2018), and Dahlquist and Penasse (2016) study these slope

coefficients and find that they switch signs with the horizon i: an increase in the short-term interest rate initially

cause exchange rates to appreciate, but they subsequently depreciate on average. In the factor model with a

single country-specific factor, these slope coefficients in a regression of ∆st+i on the rf,$,∗t − rf,$t , given by

Et∆st+i =
φi−1χ

χ− 1
2γ

(
rf,$,∗t − rf,$t

)
,

decline geometrically as i increases, and their infinite sum equals
C∞1
χ− 1

2
γ

. When (χ − 1
2γ) < 0, the model can

match the short-run forward premium puzzle: when the foreign short rate increases, the currency subsequently

appreciates, but it continues to appreciate as long rates decline abroad. As a result, this model cannot match the

sign switch in these regression coefficients. A richer version of the factor model with multiple country-specific

risk factors can generate richer dynamics. Consider the same model with two country-specific risk factors. The

long-run impulse responses of the exchange rate to short-term interest rate shocks is driven by:

∞∑
i=1

Et[∆st+i] =

∞∑
i=1

Et[mt+i −m∗t+i] =

∞∑
i=1

[
φi−1

1 χ1(z1,∗
t − z1

t ) + φi−1
2 χ2(z2,∗

t − z2
t )
]
.

The slope coefficients in a regression of future exchange rate changes on the current interest rate spread

rf,$,∗t − rf,$t are given by

Et∆st+i =
φi−1

1 χ1(χ1 − 1
2γ1) + φi−1

2 χ2(χ2 − 1
2γ2)

(χ1 − 1
2γ1)2 + (χ2 − 1

2γ2)2

(
rf,$,∗t − rf,$t

)
.

These coefficients can switch signs as we increase the maturity i if the risk factors have sufficiently heterogeneous

persistence (φ1, φ2), and provided that (χ1 − 1
2γ1) and (χ2 − 1

2γ2) have opposite signs.
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F Sketching a Model with Temporary and Permanent Shocks

The Lustig, Roussanov and Verdelhan (2014) calibration fails to replicate the term structure of carry trade risk

premia. We turn to a model that explicitly features global permanent and transitory shocks. We show that the

heterogeneity in the SDFs’ loadings on the permanent global shocks needs to be ruled out in order to match

the empirical evidence on the term structure of carry risk.

Model We assume that in each country i, the logarithm of the real SDF mi follows a three-factor conditionally

Gaussian process:

−mi
t+1 = α+ χzit +

√
γzitu

i
t+1 + τ izwt +

√
δizwt u

w
t+1 + τP,izP,wt +

√
δPzP,wt uwt+1 +

√
κzitu

g
t+1.

The state variables follow similar square root processes as in the previous model:

zit+1 = (1− φ)θ + φzit − σ
√
zitu

i
t+1,

zwt+1 = (1− φw)θw + φwzwt − σw
√
zwt u

w
t+1.

zP,wt+1 = (1− φP,w)θP,w + φP,wzwt − σP,w
√
zP,wt uP,wt+1.

But one of the common factors, zwt , is rendered transitory by imposing that Ci,∞2 (1− φw) = τ i. To make sure

that the global shocks have no permanent effect for each value of δi, we need to introduce another source of

heterogeneity across countries. Countries must differ in τ , φw, σw, or ηw (or a combination of those). Without

this additional source of heterogeneity, there are at most two values of δi that are possible (for each set of

parameters). 9 Here we simply choose to let the parameters τ differ across countries.

Bond Prices Our model only allows for heterogeneity in the exposure to the transitory common shocks (δi),

but not in the exposure to the permanent common shock (δP). The nominal log zero-coupon n-month yield of

maturity in local currency is given by the standard affine expression y
(n)
t = 1

n

(
Cn0 + Cn1 zt + Cn2 z

w
t + Cn3 z

P,w
t

)
,

where the coefficients satisfy second-order difference equations. Given this restriction, the bond risk premium

9This result appears when plugging the no-permanent-component condition in the differential equation that governs the loading
of the bond price on the global state variable.
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is equal to:

Et[rx
(i,∞)
t+1 ] =

[
C∞1 (1− φ)− χ+

1

2
(γ + κ)

]
zt +

1

2
δizwt

+

[
C∞3 (1− φP,w)− τP +

1

2
δP − ηw

]
zP,wt .

The log currency risk premium is equal to Et[rx
FX,i
t+1 ] = (γ + κ)(zt − zit)/2 + (δ − δi)zwt /2. The permanent

factor zw,Pt drops out. This also implies that the expected foreign log holding period return on a foreign long

bond converted into U.S. dollars is equal to:

Et[rx
(i,∞)
t+1 ] + Et[rx

FX,i
t+1 ] =

[
(C∞1 (1− φ)− χ)zit +

1

2
(γ + κ)zt

]
+

1

2
δzwt

+

[
C∞3 (1− φP,w)− τP +

1

2
δP − ηw

]
zP,wt .

Given the symmetry that we have imposed, the difference between the foreign term premium in dollars and

the domestic term premium is then given by: [C∞1 (1− φ)− χ] (zit − zt). There is no difference in long bond

returns that can be traced back to the common factor; only the idiosyncratic factor. The spread due to the

common factor is the only part that matters for the long-term carry trade, which approximately produces zero

returns here.

Term Structure of Carry Trade Risk Premia To match short-term carry trade returns, we need asym-

metric exposure to the transitory shocks, governed by (δ), but not to permanent shocks, governed by (δP). If the

foreign kernel is less exposed to the transitory shocks than the domestic kernel (δ > δi), there is a large positive

foreign currency risk premium (equal here to (δ − δi)zwt /2), but that premium is exactly offset by a smaller

foreign term premium and hence does not affect the foreign bond risk premium in dollars. The countries with

higher exposure will also tend to have lower interest rates when the transitory volatility zt increases, provided

that
(
τ − 1

2δ
)
< 0. Hence, in this model, the high δi funding currencies in the lowest interest rate portfolios will

tend to earn negative currency risk premia, but positive term premia. The reverse would be true for the low

δi investment currencies in the high interest rate portfolios. This model thus illustrates our main theoretical

findings: chasing high interest rates does not necessarily work at the long end of the maturity spectrum. If

there is no heterogeneity in the loadings on the permanent global component of the SDF, then the foreign term
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premium on the longest bonds, once converted to U.S. dollars is identical to the U.S. term premium.

V Structural Dynamic Asset Pricing Models

This section of the Appendix presents the details of pricing kernel decomposition for three classes of structural

dynamic asset pricing equilibrium models: models with external habit formation, models with long run risks,

and models with rare disasters.

A External Habit Model

External habit formation has been used, inter alia, by Wachter (2006), Verdelhan (2010), and Stathopoulos

(2017) to study the properties of interest rates and exchange rates. In the external habit model of Campbell

and Cochrane (1999), the log pricing kernel has law of motion

log
Λt+1

Λt
= log δ − γg − γ(1− φ)(s̄− st)− γ(1 + λ(st))εt+1,

with the aggregate consumption growth rate satisfying

∆ct+1 = g + εt+1,

with εt+1 ∼ N(0, σ2), and the log surplus consumption ratio evolving as follows:

st+1 = (1− φ)s̄u+ φst + λ(st)εt+1.

Finally, the sensitivity function λ is

λ(st) =


1
S̄

√
1− 2(st − s̄)− 1, if s < smax

0, if s ≥ smax
,

where S̄ = σ
√

γ
1−φ−B/γ is the steady-state value of the surplus consumption ratio and smax = s̄+ 1

2(1− S̄2) is

the upper bound of the log surplus consumption ratio. The parameter B is important, as its sign determines
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the cyclicality of the real interest rate.

The equilibrium log risk-free rate is

rft = −Et
(

log
Λt+1

Λt

)
− Lt

(
Λt+1

Λt

)
= − log δ + γg + γ(1− φ)(s̄− st)−

1

2
γ2σ2(1 + λ(st))

2,

which can be also written as

rft = − log δ + γg − 1

2

γ2σ2

S̄2
+B(s̄− st).

Therefore, if B = 0, the log risk-free rate is constant: the intertemporal smoothing effect is exactly offset

by the precautionary savings effect. If, on the other hand, B 6= 0, then the log risk-free rate is perfectly

correlated with the surplus consumption ratio s: it is negatively correlated with s (and hence countercyclical)

if B > 0, and positively correlated with s (and hence procyclical) if B < 0. This is because, if B > 0, the

intertemporal smoothing effect dominates the precautionary savings effect: when s is above its steady-state

level, mean-reversion implies that marginal utility is expected to increase in the future, incentivizing agents to

save and decreasing interest rates. On the other hand, if B < 0, the precautionary savings motive dominates,

so agents save more when s is low and marginal utility is more volatile.

To decompose the pricing kernel, we use the guess and verify method. In particular, guess an eigenfunction φ

of the form

φ(s) = ecs,

where c is a constant. Then, the (one-period) eigenfunction problem can be written as

Et [exp (log δ − γ [g + (φ− 1)(st − s̄) + (1 + λ(st))εt+1] + cst+1)] = exp(β + cst)

which, after some algebra, yields

log δ − γg − γ(φ− 1)(st − s̄) + c(1− φ)s̄+ cφst +
σ2

2
((c− γ)(1 + λ(st))− c)2 = β + cst.

Setting c = γ, the expression above becomes

log δ − γg − γ(φ− 1)(st − s̄) + γ(1− φ)s̄+ γφst +
γ2σ2

2
= β + γst,
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and, matching the constant terms, we get β = log δ−γg+ γ2σ2

2 . The transitory component of the pricing kernel

is ΛT
t = eβt−cst , so the transitory SDF component is

ΛT
t+1

ΛT
t

= eβ−c(st+1−st) = elog δ−γg+ γ2σ2

2
−γ((1−φ)(s̄−st)+λ(st)εt+1),

and the permanent SDF component is

ΛP
t+1

ΛP
t

=
Λt+1

Λt

(
ΛT
t+1

ΛT
t

)−1

= e−
γ2σ2

2
−γεt+1 .

In the Campbell and Cochrane (1999) model, the permanent pricing kernel component reflects innovations in

consumption growth, which permanently affect the level of consumption, whereas the transitory pricing kernel

component is driven by innovations in the surplus consumption ratio, which is a stationary variable. However,

the two types of innovations are perfectly correlated by assumption, so the two pricing kernel components

exhibit positive comovement: a negative consumption growth innovation not only permanently reduces the

level of consumption, but also transitorily decreases the surplus consumption ratio of the agent, increasing the

local curvature of her utility function. As a result, a negative consumption growth shock implies a positive

shock for both pricing kernel components.

Finally, we consider the properties of the pricing kernel and its components. In each country, the conditional

entropy of the pricing kernel is

Lt

(
Λt+1

Λt

)
=

1

2
vart

(
log

Λt+1

Λt

)
=
γ2σ2

2
(1 + λ(st))

2 =
γ2σ2

2

1

S̄2
(1− 2(st − s̄)),

the conditional entropy of the permanent pricing kernel component is

Lt

(
ΛP
t+1

ΛP
t

)
=

1

2
vart

(
log

ΛP
t+1

ΛP
t

)
=
γ2σ2

2
,

and the conditional entropy of the transitory pricing kernel component is

Lt

(
ΛT
t+1

ΛT
t

)
=

1

2
vart

(
log

ΛT
t+1

ΛT
t

)
=
γ2σ2

2
λ(st)

2.
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Notably, the permanent pricing kernel component has constant conditional entropy, whereas the conditional

entropy of both the pricing kernel and the transitory pricing kernel component are time varying, as they are

functions of the log surplus consumption ratio s. It follows that the conditional term premium, in local currency

terms, is

Et

[
rx

(∞)
t+1

]
= Lt

(
Λt+1

Λt

)
− Lt

(
ΛP
t+1

ΛP
t

)
=
γ2σ2

2

1

S̄2
(1− 2(st − s̄))−

γ2σ2

2
=
γ2σ2

2

[
1

S̄2
(1− 2(st − s̄))− 1

]
.

Condition 1 implies that γ2σ2 = γ∗,2σ∗,2.

In a symmetric habit model (i.e., a model in which all countries share the same parameters) with country-

specific shocks, Condition 1 is automatically satisfied: variation in the price of risk, governed by s, does not affect

marginal utility and exchange rates in the long run. The long-run loading of the exchange rate on the surplus

consumption ratio is given by:
∑∞

i=1Et[∆st+i] =
∑∞

i=1Et[log Λt+i
Λt
− log

Λ∗t+i
Λ∗t

] = −
∑∞

i=1 φ
i−1γ(1−φ)(s∗t − st) =

−γ(s∗t − st). Thus, long-run U.I.P holds,

lim
k→∞

Et[∆st→t+k] = −γ(s∗t − st) = lim
k→∞

k
(
y

(k),∗
t − y(k)

t

)
,

even though exchange rates are non-stationary in levels, because the innovations to risk premia, driven by the

surplus consumption ratio, are transitory. A decrease in the foreign surplus consumption ratio causes foreign

long-term rates to increase and the foreign currency to depreciate in the long run.

Result 3. In the symmetric external habit model, the slope coefficients in regressions of ∆st+i on the interest

rate spread rf,∗t − r
f
t , given by −φi−1γ(1−φ)

B , decline geometrically in absolute value as i increases, and their

infinite sum equals − γ
B .

When B < 0, all these slope coefficients are positive: a decrease in the foreign short rate causes the foreign

currency to depreciate on average next period and all periods after that, in line with the increase in the foreign

long rate. As pointed out by Engel (2016), these slope coefficients cannot switch signs to match the empirical

evidence.

In an asymmetric model, in order for Condition 1 to hold, countries can only differ in their surplus con-

sumption ratio parameters and in their consumption growth rate parameter (g), as differences in the other
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parameters (γ, σ2) would imply differences in the conditional entropy of the permanent component of the pric-

ing kernels, and thus differences in long-maturity bond returns expressed in the same units. Thus, Condition

1 limits the sources of heterogeneity.

B Long-Run Risks Model

We now consider the long-run risk model, proposed by Bansal and Yaron (2004) and further explored by

Colacito and Croce (2011), Bansal and Shaliastovich (2013) and Engel (2016) in the context of exchange rates.

In this class of models, the representative agent has utility over consumption given by:

logUt = (1− 1

ψ
) log

(1− δ)C1− 1
ψ + δEt

[
U1−γ
t+1

] 1− 1
ψ

1−γ

 ,

where ψ represents the intertemporal elasticity of substitution in an environment without risk. Aggregate

consumption growth ∆ct+1 has a persistent component xt, and both consumption growth shocks and shocks in

xt exhibit conditional heteroskedasticity:

∆ct+1 = µ+ xt +
√
utε

c
t+1,

xt+1 = φxxt +
√
wtε

x
t+1,

ut+1 = (1− φu)θu + φuut + σuεut+1,

wt+1 = (1− φw)θw + φwwt + σwεwt+1.

All innovations are i.i.d. standard normal. The log SDF evolves as:

log
Λt+1

Λt
= A0 +A1xt +A2ut +A3wt +B1

√
utε

c
t+1 +B2

√
wtε

x
t+1 +B3ε

u
t+1 +B4ε

w
t+1,

where {A0, A1, A2, A3, B1, B2, B3, B4} are constants, the values of which (except A0) are reported in Panel A of

Table A24. As usual, we assume that the agent has preferences for early resolution of uncertainty (γ > 1
ψ ), so

B2 < 0. In Panel B of the same table, we report the SDF of the homoskedastic version of the model, which is

a special case of the full version. In the remainder of this section, we focus on the full, heteroskedastic version

of the model.
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Table A24: Pricing Kernel Loadings in the Long Run Risks Model

Loadings Parameters Loadings Parameters
Panel A: Heteroskedastic Model

log
Λt+1

Λt
= A0 +A1xt +A2ut +A3wt +B1

√
utεct+1 +B2

√
wtεxt+1 +B3εut+1 +B4εwt+1.

A1 − 1
ψ

B1 −γ
A2

(
1
ψ
− γ
)
γ−1

2
B2

(
1
ψ
− γ
)

κ
1−κφx

A3

(
1
ψ
− γ
)
γ−1

2

(
κ

1−κφx

)2
B3

(
1
ψ
− γ
)

1−γ
2

κ
1−κφu σ

u

B4

(
1
ψ
− γ
)(

κ
1−κφx

)2
κ

1−κφw σ
w.

Panel B: Homoskedastic Model

log
Λt+1

Λt
= A0 +A1xt +B1

√
θuεct+1 +B2

√
θwεxt+1.

A1 − 1
ψ

B1 −γ
B2

(
1
ψ
− γ
)

κ
1−κφx

Notes: Pricing kernel loading parameters in the long run risks model. Parameter κ is defined as κ ≡ δe

(
1− 1

ψ

)
m̄

1−δ+δe
(
1− 1

ψ

)
m̄

, where m̄ is the point

around which a log-linear approximation is taken (see Engel (2016) for details); if m̄ = 0, then κ = δ.

The conditional SDF entropy and the equilibrium log risk-free rate are given by:

Lt

(
Λt+1

Λt

)
=

1

2
vart

(
log

Λt+1

Λt

)
=

1

2

(
B1

2ut +B2
2wt +B3

2 +B4
2
)
,

rft = −A0 −
1

2

(
B3

2 +B4
2
)

+
1

ψ
xt −

1

2

(
γ − 1

ψ
+ γ

)
ut −

1

2

(
1

ψ
− γ
)(

1

ψ
− 1

)(
κ

1− κφx

)2

wt.

Thus, the risk-free rate is positively associated with xt, the predictable component of consumption growth,

due to the intertemporal smoothing effect, and negatively associated with ut, the conditional variance of the

consumption growth shock, as the intertemporal smoothing effect is dominated by the precautionary savings

effect. Finally, the sign of the relationship between the risk-free rate and wt, the conditional variance of

the consumption drift shock, depends on the value of the IES parameter: if ψ > 1, then the relationship is

negative, as the precautionary savings effect dominates, whereas if ψ < 1, then the relationship is positive, as

the intertemporal smoothing effect dominates. The necessary condition (7) in the main text highlights how this

model can replicate the U.I.P. puzzle: for procyclical interest rates (with respect to ut and wt), high interest

rates correspond to low volatility SDFs.

To decompose the pricing kernel, we use the guess and verify method. In particular, guess an eigenfunction
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φ of the form

φ(x, u, w) = ec1x+c2u+c3w

where {c1, c2, c3} are constants. Then, the (one-period) eigenfunction problem can be written as

Et

[
exp(log

Λt+1

Λt
+ c1xt+1 + c2ut+1 + c3wt+1)

]
= exp(β + c1xt + c2ut + c3wt)

which, exploiting the log-normality of the term inside the expectation, implies

Et

(
log

Λt+1

Λt
+ c1xt+1 + c2ut+1 + c3wt+1

)
+

1

2
vart

(
log

Λt+1

Λt
+ c1xt+1 + c2ut+1 + c3wt+1

)
= β + c1xt + c2ut + c3wt.

After some algebra, matching terms yields

β = A0 + c2(1− φu)θu + c3(1− φw)θw +
1

2
(B3 + c2σ

u)2 +
1

2
(B4 + c3σ

w)2,

c1 =
A1

1− φx
= − 1

ψ

1

1− φx
< 0,

c2 =
A2 + 1

2B
2
1

1− φu
=

1

2

(
γ − 1

ψ
+ γ

)
1

1− φu
> 0,

c3 =
A3 + 1

2(B2 + c1)2

1− φw
=

(
1
ψ − γ

)
γ−1

2

(
κ

1−κφx
)2

+ 1
2

((
1
ψ − γ

)
κ

1−κφx −
1
ψ

1
1−φx

)2

1− φw
> 0,

where the sign for c2 and c3 is determined under the assumption that γ > 1
ψ . The transitory component of the

pricing kernel is

ΛT
t = eβt−c1xt−c2ut−c3wt ,

so the transitory SDF component is

ΛT
t+1

ΛT
t

= eβ+c1(1−φx)xt−c2(1−φu)(θu−ut)−c3(1−φw)(θw−wt)−c1
√
wtεxt+1−c2σuεut+1−c3σwεwt+1 ,
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and the permanent SDF component is

ΛP
t+1

ΛP
t

=
Λt+1

Λt

(
ΛT
t+1

ΛT
t

)−1

= e−(1/2)(B3+c2σu)2−(1/2)(B4+c3σw)2−(1/2)B2
1ut−(1/2)(B2+c1)2wt ×

eB1
√
utεct+1+(B2+c1)

√
wtεxt+1+(B3+c2σu)εut+1+(B4+c3σw)εwt+1 .

In summary, both SDF components are exposed to the consumption drift innovation εxt+1, the consumption

growth variance innovation εut+1, and the consumption drift variance innovation εwt+1, but only the permanent

SDF component is exposed to the consumption growth innovation εct+1. As a result, overall SDF and the

permanent SDF component have identical loadings on the consumption growth shock. However, the dependence

on the rest of the innnovations depends on the agent’s preferences regarding the resolutions of uncertainty. If

the agent prefers early resolution (γ > 1
ψ ), we have c1 < 0, c2 > 0 and c3 > 0.

We can start with exposure to consumption drift shocks. Since B2 < 0, c1 < 0 implies that the permanent

SDF component is more sensitive to consumption drift shocks than the total SDF, while the transitory SDF

component has the opposite sign. For example, a negative consumption drift shock (εxt+1 < 0) is associated with

an increase of the agent’s overall SDF and its permanent component and a decline of its transitory component.

This is because the long-run effect of a consumption drift innovation in the pricing kernel (captured by the

permanent SDF component) is higher than its short-run effect (captured by the overall SDF). Intuitively, a

negative consumption drift shock lowers marginal utility in the long run both through an immediate decline

in the continuation utility (reflected in the overall SDF) and through the cumulative effect of a persistent

reduction in x, which is equal to − 1
ψ

∑∞
j=0(φx)j

√
θw = − 1

ψ
1

1−φx
√
θw = c1

√
θw.

As regards the two variance shocks, whether long-run marginal utility reacts more or less than short-run

marginal utility depends on the sign of B3 and B4. If γ > 1, i.e. the agent is more risk-averse than a log utility

investor, then B3 > 0 and B4 > 0, so short-run marginal utility increases upon realization of any positive

variance shock. Thus, c2 > 0 and c3 > 0 imply that long-run marginal utility reacts more than short-run

marginal utility: when either εu > 0 or εw > 0, the permanent SDF component increases more than total SDF,

with the transitory SDF component declining. On the other hand, if γ < 1, then B3 < 0 and B4 < 0, in which

case short-run marginal utility declines upon realization of any positive variance shock. As a result, c2 > 0 and

c3 > 0 imply that long-run marginal utility reacts less than short-run marginal utility: when either εu > 0 or
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εw > 0, the permanent SDF component declines less than total SDF, as the transitory SDF component also

falls.

Conditional SDF entropy is

Lt

(
Λt+1

Λt

)
=

1

2
vart

(
log

Λt+1

Λt

)
=

1

2

(
B1

2ut +B2
2wt +B3

2 +B4
2
)
,

whereas the conditional entropy of the permanent SDF component is

Lt

(
ΛP
t+1

ΛP
t

)
=

1

2
vart

(
log

ΛP
t+1

ΛP
t

)
=

1

2

(
B1

2ut + (B2 + c1)2wt + (B3 + c2σ
u)2 + (B4 + c3σ

w)2
)
.

The permanent SDF component can also be obtained following the Alvarez-Jermann decomposition, where the

transient component is defined on the basis of the infinite-maturity bond. In this model, real bond prices in

logs are affine in the state variables: p
i,(n)
t = −Ci,n0 − Cn1 xt − C

i,n
2 ut − Ci,n3 wt. The conditional entropy of the

permanent SDF component satisfies

Lt

(
ΛP
t+1

ΛP
t

)
=

1

2
vart

(
log

ΛP
t+1

ΛP
t

)
=

1

2

(
B1

2ut + (B2 − C∞1 )2wt + (B3 − C∞2 σu)2 + (B4 − C∞3 σw)2
)
,

where C∞1 = 1
ψ(1−φx) , C∞2 = −A2+ 1

2
B2

1

1−φu , and C∞3 = −A3+ 1
2

(B2−C∞1 )2

1−φw . This is naturally the same expression as

above, but emphasizing the link to the infinite-maturity bond coefficients.

Finally, the term premium, in local currency terms, is

Et

[
rx

(∞)
t+1

]
=

1

2

(
B2

2 − (B2 + c1)2
)
wt +

1

2

(
B3

2 − (B3 + c2σ
u)2
)

+
1

2

(
B4

2 − (B4 + c3σ
w)2
)
.

Following the discussion above, if γ > 1
ψ (in which case B2 < 0), then the conditional term premium is negatively

associated with wt, the variance of the consumption growth drift. This is because negative consumption drift

shocks increase long-run marginal utility more than they increase short-run marginal utility, so long-term bonds

hedge long-run risk, as their price increases upon realization of negative consumption drift shocks. Therefore,

the higher the conditional volatility of those shocks, the more attractive long-term bonds are as a hedging asset,

and the lower risk premium they earn.
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Condition 1 implies that B1
2ut + (B2 + c1)2wt + (B3 + c2σ

u)2 + (B4 + c3σ
w)2 = B1

∗2u∗t + (B∗2 + c∗1)2w∗t + (B∗3 +

c∗2σ
u∗)2 + (B∗4 + c∗3σ

w∗)2.

Consider a symmetric model with country-specific shocks. The quantity of risk is governed by ut, the volatility

of consumption growth, and wt, the volatility of expected consumption growth. Both of these forces feed into

the quantity of permanent risk unless B1 = 0 and B2 + c1 = 0. Thus, in a symmetric LRR model (i.e., when

countries share the same parameters) with country-specific shocks and heteroskedasticity, Condition 1 holds

only if the model parameters satisfy the following restriction: γ = 0 = 1
ψ , implying that the pricing kernel is

constant and the investor is risk-neutral. In this case, the model counterfactually replicates the U.I.P. condition

in the short-run. In the long-run, U.I.P. is violated for risk-related innovations because the long-run loadings

of the level of the exchange rate on (ut, wt) do not line up with the loadings of the long rates:

∞∑
i=1

Et[∆st+i] =
A1

1− φx
(xt−x∗t )+

A2

1− φu
(ut−u∗t )+

A3

1− φw
(wt−w∗t ) 6= C∞1 (x∗t−xt)+C∞2 (u∗t−ut)+C∞3 (w∗t−wt),

because C∞2 6= − A2
1−φu and C∞3 6= − A3

1−φw .

Next, consider an asymmetric model with common shocks: a natural extension to the model would feature

common volatility processes, such that ut = u∗t and wt = w∗t , relieving the strong parameter restriction above

(see Colacito et al., 2018, for a multi-country LRR model with common shocks). In this case, Condition 1 implies

that B1
2ut+(B2 +c1)2wt+(B3 +c2σ

u)2 +(B4 +c3σ
w)2 = B1

∗2ut+(B∗2 +c∗1)2wt+(B∗3 +c∗2σ
u∗)2 +(B∗4 +c∗3σ

w∗)2.

Condition 1 again tells us where to introduce heterogeneity in a future version of this model. For the conditional

entropy of the permanent SDF component to be identical across countries, we need the following parameter

restriction: B1 = B∗1 and B2 + c1 = B∗2 + c∗1 (or equivalently, B2 − C∞1 = B∗2 − C
∗,∞
1 ). These restrictions have

bite. Consider an example with only heterogeneity in the persistence of the shocks. Our conditions are satisfied

if γ = γ∗, δ = δ∗ and ψ = ψ∗, but φx 6= φx,∗ such that (1− δφx)(1− δφx,∗) = δ2(1−γψ)(1−φx)(1−φx,∗). That

restriction cannot be satisfied when agents have a preference for early resolution of uncertainty (γψ > 1), as is

invariably assumed in LRR models. The constant component of the entropy above adds even more parameter

restrictions: (B3 + c2σ
u)2 + (B4 + c3σ

w)2 = (B∗3 + c∗2σ
u∗)2 + (B∗4 + c∗3σ

w∗)2.
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C Disasters Model

In the Farhi and Gabaix (2016) version of the Gabaix (2012) and Wachter (2013) rare disasters model with

time-varying disaster intensity, the SDF has the following law of motion:

Λt+1

Λt
=

Λ∗t+1

Λ∗t

ωt+1

ωt

1 +Axt+1

1 +Axt
,

where

Λ∗t+1

Λ∗t
= e−R ×


1, if there is no disaster at t+ 1

B−γt+1, if there is a disaster at t+ 1

is the global component of the SDF,

ωt+1

ωt
= egω ×


1, if there is no disaster at t+ 1

Ft+1, if there is a disaster at t+ 1

is the productivity growth of the country, and x is defined as xt ≡ e−h∗Ĥt, where Ĥ is the time-varying

component of the resilience of the country, to be discussed below. Finally, A ≡ e−R−λ+gω+h∗

1−e−R−λ+gω+h∗−φH
, where λ is

the investment depreciation rate, and h∗ ≡ log(1 +H∗). Finally, we assume that R+λ− gω−h∗ > 0, so A > 0.

Resilience is defined as

Ht = H∗ + Ĥt = ptE
D
t

[
B−γt+1Ft+1 − 1

]
,

where pt is the conditional probability of a disaster occurring next period and EDt is the period t expectation

conditional on a disaster occurring next period. The time-varying component of resilience has law of motion

Ĥt+1 =
1 +H∗
1 +Ht

e−φH Ĥt + εHt+1,

with the conditional expectation of εH being zero independently of the realization of a disaster. As a result,

the conditional expectation of x is

Et(xt+1) = e−φH
xt

1 + xt
.
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The equilibrium log risk-free rate is

rft = − logEt

(
Λt+1

Λt

)
= (R− gω − h∗) + log

(
1 +Axt

1 + (Ae−φH + 1)xt

)
,

so it is decreasing in x.

To decompose the pricing kernel, we use the guess and verify method. In particular, guess an eigenfunction

φ of the form

φ(x) =
c+ x

1 +Ax
,

where c is a constant. Then, the (one-period) eigenfunction problem can be written as

Et

[
Λ∗t+1

Λ∗t

ωt+1

ωt

1 +Axt+1

1 +Axt

c+ xt+1

1 +Axt+1

]
= eβ

c+ xt
1 +Axt

which yields

e−R+gω+h∗(1 + xt)Et

[
1 +Axt+1

1 +Axt

c+ xt+1

1 +Axt+1

]
= eβ

c+ xt
1 +Axt

.

The expression above becomes:

e−R+gω+h∗(1 + xt)Et [c+ xt+1] = eβ(c+ xt),

so, plugging in the expression for the conditional expectation of x, we get

e−R+gω+h∗(1 + xt)

(
c+ e−φH

xt
1 + xt

)
= eβ(c+ xt),

which yields

β = −R+ gω + h∗,

and

c = 1− e−φH .

The lower bound of x is e−φH − 1, so c+xt > 0 for all t; thus, the conjectured eigenfunction is strictly positive,
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as required. The transitory component of the pricing kernel is

ΛT
t = eβt

1 +Axt
c+ xt

so the transitory SDF component is

ΛT
t+1

ΛT
t

= eβ
1 +Axt+1

c+ xt+1

c+ xt
1 +Axt

= e−R+gω+h∗ 1 +Axt+1

1 +Axt

c+ xt
c+ xt+1

and the permanent SDF component is

ΛP
t+1

ΛP
t

=
Λt+1

Λt

(
ΛT
t+1

ΛT
t

)−1

= eR−gω−h∗
Λ∗t+1

Λ∗t

ωt+1

ωt

c+ xt+1

c+ xt
.

The transitory SDF component is only exposed to resilience shocks (εH), but not to disaster risk; the entirety

of the disaster risk for marginal utility is reflected in the permanent SDF component, as disasters permanently

affect the future level of marginal utility.

We can now calculate the conditional entropy of the SDF and its components. It holds that

Lt

(
Λt+1

Λt

)
= logEt

(
Λt+1

Λt

)
− Et

(
log

Λt+1

Λt

)
= Lt

(
Λ∗t+1

Λ∗t

ωt+1

ωt

)
+ Lt

(
1 +Axt+1

1 +Axt

)
.

After some algebra, we get

Lt

(
Λt+1

Λt

)
= log(1 +Ht)− ptEDt

[
log(B−γt+1Ft+1)

]
+ Lt

(
1 +Axt+1

1 +Axt

)
.

Similarly, the conditional entropy of the permanent SDF component is

Lt

(
ΛP
t+1

ΛP
t

)
= log(1 +Ht)− ptEDt

[
log(B−γt+1Ft+1)

]
+ Lt

(
c+ xt+1

c+ xt

)
.

Therefore, the conditional term premium, in local currency terms, is

Et

[
rx

(∞)
t+1

]
= Lt

(
Λt+1

Λt

)
− Lt

(
ΛP
t+1

ΛP
t

)
= Lt

(
1 +Axt+1

1 +Axt

)
− Lt

(
c+ xt+1

c+ xt

)
.
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Condition 1 implies that log(1+Ht)−ptEDt
[
log(B−γt+1Ft+1)

]
+Lt

(
c+xt+1

c+xt

)
= log(1+H∗t )−ptEDt

[
log(B−γt+1F

∗
t+1)

]
+

Lt

(
c∗+x∗t+1

c∗+x∗t

)
, where the probability and intensity of a disaster (pt and B−γt+1) are common across countries, but

the processes for resilience and productivity growth (and, thus, the parameters h∗, φH and gω and the variables

Ht and Ft+1) are country-specific.

First, we consider a version of the model in which the parameters are the same in each country, but the shocks

are country-specific. In this case, Condition 1 is not satisfied because country-specific shocks (for example, on

resilience) affect the entropy of the permanent components of the SDFs.

Second, we consider a version of the disaster model with common shocks, but asymmetric exposures. It is

possible to introduce differences across countries that produce differences in carry trade portfolio returns at the

short, but not at the long end of the curve. Let us compare the two conditional entropies:

Lt

(
Λt+1

Λt

)
= log(1 +Ht)− ptEDt

[
log(B−γt+1Ft+1)

]
+ Lt

(
1 +Axt+1

1 +Axt

)
,

Lt

(
ΛP
t+1

ΛP
t

)
= log(1 +Ht)− ptEDt

[
log(B−γt+1Ft+1)

]
+ Lt

(
c+ xt+1

c+ xt

)
.

The first two terms are the same and thus any heterogeneity there would imply differences in long-term bond

risk premia. But the last term is different. One could consider a model where A 6= A∗ (implying differences in

carry trade risk premia at the short end of the yield curve), but c = c∗ (implying no differences in risk premia

at the long end of the yield curve). Recall that A ≡ e−R−λ+gω+h∗

1−e−R−λ+gω+h∗−φH
. To obtain cross-country differences in

the parameter A, while satisfying Condition 1, one could consider cross-country differences in the parameter gω

(since parameters R and λ are common across countries in the model, and heterogeneity in h∗ would generate

heterogeneity in Ht).

VI Theoretical Background and Proofs of Preference-Free Results

This section starts with a review of the Hansen and Scheinkman (2009) results and their link to the Alvarez

and Jermann (2005) decomposition used in the main text. Then, we report our theoretical results on bond

and currency returns in two special cases: the case of a Gaussian economy and the case of an economy with

no permanent pricing kernel shocks. The section concludes with the proofs of all the theoretical results in the
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main body of the paper. To make the paper self-contained, we reproduce here some proofs of intermediary

results already in the literature, notably in Alvarez and Jermann (2005).

A Existence and Uniqueness of Multiplicative Decomposition of the pricing kernel

Consider a continuous-time, right continuous with left limits, strong Markov process X and the filtration F

generated by the past values of X, completed by the null sets. In the case of infinite-state spaces, X is restricted

to be a semimartingale, so it can be represented as the sum of a continuous process Xc and a pure jump process

Xj . The pricing kernel process Λ is a strictly positive process, adapted to F , for which it holds that the time

t price of any payoff Πs realized at time s (s ≥ t) is given by

Pt(Πs) = E

[
Λs
Λt

Πs|Ft
]
.

The pricing kernel process also satisfies Λ0 = 1. Hansen and Scheinkman (2009) show that Λ is a multiplicative

functional and establish the connection between the multiplicative property of the pricing kernel process and

the semigroup property of pricing operators M.10 In particular, consider the family of operators M described

by

Mtψ(x) = E [Λtψ(Xt)|X0 = x]

where ψ(Xt) is a random payoff at t that depends solely on the Markov state at t. The family of linear pricing

operators M satisfies M0 = I and Mt+uψ(x) = Mtψ(x)Muψ(x) and, thus, defines a semigroup, called pricing

semigroup.

Further, Hansen and Scheinkman (2009) show that Λ can be decomposed as

Λt = eβt
φ(X0)

φ(Xt)
ΛP
t

where ΛP is a multiplicative functional and a local martingale, φ is a principal (i.e. strictly positive) eigenfunc-

tion of the extended generator of M and β is the corresponding eigenvalue (typically negative).11 If, furthermore,

10A functional Λ is multiplicative if it satisfies Λ0 = 1 and Λt+u = ΛtΛu(θt), where θt is a shift operator that moves the time
subscript of the relevant Markov process forward by t periods. Products of multiplicative functionals are multiplicative functionals.
The multiplicative property of the pricing kernel arises from the requirement for consistency of pricing across different time horizons.

11The extended generator of a multiplicative functional Λ is formally defined in Hansen and Scheinkman (2009) and, intuitively,
assigns to a Borel function ψ a Borel function ξ such that Λtξ(Xt) is the expected time derivative of Λtψ(Xt).
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ΛP is martingale, then the eigenpair (β, φ) also solves the principal eigenvalue problem:12

Mtφ(x) = E [Λtφ(Xt)|X0 = x] = eβtφ(x).

Conversely, if the expression above holds for a strictly positive φ and Mtφ is well-defined for t ≥ 0, then ΛP is

a martingale. Thus, a strictly positive solution to the eigenvalue problem above implies a decomposition

Λt = eβt
φ(X0)

φ(Xt)
ΛP
t

where ΛP is guaranteed to be a martingale. The decomposition above implies that the one-period SDF is given

by

Mt+1 =
Λt+1

Λt
= eβ

φ(Xt)

φ(Xt+1)

ΛP
t+1

ΛP
t

and satisfies

E [Mt+1φ(Xt+1)|Xt = x] = eβφ(x).

Hansen and Scheinkman (2009) provide sufficient conditions for the existence of a solution to the principal

eigenfunction problem and, thus, for the existence of the aforementioned pricing kernel decomposition. Notably,

multiple solutions may exist, so the pricing kernel decomposition above is generally not unique. However, if

the state space is finite and the Markov chain is irreducible, then Perron-Frobenious theory implies that there

is a unique principal eigenvector (up to scaling), and thus a unique pricing kernel decomposition. Although

multiple solutions typically exist, Hansen and Scheinkman (2009) show that the only (up to scaling) principal

eigenfunction of interest for long-run pricing is the one associated with the smallest eigenvalue, as the multiplic-

ity of solutions is eliminated by the requirement for stochastic stability of the Markov process X. In particular,

only this solution ensures that the process X remains stationary and Harris recurrent under the probability

measure implied by the martingale ΛP.

Finally, Hansen and Scheinkman (2009) show that the aforementioned pricing kernel decomposition can be

useful in approximating the prices of long-maturity zero-coupon bonds. In particular, the time t price of a bond

12Since ΛP is a local martingale bounded from below, it is a supermartingale. For ΛP to be a martingale, additional conditions
need to hold, as discussed in Appendix C of Hansen and Scheinkman (2009).
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with maturity t+ k is given by

P
(k)
t = E

[
Λt+k
Λt
|Xt = x

]
= eβkEP

[
1

φ(Xt+k)
|Xt = x

]
φ(x) ≈ eβkEP

[
1

φ(Xt+k)

]
φ(x)

where EP is the expectation under the probability measure implied by the martingale ΛP and the right-hand-

side approximation becomes arbitrarily accurate as k →∞. Thus, in the limit of arbitrarily large maturity, the

price of the zero-coupon bond depends on the current state solely through φ(x) and not through the expectation

of the transitory component. Notably, this implies that the relevant φ is the one that ensures that X remains

stationary under the probability measure implied by ΛP, i.e. the unique principal eigenfunction that implies

stochastic stability for X, and β is the corresponding eigenvalue.

Indeed, Alvarez and Jermann (2005) construct a pricing kernel decomposition by considering a constant β̂

that satisfies

0 < lim
k→∞

P
(k)
t

β̂k
<∞

and defining the transitory pricing kernel component as

ΛT
t = lim

k→∞

β̂t+k

P
(k)
t

<∞.

In contrast to Hansen and Scheinkman (2009), the decomposition of Alvarez and Jermann (2005) is constructive

and not unique, as their Assumptions 1 and 2 do not preclude the existence of alternative pricing kernel

decompositions to a martingale and a transitory component. Note that the Alvarez and Jermann (2005)

decomposition implies that β̂ = eβ, where β is the smallest eigenvalue associated with a principal eigenfunction

in the Hansen and Scheinkman (2009) eigenfunction problem.

B Long-Horizon U.I.P. in Gaussian Economy

The long-horizon U.I.P. condition states that the expected return over k periods on a foreign bond, once

converted into domestic currency, is equal to the expected return on a domestic bond over the same investment

horizon.13 The per period log risk premium on a long position in foreign currency over k periods consists of

13Chinn and Meredith (2004) document some time-series evidence that supports a conditional version of UIP at longer holding
periods, while Boudoukh, Richardson and Whitelaw (2016) show that past forward rate differences predict future changes in
exchange rates.
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the yield spread minus the per period expected rate of depreciation over those k periods:

Et[rx
FX
t→t+k] = y

(k),∗
t − y(k)

t −
1

k
Et[∆st→t+k]. (8)

The long-horizon U.I.P condition states that this risk premium is zero. As is well-known, this risk premium

is the sum of a term premium and future currency risk premia. To see that, start from the definition of the

one-period currency risk premium: Et
[
∆st→t+1

]
= rf,∗t − r

f
t −Et

[
rxFXt+1

]
. Summing up over k periods leads to:

Et[∆st→t+k] = Et

 k∑
j=1

(
rf,∗t+j−1 − r

f
t+j−1

)− Et
 k∑
j=1

rxFXt+j

 . (9)

From Equations (8) and (9), it follows that the log currency risk premium over k periods is given by:

Et[rx
FX
t→t+k] = (y

(k),∗
t − y(k)

t ) +
1

k

k∑
j=1

Et

(
rft+j−1 − r

f,∗
t+j−1

)
+

1

k

k∑
j=1

Et(rx
FX
t+j ). (10)

The first two terms measure the deviations from the expectations hypothesis over the holding period k, whereas

the last term measures the deviations from short-run U.I.P. over the k periods. We can use a multi-horizon

version of Equation (7) in the main text to show that the currency risk premium over k periods depends on

conditional SDF entropy:

Et[rx
FX
t→t+k] =

1

k

[
Lt

(
Λt+k
Λt

)
− Lt

(
Λ∗t+k
Λ∗t

)]
. (11)

The expression above states that only differences in k-period conditional SDF entropy give rise to long-run

deviations from U.I.P. Therefore, the risk premium on a multi-period long position in foreign currency depends

on how quickly SDF entropy builds up domestically and abroad over the holding period.14 If the pricing kernel

14To develop some intuition, we consider a Gaussian example in the Appendix. In the special case where the domestic and foreign
countries share the same one-period volatility of the innovations, this expression for the long-run currency risk premium becomes:

E[rxFXt→t+k] = var (∆ log Λt+1)

[
k−1∑
j=1

(
1− j

k

)
(ρj − ρ∗j )

]
.

This is the Bartlett kernel estimate with window k of the spread in the spectral density of the log SDF at zero, which measures the
size of the permanent component of the SDF.
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is conditionally Gaussian over horizon k, the k-horizon foreign currency risk premium satisfies:

Et[rx
FX
t→t+k] =

1

2k

[
vart

(
log

Λt+k
Λt

)
− vart

(
log

Λ∗t+k
Λ∗t

)]
.

Let us assume that the variance of the one-period SDF is constant. The annualized variance of the increase in

the log SDF can be expressed as follows:

var (log Λt+k/Λt)

kvar (Λt+1/Λt)
= 1 + 2

k−1∑
j=1

(
1− j

k

)
ρj ,

where ρj denotes the j-th autocorrelation (Cochrane, 1988).15 In the special case where the domestic and foreign

countries share the same one-period volatility of the innovations, this expression for the long-run currency risk

premium becomes:

E[rxFXt→t+k] = var (∆ log Λt+1)

k−1∑
j=1

(
1− j

k

)
(ρj − ρ∗j )

 .
This is the Bartlett kernel estimate with window k of the spread in the spectral density of the log SDF at zero,

which measures the size of the permanent component of the SDF. More positive autocorrelation in the domestic

than in the foreign pricing kernel tends to create long-term yields that are lower at home than abroad, once

expressed in the same currency. The difference in yields, converted in the same units, is governed by a horse

race between the speed of mean reversion in the pricing kernel at home and abroad.

To develop some intuition for the long run, we consider the limit behavior of the foreign currency risk

premium when k → ∞. In the long run, the currency risk premium over many periods converges to the

difference in the size of the random walk components:

lim
k→∞

E[rxFXt→t+k] =
1

2
var (∆ log Λt+1) lim

k→∞

1 + 2
∞∑
j=1

ρj

− 1

2
var (∆ log Λt+1) lim

k→∞

1 + 2
∞∑
j=1

ρ∗j


=

1

2

[
S∆ log Λt+1 − S∆ log Λ∗t+1

]
,

15Cochrane (1988) uses these per period variances of the log changes in GDP to measure the size of the random walk component
in GDP.
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where S denotes the spectral density. The last step follows from the definition of the spectral density (see

Cochrane, 1988). If the log of the exchange rate (logSt) is stationary, then the log of the foreign (log Λ∗t ) and

domestic pricing kernels (log Λt) are cointegrated with co-integrating vector (1,−1) and hence share the same

stochastic trend component. This in turn implies that they have the same spectral density evaluated at zero.

As a result, exchange rate stationarity implies that the long-run currency risk premium goes to zero.

C Economy without Permanent Innovations

Consider the special case in which the pricing kernel is not subject to permanent innovations, i.e., limk→∞
Et+1[Λt+k]
Et[Λt+k] =

1. For example, the Markovian environment considered by Ross (2015) to derive his recovery theorem satisfies

this condition. Building on this work, Martin and Ross (2013) derive closed-form expressions for bond returns

in a similar environment. Alvarez and Jermann (2005) show that this case has clear implications for domestic

returns: if the pricing kernel has no permanent innovations, then the term premium on an infinite maturity

bond is the largest risk premium in the economy.16

The absence of permanent innovations also has a strong implication for the term structure of the carry

trade risk premia. When the pricing kernels do not have permanent innovations, the foreign term premium in

dollars equals the domestic term premium:

Et

[
rx

(∞),∗
t+1

]
+ (ft − st)− Et[∆st+1] = Et

[
rx

(∞)
t+1

]
.

The proof here is straightforward. In general, the foreign currency risk premium is equal to the difference in

entropy. In the absence of permanent innovations, the term premium is equal to the entropy of the pricing

kernel, so the result follows. More interestingly, a much stronger result holds in this case. Not only are the

risk premia identical, but the returns on the foreign bond position are the same as those on the domestic bond

position state-by-state, because the foreign bond position automatically hedges the currency risk exposure. As

already noted, if the domestic and foreign pricing kernels have no permanent innovations, then the one-period

16 If there are no permanent innovations to the pricing kernel, then the return on the bond with the longest maturity equals the
inverse of the SDF: limk→∞R

(k)
t+1 = Λt/Λt+1. High marginal utility growth translates into higher yields on long maturity bonds

and low long bond returns, and vice-versa.
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returns on the longest maturity foreign bonds in domestic currency are identical to the domestic ones:

lim
k→∞

St
St+1

R
(k),∗
t+1

R
(k)
t+1

= 1.

In this class of economies, the returns on long-term bonds expressed in domestic currency are equalized:

lim
k→∞

rx
(k),∗
t+1 + (ft − st)−∆st+1 = rx

(k)
t+1.

In countries that experience higher marginal utility growth, the domestic currency appreciates but is exactly

offset by the capital loss on the bond. For example, in a representative agent economy, when the log of aggregate

consumption drops more below trend at home than abroad, the domestic currency appreciates, but the real

interest rate increases, because the representative agent is eager to smooth consumption. The foreign bond

position automatically hedges the currency exposure.

Alvarez and Jermann (2005) propose the following example of an economy without permanent shocks: a

representative agent economy with power utility investors in which the log of aggregate consumption is a trend-

stationary process with normal innovations. In particular, consider the following pricing kernel (Alvarez and

Jermann, 2005):

log Λt =

∞∑
i=0

αiεt−i + β log t,

with ε ∼ N(0, σ2), α0 = 1. If limk→∞ α
2
k = 0, then the pricing kernel has no permanent component. The foreign

pricing kernel is defined similarly.

In the model, the term premium equals one half of the SDF variance: Et

(
rx

(∞)
t+1

)
= σ2/2, the highest

possible risk premium in this economy, as the returns on the long bond are perfectly negatively correlated with

the stochastic discount factor. When marginal utility is temporarily high, the representative agent would like

to borrow, driving up interest rates and lowering the price of the long-term bond.

In this economy, the foreign term premium in dollars is identical to the domestic term premium:

Et

[
rx

(∞),∗
t+1

]
+ (ft − st)− Et[∆st+1] =

1

2
σ2 = Et

[
rx

(∞)
t+1

]
.

This result is straightforward to establish: recall that the currency risk premium is equal to the half of the
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difference between the domestic and the foreign SDF variance. Currencies with a high local currency term

premium (high σ2) also have an offsetting negative currency risk premium, while those with a small term

premium have a large currency risk premium. Hence, U.S. investors receive the same dollar premium on foreign

as on domestic bonds. There is no point in chasing high term premia around the world, at least not in economies

with only temporary innovations to the pricing kernel. Currencies with the highest local term premia also have

the lowest (i.e., most negative) currency risk premia.

VII Additional Implications

We end this Appendix with two additional implications of our main results that can further help build the next

generation of international finance models and guide future empirical work.

A A Lower Bound on Cross-Country Correlations of the Permanent SDF Components

Brandt, Cochrane and Santa-Clara (2006) show that the combination of relatively smooth exchange rates and

much more volatile SDFs implies that SDFs are very highly correlated across countries. A 10% volatility in

exchange rate changes and a volatility of marginal utility growth rates of 50% imply a correlation of at least

0.98. We do not interpret the correlation of SDFs or their components in terms of cross-country risk-sharing,

because doing so requires additional assumptions. The nature and magnitude of international risk sharing is

an important and open question in macroeconomics (see, for example, Cole and Obstfeld (1991); Wincoop

(1994); Lewis (2000); Gourinchas and Jeanne (2006); Lewis and Liu (2015); Coeurdacier, Rey and Winant

(2019); Didier, Rigobon and Schmukler (2013); as well as Colacito and Croce (2011) and Stathopoulos (2017)

on the high international correlation of state prices). A necessary but not sufficient condition to interpret

the SDF correlation is for example that the domestic and foreign agents consume the same baskets of goods

and participate in complete financial markets. Even in this case, the interpretation is subject to additional

assumptions. In a multi-good world, variation in the relative prices of the goods drives a wedge between the

pricing kernels, even in the case of perfect risk sharing (Cole and Obstfeld (1991)). Likewise, when markets are

segmented, as in Alvarez, Atkeson and Kehoe (2002) and Alvarez, Atkeson and Kehoe (2009), the correlation

of SDFs does not imply risk-sharing of the non-participating agents. Using our framework, we can derive a

specific bound on the covariance of the permanent SDF component across different countries.
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Proposition 1. If the permanent SDF component is unconditionally lognormal, the cross-country covariance

of the SDF’ permanent components is bounded below by:

cov

(
log

ΛP,∗
t+1

ΛP,∗
t

, log
ΛP
t+1

ΛP
t

)
≥ E

(
log

R∗t+1

R
(∞),∗
t+1

)
+ E

(
log

Rt+1

R
(∞)
t+1

)
− 1

2
var

(
log

SP
t+1

SP
t

)
, (12)

for any positive returns Rt+1 and R∗t+1. A conditional version of the expression holds for conditionally lognormal

permanent pricing kernel components.

Therefore, this result extends the insights of Brandt, Cochrane and Santa-Clara (2006) to the permanent

components of the SDFs. Chabi-Yo and Colacito (2018) extend this lower bound to non-Gaussian pricing

kernels and different horizons.

Since exchange rate changes and their transitory components are observable (due to the observability of

the bonds’ holding period returns), one can compute the variance of the permanent component of exchange

rates, var
(

log
SP
t+1

SP
t

)
, which is the last term in the expression above. In the data, the contribution of that term

is on the order of 1% or less. Given the large size of the equity premium compared to the term premium (a

7.5% difference according to Alvarez and Jermann, 2005), and the relatively small variance of the permanent

component of exchange rates, the lower bound in Proposition 1 implies a large correlation of permanent SDF

components across countries.

In Figure A12, we plot the implied correlation of the permanent SDF components against the volatility of

the permanent SDF component in the symmetric two-country case, for two different scenarios: the dotted line

is for Std
(
logSP

t /S
P
t+1

)
= 10%, and the plain line is for Std

(
logSP

t /S
P
t+1

)
= 16%. In both cases, the implied

correlation of the permanent components of the domestic and foreign SDFs is clearly above 0.90.

While Brandt, Cochrane and Santa-Clara (2006) show that the SDFs are highly correlated across countries,

we find that the permanent components of the SDFs, which are the main sources of volatility for the SDFs, are

highly correlated across countries.

B A New Long-Term Bond Return Parity Condition

We end this paper with a potential new benchmark for exchange rates. While hundreds of papers have tested

the U.I.P. condition, which assumes risk neutrality, we suggest a novel corner case, this time taking risk into
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Figure A12: Cross-country Correlation of Permanent SDF Shocks — In this figure, we plot the implied correlation of
the domestic and foreign permanent components of the SDF against the standard deviation of the permanent component of the
SDF. The dotted line is for Std

(
logSP

t /S
P
t+1

)
= 10%. The straight line is for Std

(
logSP

t /S
P
t+1

)
= 16%. Following Alvarez and

Jermann (2005), we assume that the equity minus bond risk premia are 7.5% in the domestic and foreign economies.

account. When countries share permanent innovations to their SDFs, a simple long bond return parity condition

emerges. The proposition below provides the result.

Proposition 2. If the domestic and foreign pricing kernels have common permanent innovations, so ΛP
t+1/Λ

P
t =

ΛP,∗
t+1/Λ

P,∗
t for all states, then the one-period returns on the longest maturity foreign bonds in domestic currency

terms are identical to the returns of the corresponding domestic bonds:

R
(∞),∗
t+1

St
St+1

= R
(∞)
t+1 , for all states. (13)
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While Proposition 1 in the main text is about expected returns, Proposition 2 focuses on realized returns.

In this polar case, even if most of the innovations to the pricing kernel are highly persistent, the shocks that

drive exchange rates are not, because the persistent shocks are the same across countries. In that case, the

exchange rate is a stationary process. In the absence of arbitrage opportunities, the currency exposure of

a foreign long-term bond position to the stationary components of the pricing kernels is fully hedged by its

interest rate risk exposure and does not affect the return differential with domestic bonds, which then measures

the wedge between the non-stationary components of the domestic and foreign pricing kernels. When nominal

exchange rates are stationary, this wedge is zero and long bond return parity obtains: bonds denominated in

different currencies earn the same dollar returns, date by date.

VIII Finite vs. Infinite Maturity Bond Returns

Our empirical results pertain to 10- and 15-year bond returns while our theoretical results pertain to infinite-

maturity bonds. This discrepancy raises the question of the theoretical validity of our empirical analysis. To

address this question, we use the state-of-the-art Joslin, Singleton and Zhu (2011) term structure model to

study empirically the difference between the 10-year and infinite-maturity bonds. In particular, we estimate a

version of the Joslin, Singleton and Zhu (2011) term structure model with three factors, the three first principal

components of the yield covariance matrix.17 This Gaussian dynamic term structure model is estimated on

zero-coupon rates over the period from April 1985 to December 2015, the same period used in our empirical

work, for each country in our benchmark sample. Each country-specific model is estimated independently,

without using any exchange rate data. The maturities considered are 6 months, and 1, 2, 3, 5, 7, and 10

years. Using the parameter estimates, we derive the implied bond returns for different maturities. We report

simulated data for Australia, Canada, Germany, Japan, Norway, Switzerland, U.K., and U.S. and ignore the

simulated data for New Zealand and Sweden as the parameter estimates imply that bond yields turn sharply

negative on long maturities for those two countries. We study both unconditional and conditional returns,

forming portfolios of countries sorted by the level or slope of their yield curves, as we did in the data. Table

A25 reports the simulated moments.

We first consider the unconditional holding period bond returns across countries. The average (annualized)

17We thank the authors for making their code available on their web pages.
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log return on the 10-year bond is lower than the log return on the infinite-maturity bond for all countries except

Australia, the U.K., and the U.S., but the differences are not statistically significant, except for Japan. The

unconditional correlation between the two log returns ranges from 0.88 to 0.96 across countries; for example, it is

0.89 for the U.S. Furthermore, the estimations imply very volatile log SDFs that exhibit little correlation across

countries. As a result, the implied exchange rate changes are much more volatile than in the data. We then

turn to conditional bond returns, obtained by sorting countries into two portfolios, either by the level of their

short-term interest rate or by the slope of their yield curve. The portfolio sorts recover the results highlighted in

the previous section: low (high) short-term interest rates correspond to high (low) average local bond returns.

Likewise, low (high) slopes correspond to low (high) average local bond returns. The infinite maturity bonds

tend to offer larger conditional returns than the 10-year bonds, but the differences are not significant. The

correlation between the conditional returns of the 10-year and infinite maturity bond portfolios ranges from

0.86 to 0.93 across portfolios.

A clear limit of this experiment is that term structure models are not built to match infinite-maturity

bonds, as these are unobservable. We thus learn from the term structure models by continuity. In theory, it is

certainly possible to write a model where the 10-year bond returns, once expressed in the same currency, offer

similar average returns across countries (as we find in the data), while the infinite maturity bonds do not. In

that case, there would be a gap between our theory and the data. In such a model, however, exchange rates

would have unit root components driven by common shocks and the cross-sectional distribution of exchange

rates would fan out over time. For developing countries with strong trade links and similar inflation rates, this

seems hard to defend. Moreover, although we cannot rule out its existence, we do not know of such a model. In

the state-of-the-art of the term structure modeling, our inference about infinite-maturity bonds from 10-year

bonds is reasonable.

101



Table A25: Simulated Bond Returns

Panel A: Country Returns

US Australia Canada Germany Japan Norway Switzerland UK

y(10) (data) 5.58 6.97 5.81 4.97 2.77 4.26 3.17 6.10

y(10) 5.58 6.97 5.81 4.97 2.77 4.26 3.18 6.09

rx(10) 5.60 4.50 4.53 4.33 4.05 3.14 2.95 3.50
s.e. [1.43] [1.71] [1.45] [1.17] [1.13] [1.71] [1.12] [1.52]

rx(∞) −0.44 2.17 6.69 6.33 7.38 5.96 6.42 2.74
s.e. [10.87] [10.38] [8.47] [2.33] [2.46] [3.89] [3.23] [4.52]

Corr (rx(10), rx(∞)) 0.89 0.92 0.89 0.92 0.93 0.96 0.93 0.88

rx(∞) − rx(10) −6.04 −2.33 2.16 2.00 3.33 2.83 3.47 −0.76

s.e. [9.63] [8.77] [6.98] [1.34] [1.46] [2.30] [2.22] [3.33]

σm∗ 239.17 241.92 127.14 118.45 211.76 132.76 227.59 153.22

corr(m,m∗) 1.00 0.01 0.33 0.20 0.03 0.05 0.14 0.03

σ∆s 310.81 202.65 244.63 314.14 190.44 271.17 279.99

Panel B: Portfolio Returns

Sorted by Level Sorted by Slope

Sorting variable (level/slope) 2.57 5.60 0.15 1.81

rx(10) 4.10 4.52 3.00 5.48

s.e. [1.05] [1.24] [1.13] [1.23]

rx(∞) 4.48 6.00 0.79 9.61
s.e. [4.17] [5.62] [4.33] [5.90]

Corr (rx(10), rx(∞)) 0.86 0.93 0.89 0.90

rx(∞) − rx(10) 0.38 1.48 −2.21 4.13

s.e. [3.28] [4.58] [3.40] [4.84]

Notes: Panel A reports moments on simulated data at the country level. For each country, the table first compares the 10-year yield in the
data and in the model, and then reports the annualized average simulated log excess return (in percentage terms) of bonds with maturities
of 10 years and infinity, as well as the correlation between the two bond returns. The table also reports the annualized volatility of the log
SDF, the correlation between the foreign log SDF and the U.S. log SDF, and the annualized volatility of the implied exchange rate changes.
Panel B reports conditional moments obtained by sorting countries by either the level of their short-term interest rates or the slope of their
yield curves into two portfolios. The table reports the average value of the sorting variable, and then the average returns on the 10-year
and infinite-maturity bonds, along with their correlation. The simulated data come from the benchmark 3-factor model (denoted RPC) in
Joslin, Singleton and Zhu (2011) that sets the first 3 principal components of bond yields as the pricing factors. The model is estimated on
zero-coupon rates for Germany, Japan, Norway, Switzerland, U.K., and U.S. The sample estimation period is 4/1985–12/2015. The standard
errors (denoted s.e. and reported between brackets) were generated by block-bootstrapping 10,000 samples of 369 monthly observations.
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