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This Online Appendix contains omitted proofs, the extension with
EZ preferences, and the contractual environment.

I. Ommited Proofs

PROOF OF PROPOSITION 1:

The properties of λ and σc are straightforward from equation (8), noticing only
that ρ− ((1− λ)σ)2 = r − (x̂− δ) > 0 in equilibrium. First, for β > 0, λ ∈ (0, 1)
because kt, andmt+ht are strictly positive. The left hand side of (8) is increasing
in λ while the right hand side is decreasing. Since the right hand side is increasing
in σ, it follows that λ is increasing in σ. When σ = 0, (8) simplifies to λ = β,
while in the limit as σ → ∞, since λ > 0 we must have (1− λ) → 0.

The right hand side is increasing in the idiosyncratic consumption risk σc =
(1 − λ)σ, so since λ is increasing in σ, so must σc. When σ = 0 we have λ = β,
so σc = 0. When σ → ∞ we have λ→ 1, so σc = (1− λ)σ →

√

ρ(1− β) > 0.

For β = 0 we clearly have λ = 0 from (11).

PROOF OF PROPOSITION 2:

Straightforward from equilibrium conditions r = a− δ − σ2 and x̂ = a− ρ.

PROOF OF PROPOSITION 3:

We know from Proposition 1 that λ and σc = (1 − λ)σ are increasing in σ. So
the real interest rate r = a− δ− (1−λ)σ2 falls when σ increases, but less so than
without money, since in that case r = a− δ − σ2. Investment x̂ falls because the
term ρλ−β1−λ > 0 is increasing in λ.

If σ = 0, we have r = a − δ, λ = ρβ
ρ = β, and x̂ = a − ρ which coincide with

the non-monetary economy.

PROOF OF PROPOSITION 4:

The inflation target π does not appear in equations (14), (15), and (8) for r, x̂,
and λ. It only appears in equation (9) for m̂.

Targeting the nominal interest rate is accomplished by picking the inflation
target π so that i = r+π is constant. Since π does not affect r, or any other real
variable, we can do this to hit any i > 0. Notice that targeting i introduces the
usual indeterminacy in the price level, since only the expected inflation is pinned
down.
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Finally, since nothing real is affected by changing the inflation target, and i ≈ 0
maximizes the utility from money services m, the optimal inflation target delivers
the Friedman rule.

PROOF OF PROPOSITION 5:

From individual optimization we know that the expenditure share of liquidity
is β, invariant to b. Since r, x̂, and λ are pinned down by (14), (15), and (8),
they are not affected by changes in b.

PROOF OF PROPOSITION 6:

It suffices to look at the behavior of λ defined by (8), which we can rewrite

λ
(
ρ− ((1 − λ)σ)2

)
= ρβ

As β → 0 the left hand side converges to zero, and so must the right hand side.

This means that either a) λ→ 0 or b) λ→ 1−
√
ρ
σ . If σ <

√
ρ, then 1−

√
ρ
σ < 0.

Since λ > β always, b) cannot be, so we are left with a) λ → 0. From (14) and
(15) we see that r and x converge to the values on the non-monetary economy
with λ = β = 0.

If instead σ ≥ √
ρ, we cannot have λ → 0, because it implies that ρ − ((1 −

λ)σ)2 ≤ 0 at some point along the way (for λ small enough). Since λ > β always,

this requires ρβ < 0, which is not true. So we have b) λ → 1−
√
ρ
σ ≥ 0, and the

inequality is strict if σ >
√
ρ. From (14) and (15) we see that the real interest rate

r is high and investment x̂ low relative to the economy without money (β = 0).

PROOF OF PROPOSITION 7:

See Theorem 1 in Section III of this Online Appendix.

PROOF OF PROPOSITION 8:

Combine (28) with σc =
ρ(1−β)σ
a−x̂ to obtain

σc =
ρ(1− β)

ρ+ σ2c
σ

It follows that when σ = 0 we get σc = 0, and σc is increasing in σ. Rewrite it

σc
σ

=
ρ(1− β)

ρ+
(
σc
σ

)2
σ2

It follows that σc/σ is decreasing in σ. The properties of x̂ follow from equation
(28). Finally, write

r = ρ+ x̂− δ − σ2c = a− δ − 2σ2c
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It follows that r falls with σ.

PROOF OF PROPOSITION 9:
First take the β ∈ (0, 1/2) case. Rewrite (29) and (30) in terms of y = σc/σ

x̂SP = a− ρ− y2σ2 Social Planner

x̂CE = a− ρ− yσ2 × (1− y) Competitive Equilibrium

and the incentive-compatible combinations

x̂IC = a− ρ(1− β)

y

The competitive equilibrium lies at the intersection of x̂CE and x̂IC ; call the
corresponding yCE ∈ [0, 1 − β]. The planner’s allocation lies at the intersection
of x̂SP and x̂IC , call the corresponding ySP ∈ [0, 1− β].
We know that y = σc/σ can range from 0 to 1−β, in both the CE and SP (the

upper bound comes from knowing that investment is below the first best in both
the CE and the SP, and using x̂IC .
x̂IC is increasing, strictly concave, and ranges from −∞ when y = 0 to the first

best a− ρ when y = 1− β. It does not depend on σ, so it will be fixed when we
do comparative statics.
x̂CE and x̂SP do depend on σ. They both start at the first best a − ρ when

y = 0. x̂SP is strictly decreasing and concave (it’s an inverted parabola) with
vertex at (0, a − ρ). So it must cross x̂IC exactly once.
x̂CE is a parabola with vertex at (12 , a−ρ− 1

4σ
2). Importantly, it intersects with

x̂SP at this point. For σ > 0 they intersect at exactly two points, corresponding
to y = 0 and y = 1/2, and this implies that x̂CE < x̂SP for all y ∈ (0, 1/2), and
x̂CE > x̂SP for all y ∈ (1/2, 1 − β). Finally, x̂CE < a − ρ for all y ∈ (0, 1 − β).
In particular, x̂CE(1 − β) = a − ρ − σ2β(1 − β) < a − ρ. Since x̂CE is strictly
convex and x̂IC is strictly concave they intersect at two points at most. Since
x̂IC = ∞ for y = 0, x̂IC crosses x̂CE first from below, and the from above. But
since x̂IC(1 − β) = 1 − ρ > x̂CE(1 − β), the second intersection has y > 1 − β,
so it is not in the range on y. There is then only one valid intersection between
x̂CE and x̂IC ; we called it yCE ∈ [0, 1 − β] and x̂IC < x̂CE for all y < yCE and
x̂IC > x̂SP for all y > yCE in the range of y.
Now the lower envelope of x̂CE and x̂SP , x̂L = min{x̂CE , x̂SP } coincides with

x̂CE for y ∈ [0, 1/2] and with x̂SP for y ∈ [1/2, 1 − β]. This implies that if x̂IC
first intersects with the lower envelope for y < 1/2, it must do so at yCE, and
if it first intersects at y > 1/2, it must do so at ySP . In the first case, since
x̂SP > x̂CE for y < 1/2, it is strictly decreasing, and goes from a − ρ for y = 0
to a− ρ− 1

4σ
2 = min x̂CE for y = 1/2; and x̂IC is strictly increasing and goes to

1− ρ; then it means that ySP < 1/2 as well and ySP > yCE. In the second case,
obviously yCE > ySP > 1/2. If it first intersects at y = 1/2 then yCE = ySP .
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It follows immediately that if yCE < ySP and both below 1/2, then x̂CE < x̂SP
and σCEc < σSPc . On the other hand, if yCE > ySP and both above 1/2, then
x̂CE > x̂SP and σCEc > σSPc .

It only remains to see which will hold for a given σ. Since both x̂CE and x̂SP are
decreasing for y ∈ (0, 1/2), and x̂IC is always increasing, it is enough to compare
their values at y = 1/2. If x̂CE = x̂SP ≥ x̂IC at y = 1/2, then yCE and ySP are
both in [1/2, 1 − β]. If instead x̂CE = x̂SP ≤ x̂IC at y = 1/2, then yCE and ySP
are both in (0, 1/2).

x̂CE = x̂SP ≥ x̂IC

⇐⇒ a− ρ− 1

4
σ2 ≥ a− 2ρ(1− β)

⇐⇒ σ2 ≤ σ∗ = 2
√

ρ(1− 2β) > 0

Finally, for the case β ∈ [1/2, 1), x̂CE < x̂SP for all y ∈ [0, 1−β], regardless of σ,
so x̂CE < x̂SP and σCEc < σSPc . Notice that in this case the formula for σ∗ < 0.

PROOF OF PROPOSITION 10:

We already know that the planner’s allocation is a BGP with constant x̂ and
σc. By setting the subsidy/tax τk according to (36) we ensure that r, x̂, and m̂
satisfy all the conditions for a BGP equilibrium.

We can check that the value of total wealth w = kt +mt + ht −
∫∞
t e−rsτks ksds

satisfies ct = ρ(1− β)wt, or equivalently σc =
kt
wt
σ. Write

wt
kt

= 1 +
m̂i

r − (x̂− δ)
+

τk

r − (x̂− δ)

wt
kt

=
r − (x̂− δ) + ĉ β

1−β + τk

r − (x̂− δ)
=
ρ− σ2c + ρβ σ

σc
+ 2σ2c − σcσ

ρ− σ2c

wt
kt

=
ρ+ ρβ σ

σc
+ σ2c − σcσ

ρ− σ2c
=

σ

σc

(
ρσcσ + ρβ + σ2c (

σc
σ − 1)

ρ− σ2c

)

Use the planner’s FOC (29) and the skin in the game IC constraint (31)

wt
kt

=
σ

σc

(
ρσcσ + ρβ + (a− x̂− ρ)(σcσ − 1)

2ρ− a− x̂

)

=
σ

σc

(

ρ(1 + β) + (a− x̂)ρ(1−β)−(a−x̂)
a−x̂

2ρ− a− x̂

)

wt
kt

=
σ

σc

(
ρ(1 + β) + ρ(1− β)− (a− x̂)

2ρ− a− x̂

)

=
σ

σc

2ρ− (a− x̂)

2ρ− (a− x̂)
=

σ

σc

The optimal inflation target implements the Friedman rule and delivers un-
bounded utility from real money balances (in a supremum sense).
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PROOF OF PROPOSITION 11:

First, to implement the optimal allocation we need r > x̂−δ which is equivalent
to ρ− σ2c > 0. We know σc in the optimal allocation is given by

σc =
ρ(1− β)

ρ+ σ2c
σ

and σc is increasing in σ. For σ = 0 we have σc = 0 too, so ρ − σ2c > 0. So we
only need to ask at what σ we have σ2c = ρ:

√
ρ =

ρ(1− β)

ρ+ ρ
σ̄ =⇒ σ̄ =

2
√
ρ

1− β

For σ ≥ σ̄ we have σ2c ≥ ρ and therefore r ≤ x̂ − δ, so the optimal allocation
cannot be implemented as a competitive equilibrium with a tax on capital.

For the sign of τk, use (36) to get

τk = σc(2σc − σ)

So if σc >
1
2σ we have τk > 0, and if σc <

1
2σ we have τk < 0. In the optimal

allocation we have
σc
σ

=
ρ(1− β)

ρ+
(
σc
σ

)2
σ2

So σc/σ → 1− β when σ → 0, and σc/σ is decreasing in σ. So if β ≥ 1
2 we must

have σc ≤ 1
2σ and therefore τk ≤ 0, for all σ ∈ [0, σ̄). If instead β < 1

2 , we have

τk > 0 for σ close to 0. We only need to find σ∗ such that σc =
1
2σ

∗.

1

2
=

ρ(1− β)

ρ+ 1
4(σ

∗)2
=⇒ σ∗ = 2

√

ρ(1− 2β)

It only remains to show that σ∗ ∈ (0, σ̄]. σ∗ > 0 follows from β < 1
2 . Now write

σ∗ = 2
√

ρ(1− 2β) ≤ 2
√
ρ ≤ 2

√
ρ

1− β
= σ̄

PROOF OF PROPOSITION 12:

From the definition of h,

mt + ht = mt + E
Q
t

[∫ T

t
e−

∫ s
t
rududMs

ps

]

+ E
Q
t

[

e−
∫ T
t
ruduhT

]
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use dmt =
dMt

pt
−mtπtdt to write

= mt + E
Q
t

[∫ T

t
e−

∫ s
t
rudu(dms + πsmsds)

]

+ E
Q
t

[

e−
∫ T
t
ruduhT

]

We can write

e−
∫ T
t
rudumT = mt +

∫ T

t
e−

∫ s
t
rudu(−rsmsds+ dms)

and plug it in to obtain

mt + ht = E
Q
t

[∫ T

t
e−

∫ s
t
rudu((rs + πs)msds)

]

+ E
Q
t

[

e−
∫ T
t
rudu(mT + hT )

]

Then take the limit T → ∞ and use the transversality condition

lim
T→∞

E
Q
t

[

e−
∫ T
t
rudu(mT + hT )

]

= 0

and the monotone convergence theorem (rt + πt = it ≥ 0) to obtain

mt + ht = E
Q
t

[∫ ∞

t
e−

∫ s
t
rudumsisds

]

PROOF OF PROPOSITION 13:

From (49), we plug in θTFP = σ̃TFP , and θRS =
σψ
1+ψ , as well as m̂i = ρβw/k =

ρβ(1 + ψ) from (47) and

x̂+ g − δ − r = −(ρ+
µψ

1 + ψ
− (

σ

1 + ψ
)2 − (σ̃TFP )2 − (

σψ
1 + ψ

)2)

Then use Ito’s lemma to obtain

µψ = ψ′φ(σ̄ − σ) +
1

2
ψ′′σν2

σψ = ψ′√σν
The ODE (51) has the µψ terms together, and the σ̃TFP terms cancel out. I also
simplified the terms involving σψ into one term.

PROOF OF PROPOSITION 14:

The equations for the competitive equilibrium are a modified version of (42)-
(47), taking into account that total wealth now includes the present value of
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taxes/subsidies that are rebated lump-sum and the tax τk:

rt = ρ+ (x̂t + g − δ) + µĉ,t − σ2ct − (σ̃TFPct )2 − (σ̃RSct )2 Euler(A.1)

rt = a+ g − δ − τkt − σctσt − θTFPt σ̃TFP asset pricing(A.2)

σct =
kt
wt
σt = (1− β)ρktc

−1
t σt idiosyncratic risk

(A.3)

σ̃TFPc = θTFPt TFP risk

(A.4)

σ̃RSct = θRSt risk shock risk

(A.5)

m̂t = β/(1− β)× (a− x̂t)/(rt + πt) money
(A.6)

Since the planner’s allocation satisfies (52)-(57) and the FOC (59), it satisfies also
the equilibrium conditions (A.1)-(A.6). Equations (A.1), (A.4), (A.5), and (A.6)
are immediate. Equation (A.2) follows from plugging the definition of x̂t from
(59), τkt from (60), and θTFPt = σ̃TFPct into the Euler equation (53). (A.3) comes
from the skin in the game constraint (52), using the fact that σUt =

1
ρσct. Finally,

limt→∞ E
Q
[

e−
∫ t
0
ruduktĉt

]

=⇒ limt→∞ E
Q
[

e−
∫ t
0
ruduwt

]

= 0 and it = rt+πt > 0

ensure that this is in fact an equilibrium.

PROOF OF PROPOSITION 15:

Let g(n; r) be the stationary distribution of wealth in the steady state. Market
clearing in the steady state requires

∫

ng(n; r)dn = kss(r) +mss(r)

where g, kss, and mss depend on the steady state real interest rate (mss depends
on the nominal interest rate, but with constant money supply, inflation in the
steady state is zero, so i = r). We must find r that solves this equation. In
general this requires finding the stationary distribution of wealth generated by
each r.

Optimize (1 − β) log c + β logm subject to total expenditures x = c + mi to
obtain an indirect utility function. We obtain the usual demand for money

m =
β

1− β

c

i

and an indirect utility function ũ(x) = log x + A(i), for some constant function
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A(i). We can then re-write the budget constraint

dnit = (nitr + w(r)eit − xt)dt

We conclude that for a given r, we get the same distribution of wealth g0(n; r) as
in a model without money and log preferences only over consumption, β = 0.

Market clearing with money requires

∫

ng0(n; r)dn− kss(r) = mss(r)

Normalizing by the steady state wage wss(r) = f ′l (kss(r)), we get

∫
ng0(n; r)dn

wss(r)
− kss(r)

wss(r)
=
mss(r)

wss(r)

We can now compare the economy without money, β = 0, to the economy with
money, β > 0. The distribution of wealth and the capital stock is the same in
both cases, but with money we get a positive term on the left hand side. It’s a
standard result that with these preferences and technology, the right hand side is
an increasing function of r,1 so we can conclude that in the monetary economy, the
interest rate is higher, and the capital stock lower, relative to the non-monetary
economy.

II. The role of intertemporal elasticity and risk aversion

The baseline model has log preferences, which yield clean results and are quanti-
tatively reasonable. In this Appendix I extend the baseline model to allow for EZ
preferences to understand the role of intertemporal elasticity and risk aversion.

Suppose agents have recursive EZ preferences with discount ρ, risk aversion
γ, and intertemporal elasticity ψ. If ψ = 1/γ we have the standard CRRA
preferences. If ψ = γ = 1 we have the baseline model with log preferences.

The equilibrium equations are now modified as follows

r = ρ+ (x̂− δ)/ψ − (1 + 1/ψ)(γ/2)σ2c Euler equation

r = a− δ − γσcσ asset pricing

σc = (1− λ)σ risk sharing

m̂ =
β

1− β

a− x̂

r + π
money

The expression for the liquidity share, λ, must be solved simultaneously with r

1See for example Light (2018).
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and x̂.

λ =
ρβ

ρ+ (1/ψ − 1)(x̂ − δ)− (1 + 1/ψ)(γ/2)((1 − λ)σ)2
(A.7)

We can check that if ψ = γ = 1 we recover the equation in the baseline model.

First Best.— If there is no idiosyncratic risk, σ = 0, we get closed-form expres-
sions for r and x̂

r = a− δ

x̂ = (a− δ − ρ)ψ + δ

Incomplete risk sharing and no money, β = 0.— The non-monetary economy
also allows for closed-form expressions, because λ = β = 0 and σc = σ.

r = a− δ
︸ ︷︷ ︸

first best

−γσ2

x̂ = (a− δ − ρ)ψ + δ
︸ ︷︷ ︸

first best

+ψ
[
(1 + 1/ψ)(γ/2)σ2
︸ ︷︷ ︸

precautionary

− γσ2
︸︷︷︸

risk pr.

]

After a risk shock increases idiosyncratic risk σ, the real interest rate falls to
accommodate the higher risk premium α = γσcσ = γσ2. But investment may go
up or down, depending on the intertemporal elasticity ψ. If ψ > 1, investment
falls when idiosyncratic risk σ goes up; if ψ < 1, investment raises. This can be
understood in terms of the risk premium and precautionary motive. If ψ > 1,
the precautionary motive is smaller than the risk premium, and the difference
increases with σ ((1 + 1/ψ)/2 < 1). Intuitively, capital is less attractive because
it is more risky, and since agents are very intertemporally elastic, they substitute
towards consuming instead (accepting a big change in the growth rate of their
consumption). But if ψ < 1, the precautionary motive dominates. Agents really
want to smooth out their utility, and since they face more risk, they make it up
by accumulating more capital. If ψ = 1, as in the baseline, the two effects cancel
out and investment does not change when σ goes up.

The important variable is the intertemporal elasticity. Risk aversion, γ, just
makes the idiosyncratic risk matter more. In fact, both enter jointly γσ2 in the
equations. The role of intertemporal elasticity is well understood, and is the rea-
son that the literature on time varying risk typically assumes high intertemporal
elasticity, ψ > 1. Empirically, evidence about ψ is mixed, but ψ = 1 is considered
a quantitatively reasonable benchmark.

Incomplete risk sharing and money, β > 0.— Now let’s see what happens when
we add money. First, take the liquidity share λ > 0 as given. Idiosyncratic risk
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sharing improves, σc = (1− λ)σ, so we get

r = a− δ
︸ ︷︷ ︸

first best

−γ(1− λ)σ2

x̂ = (a− δ − ρ)ψ + δ
︸ ︷︷ ︸

first best

+ψ
[
(1 + 1/ψ)(γ/2)σ2(1− λ)2
︸ ︷︷ ︸

precautionary

− γσ2(1− λ)
︸ ︷︷ ︸

risk pr.

]

Money weakens the risk premium, so the real interest rate is higher than without
money. Money also weakens the precautionary motive more than the risk pre-
mium, just as in the baseline model. But since investment can go up or down
with risk, depending on ψ, it is useful to decompose the effect of higher risk into
the effect without money, and what money adds relative to the non-monetary
economy:

(A.8) r = a− δ − γσ2
︸ ︷︷ ︸

non-monetary

+λγσ2
︸ ︷︷ ︸

∆r

(A.9)
x̂ = (a− δ − ρ)ψ + δ + ψ

[
(1 + 1/ψ)(γ/2)σ2 − γσ2

]

︸ ︷︷ ︸

non-monetary

+ γσ2ψ
(
(λ2 − 2λ)(1 + 1/ψ)/2 + λ

)

︸ ︷︷ ︸

∆x̂

The second terms are the effect of money on the real interest rate, ∆r, and
investment, ∆x̂, relative to the economy without money.
In general it is possible for investment in the monetary economy to be higher

than in the non-monetary one. For very large ψ, ∆x̂ ≈ γσ2ψλ2/2 > 0. There are
two forces at work. Remember that if ψ > 1, the risk premium dominates, so high
risk σ can have a very large negative effect on investment x̂. Money improves
risk sharing and weakens the risk premium α = γσ2(1 − λ), so it dampens the
fall in investment from this channel. It also weakens the precautionary motive
relative to the risk premium, which reduces investment just like in the baseline
model. The two forces work in opposite directions. In the baseline setting the
direct effect of high risk in the absence of money is zero, so money must reduce
investment.
For ψ ≤ 1 we can obtain a clean characterization, such that the main proper-

ties of the baseline model go through.2 Money keeps the real interest rate from
falling during downturns with high risk, and reduces investment. Risk aversion γ
and idiosyncratic risk σenter together as γσ2, so all our results apply as well to
increases in risk aversion.

Proposition 1. For ψ ≤ 1, the monetary economy has higher interest rate and
lower investment than the non-monetary one; i.e. ∆r > 0 and ∆x̂ < 0. Higher
γσ2 leads to higher risk premium α = γσ2(1 − λ), higher liquidity share λ, and

2ψ ≤ 1 is sufficient, but not necessary.
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larger ∆r and |∆x̂|.

The case ψ ≤ 1 covers two very salient classes of preferences. First, CRRA
preferences with risk aversion γ = 1/ψ ≥ 1. This is the most common specifica-
tion in macroeconomic models. In the context of models with time varying risk,
it has the unappealing feature that, without money, higher risk leads to more
investment.

Second, the cleanest and quantitatively salient specification has ψ = 1 and
γ > 1. The γ > 1 can be interpreted either as high risk aversion, or as ambiguity
aversion as in Barillas, Hansen and Sargent (2009). This specification has the
advantage that the equations boils down to those of the baseline model, with the
only modification of replacing σ2 by γσ2,

r = a− δ − γσ2
︸ ︷︷ ︸

non-monetary

+λγσ2
︸ ︷︷ ︸

∆r

x̂ = (a− ρ)
︸ ︷︷ ︸

non-monetary

− ρ
λ− β

1− λ
︸ ︷︷ ︸

∆x̂

λ =
ρβ

ρ− γσ2(1− λ)2

PROOF OF PROPOSITION 1:

Write the equation for λ, replacing r and x̂ from (A.8) and (A.9) to obtain

λ =
ρβ

ρ+ (1/ψ − 1)(a − δ − ρ)ψ − α [(1− ψ) + ψ(1 + 1/ψ)(1 − λ)/2]

where α = γσ2(1 − λ) > 0 is the risk premium. The denominator is strictly
decreasing in α (here we use ψ ≤ 1) and strictly increasing in λ (for α > 0 which
must be the case for σ > 0). So if there is a solution λ(α) to this equation, it is
increasing in α. From α/(1 − λ) = γσ2, since the left hand side is increasing in
α, it follows that α is increasing in γσ2, and therefore so is λ.

Now ∆r = λγσ2 > 0 and increasing in γσ2 is straightforward. For ∆x̂ we write
it after some algebra

∆x̂ = γσ2λ

(

λ
1 + ψ

2
− 1

)

= αλ
λ1+ψ

2 − 1

1− λ
< 0

If γσ2 increases, so does α and λ. The derivative of the last factor with respect
to λ is

∂λ

{

λ1+ψ
2 − 1

1− λ

}

=
1+ψ
2 (1− λ) + λ1+ψ

2 − 1

(1− λ)2
=

1+ψ
2 − 1

(1− λ)2
≤ 0
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(using ψ ≤ 1 again). So ∆x̂ is negative and becomes even more negative.

III. Contractual setting

In this Appendix I develop the contractual environment that yields the in-
complete idiosyncratic risk sharing problem in the baseline model as the optimal
contract. I also allow aggregate risk with complete risk sharing, which is the
setting in the dynamic model in Section III. The setting in the baseline model is
a special case with no aggregate risk.
The setting is essentially a special case of the environment in Di Tella and

Sannikov (2016) with perfect misreporting (φ = 1 in the terms of that paper),
generalized to allow for aggregate shocks. I discuss the similarities and differences
below.

A. Setting

The setting is as in the dynamic model in Section III. The “capital quality”
shock for an agent is

(A.10) ∆k
i,t = σtki,tdWi,t + σ̃TFPdZTFPt

where ZTFP is an aggregate TFP shock. Aggregate TFP risk σ̃TFP is constant,
but idiosyncratic risk σt follows an autoregressive process

(A.11) dσt = µσ(σt)dt+ σ̃σ(σt)dZ
RS
t

where ZRS is the aggregate risk shock. ZTFP and ZRS are independent Brownian
motions.
There is a complete financial market with real interest rate r, nominal interest

rate i, capital’s excess return α, and price of aggregate shocks θTFP and θRS , all
adapted to the history of aggregate shocks ZTFP and ZRS . Let Q be the equiva-
lent martingale measure associated with r, θTFP and θRS , and Q̃ the equivalent
martingale measure associated with r, θTFP , θRS, and α.3

The agent receives consumption c and money holdings m from the principal,
and manages capital k, all contingent on the history of aggregate shocks ZTFP

and ZRS and the agent’s report of his idiosyncratic shock Y s. The idiosyncratic
shock is not observable by the principal, so the agent can misreport at rate s,
such that his reports are Y s

t = Wt −
∫ t
0
su
σu
du. Furthermore, the agent has access

to hidden trade that allows him to choose his consumption c̃, money m̃, capital
holdings k̃, and to trade aggregate risk σ̃TFPn and σ̃RSn .4 His hidden savings n

3That is, Q is defined by the SPD dξt/ξt = −rt − θTFPt dZTFPt − θRSt dZRSt and Q̃ by dξ̃t/ξ̃t =

−rt − θTFPt dZTFPt − θRSt dZRSt − αt

σt
dWt.

4To keep things simple, allow k̃ < 0, but we can also restrict it to k̃ ≥ 0, as in Di Tella and Sannikov
(2016). This doesn’t change the optimal contract.
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start at n0 = 0 and satisfy the dynamic budget constraint

dnt = (ntrt + ct − c̃t + (mt − m̃t)it + (k̃t − kt)αt + θTFPt σTFPnt + θRSt σ̃RSnt + ktst)dt

(A.12)

+ (k̃t − kt)σtdWt + σ̃TFPnt dZTFPt + σ̃RSnt dZ
RS

with solvency constraint nt ≥ nt where nt is the natural debt limit

(A.13) nt = −max
s∈S

E
Q̃
t

[∫ ∞

t
e
∫ u
t
rτdτ (cu(Y

s) +mu(Y
s)iu + suku(Y

s))du

]

where S =
{
s : E

Q̃
[∫∞

0 e
∫ u
t
rτdτ |cu(Y s) +mu(Y

s)iu + suku(Y
s)|du

]

< ∞
}
is the

set of feasible stealing plans for a given contract. The natural debt limit nt is the
maximum amount that the agent can pay back for sure at time t. The lender is
not taking any risk as long as he enforces the natural debt limit.

Lemma 1. Assume |n0| <∞. If nt ≥ nt always, then lim inft→∞ e−
∫ t
0
rudunt ≥ 0

a.s.

A contract C = (c,m, k) is admissible if EQ
[∫∞

0 e−
∫ t
0
rudu |ct +mtit + ktαt| dt

]

<

∞. It is always optimal to implement no misreporting or hidden trade.5 An ad-
missible contract is incentive compatible if the agent chooses to report truthfully
and not engage in hidden trade,

(c,m, k, 0, 0, 0) ∈ argmax
P

U(c,m) st : (A.12)

where P = (c̃, m̃, k̃, σ̃TFPn , σ̃RSn , s). An incentive-compatible contract is optimal if
it minimizes the cost of delivering utility to the agent

J0(u0) = min
(c,m,k)∈IC

E
Q

[∫ ∞

0
e−

∫ t
0
rudu (ct +mtit − ktαt) dt

]

st : U(c,m) ≥ u0

We pin down the agent’s initial utility u0 with a free-entry condition for principals.
If the agent has initial wealth w0, he gives it to the principal in exchange for the
full-commitment contract, and the principal breaks even, J0(u0) = w0.

B. Incentive compatibility and optimal contract

Given contract C = (c,m, k), the agent’s problem is to choose a misreporting
and hidden trade strategy P = (c̃, m̃, k̃, σ̃TFPn , σ̃RSn , s) to maximize his utility sub-
ject to his dynamic budget constraint. With the natural debt limit, the dynamic

5See Di Tella and Sannikov (2016).
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budget constraint is equivalent to the following intertemporal budget constraint
(A.14)

E
Q̃

[∫ ∞

0
e−

∫ t
0
rudu(c̃t + m̃tit)dt

]

≤ max
s∈S

E
Q̃

[∫ ∞

0
e−

∫ t
0
rudu(ct(Y

s) +mt(Y
s)it + kt(Y

s)st)dt

]

The right hand side is the present value of the agent’s income from the principal,
including what he “steals” from him, and is equal to (minus) the natural debt
limit −n0. Of course, if the right hand side is infinity the agent can achieve infinite
utility. This corresponds to the case where the natural debt limit n0 = −∞ so
the agent can get infinite utility under the dynamic constraint as well.

Lemma 2. Assume |n0| <∞. If (c̃, m̃, k̃, σ̃TFPn , σ̃RSn , s) and n satisfy the dynamic
budget constraint (A.12) with nt ≥ nt always, then (c̃, m̃) satisfy the intertemporal
budget constraint (A.14).

If (c̃, m̃) satisfy the intertemporal budget constraint (A.14), then there are pro-
cesses (k̃, σ̃TFPn , σ̃RSn , s) and n that satisfy the dynamic budget constraint (A.12)
with nt ≥ nt always.

We can split the agent’s problem into two parts. First, pick a misreporting
strategy that maximizes the value of the right hand side. Second, choose c̃ and
m̃ to maximize utility subject to the intertemporal budget constraint (A.14).

If s∗ = 0 is optimal, then

∫ t

0
e−

∫ u
0
rτdτ (cu(Y

s) +mu(Y
s)iu + ku(Y

s)su)du− e−
∫ t
0
rudunt(Y

s)

must be a Q̃-martingale for s = 0 and a supermartingale for any other s. So we
can write

d
(

e−
∫ t
0
rudunt(Y

s)
)

= e−
∫ t
0
rτdτ

{
(ct(Y

s) +mt(Y
s)it)dt+ σnt(Y

s) (dY s
t + αtdt)

+σ̃TFPnt (Y s)(dZTFPt + θTFPt dt) + σ̃RSnt (Y
s)(dZRSt + θRSt dt)

}

If the agent misreports s, then

∫ t

0
e−

∫ u
0
rτdτ{(cu(Y s) +mu(Y

s)iu + ku(Y
s)su)du− (cu(Y

s) +mu(Y
s)iu)du

−σnu(Y s) (dY s
u + αudu)− σ̃TFPnu (Y s)(dZTFPu + θTFPu du)− σ̃RSnu (Y

s)(dZRSu + θRSu du)}

or simplifying,

∫ t

0
e−

∫ u
0
rτdτ{ku(Y s)sudu− σnu(Y

s) (dY s
u + αudu)− σ̃TFPnu (Y s)(dZTFPu + θTFPu du)

−σ̃RSnu (Y s)(dZRSu + θRSu du)}
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must be a Q̃-supermartingale. Since dY s
t = dWt − st

σt
dt, this requires

kt + σnt
1

σt
= 0 =⇒ σnt = −ktσt

In other words, for every dollar the agent misreports he must lose a dollar in
present value of future income.
Second, taking the right hand side of the intertemporal budget constraint as

given and choosing c̃ and m̃ is a standard consumption-portfolio problem. The
FOC are

µct = rt − ρ+ σ2ct + (σ̃TFPct )2 + (σ̃RSct )2 Euler equation(A.15)

αt = σctσt demand for capital(A.16)

σ̃TFPct = θTFPt TFP shocks(A.17)

σ̃RSct = θRSt risk shocks(A.18)

mt/ct = β/(1 − β)i−1
t money(A.19)

In addition, optimality and zero hidden savings, nt = 0, imply that

E
Q̃
t

[∫ ∞

t
e−

∫ u
t
rτdτ (c̃u + m̃uiu)du

]

= E
Q̃
t

[∫ ∞

t
e−

∫ u
t
rτdτ (cu(Y

0) +mu(Y
0)iu)dt

]

= −nt

and ct = (1− β)ρEQ̃t

[∫∞
t e−

∫ u
t
rτdτ (c̃u + m̃uiu)du

]

= (1− β)ρ(−nt). From this it

follows that the geometric volatility of consumption is

σct = (1− β)ρ
kt
ct
σt ”skin in the game”(A.20)

It’s worth noting that, given (A.15)-(A.19), the agent’s continuation utility

Ut = Et

[∫ ∞

t
e−ρu((1− β) log cu + β logmu)du

]

will admit a representation Ut = At +
1
ρ log ct. The skin in the game constraint

(A.20) then implies σUt = (1 − β)c−1
t ktσt. If the agent misreports a dollar and

immediately consumes it he gets marginal utility (1− β)c−1
t , so his continuation

utility must go down by that amount to deter him.
Putting these conditions together we obtain the following result.

Lemma 3. An incentive-compatible contract C = (c,m, k) must satisfy conditions
(A.15)-(A.20).

The incentive compatibility conditions (A.15)-(A.20) are necessary. In general,
proving that they are sufficient for global incentive compatibility is a difficult
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problem, because the hidden trade allows the agent a large set of deviations.
The strategy is to first characterize the optimal contract subject only to the
necessary incentive compatibility constraints, and then prove that it is indeed
incentive compatible. As it turns out, this will be straightforward in this setting
because the optimal contract will coincide with letting the agent choose his own
consumption, money, and capital (the optimal contract coincides with autarky).
We say that contract C = (c,m, k) solves the portfolio problem for w0 > 0 if it

maximizes U(c,m) subject to the dynamic budget constraint

dwt = (rtwt − ct −mtit + ktαt + θTFPt σ̃TFPwt + θRSt σ̃RSwt )dt+ ktσdWt(A.21)

+ σ̃TFPwt dZTFPt + σ̃RSwt dZ
RS
t

with solvency constraint wt ≥ 0. This dynamic budget constraint is equivalent to

(A.22) E
Q̃

[∫ ∞

0
e−

∫ t
0
rudu(ct +mtit)dt

]

≤ w0

It is well known that (A.15)-(A.19) are the FOCs for this portfolio problem, so
we get the following result.

Theorem 1. Let (c,m, k) be an optimal contract for initial utility u0, with cost
J(u0). Then (c,m, k) solves the portfolio problem for w0 = J(u0).
Conversely, let (c,m, k) solve the portfolio problem for some w0 > 0. If in

addition limt→∞ E[e−rtwt] = 0, then (c,m, k) is an optimal contract for initial
utility u0 with J(u0) = w0.

Remark. The condition limt→∞ E[e−rtwt] = 0 must be satisfied in the competitive
equilibrium in the paper.

C. Comparison to Di Tella and Sannikov (2016)

This setting is essentially the same as in Di Tella and Sannikov (2016), with
hidden investment and perfect misreporting (φ = 1 in the context of that paper).
The main result here is Theorem 1, which is analogous to Lemma 28 in that
paper. This is therefore a special case of the environment in that paper.
But there are some differences. First, here I allow aggregate risk shocks that

affect the investment environment. The setting in Di Tella and Sannikov (2016)
is stationary. Second, in Di Tella and Sannikov (2016) the agent faces a no-debt
solvency constraint nt ≥ 0 on his hidden savings n. Here I allow the agent to
borrow up to the natural borrowing limit, using his income from the contract. As
it turns out the optimal contract is the same. The no-debt borrowing constraint
relaxes the IC constraints, but the principal does not use this freedom in the
optimal contract. Intuitively, with nt ≥ 0 the principal could backload the agent’s
consumption if he wanted. But what he really wants to do is to front load it.
Finally, here I allow the agent to short capital in his hidden investment, k̃t < 0

and to overreport returns, st < 0. This is done for simplicity. In Di Tella and
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Sannikov (2016) hidden investment and misreporting must be non-negative, kt ≥
0 and st ≥ 0, and the optimal contract is the same (for the special case with
φ = 1).

D. Proofs

PROOF OF LEMMA 1:

From the definition of the natural debt limit (A.13), if we take absolute value
on both sides we get the following inequality

|nt| ≤ St = E
Q̃
t

[∫ ∞

t
e
∫ u
t
rτdτ |cu(Y s∗) +mu(Y

s∗)iu + s∗uku(Y
s∗)|du

]

<∞

where s∗ is the misreporting process that achieves the maximum in (A.13). The
martingale representation theorem yields

d
(

e−
∫ t
0
ruduSt

)

= −e−
∫ t
0
rudu|ct(Y s∗)+mt(Y

s∗)it+s
∗
tkt(Y

s∗)|dt+Q̃-local mart. terms

We also know that limT→∞ E
Q̃
[

e−
∫ T
0
ruduST

]

= 0. To see this, write

S0 = E
Q̃
0

[∫ T

0
e
∫ u
0
rτdτ |cu(Y s∗) +mu(Y

s∗)iu + s∗uku(Y
s∗)|du

]

+ E
Q̃
[

e−
∫ T
0
ruduST

]

and take the limit T → ∞, using the MCT on the first term. It follows that

limT→∞ e−
∫ T
0
ruduST exists and is zero almost surely (see Problem 3.16 in Karatzas

and Shreve (2012)). Since |nt| ≤ St, the same is true for nt, and since nt ≥ nt,

we obtain lim infT→∞ e−
∫ t
0
rudunt ≥ 0 a.s.

PROOF OF LEMMA 2:

In the first direction, use the dynamic budget constraint to compute

E
Q̃
[

e−
∫ t
0
rudunt

]

= E
Q̃

[∫ t

0
e−

∫ u
0
rτdτ (cu(Y

s) +mu(Y
s)iu + ku(Y

s)su)du

]

− E
Q̃

[∫ t

0
e−

∫ u
0
rτdτ (c̃u + m̃uiu)dt

]

Subtract E
Q̃
[

e−
∫ t
0
rudunt

]

< ∞ from both sides. Because n0 is the maximum
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value that the agent can get, we obtain an inequality:

E
Q̃
[

e−
∫ t
0
rudu(nt − nt)

]

≤ max
s

E
Q̃

[∫ ∞

0
e−

∫ u
0
rτdτ (cu(Y

s) +mu(Y
s)iu + ku(Y

s)su)du

]

− E
Q̃

[∫ t

0
e−

∫ u
0
rτdτ (c̃u + m̃uiu)du

]

E
Q̃

[∫ t

0
e−

∫ u
0
rτdτ (c̃u + m̃uiu)du

]

≤ −n0 − E
Q̃
[

e−
∫ t
0
rudu(nt − nt)

]

Take the limit t → ∞ and use nt ≥ nt to obtain the intertemporal budget
constraint (A.14).
In the other direction, define

nt = nt + E
Q̃

[∫ ∞

t
e−

∫ u
t
rτdτ (c̃u + m̃uiu)du

]

≥ nt

Define Lt = E
Q̃
t

[∫∞
t e−

∫ u
t
rτdτ (c̃u + m̃uiu)du

]

, so that
∫ t
0 e

−
∫ u
0
rτdτ (c̃u+m̃uiu)du+

e−
∫ t
0
rτdτLt is a Q̃-martingale. Likewise, −

∫ t
0 e

−
∫ u
0
rτdτ (cu(Y

s∗) + mu(Y
s∗)iu +

ku(Y
s∗)s∗u)dt + e−

∫ t
0
rτdτnt is also Q̃-martingale, where s∗ is the misreporting

process that achieves the maximum. So we can write

dnt =
(

ntrt + ct(Y
s∗) +mt(Y

s∗)it + kt(Y
s∗)s∗t − (c̃t + m̃tit)

)

dt

+ (σnt + σLt)(αtdt+ dWt) + (σ̃TFPnt + σ̃TFPLt )(θTFPt dt+ dZ̃TFPt ) + (σ̃RSnt + σ̃RSLt )(θ
RS
t dt+ dZ̃RSt )

Letting σnt + σLt = k̃t − kt, σ̃
TFP
nt + σ̃TFPLt = σ̃TFPnt , and σ̃RSnt + σ̃RSLt = σ̃RSnt , we

obtain the dynamic budget constraint (A.12).

PROOF OF LEMMA 3:
Immediate from the argument in Section III.B, noting that incentive compati-

bility requires |n0| <∞.

PROOF OF THEOREM 1
In the first direction, if (c,m, k) is an optimal contract, then it must satisfy

the local IC constraints (A.15)-(A.19), which are the FOC for the consumption-
portfolio problem. So c and m solve the optimal portfolio problem for some
initial w0, with an associated wealth process w that satisfies the dynamic budget
constraint (A.21) and wt ≥ 0. Now the IC constraint (A.20) pins down the
corresponding k. We know that ct = (1 − β)ρwt in the portfolio problem, so
(A.20) and (A.16) imply

σc =
αt
σt

= (1− β)ρ
kt
ct
σt
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=⇒ kt
wt

=
αt
σ2t

which is the expression for capital in the portfolio problem. Finally, we need to
show that w0 = J0. Integrate the dynamic budget constraint (A.21) and take
expectations under Q to obtain

w0 = E
Q

[∫ T

0
e−rt(ct +mti− ktα)dt

]

+ E
Q
[
e−rTwT

]

If we take the limit T → ∞, the first term will converge to E
[∫∞

0 e−rt(ct +mti− ktα)dt
]
=

J0 (apply dominated converge theorem and use feasibility). For the second
term, because everything is proportional to w, we must have Jt = Awt for
some A > 0 (it will be A = 1). The continuation cost of the contract Jt =
Et

[∫∞
t e−rs(cs +msi− αks)ds

]
must satisfy limT→∞ E

[
e−rTJT

]
= 0, so limT→∞ E[e−rTwT ] =

0 and therefore w0 = J0. To see why limT→∞ E
[
e−rTJT

]
= 0, write J0 =

E

[∫ T
0 e−rt(ct +mti− ktα)dt

]

+ E
[
e−rTJT

]
and take T → ∞ (using DCT and

feasibility again).

In the other direction, suppose (c,m, k) solve the portfolio problem with asso-
ciated wealth process w and utility utility U(w) = 1

ρ(logw − log ξ). Notice that
this is the only contract that satisfies the local IC constraints and delivers utility
u0 =

1
ρ(logw0 − log ξ). (A.15)-(A.19) are the FOC for the portfolio problem, and

pin down c and m up to an initial constant (corresponding to w0). We also know
that kt/wt =

αt
σ2t

and ct = (1− β)ρwt, so from (A.16) we get the skin in the game

IC constraint (A.20)

σct =
αt
σt

=
kt
wt
σt = (1− β)ρ

kt
ct
σt

The contract (c,m, k) is feasible because limT→∞ E
[
e−rTwT

]
= 0 (each term is

proportional to w, so it grows slower than r). The contract is globally incentive
compatible, because the agent is only getting risk-free debt from the principal,
and doing what he wants.

It only remains to show that we can’t achieve more utility. Integrate the dy-
namic budget constraint to obtain

w0 = E

[∫ T

0
e−rt(ct +mti− ktα)dt

]

+ E
[
e−rTwT

]

and take the limit T → ∞ to obtain J0 = w0 > 0. So giving the agent more
utility (scaling up the contract) will cost more.
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