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Appendix A: Proofs of Results

Let x∗(zL, zR, ρ) denote the preferred policy of the swing voter, given party L’s platform zL,

party R’s platform zR, and party R’s net valence advantage, ρ ∈ [ρ0 − ψ, ρ0 + ψ]. Assumption 2

says that ρ0 − ψ < −1 and θ > ρ0 + ψ + 1. Thus θ > 2, implying that for any pair (zL, zR) ∈ R2, a

voter with preferred policy xi > x∗(zL, zR, ρ) strictly prefers R, and a voter with preferred policy

xi ≤ x∗(zL, zR, ρ) weakly prefers L. Recall our convention that when a voter is indifferent between

the parties, she votes for party L, that when the parties tie in a district, L wins the district, and

that when each party wins one half of the districts, L wins the majority. Party L therefore wins

a district with median m if and only if x∗(ρ, zL, zR) ≥ m. Using the fact that district medians

are uniformly distributed on [−1, 1], party L’s share of districts is given by dL = 1+x∗(zL,zR,ρ)
2

, and

party L therefore wins the election if and only if dL ≥ 1
2
, i.e., if and only if x∗(zL, zR, ρ) ≥ 0. It is

immediate that a platform zJ < −1 or zJ > 1 is strictly dominated, for either party J ∈ {L,R}.
Thus, we restrict attention to (zL, zR) ∈ [−1, 1]2 in the arguments that follow.

We first state three intermediate results that streamline our subsequent proofs of existence and

uniqueness.

Lemma 1. For any zL ∈ [−1, 1], zR is a best response to zL only if zR ≤ max{0, zL}.

Proof. We establish that party R’s payoff strictly decreases in zR ≥ max{0, zL}. Because argu-

ments used in the proof of this result are repeated throughout the Appendix, we provide some

commentary, to guide the reader. Recall from expression (7) that the swing voter type x∗(zL, zR, ρ)

solves ∆(x∗; zL, zR, ρ) = 0, where

∆(x∗; zL, zR, ρ) = |zR − x∗| − |zL − x∗| − θx∗ − ρ. (A1)

Whenever zR ≥ zL, the swing voter x∗(zL, zR, ρ) may be drawn from one of at most three intervals.
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1. The swing voter’s type is x∗(zL, zR, ρ) ≥ zR if ∆(zR; zL, zR, ρ) ≥ 0, i.e., if zL−zR−θzR−ρ ≥ 0,

i.e., if ρ ≤ zL − zR − θzR. Thus, x∗(zL, zR, ρ) solves (x∗ − zR)− (x∗ − zL)− θx∗ − ρ = 0, i.e.,

x∗(zL, zR, ρ) =
zL − zR − ρ

θ
≡ x∗1. (A2)

2. The swing voter’s type is x∗(zL, zR, ρ) ∈ (zL, zR) if both ∆(zL; zL, zR, ρ) > 0, i.e., zR − zL −
θzL − ρ > 0 and also ∆(zR; zL, zR, ρ) < 0, i.e., zL − zR − θzR − ρ < 0. Thus, x∗(zL, zR, ρ) solves

(zR − x∗)− (x∗ − zL)− θx∗ − ρ = 0, i.e.,

x∗(zL, zR, ρ) =
zL + zR − ρ

2 + θ
≡ x2

∗. (A3)

3. The swing voter’s type is x∗(zL, zR, ρ) ≤ zL if ∆(zL; zL, zR, ρ) ≤ 0, i.e., zR − zL − θzL − ρ ≤ 0,

i.e., ρ ≥ zR − zL − θzL, i.e., (zR − x∗)− (zL − x∗)− θx∗ − ρ = 0, i.e.,

x∗(zL, zR, ρ) =
zR − zL − ρ

θ
≡ x3

∗. (A4)

Assumption 2 that θ > ρ0 + ψ + 1 implies that x∗1 < 1 and x∗3 > −1 for all ρ ∈ [ρ0 − ψ, ρ0 + ψ],

whenever zL ≤ zR.1 In words: x∗1 < 1 states that even if the net valence shock in favor of party R

is drawn most unfavorably to R, i.e., ρ = ρ0 − ψ, the district median voter type +1 strictly prefers

party R, for any pair (zL, zR) such that zL ≤ zR. This implies that R always wins a positive share

of districts whenever zL ≤ zR. Likewise, x∗3 > −1 states that even if the net valence shock ρ in

favor of party R is drawn most favorably to R, i.e., ρ = ρ0 + ψ, the district median voter type −1

strictly prefers party L, for any pair (zL, zR) such that zL ≤ zR. This implies that L always wins a

positive share of districts whenever zL ≤ zR.

We consider two possible cases for the location of party L’s platform: weakly to the left of the

median voter, i.e., zL ≤ 0, or strictly to the right of the median voter, i.e., zL > 0.

Case 1: zL ≤ 0. If party R locates at zR ≥ 0, party R wins a majority if and only if x2∗ < 0, i.e., if

and only if ρ > zL + zR. Party R’s expected payoff from zR ≥ 0 is:

πR(zL, zR) =
α

2ψ

∫ max{zL−zR−θzR,ρ0−ψ}

ρ0−ψ

(
1

2
− x∗1

2

)
dρ+

α

2ψ

∫ zL+zR

max{zL−zR−θzR,ρ0−ψ}

(
1

2
− x∗2

2

)
dρ

1 In fact, θ > ρ0+ψ is sufficient, but we impose the stronger parameter restriction streamline our subsequent proofs.
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+
1

2ψ

∫ min{zR−zL−θzL,ρ0+ψ}

zL+zR

(
r − βx

∗
2

2

)
dρ+

1

2ψ

∫ ρ0+ψ

min{zR−zL−θzL,ρ0+ψ}

(
r − βx

∗
3

2

)
dρ.

(A5)

We explain how this expected payoff is constructed, taking each of the four integrals in turn.

First term. The first integral reflects R’s share of districts for realizations of ρ such that the swing

voter’s type is x∗(zL, zR, ρ) ∈ (zR, 1]. Since x∗(zL, zR, ρ) > zR ≥ 0, R wins a minority of districts.

We have already shown that, with probability one, x∗(zL, zR, ρ) < 1, i.e., we have shown that with

probability one the swing voter type x∗(zL, zR, ρ) is realized strictly to the left of the district me-

dian with ideal policy 1. However, we have not shown that with positive probability the swing

voter type x∗(zL, zR, ρ) is realized strictly to the right of party R’s platform, zR. The net value

that a voter with ideal policy xi receives from party L is ∆(xi; zL, zR, ρ), defined in (3). Thus,

x∗(zL, zR, ρ) > zR with positive probability if and only

∆(zR; zL, zR, ρ0 − ψ) > 0 ⇐⇒ |zR − zR| − |zR − zL| − θzR − (ρ0 − ψ) > 0

⇐⇒ ρ0 − ψ < zL − zR − θzR. (A6)

When (A6) fails, the first integral in expression (A5) is zero, since with probability one R wins

every district with median m ∈ [zR, 1].

Second term. The second integral reflects party R’s share of districts for realizations of ρ such that

the swing voter’s type is x∗(zL, zR, ρ) ∈ [0, zR], in which case party R wins a minority of districts.

The median voter in the median district weakly prefers party L for some shock realization if and

only if

∆(0; zL, zR, ρ0−ψ) ≥ 0 ⇐⇒ |zR− 0|− |zL− 0|− θ× 0− (ρ0−ψ) ≥ 0 ⇐⇒ zR + zL ≥ ρ0−ψ. (A7)

Likewise, the median voter strictly prefers party R for some shock realization if and only if

∆(0; zL, zR, ρ0 +ψ) < 0 ⇐⇒ |zR− 0|− |zL− 0|− θ× 0− (ρ0 +ψ) < 0 ⇐⇒ zR + zL < ρ0 +ψ, (A8)

Since −1 < zR + zL < 1 for any (zL, zR) such that −1 ≤ zL ≤ 0 ≤ zR ≤ 1, Assumption 2 that

ρ0 − ψ < −1 implies that ρ0 − ψ < zR + zL < ρ0 + ψ, implying that with positive probility each

party wins a strict majority of districts. This yields the upper limit of integration in the second

term of expression (A5).
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Third term. The third integral reflects party R’s share of districts for realizations of ρ such that

x∗(zL, zR, ρ) ∈ [zL, 0). Because x∗(zL, zR, ρ) < 0, party R wins a majority of districts. While we

have shown that with positive probability x∗(zL, zR, ρ) < 0, we have not shown that with positive

probability x∗(zL, zR, ρ) < zL. The net value that a voter with ideal policy xi receives from party

L is ∆(xi; zL, zR, ρ), defined in (3). Thus, with positive probability x∗(zL, zR, ρ) < zL if and only if

x∗(zL, zR, ρ0 + ψ) < zL, i.e., if and only if

∆(zL; zL, zR, ρ0 + ψ) < 0 ⇐⇒ |zR − zL| − |zL − zL| − θzL − (ρ0 + ψ) < 0

⇐⇒ ρ0 + ψ > zR − zL − θzL. (A9)

When this condition fails, the upper limit of integration in the third term of expression (A5) is

ρ0 + ψ, the highest value taken by the preference shock.

Fourth term. The fourth integral reflects party R’s share of districts for realizations of ρ such that

x∗(zL, zR, ρ) < zL. Since zL ≤ 0, x∗(zL, zR, ρ) < zL implies that party R wins a majority of districts.

As we highlighted in the previous paragraph, x∗(zL, zR, ρ) < zL occurs with positive probability

if and only if ρ0 + ψ > zR − zL − θzL. Otherwise, the fourth integral in (A5) is zero.

We first argue that a platform zR is not a best response if with probability one the swing voter’s

type x∗(zL, zR, ρ) is realized weakly to the left of zR. That is, we argue that zR is not a best response

if zL − zR − θzR ≤ ρ0 − ψ, i.e., if the first integral in expression (A5) is zero. To prove this, we first

observe that for any zL ≤ 0, party R can select a platform zR ≥ 0 such that zL− zR − θzR > ρ0−ψ.

This follows from the fact that party R can select zR = 0: Assumption 2 that ρ0 − ψ < −1 implies

that zL − 0− θ × 0 = zL ≥ −1 > ρ0 − ψ.

Suppose, however, that party R locates at zR > 0 such that zL − zR − θzR ≤ ρ0 − ψ, i.e., so

that with probability one the swing voter’s type x∗(zL, zR, ρ) is realized weakly to the left of zR.

If, in addition, with positive probability x∗(zL, zR, ρ) is realized strictly to the left of zL, i.e., if

zR − zL − θzL < ρ0 + ψ, then differentiation of (A5) yields:

2ψ
∂πR(zL, zR)

∂(−zR)
=
α

2

∫ zL+zR

ρ0−ψ

∂x∗2
∂zR

dρ+
β

2

[ ∫ zR−zL−θzL

zL+zR

∂x∗2
∂zR

dρ+

∫ ρ0+ψ

zR−zL−θzL

∂x∗3
∂zR

dρ

]
+

(
r − α

2

)
.

(A10)

Because ∂x∗2
∂zR

> 0 and ∂x∗3
∂zR

> 0, (A10) is strictly positive, and thusR’s platform is not a best response.

The argument if zL − zR − θzR ≤ ρ0 − ψ and zR − zL − θzL ≥ ρ0 + ψ is the same. We conclude that
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R’s expected payoff (A5) strictly decreases in zR whenever with probability one x∗(zL, zR, ρ) ≤ zR.

We then verify via straightforward algebra (omitted) that for any zR ≥ 0 such that with posi-

tive probability x∗(zL, zR, ρ) > zR and with positive probability x∗(zL, zR, ρ) < zL, party R’s payoff

strictly decreases in zR under Assumption 1 that r > α
2

+ ψ
2θ

(α − β). That is, for any zR such that

zL − zR − θzR > ρ0 − ψ and zR − zL − θzL < ρ0 + ψ, (A5) strictly decreases in zR.

Finally, we argue that for any zR > 0 such that with positive probability x∗(zL, zR, ρ) > zR, and

with probability one x∗(zL, zR, ρ) ≥ zL, party R’s payoff strictly decreases in zR. That is, we argue

that for any zR such that both zL− zR− θzR > ρ0−ψ and zR− zL− θzL ≥ ρ0 +ψ, R’s payoff strictly

decreases in zR. When zL − zR − θzR > ρ0 − ψ and zR − zL − θzL ≥ ρ0 + ψ, differentiation of (A5)

with respect to zR yields:

2ψ
∂πR(zL, zR)

∂zR
= − α

2

[ ∫ zL−zR−θzR

ρ0−ψ

∂x∗1
∂zR

dρ+

∫ zL+zR

zL−zR−θzR

∂x∗2
∂zR

dρ

]
− β

2

∫ ρ0+ψ

zL+zR

∂x∗2
∂zR

dρ−
(
r − α

2

)
.

(A11)

Straightforward algebra reveals that (A11) strictly increases in zL. The restriction that zR − zL −
θzL ≥ ρ0 + ψ is equivalent to zL ≤ zR−(ρ0+ψ)

1+θ
≡ ẑL(zR). Evaluated at zL = ẑL(zR), straightforward

algebra verifies that (A11) is strictly negative evaluated for any zR ≥ 0, under Assumption 1 that

r > α
2

+ ψ
2θ

(α−β). We conclude that (A5) strictly decreases in zR such that with positive probability

x∗(zL, zR, ρ) > zR and with probability one x∗(zL, zR, ρ) ≥ zL. We have established that for any

zL ≤ 0, party R’s expected payoff strictly decreases in zR ≥ 0.

Case 2: zL > 0. We consider zR ≥ zL. Again, party R wins if and only if x∗(zL, zR, ρ) < 0, i.e., if and

only if ρ > zR − zL. Party R’s expected payoff from zR ≥ zL is:

πR(zL, zR) =
α

2ψ

∫ max{zL−zR−θzR,ρ0−ψ}

ρ0−ψ

(
1

2
− x∗1

2

)
dρ+

α

2ψ

∫ min{zR−zL−θzL,ρ0+ψ}

max{zL−zR−θzR,ρ0−ψ}

(
1

2
− x∗2

2

)
dρ

+
α

2ψ

∫ zR−zL

min{zR−zL−θzL,ρ0+ψ}

(
1

2
− x∗3

2

)
dρ+

1

2ψ

∫ ρ0+ψ

zR−zL

(
r − βx

∗
3

2

)
dρ. (A12)

By similar arguments to those for Case 1, it is easy to verify that zR > zL is a best response only

if zL − zR − θzR > ρ0 − ψ. Assumption 2 that ρ0 − ψ < −1 and 0 < zL ≤ zR ≤ 1 implies that

zR − zL < ρ0 + ψ, i.e., that with positive probability x∗(zL, zR, ρ) < 0. This implies that with posi-

tive probability x∗(zL, zR, ρ) < zL, i.e., zR − zL − θzL < ρ0 + ψ. Without loss of generality, we may
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therefore re-write (A12) as follows:

πR(zL, zR) =
α

2ψ

∫ zL−zR−θzR

ρ0−ψ

(
1

2
− x∗1

2

)
dρ+

α

2ψ

∫ zR−zL−θzL

zL−zR−θzR

(
1

2
− x∗2

2

)
dρ

+
α

2ψ

∫ zR−zL

zR−zL−θzL

(
1

2
− x∗3

2

)
dρ+

1

2ψ

∫ ρ0+ψ

zR−zL

(
r − βx

∗
3

2

)
dρ. (A13)

We obtain:

∂πR(zL, zR)

∂zR
=
α(θ − ρ0 + ψ)− β(ρ0 + ψ)− 2θr + (zL − zR)(α− β)− 2θαzR

4θψ
. (A14)

For all zR ≥ zL > 0, (zL − zR)(α − β)− 2θαzR ≤ 0 under Assumption 1 that α ≥ β; the remainder

of the numerator is strictly negative for all ρ0 ≥ 0 under Assumption 1 that r > α
2

+ ψ
2θ

(α− β).

Lemma 2. (i) For any zR ≤ 0, a platform zL > max{0, zR − θzR − (ρ0 + ψ)} is not a best response to zR.

(ii) For any zR > 0, zL is a best response to zR only if zL ≤ zR.

Remark: A stronger version of part (i) of the Lemma would be: for any zR ≤ 0, a platform zL > 0

is not a best response to zR. If zR ∈ [ρ0+ψ
1−θ , 0], this is what part (i) states. Since we later show that,

in equilibrium, zR > ρ0+ψ
1−θ , it is sufficient, and simpler, to prove the Lemma as stated.

Proof of Lemma 2. The net value that a voter with ideal policy xi receives from party L is

∆(xi; zL, zR, ρ), defined in (3). The swing voter x∗(zL, zR, ρ) solves ∆(x∗; zL, zR, ρ) = 0. When

zL ≥ zR, the swing voter x∗(zL, zR, ρ) may therefore be drawn from one of at most three intervals.

1. The swing voter’s type is x∗(zL, zR, ρ) < zR if ∆(zR; zL, zR, ρ) < 0, i.e., zR − zL − θzR − ρ < 0,

i.e., ρ > zR − zL − θzR. Thus, x∗(zL, zR, ρ) solves (zR − x∗)− (zL − x∗)− θx∗ − ρ = 0, i.e.,

x∗(zL, zR, ρ) =
zR − zL − ρ

θ
≡ x4

∗. (A15)

2. The swing voter’s type is x∗(zL, zR, ρ) ∈ [zR, zL] if ∆(zR; zL, zR, ρ) ≥ 0 ≥ ∆(zL; zL, zR, ρ), i.e.

zR−zL−θzR−ρ ≥ 0, and zL−zR−θzL−ρ ≤ 0. Thus, x∗(zL, zR, ρ) solves (x∗−zR)−(zL−x∗)−θx∗−ρ =

0, i.e.,

x∗(zL, zR, ρ) =
−(zL + zR)− ρ

θ − 2
≡ x5

∗. (A16)

3. The swing voter’s type is x∗(zL, zR, ρ) > zL if ∆(zL; zL, zR, ρ) > 0, i.e., zL − zR − θzL − ρ > 0.
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Thus, x∗(zL, zR, ρ) solves (x∗ − zR)− (x∗ − zL)− θx∗ − ρ = 0, i.e.,

x∗(zL, zR, ρ) =
zL − zR − ρ

θ
≡ x6

∗. (A17)

Notice that x∗6 ≤ 1 if and only if zL − zR − ρ ≤ θ, i.e., ρ ≥ zL − zR − θ; similarly, x∗4 ≥ −1 if and

only if zR − zL − ρ ≥ −θ, i.e., ρ ≤ zR − zL + θ. We consider two possible cases for the location of

party R’s platform: weakly to the left of the median voter, i.e., zR ≤ 0, or strictly to the right of the

median voter, i.e., zR > 0.

We now prove each part of the lemma.

Part (i). Suppose zR ≤ 0, and consider zL > max{0, zR − θzR − (ρ0 +ψ)}. Party L wins if and only

if x∗(zL, zR, ρ) ≥ 0, i.e., if and only if ρ ≤ −zL − zR. Party L’s expected payoff is therefore:

πL(zL, zR) =
1

2ψ

∫ max{zL−zR−θ,ρ0−ψ}

ρ0−ψ

(
r +

β

2

)
dρ+

1

2ψ

∫ max{zL−zR−θzL,ρ0−ψ}

max{zL−zR−θ,ρ0−ψ}

(
r + β

x∗6
2

)
dρ

+
1

2ψ

∫ −zL−zR
max{zL−zR−θzL,ρ0−ψ}

(
r + β

x∗5
2

)
dρ+

α

2ψ

∫ zR−zL−θzR

−zL−zR

(
1

2
+
x∗5
2

)
dρ

+
α

2ψ

∫ min{zR−zL+θ,ρ0+ψ}

zR−zL−θzR

(
1

2
+
x∗4
2

)
dρ. (A18)

To understand the first term, note that Assumption 2 is not sufficient to ensure that either party

wins a positive share of districts when zR < zL. Recalling that ∆(xi; zL, zR, ρ) is voter type xi’s net

value from party L, defined in (3), the voter type 1 weakly prefers party L for some ρ if and only

if ∆(1; zL, zR, ρ0 − ψ) ≥ 0, i.e., if and only if

|1− zR| − |1− zL| − θ − (ρ0 − ψ) ≥ 0 ⇐⇒ ρ0 − ψ ≤ zL − zR − θ. (A19)

If (A19) holds, then party L wins every district whenever ρ ≤ zL− zR− θ, in which case its payoff

is r + β/2. The upper limit of integration in the final integration follows a similar derivation: if

zR − zL + θ < ρ0 + ψ, then party R wins every district whenever the net preference shock in favor

of R is ρ > zR−zL+θ. If, instead, zR−zL+θ ≥ ρ0 +ψ, L wins a positive share of districts for every

realization of the preference shock. The remaining terms in (A18) follow a similar derivation to
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that for Lemma 1. Thus, the objective function becomes:

πL(zL, zR) =
1

2ψ

∫ max{zL−zR−θ,ρ0−ψ}

ρ0−ψ

(
r +

β

2

)
dρ+

1

2ψ

∫ zL−zR−θzL

max{zL−zR−θ,ρ0−ψ}

(
r + β

x∗6
2

)
dρ

+
1

2ψ

∫ −zL−zR
zL−zR−θzL

(
r + β

x∗5
2

)
dρ+

α

2ψ

∫ zR−zL−θzR

−zL−zR

(
1

2
+
x∗5
2

)
dρ

+
α

2ψ

∫ min{zR−zL+θ,ρ0+ψ}

zR−zL−θzR

(
1

2
+
x∗4
2

)
dρ. (A20)

We are left to consider cases depending on the order of zL−zR−θ and ρ0−ψ (the first term) and

the order of zR − zL + θ and ρ0 + ψ (the last term). We show that there are three relevant intervals

from which zL can be drawn. Recall that, by supposition, zL > max{0, zR − θzR − (ρ0 + ψ)}.

[1.] Suppose, first, that zL ∈ (max{0, zR − θzR − (ρ0 + ψ)}, zR + θ − (ρ0 + ψ)). This implies

zR − zL + θ > ρ0 + ψ, which further implies zL − zR − θ < ρ0 − ψ. On this domain, L’s objective

(A20) is strictly concave, with first-order condition:

z′L(zR, ρ0) =
α(θ − ρ0 − ψ)− β(ρ0 − ψ)− 2θr + zR(α− β)

α + β(2θ − 1)
, (A21)

which is strictly negative for all ρ0 ≥ 0 and zR ≤ 0. We conclude that (A20) strictly decreases on

this domain.

[2.] Suppose, second, that zL ∈ [zR+θ−(ρ0+ψ), zR+θ+(ρ0−ψ)]. This implies zR−zL+θ ≤ ρ0+ψ

and zL − zR − θ ≤ ρ0 − ψ. On this domain, L’s objective (A20) is strictly concave, with associated

first-order condition:

z′L(zR, ρ0) =
2θr + β(ρ0 − ψ + zR)

β(1− 2θ)
, (A22)

which is strictly negative by Assumption 1 that 2r > α ≥ β, and Assumption 2 that θ > ρ0 +ψ+ 1,

which implies that θ > −ρ0 + ψ − zR. We conclude that (A20) strictly decreases on this domain.

[3.] Suppose, finally, that zL > zR+θ+(ρ0−ψ). This implies zR−zL+θ < ρ0+ψ and zL−zR−θ > ρ0−
ψ. We find that ∂πR(zL,zR)

∂zR
= −2r+β−2zLβ

4ψ
< 0, implying that (A20) strictly decreases on this domain.

We have shown that L’s payoff (A20) strictly decreases in zL ≥ max{0, zR− θzR− (ρ0 +ψ)}when-

ever zR ≤ 0, verifying the claim.

Case 2: zR > 0. Suppose zL > zR is a best response. Party L wins if and only if x∗(zL, zR, ρ) ≥ 0,
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i.e., if and only if ρ ≤ zR − zL. Party L’s expected payoff from a platform zL ≥ zR is therefore:

πL(zL, zR) =
1

2ψ

∫ max{zL−zR−θ,ρ0−ψ}

ρ0−ψ

(
r +

β

2

)
dρ+

1

2ψ

∫ max{zL−zR−θzL,ρ0−ψ}

max{zL−zR−θ,ρ0−ψ}

(
r + β

x∗6
2

)
dρ

+
1

2ψ

∫ max{zR−zL−θzR,ρ0−ψ}

max{zL−zR−θzL,ρ0−ψ}

(
r + β

x∗5
2

)
dρ+

1

2ψ

∫ zR−zL

max{zR−zL−θzR,ρ0−ψ}

(
r + β

x∗4
2

)
dρ

+
α

2ψ

∫ min{zR−zL+θ,ρ0+ψ}

zR−zL

(
1

2
+
x∗4
2

)
dρ. (A23)

We first observe that for any (zL, zR) ∈ [0, 1]2, Assumption 2 that θ > ρ0 +ψ+ 1 implies that for

any (zL, zR) ∈ [0, 1]2, zR − zL + θ > ρ0 + ψ and zL − zR − θ < ρ0 − ψ. This implies that the upper

limit of integration in the final integral of (A23) is ρ0 +ψ, and that the first integral in (A23) is zero.

Next, we observe that by a similar argument to that of Lemma 1, a pair 0 < zR < zL is not an

equilibrium if with probability one the swing voter type x∗(zL, zR, ρ) is drawn weakly to the left

of zL. This implies that (zL, zR) is an equilibrium only if ∆(zL; zL, zR, ρ0 − ψ) > 0, i.e., only if

(zL − zR)− (zL − zL)− θzL − (ρ0 − ψ) > 0 ⇐⇒ zL − zR − θzL > ρ0 − ψ. (A24)

Thus, the objective (A23) becomes:

πL(zL, zR) =
1

2ψ

∫ zL−zR−θzL

ρ0−ψ

(
r + β

x∗6
2

)
dρ+

1

2ψ

∫ zR−zL−θzR

zL−zR−θzL

(
r + β

x∗5
2

)
dρ

+
1

2ψ

∫ zR−zL

zR−zL−θzR

(
r + β

x∗4
2

)
dρ+

α

2ψ

∫ ρ0+ψ

zR−zL

(
1

2
+
x∗4
2

)
dρ. (A25)

It is easily verified that ∂πL(zL,zR)
∂zL

|zL=zR < 0 for all zR > 0. Thus, a platform zL > zR is not a best

response by party L. �

Lemma 3. There does not exist an equilibrium in which zL > 0, or in which zR > 0.

Proof. Suppose first that zL > 0 in an equilibrium. We consider two possible cases for the location

of party R’s platform: weakly to the right of the median voter’s ideal policy, i.e., zR ≥ 0, or strictly

to the left of the median voter’s ideal policy, i.e., zR < 0.

Case 1: zR ≥ 0. The previous lemmata imply that if zR ≥ 0 and zL > 0, then zR = zL ≡ ẑ in any

equilibrium. Consider a deviation by party L to zL ∈ [0, ẑ). This yields the following payoff to

9



party L:

πL(zL, ẑ) =
1

2ψ

∫ max{zL−ẑ−θẑ,ρ0−ψ}

ρ0−ψ

(
r + β

x∗1
2

)
dρ+

1

2ψ

∫ max{ẑ−zL−θzL,ρ0−ψ}

max{zL−ẑ−θẑ,ρ0−ψ}

(
r + β

x∗2
2

)
dρ

+
1

2ψ

∫ ẑ−zL

max{ẑ−zL−θzL,ρ0−ψ}

(
r + β

x∗3
2

)
dρ+

α

2ψ

∫ ρ0+ψ

ẑ−zL

(
1

2
+
x∗3
2

)
dρ. (A26)

By now standard arguments, if with probability one the swing voter type x∗(ẑ, ẑ, ρ) is realized

weakly to the left of ẑ, then L strictly prefers a platform strictly to the left of ẑ, and thus zL = ẑ is

not a best response. Recalling that ∆(xi; zL, zR, ρ) defined in (3) is voter type xi’s net value from

party L, we observe that with probability one x∗(ẑ, ẑ, ρ) ≤ ẑ if and only if ∆(ẑ; ẑ, ẑ, ρ0−ψ) ≤ 0, i.e.,

(ẑ − ẑ)− (ẑ − ẑ)− θẑ − (ρ0 − ψ) ≤ 0 ⇐⇒ −θẑ ≤ ρ0 − ψ. (A27)

We conclude that if (A27) is satisfied, we cannot have an equilibrium. Suppose, instead, −θẑ >
ρ0−ψ. Straightforward algebra verifies that ∂πL(ẑ,ẑ)

∂(−zL)
> 0 if r > α

2
− ψ

2θ
(α−β), which is true because

r > α
2

. Thus a deviation by L to a platform zL < ẑ is profitable.

Case 2: zR < 0. Part (i) of Lemma 2 implies that zL ≤ max{0, zR − θzR − (ρ0 +ψ)}. If zR ≥ ρ0+ψ
1−θ , we

are done. However, Assumption 2 that θ > ρ0 +ψ+ 1 implies that −1 < ρ0+ψ
1−θ . Suppose, therefore,

there is an equilibrium profile (zL, zR) such that zR < ρ0+ψ
1−θ , and that zL ∈ (0, zR − θzR − (ρ0 + ψ)).

This implies that zR − zL − θzR > ρ0 + ψ. But, by a similar argument to the proof of Lemma 1, zR
is not a best response, since zR − zL− θzR > ρ0 +ψ implies that the swing voter is realized strictly

to the right of zR with probability one.

We conclude that zL ≤ 0, in an equilibrium. This, together with Lemma 1, implies that zR ≤ 0 in

an equilibrium.

Lemma 3 implies that to rule out the existence of equilibria that are not characterized in Proposi-

tions 1, 2, 3, it is sufficient to show that there is no equilibrium in which zR < zL ≤ 0.

Lemma 4. There does not exist an equilibrium in which zR < zL ≤ 0.

Proof. Party R’s expected payoff from zR ≤ zL is:

πR(zL, zR) =
α

2ψ

∫ zL−zR

ρ0−ψ

(
1

2
− x∗6

2

)
dρ+

1

2ψ

∫ min{zL−zR−θzL,ρ0+ψ}

zL−zR

(
r − βx

∗
6

2

)
dρ

10



+
1

2ψ

∫ min{zR−zL−θzR,ρ0+ψ}

min{zL−zR−θzL,ρ0+ψ}

(
r − βx

∗
5

2

)
dρ+

1

2ψ

∫ ρ0+ψ

min{zR−zL−θzR,ρ0+ψ}

(
r − βx

∗
4

2

)
dρ.

(A28)

Similarly, party L’s expected payoff from zL ∈ [zR, 0] is:

πL(zL, zR) =
1

2ψ

∫ zL−zR

ρ0−ψ

(
r + β

x∗6
2

)
dρ+

α

2ψ

∫ min{zL−zR−θzL,ρ0+ψ}

zL−zR

(
1

2
+
x∗6
2

)
dρ

+
α

2ψ

∫ min{zR−zL−θzR,ρ0+ψ}

min{zL−zR−θzL,ρ0+ψ}

(
1

2
+
x∗5
2

)
dρ+

α

2ψ

∫ ρ0+ψ

min{zR−zL−θzR,ρ0+ψ}

(
1

2
+
x∗4
2

)
dρ

(A29)

By now standard arguments, party R’s platform zR < zL is a best response only if with posi-

tive probability the swing voter type x∗(zL, zR, ρ) is realized strictly to the left of zR. Recalling that

∆(xi; zL, zR, ρ) defined in (3) is voter type xi’s net value from party L, with positive probability

x∗(zL, zR, ρ) < zR if and only if ∆(zR; zL, zR, ρ+ ψ) < 0 i.e., if and only if

(zR − zR)− (zL − zR)− θzR − (ρ0 + ψ) < 0 ⇐⇒ zR − zL − θzR < ρ0 + ψ. (A30)

We therefore restrict attention to pairs (zL, zR) such that zR < zL and that further satisfy zR −
zL − θzR < ρ0 + ψ. Notice that since zR < zL, condition (A30) further implies that with positive

probability x∗(zL, zR, ρ) < zL, i.e., zL − zR − θzL < ρ0 + ψ. Party R’s first-order condition on this

implied domain is therefore:

ẑR(zL) =
−α(θ + ρ0 − ψ)− β(ρ0 + ψ) + 2θr + zL(α− β)

α + β(2θ − 1)
. (A31)

Similarly, party L’s first-order condition is:

ẑL(zR) =
−α(θ + ρ0 + ψ) + β(ψ − ρ0) + 2θr + zR(α− β)

2αθ + α− β
. (A32)

We consider two possible cases for an equilibrium in which zR < zL ≤ 0. In the first case, party

L’s platform is strictly to the left of zero, i.e., zL < 0. In the second case, party L’s platform is zero,

i.e., zL = 0.

Case 1: zL < 0. When zR < zL < 0, the platforms solve (A31) and (A32). This yields a unique pair

(z∗L, z
∗
R), such that z∗L − z∗R > 0 if and only if ρ0 − ψ > (2r−α)θ

α+β
, which contradicts Assumption 2 that

11



ρ0 − ψ < −1, and Assumption 1 that 2r > α.

Case 2: zL = 0. We obtain party R’s best response to party L’s platform by substituting zL = 0 into

(A31). This yields

ẑR(0) < 0 ⇐⇒ ρ0 >
θ(2r − α) + ψ(α− β)

α + β
≡ ρ̂0. (A33)

Expression (A32) reveals that ẑL(zR) strictly increases in zR < 0. Thus, for any zR < 0,

ẑL(zR) < 0 ⇐⇒ ρ0 >
θ(2r − α)− ψ(α− β)

α + β
≡ ρ

0
. (A34)

We have shown that ẑR(0) < 0 if and only if ρ0 > ρ̂0, and that for any zR < 0, ẑL(zR) < 0 if ρ0 ≥ ρ
0
.

Because ρ
0
≤ ρ̂0 for all α ≥ β, we conclude that there does not exist an equilibrium in which

zR < zL = 0.

Existence of equilibrium. We now verify that there exists an equilibrium in which zL ≤ zR ≤ 0.

The (at most) three swing voter types are given by x∗1 = zL−zR−ρ
θ

, x∗2 = zL+zR−ρ
2+θ

and x∗3 = zR−zL−ρ
θ

,

defined in expressions (A2), (A3) and (A4). Assumption 2 that θ > ρ0 + ψ implies that x∗1 ≤ 1 and

x∗3 ≥ −1 for all ρ ∈ [ρ0 − ψ, ρ0 + ψ]. Finally, party R wins if and only if x∗(zL, zR, ρ) < 0, i.e., if and

only if ρ > zL − zR. Given zL ≤ 0, R’s expected payoff from zR ∈ [zL, 0] is therefore:

πR(zL, zR) =
α

2ψ

∫ zL−zR

ρ0−ψ

(
1

2
− x∗1

2

)
dρ+

1

2ψ

∫ min{ρ0+ψ,zL−zR−θzR}

zL−zR

(
r − βx

∗
1

2

)
dρ

+
1

2ψ

∫ min{ρ0+ψ,zR−zL−θzL}

min{ρ0+ψ,zL−zR−θzR}

(
r − βx

∗
2

2

)
dρ+

1

2ψ

∫ ρ0+ψ

min{ρ0+ψ,zR−zL−θzL}

(
r − βx

∗
3

2

)
dρ.

(A35)

Given zR ≤ 0, L’s expected payoff from zL ≤ zR is:

πL(zL, zR) =
1

2ψ

∫ zL−zR

ρ0−ψ

(
r + β

x∗1
2

)
dρ+

α

2ψ

∫ min{ρ0+ψ,zL−zR−θzR}

zL−zR

(
1

2
+
x∗1
2

)
dρ

+
α

2ψ

∫ min{ρ0+ψ,zR−zL−θzL}

min{ρ0+ψ,zL−zR−θzR}

(
1

2
+
x∗2
2

)
dρ+

α

2ψ

∫ ρ0+ψ

min{ρ0+ψ,zR−zL−θzL}

(
1

2
+
x∗3
2

)
dρ.

(A36)

By now standard arguments, we observe that for any zL ≤ 0, zR ∈ [zL, 0] is a best response only

if with positive probability the swing voter type x∗(zL, zR, ρ) is realized strictly to the left of party

R’s platform zR, i.e., only if zL − zR − θzR ≥ ρ0 + ψ. Similarly, for any zR ≤ 0, zL ≤ zR is a best
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response only if with positive probability the swing voter type x∗(zL, zR, ρ) is realized strictly to

the left of zL, i.e., only if zR − zL − θzL < ρ0 + ψ.

We therefore focus on platforms satisfying zL − zR − θzR < ρ0 + ψ and zR − zL − θzL < ρ0 + ψ,

subsequently verifying that these conditions hold at the solutions we characterize, below. As-

sumption 2 then implies that R’s objective (A35) is strictly concave in zR. Solving the first-order

condition yields:

ẑint
R (zL) =

−α(θ + ρ0 − ψ)− β(ρ0 + ψ) + 2θr + zL(α− β)

α + β(2θ − 1)
. (A37)

Similarly, L’s objective (A36) is strictly concave in zL. Solving the first-order condition yields:

ẑint
L (zR) =

−α(θ + ρ0 + ψ) + β(ψ − ρ0) + 2θr + zR(α− β)

2αθ + α− β
. (A38)

Let (z∗L, z
∗
R) denote an equilibrium pair of platforms.

First, we identify conditions under which z∗L = z∗R = 0. We observe that ẑint
L (0) strictly decreases

in ρ0, and also that ẑint
R (0) strictly decreases in ρ0. We find that:

ẑint
L (0) ≥ 0 ⇐⇒ ρ0 ≤

θ(2r − α)− (α− β)ψ

α + β
≡ ρ

0
, (A39)

and

ẑint
R (0) ≥ 0 ⇐⇒ ρ0 ≤

θ(2r − α) + (α− β)ψ

α + β
= ρ′0, (A40)

where Assumption 2 that α ≥ β implies that ρ′0 ≥ ρ
0
. Thus, z∗L = z∗R = 0 if ρ0 ≤ ρ

0
.

Second, we identify conditions for z∗L < z∗R = 0. In that case, we have

z∗L = ẑint
L (0) =

−α(θ + ρ0 + ψ) + β(ψ − ρ0) + 2θr

2αθ + α− β
, (A41)

and further require that ẑint
R (ẑint

L (0)) ≥ 0. We have already shown that ẑint
L (0) < 0 if and only if

ρ0 > ρ
0
. We also have that

ẑint
R (ẑint

L (0)) ≥ 0 ⇐⇒ ρ0 ≤
θ
(
α
(
ψ(α−β)
αθ+α−β − 1

)
+ 2r

)
α + β

≡ ρ0. (A42)

Therefore, z∗L < z∗R = 0 if ρ ∈ (ρ
0
, ρ0].
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Third, we identify conditions for z∗L < z∗R < 0. In that case, we may solve the system of interior

solutions, directly, to obtain:

z∗L =
βθψ(β − α)− (α + β(θ − 1))(α(θ + ρ0) + βρ0 − 2θr)

θ (α2 + 2αβθ − β2)
,

z∗R = z∗L + (α− β)
(α + β)(ψ − ρ0) + θ(2r − α)

α2 + 2αβθ − β2
. (A43)

We now verify that for all ρ0 ≥ 0, the solution (z∗L, z
∗
R) is an equilibrium. To establish this, we

proceed in two steps.

Step 1: verifying interior solutions. We verify that the pair (z∗L, z
∗
R) always satisfies the restrictions

that z∗R−z∗L−θz∗L < ρ0 +ψ, which, in turn, implies z∗L−z∗R−θz∗R < ρ0 +ψ. We write (z∗L(ρ0), z
∗
R(ρ0))

to emphasize the dependence on R’s advantage, ρ0.

First, consider ρ0 ≤ ρ
0
, so that z∗L(ρ0) = z∗R(ρ0) = 0. In this case, the claim is immediate from

ρ0 + ψ > 0.

Second, consider ρ0 ∈ [ρ
0
, ρ0], so that z∗R(ρ0) = 0, and z∗L(ρ0) is given by (A41). We therefore

want to verify that ρ0 + ψ − (−z∗L(ρ0)− θz∗L(ρ0)) > 0. The left-hand side of this inequality is linear

in ρ0. Since ρ0 ∈ [ρ
0
, ρ0], it is sufficient to verify that

ρ
0

+ ψ − (0− z∗L(ρ
0
)− θz∗L(ρ

0
)) =

θ(2r − α) + 2βψ

α + β
> 0, (A44)

and that

ρ0 + ψ − (0− z∗L(ρ0)− θz∗L(ρ0)) =

θ

(
ψ(α2+β2)
αθ+α−β + 2r − α

)
α + β

> 0. (A45)

Third, we consider ρ0 > ρ0, so that z∗L(ρ0) and z∗R(ρ0) are given by (A43). Because (ρ0 + ψ) −
(z∗R(ρ0)− z∗L(ρ0)− θz∗L(ρ0)) strictly increases in ρ0 it is sufficient to recall that, by expression (A45),

the difference is strictly positive evaluated at ρ0, and thus strictly positive for all ρ0 > ρ0.

Step 2: verifying no “jump” deviations. First, we highlight that if z∗R(ρ0) − θz∗R(ρ0) < ρ0 + ψ, i.e.,

implying that for any z̃L > 0, z∗R(ρ0) − z̃L − θz∗R(ρ0) < ρ0 + ψ then lemmata 1 and 2 imply that

the only deviations that we need to consider are by party R to zR < z∗L(ρ0), and by party L to

zL ∈ (z∗R(ρ0), 0]. If ρ0 ≤ ρ0, then z∗R(ρ0) = 0, and z∗R(ρ0)− θz∗R(ρ0) < ρ0 + ψ, trivially. To verify that,
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indeed, z∗R(ρ0)− θz∗R(ρ0) ≤ ρ0 + ψ, for ρ0 > ρ0, we observe that:

ρ0 + ψ − (z∗R(ρ0)− θz∗R(ρ0)) =
θψ(αθ(α + β) + β(α− β)) + ρ0 (α (θ2(β − α) + θ(α + β) + α)− β2)

θ (α2 + 2αβθ − β2)
,

and thus the difference is linear in ρ0. We have

ρ0 + ψ − (z∗R(ρ0)− θz∗R(ρ0)) = ρ0 + ψ > 0 (A46)

and since Assumption 2 that ρ0 − ψ < −1 implies that ρ0 < ψ, it is sufficient to verify that

ψ + ψ − (z∗R(ψ)− θz∗R(ψ)) =

(
1

θ
+ 1

)
ψ > 0. (A47)

We may therefore invoke lemmata 1 and 2 and restrict attention to only two deviations: by party

L to zL ∈ (zR, 0], and by party R to zR < zL.

No profitable deviation by party L to zL ∈ (z∗R, 0]. We have z∗R < 0 if and only if ρ0 > ρ0. The (at most)

three swing voter types are given by x∗4 =
z∗R−zL−ρ

θ
, x∗5 =

−(zL+z∗R)−ρ
θ−2 , and x∗6 =

zL−z∗R−ρ
θ

. Party R

wins if zL − z∗R − ρ < 0, i.e., if ρ > zL − z∗R. Party L’s expected payoff from this deviation is:

πL(zL, zR) =
1

2ψ

∫ max{zL−z∗R−θ,ρ0−ψ}

ρ0−ψ

(
r +

β

2

)
dρ+

1

2ψ

∫ zL−z∗R

max{zL−z∗R−θ,ρ0−ψ}

(
r + β

x∗6
2

)
dρ

+
α

2ψ

∫ min{zL−z∗R−θzL,ρ0+ψ}

zL−z∗R

(
1

2
+
x∗6
2

)
dρ+

α

2ψ

∫ min{z∗R−zL−θz
∗
R,ρ0+ψ}

min{zL−z∗R−θzL,ρ0+ψ}

(
1

2
+
x∗5
2

)
dρ

+
α

2ψ

∫ min{z∗R−zL+θ,ρ0+ψ}

min{z∗R−zL−θz
∗
R,ρ0+ψ}

(
1

2
+
x∗4
2

)
dρ. (A48)

We have already shown that z∗R−z∗L−θz∗L < ρ0 +ψ. Notice that z∗R−z∗L−θz∗R < z∗R−z∗L−θz∗L. And,

for zL ∈ (z∗R, 0], we have z∗R− zL− θz∗R < z∗R− z∗L− θz∗R, since zL > z∗R implies zL > z∗L. We conclude

that z∗R−zL−θz∗R < ρ0 +ψ. This, in turn, implies zL−z∗R−θzL < ρ0 +ψ, since θ > 2. Assumption 2

that θ > ρ0 +ψ+ 1 is equivalent to θ− 1 > ρ0 +ψ. This implies that for any z∗R < 0 and zL ∈ (z∗R, 0],

z∗R − zL + θ > ρ0 + ψ. This implies that zL − z∗R − θ < −ρ0 − ψ < ρ0 − ψ, for ρ0 > ρ
0
> 0. We then

verify that (A48) is strictly concave, and yields the same first-order condition as given in (A38),

which implies that zL > z∗R cannot be optimal when ρ0 > ρ0.

No profitable deviation by party R to zR < z∗L. Party R wins if and only if ρ > z∗L − zR. R’s payoff
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from this deviation is

πR(z∗L, zR) =
α

2ψ

∫ z∗L−zR

max{ρ0−ψ,z∗L−zR−θ}

(
1

2
− x∗6

2

)
dρ+

1

2ψ

∫ min{ρ0+ψ,z∗L−zR−θz
∗
L}

z∗L−zR

(
r − βx

∗
6

2

)
dρ

+
1

2ψ

∫ min{ρ0+ψ,zR−z∗L−θzR}

min{ρ0+ψ,z∗L−zR−θz
∗
L}

(
r − βx

∗
5

2

)
dρ+

1

2ψ

∫ min{ρ0+ψ,zR−z∗L+θ}

min{ρ0+ψ,zR−z∗L−θzR}

(
r − βx

∗
4

2

)
dρ

+
1

2ψ

∫ ρ0+ψ

min{ρ0+ψ,zR−z∗L+θ}

(
r +

β

2

)
. (A49)

By a similar argument to the previous paragraph, Assumption 2 implies that z∗L− zR− θ < ρ0−ψ,

and that zR − z∗L + θ > ρ0 + ψ. Also, by now familiar arguments, zR < z∗L is not a best response if

with probability one the swing voter’s type x∗(z∗L, zR, ρ) is realized weakly to the right of zR. We

therefore restrict attention to zR < z∗L satisfying the restriction that zR − z∗L − θzR < ρ0 + ψ. Un-

der these restrictions, (A49) is strictly concave, with first-order condition that is equivalent to the

first-order condition identified in expression (A37), and which therefore implies that a deviation

to zR < z∗L is not profitable.

Proof of Corollary 1. In this case, we have z∗R(ρ0) = 0, so that

z∗L(ρ0) =
−α(θ + ρ0 + ψ) + β(ψ − ρ0) + 2θr

2αθ + α− β
. (A50)

We obtain comparative statics for each of the primitives, in turn.

Higher ρ0. We have ∂z∗L
ρ0

= − α+β
2αθ+α−β < 0. Thus, z∗L decreases in ρ0.

Higher θ. We have

∂z∗L
∂θ

=
α(α(2ρ0 + 2ψ − 1) + 2β(ρ0 − ψ) + β) + 2r(α− β)

(2αθ + α− β)2
. (A51)

The numerator of this expression strictly increases in ρ0, and is therefore positive if and only if

ρ0 ≥ − (α−β)(α(2ψ−1)+2r)
2α(α+β)

. This threshold is strictly negative and thus vacuously satisfied. We con-

clude that z∗L increases in θ.

Higher α. We have
∂z∗L
∂α

=
β(2θρ0 − 2θψ + θ + 2ρ0)− 2θ(2θ + 1)r

(2αθ + α− β)2
. (A52)

Calling ν(ρ0) the numerator of this expression, we find that ν(ρ0) strictly increases in ρ0, and that

ν(ρ0) < 0. Thus, z∗L strictly decreases in α.
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Higher ψ. ∂z∗L
∂ψ

= β−α
2αθ+α−β < 0.

Higher r. We have ∂z∗L
∂r

= 2θ
2αθ+α−β > 0.

Proof of Corollaries 2, 3 and 4 and 5.

z∗L =
βθψ(β − α)− (α + β(θ − 1))(α(θ + ρ0) + βρ0 − 2θr)

θ (α2 + 2αβθ − β2)
,

z∗R = z∗L + (α− β)
((α + β)(ψ − ρ0) + θ(2r − α))

α2 + 2αβθ − β2
. (A53)

We obtain comparative statics for each of the primitives, in turn.

Higher ρ0. We find that ∂z∗L
∂ρ0

= − (α+β)(α+β(θ−1))
θ(α2+2αβθ−β2)

< 0. Moreover, ∂[z∗R−z
∗
L]

∂ρ0
= β2−α2

α2+2αβθ−β2 < 0, which

implies that z∗R also decreases in ρ0, and faster than z∗L. �

Higher α. We start with the platform z∗L. We find that ∂z∗L
∂α

can be written as a quotient with a

strictly positive denominator, and a numerator that we call ν(r, ρ0), which strictly decreases in r.

Recalling that Assumption 1 states r > 1
2

(
α + ψ

θ
(α− β))

)
, we find that ν(1

2

(
α + ψ

θ
(α− β))

)
, ρ0)

is linear in ρ0. Straightforward algebra (omitted) verifies that ν(1
2

(
α + ψ

θ
(α− β))

)
, ρ0) < 0 and

ν(1
2

(
α + ψ

θ
(α− β))

)
, ψ) < 0. Thus, ∂z

∗
L

∂α
< 0. Next, we consider the platform z∗R. We find that ∂z∗R

∂α

can be written as a quotient with a strictly positive denominator, and a numerator that we call

µ(ρ0, ψ), which strictly decreases in ρ0. Therefore, there exists ρ̂0 such that µ(ρ0, ψ) ≥ 0 if and only

if ρ0 ≤ ρ̂0. Thus, ρ0 > ρ̂0 implies that z∗R decreases in α, while ρ0 ≤ ρ̂0 implies that z∗R increases in α.

Next, we establish that ρ̂0 < ρ0. Straightforward substitution (omitted) verifies that ρ0 − ρ̂0

strictly increases in r, and that

ρ0 − ρ̂0 > 0 ⇐⇒ r >
1

2
β

(
ψ (2α2θ + (α− β)2)

(αθ + α− β)2
− 1

)
≡ r̂. (A54)

Assumption 1 says that r > 1
2

(
α + ψ

θ
(α− β))

)
≡ r∗. We establish that r∗ > r̂. We observe that r∗−

r̂ is linear in ψ, and strictly positive positive evaluated at ψ = 0 and ψ = θ. Because Assumption 2

that θ > ρ0 +ψ+1 implies that ψ < θ, we conclude that r∗ > r̂. Thus, ρ0 > ρ̂0, and z∗R decreases in α.

Higher r. ∂z∗L
∂r

= 2(α+β(θ−1))
α2+2αβθ−β2 > 0, and ∂z∗R

∂r
= 2(αθ+α−β)

α2+2αβθ−β2 > 0, and ∂[z∗R−z
∗
L]

∂r
= 2θ(α−β)

α2+2αβθ−β2 > 0.

Higher ψ. ∂z∗L
∂ψ

= β(α−β)
β2−α(α+2βθ)

< 0, and ∂z∗R
∂ψ

= α(α−β)
α2+2αβθ−β2 > 0.
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Online Appendix to “The Race to the Base”

Dan Bernhardt, Peter Buisseret and Sinem Hidir

Appendix B: “Returning to Base” Extension

Assumption 1 says that parties put a large premium r > 1
2

(
α + ψ

θ
(α− β)

)
on winning a major-

ity. This reflects the majoritarian operation of legislative organization: the winning party enjoys

control over the legislative timetable and the appointment of key positions such as committee

chairs; in parliamentary democracies, the majority-winning party is also awarded control of the

executive branch.

Parties may nonetheless face an election in which relative party popularity is especially volatile

(high ψ), or long-standing party loyalties are in flux (low θ), or parties place an especially high

premium on maintaining their core districts (α−β large), so that our assumption fails. In that case,

if the initial advantage in favor of either party is not too large, we obtain a unique equilibrium in

which both parties revert to their core districts.

In this Appendix, we focus on a setting in which r < 1
2

(
α + ψ

θ
(α− β)

)
, i.e., in which Assump-

tion 1 fails. We establish the following result for the case in which the initial advantage favoring

party R is not too large.

Proposition 4. If r < 1
2

(
α + ψ

θ
(α− β)

)
, and party R’s advantage is not too large in the sense that

ρ0 <
αθ(αθ + ψ(α− β)− 2rθ)

(α + β)(α− β + αθ)
, (A55)

then there exists a unique pure strategy equilibrium, in which party L retreats to its base:

z∗L(ρ0) =
αθ(θ(2r − α)− α(ψ + ρ0) + β(ψ − ρ0))− (α2 − β2)ρ0

2αθ(αθ + α− β)
< 0, (A56)

and party R also retreats to its base, albeit to a more limited extent,

|z∗L(ρ0)| > z∗R(ρ0) = z∗L(ρ0) +
αθ + ψ(α− β)− 2θr

αθ + α− β
> 0. (A57)

As each party’s relative concern for its core districts α increases, both parties further retreat to

their respective bases. Perhaps surprisingly, the stronger party retreats more quickly:

18



Corollary 6. As α increases, both parties increasingly retreat to their respective bases, but the stronger

party moves faster than the weaker party, and to an extent that increases in its initial advantage, ρ0.

When α increases, each party cares relatively more about catering to its core districts. On the

one hand, this partly encourages a party to abandon centrist districts in favor of those whose me-

dians are relatively more extreme than the party’s platform—i.e., medians with preferred policies

to the left of z∗L for party L, or to the right of z∗R for party R. On the other hand, each party also

has core districts whose medians are relatively more moderate than the party’s platform—i.e.,

medians with preferred policies between z∗L and 0 for party L, or between 0 and z∗R for party R.

Increases in α also encourage each party to moderate further in order to increase its prospect of

winning these districts. Critically, party R is initially positioned closer to the median voter than

party L:
z∗L + z∗R

2
= −ρ0

α + β

2αθ
< 0. (A58)

Thus, as α increases, a relatively higher proportion of R’s core district medians are more extreme

than the party’s platform, vis-à-vis party L’s. This encourages a relatively greater retreat to the

base by party R. Thus, the parties become more polarized, and the midpoint of the parties’ plat-

forms also moves in the direction of the stronger party’s core districts.

Proof of Proposition 4. We characterize the unique equilibrium, which satisfies zL ≤ 0 ≤ zR.

First, we rule out other possible equilibria.

Step 1: No equilibrium in which zR ≤ zL ≤ 0, with at least one strict inequality. The proof replicates

verbatim the proof of Lemma 4.

Step 2: No equilibrium in which zL ≤ zR ≤ 0. Suppose, first, zL = zR = 0. Letting ẑint
L (zR) denote L’s

interior solution on [−1, zR] given zR ≤ 0, we showed in our benchmark proofs that:

ẑint
L (0) ≥ 0 ⇐⇒ ρ0 ≤

θ(2r − α)− (α− β)ψ

α + β
≡ ρ

0
. (A59)

If r < 1
2

(
α + ψ

θ
(α− β)

)
, then ρ

0
< 0, so that L strictly prefers to deviate to the left of zero, for all

ρ0 ≥ 0. Suppose, next, that zL < zR = 0. Then, we showed in our benchmark proofs that L’s best

response (that we also showed is interior) is

ẑint
L (0) =

−α(θ + ρ0 + ψ) + β(ψ − ρ0) + 2θr

2αθ + α− β
. (A60)
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Consider, however, R’s value from a platform zR > 0. For zR > 0 sufficiently close to zero, this

payoff is:

πR(zL, zR) =
α

2ψ

∫ ẑint
L (0)−zR−θzR

ρ0−ψ

(
1

2
− x∗1

2

)
dρ+

α

2ψ

∫ ẑint
L (0)+zR

ẑint
L (0)−zR−θzR

(
1

2
− x∗2

2

)
dρ

+
1

2ψ

∫ min{zR−ẑint
L (0)−θẑint

L (0),ρ0+ψ}

ẑint
L (0)+zR

(
r − βx

∗
2

2

)
dρ+

1

2ψ

∫ ρ0+ψ

min{zR−ẑint
L (0)−θẑint

L (0),ρ0+ψ}

(
r − βx

∗
3

2

)
dρ.

(A61)

We show, first, that −ẑint
L (0)− θẑint

L (0) < ρ0 + ψ. Straightforward substitution establishes:

− ẑint
L (0)− θẑint

L (0)− (ρ0 + ψ) =
2βρ0 + θ(−ψ(α + β) + αθ − αρ0 + α + βρ0 − 2(θ + 1)r)

2αθ + α− β
, (A62)

which is linear in ρ0, and easily verified to be strictly negative evaluated at ρ0 = 0 and ρ0 =
αθ(αθ+ψ(α−β)−2rθ)

(α+β)(α−β+αθ) . Using the appropriate limits of integration in (A61), we have that

∂πR(ẑint
L (0), 0)

∂zR
=
α2(θ(θ − ρ0 + ψ)− ρ0)− αβθ(ρ0 + ψ) + β2ρ0 − 2αθ2r

2θψ(2αθ + α− β)
, (A63)

which strictly decreases in ρ0, and satisfies

∂πR(ẑint
L (0), 0)

∂zR

∣∣∣∣
ρ0=

αθ(αθ+ψ(α−β)−2rθ)
(α+β)(α−β+αθ)

= 0. (A64)

Thus, for any ρ0 <
αθ(αθ+ψ(α−β)−2rθ)

(α+β)(α−β+αθ) , R strictly prefers to deviate to a platform strictly to the right

of zero.

Suppose, finally, zL < zR < 0. We showed earlier that this implies ρ0 > ρ0, where ρ0 is de-

fined in (A42). Straightforward algebra verifies that ρ0 > ρ̂0, implying that ρ0 > ρ0 violating the

parameter restriction that ρ0 < ρ̂0.

Step 3: No equilibrium in which 0 ≤ zL ≤ zR, with at least one strict inequality. Party L’s payoff from

zL ∈ [0, zR] is

πL(zL, zR) =
1

2ψ

∫ max{zL−zR−θzR,ρ0−ψ}

ρ0−ψ

(
r + β

x∗1
2

)
dρ+

1

2ψ

∫ max{zR−zL−θzL,ρ0−ψ}

max{zL−zR−θzR,ρ0−ψ}

(
r + β

x∗2
2

)
dρ

+
1

2ψ

∫ zR−zL

max{zR−zL−θzL,ρ0−ψ}

(
r + β

x∗3
2

)
dρ+

α

2ψ

∫ ρ0+ψ

zR−zL

(
1

2
+
x∗3
2

)
dρ. (A65)
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Likewise, R’s payoff from zR ≥ zL is:

πR(zL, zR) =
α

2ψ

∫ max{zL−zR−θzR,ρ0−ψ}

ρ0−ψ

(
1

2
− x∗1

2

)
dρ+

α

2ψ

∫ max{zR−zL−θzL,ρ0−ψ}

max{zL−zR−θzR,ρ0−ψ}

(
1

2
− x∗2

2

)
dρ

+
α

2ψ

∫ zR−zL

max{zR−zL−θzL,ρ0−ψ}

(
1

2
− x∗3

2

)
dρ+

1

2ψ

∫ ρ0+ψ

zR−zL

(
r − βx

∗
3

2

)
dρ. (A66)

Similar arguments to those used in benchmark proofs imply that we must have zL − zR − θzR >

ρ0 − ψ, and thus zR − zL − θzL > ρ0 − ψ, in an equilibrium. Both objectives are concave on their

implied domains. We first argue that we cannot have 0 < zL = zR. To see this, observe that

∂πL(zR, zR)

∂zL
= −α(−θ + ρ0 + ψ) + 2θr + β(ρ0 − ψ + 2θzR)

4θψ
, (A67)

which strictly decreases in zR and ρ0, and satisfies ∂πL(zR,zR)
∂zL

|ρ0=zR=0 = α(θ−ψ)+βψ−2θr
4θψ

, which is

strictly negative if and only if r > α
2
− ψ

2θ
(α− β), which holds under α > β and r > α

2
.

We next argue that we cannot have 0 < zL < zR. To show this, we characterize unique interior

best responses, using (A65) and (A66):

ẑL(zR) =
α(θ − ρ0 − ψ)− β(ρ0 − ψ)− 2θr + zR(α− β)

α + β(2θ − 1)
, (A68)

and

ẑR(zL) =
α(θ − ρ0 + ψ)− β(ρ0 + ψ)− 2θr + zL(α− β)

2αθ + α− β
. (A69)

Solving the pair of best responses, we obtain:

z∗L =
αθψ(β − α)− (αθ + α− β)(ρ0(α + β) + θ(2r − α))

θ (α2 + 2αβθ − β2)
< 0, (A70)

a contradiction. Suppose, finally, that 0 = zL < zR. R’s interior best response to zL = 0 is:

ẑR(0) =
α(θ − ρ0 + ψ)− β(ρ0 + ψ)− 2θr

2αθ + α− β
. (A71)

It is straightforward to verify that L’s payoff strictly decreases in zL ∈ [0, zR]. We further show that

a platform zL < 0 is strictly preferred to zL = 0. To see this, note that L’s payoff from a platform
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zL < 0 when zR > 0 is:

πL(zL, zR) =
1

2ψ

∫ max{zL−zR−θzR,ρ0−ψ}

ρ0−ψ

(
r + β

x∗1
2

)
dρ+

1

2ψ

∫ zL+zR

max{zL−zR−θzR,ρ0−ψ}

(
r + β

x∗2
2

)
dρ

+
α

2ψ

∫ min{zR−zL−θzL,ρ0+ψ}

zL+zR

(
1

2
+
x∗2
2

)
dρ+

α

2ψ

∫ ρ0+ψ

min{zR−zL−θzL,ρ0+ψ}

(
1

2
+
x∗3
2

)
dρ.

(A72)

For zL < 0 sufficiently close to zero, we have zR − zL − θzL < ρ0 + ψ. If −θzR ≥ ρ0 − ψ, then R has

a profitable deviation to z′R < zR. Suppose, instead, −θzR < ρ0 − ψ. We find that

∂πL(0, α(θ−ρ0+ψ)−β(ρ0+ψ)−2θr
2αθ+α−β )

∂zL
=
α2(−(θ(θ + ρ0 + ψ) + ρ0)) + αβθ(ψ − ρ0) + β2ρ0 + 2αθ2r

2θψ(2αθ + α− β)
, (A73)

which strictly decreases in ρ0 ≥ 0, and is strictly negative when evaluated at ρ0 = 0, under the

parameter restriction r < α
2

+ ψ
2θ

(α− β).

Step 4: No equilibrium in which 0 ≤ zR ≤ zL, with at least one strict inequality. To rule out zL > zR ≥ 0,

we may replicate the argument of Lemma 2, Case 2. Similarly, to rule out zL = zR > 0, we may

replicate the argument of Lemma 3, Case 1.

Step 5: No equilibrium in which zR ≤ 0 ≤ zL, with at least one strict inequality. If zR ≤ 0 is a best

response to zL ≥ 0, then we must have zR− zL− θzR ≤ ρ0 +ψ. It is then straightforward to extend

the argument of Lemma 2 in our benchmark model to verify that L’s payoff strictly decreases in

zL ≥ 0. To rule out zR < zL = 0, it suffices to replicate verbatim the proof of Lemma 4.

Characterizing the equilibrium. We now verify that there exists an equilibrium in which zL ≤ 0 ≤ zR.

The (at most) three swing voter types are given by x∗1 = zL−zR−ρ
θ

, x∗2 = zL+zR−ρ
2+θ

and x∗3 = zR−zL−ρ
θ

.

Assumption 2 that θ > ρ0 + ψ implies that x∗1 ≤ 1 and x∗3 ≥ −1 for all ρ ∈ [ρ0 − ψ, ρ0 + ψ]. Finally,

party R wins if and only if ρ > zL + zR. Given zL ≤ 0, R’s expected payoff from zR ∈ [zL, 0] is

therefore:

πR(zL, zR) =
α

2ψ

∫ max{zL−zR−θzR,ρ0−ψ}

ρ0−ψ

(
1

2
− x∗1

2

)
dρ+

α

2ψ

∫ zL+zR

max{zL−zR−θzR,ρ0−ψ}

(
1

2
− x∗2

2

)
dρ

+
1

2ψ

∫ min{zR−zL−θzL,ρ0+ψ}

zL+zR

(
r − βx

∗
2

2

)
dρ+

1

2ψ

∫ ρ0+ψ

min{zR−zL−θzL,ρ0+ψ}

(
r − βx

∗
3

2

)
dρ.

(A74)
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L’s corresponding payoff is

πL(zL, zR) =
1

2ψ

∫ max{zL−zR−θzR,ρ0−ψ}

ρ0−ψ

(
r + β

x∗1
2

)
dρ+

1

2ψ

∫ zL+zR

max{zL−zR−θzR,ρ0−ψ}

(
r + β

x∗2
2

)
dρ

+
α

2ψ

∫ min{zR−zL−θzL,ρ0+ψ}

zL+zR

(
1

2
+
x∗2
2

)
dρ+

α

2ψ

∫ ρ0+ψ

min{zR−zL−θzL,ρ0+ψ}

(
1

2
+
x∗3
2

)
dρ.

(A75)

By now standard arguments, we must have zL−zR−θzR > ρ0−ψ and zR−zL−θzL < ρ0+ψ in any

equilibrium. We therefore solve for equilibrium under the presumption that both strict inequali-

ties hold, and then verify that they indeed hold at the solutions we derive, below. Both objectives

are strictly concave, and the corresponding system of first-order conditions yields a unique solu-

tion (z∗L, z
∗
R) as given in the statement of the Proposition. We observe that z∗R(ρ0) decreases in ρ0,

and is strictly positive so long as ρ0 is strictly less than the cut-off in the Proposition. Similarly, we

observe that z∗L(ρ0) strictly decreases in ρ0, and z∗L(0) < 0 so long as r < α
2

+ ψ
2θ

(α− β).

Verifying interior solutions. We first verify that z∗L(ρ0)− z∗R(ρ0)− θz∗R(ρ0)− (ρ0−ψ) > 0. Straightfor-

ward algebra yields that this difference strictly decreases in ρ0, and because ρ0 <
αθ(α(θ+ψ)−βψ−2θr)

(α+β)(αθ+α−β) ≡
ρ∗0, it is sufficient to observe that

z∗L(ρ∗0)− z∗R(ρ∗0)− θz∗R(ρ∗0)− (ρ∗0 − ψ) =
2αβθψ + θ(2r − α)(αθ + α + β)

(α + β)(αθ + α− β)
> 0. (A76)

We next verify that ρ0 + ψ − (z∗R(ρ0) − z∗L(ρ0) − θz∗L(ρ0)) > 0. Straightforward algebra yields that

this difference strictly increases in ρ0, and because ρ0 ≥ 0, it is sufficient to observe that

0 + ψ − (z∗R(0)− z∗L(0)− θz∗L(0)) =
θψ(α + β) + θ(θ + 2)(2r − α)

2(αθ + α− β)
> 0. (A77)

Verifying no “jump” deviations. We consider four possible deviations: to zL ∈ (0, z∗R], to zL ∈ (z∗R, 1],

to zR ∈ [−1, z∗L), and to zR ∈ [z∗L, 0).

Case 1: zR ∈ [z∗L, 0). R’s payoff from this platform is:

πR(z∗L, zR) =
α

2ψ

∫ z∗L−zR

ρ0−ψ

(
1

2
− x∗1

2

)
dρ+

1

2ψ

∫ min{ρ0+ψ,z∗L−zR−θzR}

z∗L−zR

(
r − βx

∗
1

2

)
dρ
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+
1

2ψ

∫ min{ρ0+ψ,zR−z∗L−θz
∗
L}

min{ρ0+ψ,z∗L−zR−θzR}

(
r − βx

∗
2

2

)
dρ+

1

2ψ

∫ ρ0+ψ

min{ρ0+ψ,zR−z∗L−θz
∗
L}

(
r − βx

∗
3

2

)
dρ.

(A78)

Recall that z∗R−z∗L−θz∗L < ρ0+ψ, and z∗R > 0, implying that for any zR < 0, zR−z∗L−θz∗L < ρ0+ψ. In

turn, this implies z∗L−zR−θzR < ρ0 +ψ. R’s optimal interior platform on this interval is therefore:

zR(ρ0) =
−α(θ + ρ0 − ψ)− β(ρ0 + ψ) + 2θr + z∗L(ρ0)(α− β)

α + β(2θ − 1)
. (A79)

It is straightforward to verify that zR(ρ0) strictly decreases in ρ0, and recalling that ρ0 <
αθ(α(θ+ψ)−βψ−2θr)

(α+β)(αθ+α−β) ≡
ρ∗0, we verify zR(ρ∗0) = 2θ(2r−α)

α+β(2θ−1) > 0, so that a deviation to zR ∈ [zL, 0) cannot be optimal.

Case 2: zR ∈ [−1, z∗L]. Party R wins if and only if ρ > z∗L − zR. R’s payoff from this deviation is

πR(z∗L, zR) =
α

2ψ

∫ z∗L−zR

max{ρ0−ψ,z∗L−zR−θ}

(
1

2
− x∗6

2

)
dρ+

1

2ψ

∫ min{ρ0+ψ,z∗L−zR−θz
∗
L}

z∗L−zR

(
r − βx

∗
6

2

)
dρ

+
1

2ψ

∫ min{ρ0+ψ,zR−z∗L−θzR}

min{ρ0+ψ,z∗L−zR−θz
∗
L}

(
r − βx

∗
5

2

)
dρ+

1

2ψ

∫ min{ρ0+ψ,zR−z∗L+θ}

min{ρ0+ψ,zR−z∗L−θzR}

(
r − βx

∗
4

2

)
dρ

+
1

2ψ

∫ ρ0+ψ

min{ρ0+ψ,zR−z∗L+θ}

(
r +

β

2

)
. (A80)

We first claim z∗L− zR− θ < ρ0−ψ, i.e., θ > z∗L− zR− ρ0 +ψ. To see this, note that ρ0−ψ < −1 and

θ > ρ0 +ψ+ 1, we have that θ > ρ0 +ψ+ 1 > −ρ0 +ψ+ (z∗L− zR). Similarly, θ− 1 > ρ0 +ψ implies

zR − z∗L + θ > ρ0 + ψ. If −θz∗L ≥ ρ0 + ψ, the non-profitability of zR < z∗L is immediate. Suppose,

instead, −θz∗L > ρ0 + ψ. Then we may restrict attention to zR such that zR − z∗L − θzR < ρ0 + ψ,

i.e., zR ∈ [min{−1, −(zL+ρ0+ψ)
θ−1 }, zL]. This implies that (A80) is strictly concave, with a first-order

condition that is equivalent to the first-order condition identified in expression (A79), and which

therefore implies that a deviation to zR < z∗L is not profitable.

Case 3: zL ∈ (0, z∗R]. Party L’s payoff from this deviation is

πL(zL, z
∗
R) =

1

2ψ

∫ max{zL−z∗R−θz
∗
R,ρ0−ψ}

ρ0−ψ

(
r + β

x∗1
2

)
dρ+

1

2ψ

∫ max{z∗R−zL−θzL,ρ0−ψ}

max{zL−z∗R−θz
∗
R,ρ0−ψ}

(
r + β

x∗2
2

)
dρ

+
1

2ψ

∫ z∗R−zL

max{z∗R−zL−θzL,ρ0−ψ}

(
r + β

x∗3
2

)
dρ+

α

2ψ

∫ ρ0+ψ

z∗R−zL

(
1

2
+
x∗3
2

)
dρ. (A81)

Because z∗L − z∗R − θz∗R > ρ0 − ψ, we have zL − z∗R − θz∗R > ρ0 − ψ, since z∗L < 0 < zL. This, in turn,
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yields z∗R − zL − θzL > ρ0 − ψ. We obtain L’s optimal platform on this domain:

zL(ρ0) =
α(θ − ρ0 − ψ)− β(ρ0 − ψ)− 2θr + z∗R(ρ0)(α− β)

α + β(2θ − 1)
, (A82)

It is straightforward to verify that zL(ρ0) strictly decreases in ρ0 ≥ 0, and that zL(0) < 0, so that

zL > 0 cannot be optimal.

Case 4: zL ∈ [z∗R, 1]. The argument ruling out a deviation to zL > z∗R replicates that for Lemma 2,

Case 2. Similarly, to rule out zL = z∗R, we may replicate the argument of Lemma 3, Case 1.

Proof of Corollary 6, and additional comparative statics.

Higher ρ0. We have ∂z∗L
∂ρ0

=
∂z∗R
∂ρ0

= −α+β
2αθ

< 0.

Higher α. We have

∂z∗R
∂α

=
α2θ2(β(ψ − 1) + 2(θ + 1)r) + βρ0(αθ + α− β)2

2α2θ(αθ + α− β)2
, (A83)

which is strictly positive. However:

∂z∗L
∂α

=
α2θ2(β(−ψ) + β − 2(θ + 1)r) + βρ0(αθ + α− β)2

2α2θ(αθ + α− β)2
. (A84)

It is straightforward to observe that (A84) increases in ρ0. We evaluate (A84) at ρ0 = αθ(α(θ+ψ)−βψ−2θr)
(α+β)(αθ+α−β) ,

its highest value under the Proposition, obtaining:

∂z∗L
∂α

∣∣∣∣
ρ0=

αθ(α(θ+ψ)−βψ−2θr)
(α+β)(αθ+α−β)

=

β(αθ+α−β)(α(θ+ψ)−βψ−2θr)
(α+β)

+ αθ(β(−ψ) + β − 2(θ + 1)r)

2(αθ + α− β)2
. (A85)

Noting that (A85) decreases in r, we substitute r = α
2

, and after re-arranging, find that (A85) is

strictly negative if and only

βψ(β − α)(β − α(θ + 1))− αθ(α + β)(α(θ + 1) + β(ψ − 1)) < 0. (A86)

Expanding the LHS of (A86) yields:

−α2θ(α(θ + 1) + β(ψ − 1))− αβψ(β − α(θ + 1))
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+α(−β)θ(α(θ + 1) + β(ψ − 1)) + β2ψ(β − α(θ + 1))︸ ︷︷ ︸
<0

, (A87)

so that it is sufficient to verify that the first term of (A87) is strictly negative. Rearranging the first

term of (A87)

− α
(
α2θ2 + α2θ − αβ(θ + ψ) + β2ψ

)
, (A88)

which is indeed strictly negative under α ≥ β and θ > ψ. We conclude that z∗L strictly decreases α.

Finally, we have:

∂(.5(z∗L + z∗R))

∂α
=

ρ0β

2α2θ
> 0,

∂2(.5(z∗L + z∗R))

∂α∂ρ0
=

β

2α2θ
> 0. (A89)
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Online Appendix to “The Race to the Base”

Dan Bernhardt, Peter Buisseret and Sinem Hidir

Appendix C: Policy-Motivated Justifications of α ≥ β.

C1: Parties Represent Their Constituents. Our benchmark model treats a party as a single, de-

cisive agent. In practice, parties may consist of factions that are differentiated by their political

goals. To illustrate how the reduced form payoff function in our main presentation can be jus-

tified, we recognize that a party’s electoral strategy partly determines which voters support the

party, but the set of voters that are expected to support a party also determine the party’s electoral

strategy. It is a perspective—and model formulation—that was introduced in theories of party for-

mation and electoral competition with endogenous parties by Baron (1993) and Roemer (2001).2

We assume that whichever party wins the election implements its platform.3 Recalling that

dL ∈ [0, 1] is the share of districts (i.e., legislative seats) won by party L, we denote the winning

policy

z∗(dL) =

zR if dL < 1
2

zL if dL ≥ 1
2
.

(A90)

For any district with median m ∈ [−1, 1], the total welfare of voters in that district is:

v(m, zL, zR, dL) =
1

2Z

∫ m+Z

m−Z
−|x− z∗(dL)| dx. (A91)

For any x∗ ∈ [−1, 1], a district with median type m ∈ [−1, x∗] is subsequently represented by a

member of party L, while a district with median type m ∈ (x∗, 1] is represented by a member of

party R. Because dL = 1+x∗

2
, we may define the welfare of constituents served by L’s representa-

tives as:

WL(dL, zL, zR) =
1

x∗ − (−1)

∫ x∗

−1
v(m, zL, zR, dL) dm =

1

2dL

∫ 2dL−1

−1
v(m, zL, zR, dL) dm. (A92)

2 Recent work includes Gomberg, Marhuenda and Ortuño-Ortı́n (2016). See also Caplin and Nalebuff (1997).
3 We maintain our convention that if a voter is indifferent between the parties, she votes for party L. Similarly, in

the event that the parties tie in a district, we specify that party L wins the district. Finally, if the parties each win one
half of the districts, we specify that party L obtains the majority, and therefore wins the election. Party L therefore
wins a majority if and only if its share of districts is dL ≥ 1/2. Since the set of indifferent voters has measure zero for
any shock realization, this convention has no bearing on our results.
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Likewise, the welfare of R’s constituents is:

WR(dL, zL, zR) =
1

1− x∗

∫ 1

x∗
v(m, zL, zR, dL) dm =

1

2(1− dL)

∫ 1

2dL−1
v(m, zL, zR, dL) dm. (A93)

We assume that each party P ∈ {L,R} balances a concern for its constituents with a desire to

increase its share of a fixed office rent normalized to one, that depends on its share of seats,

dP ∈ [0, 1], according to the following specification:

πp(dP ) = 1[dP > .5]η + (1− η)dP , (A94)

where η ∈ [0, 1) reflects the extent to which legislative power is concentrated in the hands of the

majority. Critically, we do not assume that the marginal contribution of a seat above the majority

threshold exceeds the marginal value of a seat below the majority threshold. To see this, observe

that this formulation is a special case of our benchmark setting in which α = β = 1 − η, and

r = η + 1
2
(1− η).

We assume that party J trades off the desire of party leaders to capture a share of office rents

with the pressure to reflect the preferences of the party’s electoral constituency:

uP (dP , zL, zR) = πP (dP ) + γWP (dP , zL, zR), (A95)

where γ > 0. Finally, to simplify the analysis, we assume that voter preferences within each

district are also uniformly distributed around their medians.

Assumption 3. In a district with median m ∈ [−1, 1], voter types are uniformly distributed on

[m− Z,m+ Z], where Z > 2.

The restriction that Z > 2 implies that there is more heterogeneity within districts than there

is across district medians.

Introducing a seat motivation together with a policy-motivated component ensures that the

marginal value of an additional seat is always positive. The subtlety in this formulation—that is

absent in our benchmark—is that the party’s trade-off over seats is partly a function of its platform

and its opponent’s platform.

Analysis. Define αP (dP ) = ∂uP
∂dP

for dP ∈ [0, 1
2
), and β(dP ) = ∂uP

∂dP
for dP ∈ (1

2
, 1].

Proposition 5. For any η ∈ [0, 1] and γ > 0, whenever zL ≤ zR: d < 1
2
< d′ implies α(d) > β(d′).
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Proof. We prove the result for party L, because the extension to party R is immediate. By Assump-

tion 3 that in any district with median m, voter types are distributed uniformly on [m−Z,m+Z]

for Z > 2, we obtain:

v(m, zL, zR, dL) =
1

2Z

∫ m+Z

m−Z
−|x− z∗(dL)| dx = −Z

2
− (m− Z)2

2Z
. (A96)

It is therefore sufficient to observe that for any d < 1
2
< d′ and zL ≤ zR,

α(d)− β(d′) =
4γ(d′ − d)

3Z
+
γ(zR − zL)

Z
> 0. (A97)

Finally, a sufficient condition for the marginal value of an additional seat always to be positive is

that β(1) > 0. Straightforward substitution yields that

β(1) = 1− η + γ
zL − 1

3

Z
> 1− η − γ 4

3Z
, (A98)

which is strictly positive if districts are sufficiently heterogeneous (Z large enough) or if parties

are predominantly concerned with winning more seats (i.e., γ < 1− η).

Figure 2 illustrates L’s value from winning additional districts. The discontinuous increase

in L’s value from winning a majority arises for any η > 0 and γ > 0, so long as zL ≤ zR. Our

piece-wise linear formulation can be interpreted as an approximation of uP , and captures its key

property that the marginal of winning a core district exceeds the marginal value of winning an

opponent’s core district.

To understand the real-world interpretation of this property, suppose that the R party offers a

centrist platform, and wins the election. As its legislative majority advances from small to large,

it represent districts whose voters increasingly dislike the party’s platform. Party leaders may

internalize this consequence for both non-instrumental and instrumental reasons. For instance,

rank-and-file legislators from these districts may be more difficult to corral, and may require a

larger share of side payments and transfers in exchange for their cooperation on other aspects of

the party’s legislative agenda. This idea is reflected in former Democratic House Minority Whip

and Majority Leader Steny Hoyer’s claim that “...the larger your majority, the harder it is to main-

tain your unity” (quoted in Poole, 2004.)

Note that Proposition 5 also applies if the average welfare of the party’s constituents is evalu-
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Figure 2 – L’s induced preferences over seats when zL = −.25 and zR = 0. Primitives: Z = 3,
γ = 1.5, η = .5

ated at the party’s platform rather than the winning platform, i.e., if we replace v(m, z∗(dL)) in ex-

pression (A91) with v(m, zJ). This could reflect the preferences of a party faction that cares solely

about the congruence of the party’s platform with the preferences of the party’s constituents—

regardless of whether the party wins power and implements the platform. This is analogous to

the preferences of the ‘militant’ party faction in Roemer (1999).

Equilibrium in Extended Model: Example. We close by highlighting an example of equilibrium un-

der our extended model for a set of parameters. The main qualitative properties of the equilib-

rium platforms replicate those of our benchmark setting. All approximations are to three decimal

places.
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Figure 3 – Equilibrium platforms z∗L (red) and z∗R (blue) in the extended model when η = 1
5
,

γ = 3
10

, Z = 2, ψ = 3, θ = 6.

Example 1. Set η = 1
5
, γ = 3

10
, Z = 2, ψ = 3, θ = 6. Then, there exist thresholds ρ

0
= 1.307 and

ρ0 = 1.547, such that:

[1.] if R’s advantage is small, i.e., ρ0 ≤ ρ
0
, both parties locate at the ideal policy of the median voter in the

median district: z∗L = z∗R = 0,

[2.] if R’s advantage is intermediate, i.e., ρ0 ∈ (ρ
0
, ρ0], z∗L < z∗R = 0, then party L retreats to its base but

R still locates at the ideal policy of the median voter in the median district: z∗L < z∗R = 0; and

[3.] if R’s advantage is large, i.e., ρ0 > ρ0, then party L retreats by more to its base, and party R advances

towards L’s base: z∗L < z∗R < 0.

The platforms are highlighted in Figure 3.

C2: A Policy Outcome Function, and Policy-Motivated Parties. We now provide an alternative

justification based on post-election legislative policymaking employed in Grossman and Help-

man (1996), Alesina and Rosenthal (1996), Ortuño-Ortı́n (1997) and Lizzeri and Persico (2001), in

which the final policy outcome depends on both the parties’ platforms, and the winner’s margin

of victory. The idea is that a party’s vote share exerts marginal effects on the final policy outcome.

Controlling a slight majority may give a party formal agenda-setting power, but winning more

seats gives the party leadership a buffer to protect against defections and to weaken the negoti-
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ating leverage of the party’s marginal legislators in shaping the final policy outcome.4 Because

this is a property of legislatures, not of election systems, the logic may hold in both majoritarian

and proportional election contexts: parties with only small margins of victory will find it more

challenging to implement their platforms than a party with an outsized victory. A larger majority

may also be perceived as granting the majority party a greater electoral mandate to pursue its

agenda, rather than mandating compromise with the minority party.

Party Platforms. Recall that, in addition to her policy payoffs from a party’s platform choice zL or

zR, a voter type xi also derives a net value−θxi from party L. One interpretation is that the parties

have fixed platforms yL and yR on a second policy. For example, let party R’s fixed platform on

this second policy be yR = 1 and party L’s fixed platform be yL = −1. If a voter type xi’s relative

value from party L on this policy dimension is θ|yR − xi| − θ|yL − xi|, then each district median

voter’s net value from L is −2θxi.

In the analysis that follows, we adopt the interpretation that each party’s platform is a vector

with two components: party L’s platform is pL = (yL, zL), and party R’s platform is pR = (yR, zR).

We admit any (yL, yR) ∈ R2, such that yL 6= yR.5

Policy Outcome Function. To capture the reality that a party’s margin of victory affects its ability to

implement its campaign promise, we assume that if the winning party’s share of districts is d, the

majority-winning party’s platform is pM and the minority party’s platform is pm, the final policy

outcome is:

p∗(pM , pm, d) = ηpM + (1− η)(dpM + (1− d)pm). (A99)

The parameter η ∈ [0, 1) reflects the majoritarian organization of the legislature: higher values im-

ply that the majority party increasingly dominates the policy outcome, regardless of its margin.

Party Goals. We assume that parties have both policy and office goals. Specifically, they divide

a fixed office rent that’s normalized to one—e.g., committee chairs, funding for districts—where

the division is determined by the same rule specified in (A99).6 Second, they aim to represent the

4 For example, the Democratic leadership was forced to make many concessions to the Blue Dog Democrats, in
shaping the final form of the Affordable Care Act. “Blue Dogs Delay, Water Down House Health Care Bill”, Huffington
Post, August 29 2009. https://www.huffpost.com/entry/blue-dogs-delay-water-dow_n_247177.

5 This assumption ensures that even if the parties converge on the issue where they can adjust policies, i.e., by
choosing zL = zR, the identity of the winner has a payoff consequence for voters.

6 We adopt the same sharing rule on rents as for policy only for parsimony—we could allow for any division rule
that increases with a party’s share of seats.
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entire polity, but may prioritize some districts over others. Specifically, party J ’s payoff is:

uJ(pL, pR, dJ) = MJη + (1− η)dJ +
1

2

∫ 1

−1
wJ(m)v(m, p∗) dm, (A100)

where, as before, MJ is an indicator taking the value 1 if J wins a majority, and for any policy

outcome p = (y, z):

v(m, p) =

∫ m+Z

m−Z
−|x− z| − θ|x− y| f(x)dx (A101)

is the welfare of citizens in a district with median m, and wJ(m) is the weight that party J places

on the welfare of voters in a district with median m ∈ [−1, 1], satisfying wJ(m) ≥ 0 for all m, and∫ 1

−1wJ(m) dm = 1. We maintain Assumption 3 that voter types are uniformly distributed around

their district medians.

Analysis. We analyze the model from party L’s perspective, noting that the analysis for party R’s

is symmetric. Define α(dL) = ∂uL
∂dL

for dL ∈ [0, 1
2
), and β(dL) = ∂uL

∂dL
for dL ∈ (1

2
, 1].

Proposition 6. For any (zL, zR) ∈ R2, any (yL, zR) ∈ R2 such that yL 6= yR, and any d < 1
2
< d′,

α(d) > β(d′).

Proof. Under Assumption 3 that in a district with median type m ∈ [−1, 1], voter ideal points are

uniformly distributed on [m− Z,m+ Z], we have that for any dL ∈ [0, 1]:

uL(pL, pR, dJ) = η1[dL ≥ 1/2] + (1− η)dL −
1

4Z

∫ −1
−1

wL(m)

[
(Z2 + (m− z∗)2) + θ(Z2 + (m− y∗)2)

]
dm

(A102)

where

z∗ =

ηzR + (1− η)[dLzL + (1− dL)zR] if dL < 1
2

ηzL + (1− η)[dLzL + (1− dL)zR] if dL ≥ 1
2

(A103)

and

y∗ =

ηyR + (1− η)[dLyL + (1− dL)yR] if dL < 1
2

ηyL + (1− η)[dLyL + (1− dL)yR] if dL ≥ 1
2
.

(A104)
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Thus, for any dL ∈ [0, 1/2) ∪ (1/2, 1]:

∂uL
∂dL

= 1−η+
1

2Z

∫ 1

−1
wL(m)(m−z∗)(zL−zR)(1−η) dm+

θ

2Z

∫ 1

−1
wL(m)(m−y∗)(yL−yR)(1−η) dm,

(A105)

and

∂2uL
∂d2L

= − 1

2Z

∫ 1

−1
wL(m)(zL − zR)2(1− η)2 dm− θ

2Z

∫ 1

−1
wL(m)(yL − yR)2(1− η)2 dm < 0, (A106)

First, inspection of (A106) reveals that for any pair (zL, zR) ∈ [0, 1]2, the party’s payoff is strictly

concave in dL ∈ [0, 1
2
) and strictly concave in dL ∈ (1

2
, 1], for any pair (zL, zR) ∈ [−1, 1]2.

Second, for any pair (zL, zR) ∈ [0, 1]2, we verify that for any dmL < 1
2
< dML :

∂uL
∂dL

∣∣∣∣
dmL

>
∂uL
∂dL

∣∣∣∣
dML

. (A107)

We prove this by observing that, by strict concavity of uJ in dmL and in dML , it is sufficient to verify:

lim
dmL ↑

1
2

∂uL
∂dL
− lim

dML ↓
1
2

∂uL
∂dL

=
(zL − zR)2η(1− η)

2Z

∫ 1

−1
wL(m) dm+ θ

(yL − yR)2η(1− η)

2Z

∫ 1

−1
wL(m) dm > 0.

(A108)

This yields the result.

Note that we do not rely on any parameter or weighting function restrictions. Parameter re-

strictions do, however, ensure that the marginal value of an additional district is positive, i.e., that

(A105) is positive. For example, this holds whenever districts are sufficiently heterogeneous (Z is

large enough).

Figure 4 illustrates L’s value from winning additional districts. Our piece-wise linear formulation

can be interpreted as an approximation of uP in this context, that again captures its key property

that the marginal of winning a core district exceeds the marginal value of winning an opponent’s

core district.

Equilibrium in Extended Model: An Example. We close by highlighting an example of equilibrium

under our extended model for a set of parameters. The main qualitative properties of the equilib-

rium platforms replicate those of our benchmark setting. All approximations are to three decimal

places. The platforms are highlighted in figure 5.
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Figure 4 – L’s induced preferences over seats when zL = 0 and zR = 0. Primitives: Z = 3,
γ = .5, η = .5, yL = −1, yR = 1, θ = 6, wL(m) = 3

8
(1−m)2.

Example 2. Set η = 1
5
, γ = 3

10
, Z = 2, ψ = 3, θ = 6, yL = −1, yR = 1, and wL(m) = 1−m

2
, and

wR(m) = 1+m
2

. Then, there exist thresholds ρ
0

= .650 and ρ0 = 1.211, such that:

[1.] if R’s advantage is small, i.e., ρ0 ≤ ρ
0
, both parties locate at the ideal policy of the median voter in the

median district: z∗L = z∗R = 0,

[2.] if R’s advantage is intermediate, i.e., ρ0 ∈ (ρ
0
, ρ0], z∗L < z∗R = 0, then party L retreats to its base but

R still locates at the ideal policy of the median voter in the median district: z∗L < z∗R = 0; and

[3.] if R’s advantage is large, i.e., ρ0 > ρ0, then party L retreats by more to its base, and party R advances

towards L’s base: z∗L < z∗R < 0.
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Figure 5 – Equilibrium platforms z∗L (red) and z∗R (blue) in the extended model when η = 1
5
,

γ = 3
10

, Z = 2, ψ = 3, θ = 6, yL = −1, yR = 1, wL(m) = 1−m
2

, wR(m) = 1+m
2

.
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