
Online Appendix:
“Acquiring Information Through Peers”

By Bernard Herskovic and João Ramos∗

In Sections A.1, A.2 and A.3, we prove Proposition 1, Lemma 1, and Proposition 2, respectively. We prove Proposition

3 in Section B.1, and, in Section B.2, we show an example in which Properties 1 and 2 do not hold in an out-of-equilibrium

network. In Sections B.3, B.4, and B.5, we prove Theorem 1, Proposition 4, and Theorem 2. Finally, in Section B.6, we prove
Proposition 5.

A. Proof of Propositions 1 and 2

We prove Proposition 1 in Section A.1 and Proposition 2 in Section A.3.

1. Proof of Proposition 1

We prove Proposition 1 in two steps. First, we fully characterize the linear equilibrium in Section A.1. Second, we show that

there is a unique equilibrium in the first stage of the game in Section A.1.

Linear Equilibrium

Let a ≡ 1
n

∑n
j=1 aj be the average action, and let a−i ≡ 1

n−1

∑
j 6=i aj = n

n−1
a− 1

n−1
ai be the average action without agent

i. We will verify the following guess:

(A.1) a =

n∑
j=0

βjej .

From the first order condition, agent i’s optimal action satisfies: ai = (1− r)E [θ|Ii] + rE [a−i|Ii] = (1− r̃)E [θ|Ii] + r̃E [a|Ii] ,
where r̃ = rn

r+n−1
. Using Bayes updating, the expected value of the state of the world given agent i’s informational set is given

by E [θ|Ii] =
∑n
j=0 g̃ijej ≡ ei, where g̃i0 = 1

1+
∑n

s=1 gisσ
−2 = σ2

Ki+1+σ2 , g̃ij =
gijσ

−2

1+
∑n

s=1 gisσ
−2 =

gij
Ki+1+σ2 for j ≥ 1, and e0 = 0

is the prior’s mean. The expected value of the average action given i’s information is given by

E [a|Ii] =

n∑
j=0

βjE [ej |Ii] =

n∑
j=0

βjgijej +

n∑
j=0

βj(1− gij)ei.

Thus, player i’s action is simplified to

ai = (1− r̃)ei + r̃
n∑
j=0

βjgijej + r̃

n∑
j=0

βj(1− gij)ei.(A.2)

In order to verify our initial guess, we sum over i,

na =
n∑
i=1

ai =

n∑
i=1

ei − r̃
n∑
i=1

ei + r̃
n∑
j=0

βj

n∑
i=1

gijej + r̃

n∑
j=0

βj

n∑
i=1

ei − r̃
n∑
j=0

βj

n∑
i=1

gijei.
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Using matrix notation let

e =


e1
...
en


n×1

, e =


e1
...
en


n×1

, G =


g10 g11 . . . g1n

...
. . .

gn0 gn1 . . . gnn


n×n+1

.

Hence, the sum of all action becomes

na = 1′e− r̃1′e+ r̃β′diag(G′1)

[
0

e

]
+ r̃β′11′e− r̃β′G′e

where 1 is a column vector of ones with the appropriate dimension, and diag(·) creates a diagonal matrix. Let

G̃ =


g̃10 g̃11 . . . g̃1n

.

..
. . .

g̃n0 g̃n1 . . . g̃nn


n×n+1

,

and we have that e = G̃

[
0

e

]
. The sum of actions becomes:

na = 1′G̃

[
0
e

]
− r̃1′G̃

[
0
e

]
+ r̃β′diag(G′1)

[
0
e

]
+ r̃β′11′G̃

[
0
e

]
− r̃β′G′G̃

[
0
e

]
a =

1

n

{
(1− r̃)1′G̃+ r̃β′

(
diag(G′1) + 11′G̃−G′G̃

)}[ 0

e

]

Next, we use method of undetermined coefficient to solve for the vector of loadings β based on our initial guess, a = β′
[

0

e

]
:

β′ =
1

n

{
(1− r̃)1′G̃+ r̃β′

(
diag(G′1) + 11′G̃−G′G̃

)}
(A.3)

=
1

n
(1− r̃)1′G̃

[
I−

1

n
r̃
(

diag(G′1) + 11′G̃−G′G̃
)]−1

.

We can verify that the average action loadings sum to 1. Starting from the equation above and post-multiplying by a vector

of ones (remember that G̃1 = 1):

nβ′1 = (1− r̃)1′G̃1 + r̃β′
(

diag(G′1)1 + 11′G̃1−G′G̃1
)

nβ′1 = n− r̃n+ r̃β′G′1 + r̃β′11′1− r̃β′G′1
β′1(n− r̃n) = n− r̃n

β′1 = 1.(A.4)

From Equation A.2, the action of each agent in vector notation is given by

a = e− r̃e+ r̃Gdiag(β)

[
0
e

]
+ r̃e− r̃diag(β′G′)e = Λ

[
0
e

]
where Λ is a n× n+ 1 matrix of loadings

(A.5) Λ = G̃− r̃G̃+ r̃Gdiag(β) + r̃G̃− r̃diag(β′G′)G̃,
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Solving for λij and βj using sum notation

Let λij be the element (i, j) in the matrix Λ. Following Equation (A.5), the λs in sum notation are given by:

(A.6) λij = (1− r̃) g̃ij + r̃βjgij + r̃g̃ij − r̃
(

n∑
s=0

βsgis

)
g̃ij

for i = 1, . . . , n, and j = 0, . . . , n. Notice that
∑n
j=0 λij = 1, since

∑n
j=0 g̃ij = 1. Also notice that λij = 0 whenever gij = 0,

and λij > 0 whenever gij = 1. By substituting g̃ij in, we get for every j = 1, . . . , n:

(A.7) λij = (1− r̃)
gij

Ki + 1 + σ2
+ r̃βjgij + r̃

gij

Ki + 1 + σ2
− r̃

(
n∑
s=0

βsgis

)
gij

Ki + 1 + σ2

Next, we use Equation (A.3) to derive βs in sum notation:

nβ′ = (1− r̃)1′G̃+ r̃β′diag(G′1) + r̃β′11′G̃− r̃β′G′G̃

nβj = (1− r̃)
∑n
i=1 g̃ij + r̃βj

∑n
i=1 gij + r̃

∑n
i=1 g̃ij − r̃

∑n
i=1

∑n
s=0 βsgisg̃ij

Given that
∑n
j=0 βj = 1 (Equation A.4), we have:

(A.8) nβj =

n∑
i=1

g̃ij + r̃βj

n∑
i=1

gij − r̃
n∑
i=1

n∑
s=0

βsgisg̃ij

Also, notice that by definition we have:

(A.9) βj =
1

n

n∑
i=1

λij .

By substituting g̃ij in, we get:

β0 =
1

n

n∑
i=1

σ2

σ2 +Ki + 1
+
r̃

n

[
β0n−

n∑
i=1

n∑
s=0

βsgisσ
2

σ2 +Ki + 1

]
(A.10)

βj =
1

n

n∑
i=1

gij

σ2 +Ki + 1
+
r̃

n

[
βj
(
Kj + 1

)
−

n∑
i=1

n∑
s=0

βsgisgij

σ2 +Ki + 1

]
∀ j = 1, . . . , n(A.11)

where Kj =
∑n
s=1,s6=j gsj , and Ki =

∑n
s=1,s6=i gis.

Since
∑n
s=0 βs = 1, we can rearrange the expression above as follows:

[
n− r̃

(
Kj + 1

)]
βj = (1− r̃)

n∑
i=1

gij

σ2 +Ki + 1
+ r̃

n∑
i=1

gij

Ki + σ2 + 1

[
n∑
s=0

βs (1− gis)
]
∀ j = 1, . . . , n,

n [1− r̃]β0 = (1− r̃)
n∑
i=1

σ2

σ2 +Ki + 1
+ r̃

n∑
i=1

σ2

Ki + σ2 + 1

[
n∑
s=0

βs (1− gis)
]

which are Equations (6) and (7) in the main text.
Finally, the loading β−i,j is by definition given by

(A.12) β−i,j =
1

n− 1

∑
k 6=i

λkj ,

which can be written as:

(A.13) β−i,j =
n

n− 1
βj −

1

n− 1
λij .
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Notice that

(A.14)

n∑
j=0

β−i,j = 1

because
∑n
j=0 βj = 1 and

∑n
j=0 λi,j = 1, as shown earlier.

Uniqueness

In this section, we prove that there is a unique equilibrium in the second stage of the game. We follow closely the uniqueness

proof in Hellwig and Veldkamp (2009), but adapted to our setting. From the first-order condition, in any equilibrium agent i’s
optimal action satisfies:

ai = (1− r̃)E [θ|Ii] + r̃E [a|Ii](A.15)

To prove uniqueness, we proceed in two steps. First, we show in Lemma A.1 that the following expression constitutes the
unique solution to agents’ first-order conditions:

ai = a(Ii) = (1− r̃)
∞∑
t=1

r̃tEi
[
Et(θ)

]
(A.16)

where Ei(·) = Ei[·|Ii], E(·) = 1
n

∑n
i=1 Ei(·), E

0
(θ) = θ, and Et(θ) = E

[
Et−1

(θ)
]
. We write the action of agent i as a function

of her information set, i.e., ai = a(Ii), based on the equilibrium definition—see Definition 1. The second step is in Lemma A.2,
where we show that Equation (A.16) is a unique linear combination of the available signals in the economy.

LEMMA A.1: There is a unique equilibrium in the second stage of the game, in which agent i’s action a given by Equation

(A.16).

PROOF:

We follow closely the proof of Proposition 1 in Hellwig and Veldkamp (2009), but adapting to our framework. The main

difference is that in our setting there is a finite number of signals. Let â be the proposed equilibrium from Equation (A.16) and
let A be the set of functions ai = a(Ii) such that

a(Ii) =

∫
ω

(1− r̃)b′ω + r̃
1

n

n∑
j=1

a(Ij)

 dF (ω|Ii) ,

where ω = (θ, ε1, . . . , εn)′ is a vector of i.i.d. standard normal random variables, b = (1, 0, . . . , 0)′, and F (ω|Ii) characterizes the
distribution of ω given Ii as information set. Notice that the set A is the set of functions that satisfies the first-order conditions

from Equation A.15. We will show that ã ∈ A if and only if ã = â almost everywhere.

Let us define the functional L(. . . ) from L2 to the real line:

L(a) =

∫
ω

1

n

n∑
i=1

[
a(Ii)− b′ω

]2
dF (ω)− r̃

∫
ω

(
1

n

n∑
i=1

a(Ii)− b′ω
)2

dF (ω) ,

We proceed in two steps. First, we show that L(a) is strictly convex, and therefore if ã1, ã2 ∈ arg mina L(a) then ã1 = ã2

almost everywhere. Second, we show that A = arg mina L(a), that is, ã ∈ A if and only if ã ∈ arg mina L(a). Since â ∈ A, then
â is unique except for measure zero perturbations.

First, we show that the functional L(a) is strictly convex. For any distinct functions a1(Ii) and a2(Ii), scalar α ∈ (0, 1), and
∆(Ii) ≡ a2(Ii)− a1(Ii), we have:

L(αa1 + (1− α)a2)− αL(a1)− (1− α)L(a2) = α [L(a1 + (1− α)∆)− L(a1)] + (1− α) [L(a2 − α∆)− L(a2)]

= α

∫
ω

[
(1− α)2 1

n

n∑
i=1

∆(Ii)2 + 2(1− α)
1

n

n∑
i=1

∆(Ii)
[
a1(Ii)− b′ω

]

−r̃(1− α)2

(
1

n

n∑
i=1

∆(Ii)

)2

− 2r̃(1− α)

(
1

n

n∑
i=1

a1(Ii)− b′ω
)(

1

n

n∑
i=1

∆(Ii)

) dF (ω)
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+ (1− α)

∫
ω

[
α2 1

n

n∑
i=1

∆(Ii)2 − 2α
1

n

n∑
i=1

∆(Ii)
[
a2(Ii)− b′ω

]

−r̃α2

(
1

n

n∑
i=1

∆(Ii)

)2

+ 2r̃α

(
1

n

n∑
i=1

a2(Ii)− b′ω
)(

1

n

n∑
i=1

∆(Ii)

) dF (ω)

=

∫
ω

(α(1− α)2 + α2(1− α)− 2α(1− α)
) 1

n

n∑
i=1

∆(Ii)2 − r̃
(
α(1− α)2 + α2(1− α)− 2α(1− α)

)( 1

n

n∑
i=1

∆(Ii)

)2
 dF (ω)

= −α(1− α)

∫
ω

 1

n

n∑
i=1

∆(Ii)2 − r̃
(

1

n

n∑
i=1

∆(Ii)

)2
 dF (ω)

= −α(1− α)

∫
ω

 1

n

n∑
i=1

∆(Ii)2 −
(

1

n

n∑
i=1

∆(Ii)

)2

+ (1− r̃)
(

1

n

n∑
i=1

∆(Ii)

)2
 dF (ω)

= −α(1− α)

∫
ω

 1

n

n∑
i=1

(
∆(Ii)−

1

n

n∑
i=1

∆(Ii)

)2

+ (1− r̃)
(

1

n

n∑
i=1

∆(Ii)

)2
 dF (ω) ≤ 0

The last inequality is strict if ∆(Ii) is different from zero for a positive measure of events. Since L(a) is strictly convex, if

ã1, ã2 ∈ arg mina L(a) then ã1 = ã2 almost everywhere.
Next, we show that A = arg mina L(a). For any functions a(Ii) and δ(Ii), and a scalar t, we have:

L(a+ tδ)− L(a) = t2A(δ) + 2tB(a, δ),

where

A(δ) =

∫
ω

1

n

n∑
i=1

δ(Ii)2 − r̃
(

1

n

n∑
i=1

δ(Ii)

)2

dF (ω)

B(a, δ) =

∫
ω

1

n

n∑
i=1

δ(Ii)
[
a(Ii)− b′ω

]
− r̃

(
1

n

n∑
i=1

a(Ii)− b′ω
)(

1

n

n∑
i=1

δ(Ii)

)
dF (ω)

We have that A(δ) > 0 whenever δ(·) is different from zero for a positive measure. Therefore, L(a + tδ) is minimized at

t∗ = −B(a,δ)
A(δ)

and L(a+ t∗δ) = L(a)− B(a,δ)2

A(δ)
. If ã ∈ arg mina L(a), then by the convexity of L(a) we have that ã is unique.

Thus for any δ(·), we have B(ã, δ) = 0 since t∗ minimizes L(a+ tδ) for any a and δ. If ã ∈ arg mina L(a) and ã′ /∈ arg mina L(a),
then for δ = ã− ã′ we have B(ã′, δ) 6= 0. Therefore, ã ∈ arg mina L(a) if and only if B(ã, δ) = 0 for every δ(·).

We can write B(a, δ) as follows:

B(a, δ) =

∫
ω

1

n

n∑
i=1

δ(Ii)
[
a(Ii)− b′ω

]
− r̃

(
1

n

n∑
i=1

a(Ii)− b′ω
)(

1

n

n∑
i=1

δ(Ii)

)
dF (ω)

=
1

n

n∑
i=1

∫
ω
δ(Ii)

a(Ii)− (1− r̃)b′ω − r̃
1

n

n∑
j=1

a(Ij)

 dF (ω)

using law of iterated expectations,

=
1

n

n∑
i=1

∫
Ii

∫
ω
δ(Ii)

a(Ii)− (1− r̃)b′ω − r̃
1

n

n∑
j=1

a(Ij)

 dF (ω|Ii) dF (Ii)

=
1

n

n∑
i=1

∫
Ii
δ(Ii)

a(Ii)−
∫
ω

(1− r̃)b′ω + r̃
1

n

n∑
j=1

a(Ij)dF (ω|Ii)

 dF (Ii)

Notice that if ã ∈ A, then B(ã, δ) = 0 for any δ(·), using the definition of the set A. This implies that ã ∈ arg mina L(a).

Finally, if ã /∈ A, then by setting δ(Ii) = ã(Ii) −
∫
ω(1 − r̃)b′ω + r̃ 1

n

∑n
j=1 ã(Ij)dF (ω|Ii), we have δ(Ii) 6= 0 and thus

B(a, δ) = 1
n

∑n
i=1

∫
Ii
δ(Ii)2dF (Ii) > 0. As a result, ã /∈ arg mina L(a). �
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LEMMA A.2: Equation (A.16) is a unique linear combination of the available signals in the economy.

PROOF:

In this proof, we use the same notation as in the previous lemma: ω = (θ, ε1, . . . , εn)′ and b = (1, 0, . . . , 0)′. Notice that we

can write the signal structure of game in matrix notation as follows:

(A.17)


e1
...

en


n×1︸ ︷︷ ︸

≡e

=


1 σ 0 · · · 0

1 0 σ
..
.

.

..
.
..

. . . 0
1 0 · · · 0 σ


n×n+1︸ ︷︷ ︸

≡Γ


θ

ε1
...

εn


n+1×1︸ ︷︷ ︸

≡ω

or simply e = Γω, where the vector ω is a vector independent standard normal random variables.

However, player i only observes the signal ej of players he is connected to, in addition to his own signal ei. Thus, let the

Ki + 1 by n matrix Xi be the matrix that selects the signals observed by player i:

(A.18) Ii = {ej}nj=0:gij=1 =

[
0

Xie

]
=

[
0

XiΓω

]

Using Bayes’updating rules,1 we have that E [ω|Ii] = Cov (ω,XiΓω)′ Var (XiΓω)−1XiΓω, where Var (XiΓω) = XiΓΓ′X′i and

Cov (ω,XiΓω) = XiΓ.

Let ∆i = Γ′X′i
(
XiΓΓ′X′i

)−1
XiΓ, we can write E [ω|Ii] = ∆iω. Thus, we have E(ω) = 1

n

∑n
i=1 ∆iω = ∆ω, where ∆ =

1
n

∑n
i=1 ∆i. Notice that ∆i is idempotent and thus its eigenvalues are either zero or one. Since 1

n
∆i is symmetric with

eigenvalues between zero and 1
n

, then the eigenvalues of ∆ are between zero and one.2 Furthermore, we have that E0
(ω) = ω,

E1
(ω) = ∆ω, E2

(ω) = ∆
2
ω, and, more generally, Et(ω) = ∆

t
ω. Hence, using b = (1, 0, . . . , 0)′, we can write Equation (A.16)

as follows:

a(Ii) = (1− r̃)
∞∑
t=1

r̃tEi
[
Et(θ)

]
= (1− r̃)

∞∑
t=1

r̃tEi
[
Et(b′ω)

]
= (1− r̃)b′

∞∑
t=1

r̃t∆
tEi [ω] = (1− r̃)b′

∞∑
t=1

r̃t∆
t
∆iω.

Since the largest eigenvalue of ∆ in absolute value is less than or equal to one, the eigenvalues of r̃∆ are stricly less than one

in absolute value. Thus the limit is unique and given by: a(Ii) = (1− r̃)r̃b′
[
I − r̃∆

]−1
∆∆iω. �

2. Proof of Lemma 1

Item (a) follows directly from taking the limit in Equations (6) and (7) as r → 0. For item (b), we start from Equations (6)

and (7) for a signal that is observed by everyone, i.e. j ∈ PU or j = 0:

n (1− r̃)βj = (1− r̃)
n∑
i=1

g̃ij + r̃

n∑
i=1

g̃ij

n∑
s=0

βs (1− gis) ∀ j ∈ PU or j = 0.(A.19)

If we take the limit as r → 1, we have: limr→1
∑n
i=1 g̃ij

∑n
s=0 βs (1− gis) = 0. We know that βs > 0 for every s and that

gij ∈ {0, 1} from Equations (6) and (7). As result, βs (1− gis) ≥ 0 for every i and s, and hence limr→1 βs (1− gis) = 0 for
every i and s. For every s /∈ PU with s ≥ 1, there exists an i such that gis = 0. Therefore, limr→1 βs = 0 ∀ s /∈ PU, s ≥ 1.

From Equation (A.19) for j ∈ PU, notice that the right-hand-side of the equation is the same for every j ≥ 1 because
g̃ij = 1

σ2+Ki+1
, which implies that βj = βs ≡ βPU for every r and for every s, j ∈ PU. Similarly, for the common prior,

we have β0 = σ2βPU for every r. Given that
∑n
j=0 βj = 1, we have that

(
σ2 +KPU

)
βPU +

∑n
j/∈PU βj = 1 and therefore

βPU =
1−

∑n
j/∈PU βj

σ2+KPU
=⇒ limr→1 βPU = 1

σ2+KPU
, which implies limr→1 β0 = σ2

σ2+KPU
and limr→1 βj = 1

σ2+KPU
j ∈ PU.

1See equations 2 and Appendix A.1 in Hellwig and Veldkamp (2009).
2See Theorem 1 in Thompson and Freede (1971).
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3. Proof of Proposition 2

The payoff function of player i net of link formation costs is given by

Ui = − (ai − a∗i )2 ,

where a∗i = (1− r)θ + ra−i is player i’s bliss action and a−i = 1
n−1

∑n
j=1j 6=i aj =

∑n
j=1 β−i,jej is the average action without

i’s own action.3 Notice that player i takes all β−i,j ’s as given. Using the notation from Equations (A.17) and (A.18), notice

that the optimal action of player i is ai = E
[
a∗i |Ii

]
, and the expected payoff net of link formation costs for a given network G

conditional on the common prior is given by

E [Ui|G] = −E
[
(ai − a∗i )2 |G

]
= −E

[
E
[
(ai − a∗i )2 |Ii

]
|G
]

where the last equality hold based on law of iterated expectations. Using the optimal action choice, the expected value
conditional on player i’s informational set is a conditional variance. Hence, the payoff function net of link formation costs is

further simplified to

E [Ui|G] = −E [Var (a∗i |Ii) |G]

Next, let’s write the bliss action in matrix notation:

a∗i = (1− r)θ + ra−i = (1− r)θ + r

n∑
j=1

β−i,jej = [1− rβ−i,0, rσβ−i,1, rσβ−i,2, · · · , rσβ−i,n]︸ ︷︷ ︸
≡F ′i

ω = F ′iω(A.20)

where β−i,0 = 1−
∑n
j=1 β−i,j and ω is defined in Equation (A.17). The vector Fi does not depend on player i observed signal,

it only depends on the network itself.

Additionally, we can use Bayes updating rule to represent the optimal action as follows:

(A.21) ai = E [a∗i |Ii] = E
[
F ′iω|Ii

]
= F ′iE [ω|Ii] ,

where E [ω|Ii] = Cov (ω,XiΓω)′ Var (XiΓω)−1 XiΓω.4 Player i’s expected payoff net of link formation costs becomes:

(A.22) E [Ui|G] = −E [Var (a∗i |Ii) |G] = −F ′iVar (ω|Ii)Fi

and we can use Bayes’ updating rule to compute the variance covariance term:5

(A.23) Var (ω|Ii) = Var (ω)− Cov (ω,XiΓω)′ Var (XiΓω)−1 Cov (ω,XiΓω) ,

where Var (ω) = I, Var (XiΓω) = XiΓΓ′X′i, and Cov (ω,XiΓω) = XiΓ. In order to successfully invert the variance-covariance

matrix Var (XiΓω), let’s rewrite Γ from Equation (A.17) as Γ = [1 Φ] where 1 is a column vector of ones and

(A.24) Φ =


σ 0 · · · 0

0 σ
...

...
. . . 0

0 · · · 0 σ


n×n

Using the above notation, we can simplify Var (XiΓω) as follows: Var (XiΓω) = XiΓΓ′X′i = XiΦΦ′X′i + 11′. Notice that

XiΦΦ′X′i is a diagonal matrix variance of signals that player i observes. This simplification is useful because XiΦΦ′X′i is easy

3Remember that e0 = 0, so we could have defined a−i =
∑n
j=0 β−i,jej instead.

4See equations 2 and Appendix A.1 in Hellwig and Veldkamp (2009).
5See equations 3 and Appendix A.1 in Hellwig and Veldkamp (2009).
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to invert and we can apply Sherman-Morrison theorem:6

(A.25) Var (XiΓω)−1 = (XiΦΦ′X′i)
−1 −

1

φi
(XiΦΦ′X′i)

−111′(XiΦΦ′X′i)
−1

where φi = 1 + 1′(XiΦΦ′X′i)
−11 = 1 +

∑n
j=1 gijσ

−2.

After some algebraic manipulation, we can use the simplified inverse of the variance to compute the following:

Cov (ω,XiΓω)′Var (XiΓω)−1 Cov (ω,XiΓω) =

[
1′

Φ′X ′i

]
Var (XiΓω)−1 [1 XiΦ]

=
1

φi



φi − 1, gi1
σ
, gi2

σ
, · · · gin

σ

gi1
σ
, φigi1 − gi1gi1

σ2 , − gi1gi2
σ2 , · · · − gi1gin

σ2

gi2
σ
, − gi2gi1

σ2 , φigi2 − gi2gi2
σ2 , · · · − gi2gin

σ2

...
...

. . .
...

gin
σ
, − gingi1

σ2 , − gingi2
σ2 , · · · φigin − gingin

σ2


and player i’s expected payoff net of link formation costs becomes

E [Ui|G] = −F ′iVar (ω|Ii)Fi

= − 1

φi
F ′i



1, − gi1
σ
, − gi2

σ
, · · · − gin

σ

− gi1
σ
, (1− gi1)φi + gi1

σ2 ,
gi1gi2
σ2 , · · · gi1gin

σ2

− gi2
σ
, gi2gi1

σ2 , (1− gi2)φi + gi2
σ2 , · · · gi2gin

σ2

...
...

. . .
...

− gin
σ
, gingi1

σ2 , gingi2
σ2 , · · · (1− gin)φi + gin

σ2


Fi

= − 1

φi
(1− r

n∑
j=0

gijβ−i,j)
2 − r2

n∑
j=0

(1− gij)β2
−i,jσ

2(A.26)

where φi = 1 +
∑n
j=1 gijσ

−2 = σ2+Ki+1
σ2 and Ki =

∑n
j=1,j 6=i gij .

By substituting φi, the expected payoff including link formation costs becomes:

−
σ2

σ2 +Ki + 1

1− r
n∑
j=0

gijβ−i,j

2

− r2σ2
n∑
j=0

(1− gij)β2
−i,j − C (Ki) ,

which is exactly the payoff expression in Proposition 2.

B. Equilibrium Properties

In Section B.1, we prove Proposition 3 by showing that any equilibrium satisfies properties 1 and 2. In Section B.2, we show
an example of an out-of-equilibrium violation of these properties. In Section B.3, we prove our first main result, Theorem 1. In
Section B.4, we prove Proposition 4. In Section B.5, we prove our second main result, Theorem 2. Finally, Section B.6 contains

the proof of Proposition 5.

6 For any non-singular matrix A, column vectors u and v, and a scalar α, Sherman-Morrison theorem states that

(A+ αuv′)−1 = A−1 − α
φ
A−1uv′A−1, where φ = 1 + αv′A−1u. We apply this result by setting A = XiΦΦ′X′i, α = 1,

u = v = 1. See Golub and Van Loan (2012) for more details.
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1. Proof of Proposition 3

Property 1

We start by showing that given Assumption 1, any strict Nash equilibrium of the game above satisfies Property 1.

The argument works in two main steps. First, we show that an agent’s best response to other agents’ choices of connections
is to observe the signal of the most influential agent. In Lemma A.3, we show that agent i’s best response to other agents’

choices of connections is to observe the signal of the most influential agent, where agents are ranked by a centrality measure

that is specific to agent i, β−i,·. While in Lemma A.4 we show that, in equilibrium, all agents rank which signal to observe in
the same way. That is, we show that the agent specific ranking β−i,· coincides in equilibrium for all agents, and is captured

by the vector of influences over the average action β. Second, we show that an agent whose signal is more observed is also

the one that has a more influential signal. In Lemma A.6 we show that more people observe agent m’s signal than agent l’s
signal if, and only if, agent m’s signal is more influential for the average action than agent l’s signal. This guarantees that, in

equilibrium, the ranking implied by influence is the same ranking implied by the number of agents observing a signal.

Let us start by showing the monotonicity of best responses. We show that for any agent i, set of connections of i gi, set of
connections of other agents, and other agents strategies, agent i’s best response dictates that if she finds optimal to observe

another player’s signal, then she observes any other more influential signal as well.

LEMMA A.3: For any strategy played by the other agents, in any best response by agent i, if i 6= l and gi,l = 1, then gi,m = 1

for any signal m such that β−i,m > β−i,l.
Furthermore, if the best response is strict, then if i 6= l and gi,l = 1, then gi,m = 1 for any signal m such that β−i,m ≥ β−i,l.

PROOF:
Observe agent i’s expected payoff formula from Proposition 2. First, note that player i’s connection decisions or action

decisions do not influence the vector of influences given by β−i,·. Thus, an agent connections only affect her payoff through

the gi. Finally, observe that player’s i payoff derivative with respect to β−i,l is strictly positive for any gi,l = 1, and strictly
negative for gi,l = 0. This completes the proof. �

We now proceed to the second part of our argument. We establish that the agent, j, whose signal is more observed is also

the agent j with higher β−i,j , for all i.
The first step is to establish a relationship between β−i,j and βj in any strict equilibrium.

LEMMA A.4: For any agent i, given a strategy played by the other agents, in any strict best response by i, βm ≥ βl implies
that β−i,m ≥ β−i,l. Furthermore, if βm > βl, then we have β−i,m > β−i,l

PROOF:

We proceed by exhaustion. Agent i’s connections must satisfy one of the following situations: (i) gim = 1 and gil = 0; (ii)

gim = gil = 0; (iii) gim = gil = 1; or (iv) gim = 0 and gil = 1. We start with the first case. If gif = 1 and gih = 0, it must be
that β−i,f > β−i,h by Lemma A.3. For the other 3 cases, using Equations (A.13) and (A.7), we have:

β−i,j =
n

n− 1
βj −

1

n− 1
λij =

n

n− 1
βj −

gij

n− 1

[
1

Ki + 1+σ2
+ r̃

[
βj −

∑n
s=0 βsgis

Ki + 1+σ2

]]
Applying the above to our three remaining cases gives us the following: (i) If gim = gil = 0, then β−i,m − β−i,l = n

n−1
(βm −

βl) ≥ 0. (ii) If gim = gil = 1, then β−i,m − β−i,l =
(

n
n−1

− r̃
n−1

)
(βm − βl) ≥ 0 . (iii) If gim = 0 and gil = 1, then

β−i,m − β−i,l = n
n−1

(βm − βl) +
1−r̃

∑n
s=0 βsgis

(n−1)(Ki+1+σ2)
+ r̃

n−1
βl > 0. Thus, we have that βm ≥ βl =⇒ β−i,m ≥ β−i,l and

βm > βl =⇒ β−i,m > β−i,l. �

To show that in any strict Nash equilibrium Property 1 is satisfied, all what’s left to show is that an agent whose signal is
more observed has a higher influence on the average action in any strict equilibrium, that is Km ≥ Kl =⇒ βm ≥ βl. Before
that, we show a simple property about cross-looks: If a higher ranked agent observes the signal of a lower ranked agent, then
in equilibrium the lower ranked agent also observes the higher ranked agent signal. Although in content the following Lemma
is closer to Property 2, its proof is a lot simpler. To prove the lemma, we present a revealed preference argument. It suffices in

this case (and not for Property 2) as we only have to compare one player’s deviation at a time. We use this result in the proof
of Lemma A.6.

LEMMA A.5: Let agents h and f be ranked by their influence over the average action, such that βf < βh. If in equilibrium
gh,f = 1, then gf,h = 1.
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PROOF:

The proof proceeds by contradiction. Assume that in a proposed equilibrium, gh,f = 1 and gf,h = 0.

Let Πf and Πh be the players’ equilibrium payoffs. Since gh,f = 1, agent f can simply copy agent h’s connections if she
wanted to—and also copy the action weights—which implies that Πf ≥ Πh by revealed preference. It is worth noting that if

agent f copied agent h’s connections they would both have the same information set. This guarantees that they could have the
same payoff, as well as same action coefficients.

Let Π̂f be the payoff of agent f if agent f stops observing her own signal and observes player h signal for free. By the

monotonicity of agent i’s expected payoff formula, given in Proposition 2, and Lemma A.4, β−f,h > β−f,f , and thus Π̂f > Πf .

Finally, if agent h observes the same set of signals as agent f does in the proposed equilibrium, (except that she observes her
own signal and does not observe agent f ’s signal), her payoff cannot be less than Π̂f . Agent h could simply copy the connections

and action weights used by agent f to obtain the payoff Π̂f . By revealed preference, this gives us Π̂f ≤ Πh. A contradiction. �

LEMMA A.6: In a strict equilibrium, agent m’s signal has a weakly higher impact in the average action than agent l‘s has
if, and only if, agent m is weakly more observed than agent l.

βm ≥ βl ⇐⇒ Km ≥ Kl

PROOF:
First of all, note that lemmata A.3 and A.4 guarantee one side of the argument, that if βm ≥ βl then Km ≥ Kl. However,

we need to show the other direction to guarantee Property 1. Thus, assume not. That is, assume that βm < βl and at the

same time Km ≥ Kl.
From the fact that all players use the beta ranking to decide who to look, we have that βl > βm implies β−i,l > β−i,m ∀i,

and thus gi,l ≥ gi,m ∀i 6= m. Let us now proceed in cases. There are two possible cases, (i) gl,m = 1, which gives us gm,l = 1

by Lemma A.5, or (ii) gl,m = 0, which gives us gm,l = 0 otherwise Kl > Km. So, in both cases, we have that gl,m = gm,l.
Since gi,l ≥ gi,m ∀i 6= m and Km ≥ Kl, it must be that Km = Kl, which implies that gi,l = gi,m ∀i.

Let’s now use the formula for the influence of a signal j, βj , from Equation (A.11), and apply it to both signals m and l.
The difference between βm and βl is given by:

βm − βl =
1

n

n∑
i=1

gim − gil
σ2 +Ki + 1

+
r̃

n

[
βm(Km + 1)− βl(Kl + 1)−

n∑
i=1

n∑
s=0

βsgis(gim − gil)
σ2 +Ki + 1

]
=
r̃

n

[
(βm − βl)(Km + 1)

]
Given that r̃

(
Km + 1

)
< n, we must have βm − βl = 0, a contradiction. �

Finally, to show that any strict Nash equilibrium of the game satisfies Property 1 all what is left is to use the Lemmas above.

In any strict equilibrium, by Lemma A.6, if Km ≥ Kl we have that βm ≥ βl. Lemma A.4, shows that βm ≥ βl guarantees

β−i,m ≥ β−i,l, and finally by Lemma A.3 β−i,m ≥ β−i,l implies that for any l 6= i, gi,l = 1 =⇒ gi,m = 1.

Property 2

The proof that Property 2 holds in equilibrium is a little more evolved. Before discussing the details of the proof, let us
define two sets, DM and DL, for two players m and l with

Km > Kl.

By lemmata A.3 and A.4, all players are ranked according to a common list and thus all signals that player l pays to observe,
player m also observes.

Let there be d = Km − Kl ≥ 1 signals. Abusing notation, we call the corresponding set of signals, DM and DL defined as
follows: DM is the set of d signals that agent m is currently observing but would stop observing if agent m were to observe d

fewer signals. Similarly, DL is the set of d signals that agent l is not currently observing but would start observing if agent l
were to observe d additional signals. Accordingly, if l were to form connections to DL she would be obtaining the same number
of signals as m. Note that we define DM and DL to be the set of signals that give the best possible information set for players
m and l that satisfy the above.

The fact that player m receives signal m for free disciplines the sets DM and DL. They are not equal, as agent m cannot
deviate and stop observing her own signal. Let us also define the set SM , to be the set of signals that agent m observes and l

does not observe, while the set SL is the set of signals that agent l observes and m does not.

EXAMPLE A.1: Consider the following example, in which player m is the 5th most attractive signal to be tapped into while
player l is the 9th. In each of the four situations above, we contemplate a different configuration between the two players. In
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1
2
3
4
M
6
7
8
L

M

L

M → L
L→M

DM = {7, 8, L}
DL = {6, 7, 8}

d = 3

(a)

1
2
3
4
M
6
7
8
L

M

L

M → L
L 6→M

DM = {6, 7, 8, L}
DL = {M, 6, 7, 8}

d = 4

(b)

1
2
3
4
M
6
7
8
L

M

L

M 6→ L
L→M

DM = {7, 8}
DL = {6, 7}

d = 2

(c)

1
2
3
4
M
6
7
8
L

M

L

M 6→ L
L 6→M

DM = {4, 6, 7, 8}
DL = {4,M, 6, 7}

d = 4

(d)

Figure A.1. : Four different configurations concerning players m and l choices of connections.

the first, they both tap into each other signals, while on the last neither does so. In the second, even though m taps into l′s
signal, l does not correspond, and finally, the third situation presents the inverse.

The four examples pictured above show different possibilities for the sets DM and DL, depending on the connections formed.
It is also interesting to understand what is the information set of players in each situation. In the first situation, the players

information sets are IM = {e0, e1, e2, e3, e4, eM , e6, e7, e8, eL} and IL = {e0, e1, e2, e3, e4, eM , eL}, and thus SM = {e6, e7, e8}
and SL = {∅}. In the second situation, they are IM = {e0, e1, e2, e3, e4, eM , e6, e7, e8, eL} and IL = {e0, e1, e2, e3, e4, eL}
(and thus SM = {eM , e6, e7, e8} and SL = {∅}), while on the third they are IM = {e0, e1, e2, e3, e4, eM , e6, e7, e8} and

IL = {e0, e1, e2, e3, e4, eM , eL}, with SM = {e6, e7, e8} and SL = {eL}. Finally, in the fourth configuration, IM =

{e0, e1, e2, e3, e4, eM , e6, e7, e8} and IL = {e0, e1, e2, e3, eL}, and thus SM = {e4, eM , e6, e7, e8} and SL = {eL}.

The example above highlights comparative properties of the sets DM and DL. The signals listed in DL weakly dominate

the ones listed in DM . This is a direct result of the fact that player m receives the signal m for free (and m is more attractive
than l) and cannot stop observing it, while player l receives signal l.

Comparing Deviations

We will prove Property 2 by contradiction. The general structure of the argument is to assume that in equilibrium an agent

m is at the same time strictly observing more signals and has her signal observed more than another player l, that is:

Km ≥ Kl and Km > Kl

The contradiction will be constructed in the following way: If it is worth for agent m to pay and observe more signals than l
does (even though agent m′s free signal is more observed than agent l’s free signal), then agent l’s deviation to look at those

signals is profitable. The argument of the proof is to show that if player m is not willing to deviate and stop observing signals

in DM , then it is optimal for agent l to deviate and start observing signals in DL.
(i) First, we define an artificial deviation for player m. That is, a deviation not available to player m, but which will be used

as a hypothetical tool in this proof. That deviation is for player m to not observe the signals in the set DL, saving the cost of

not paying for d signals. This is not a proper deviation available to player m for two reasons: (1) it might involve player m to
not observe her own signal; and (2) for the purpose of costs, in the hypothetical deviation, when player m stops observing her

own signal she saves on costs as if she had had to pay for it. This hypothetical deviation is very useful as now we can compare

the benefit of agent m to stop observing signals in DL, with the benefit of agent l to start observing signals in DL. The set of
signals and the cost difference is the same in both cases.

(ii) Second, by the fact that the set DL weakly dominates the set DM , and by Lemma A.3 and Lemma A.4, we know that
the hypothetical deviation for agent m to stop observing signals in DL is weakly dominated by the original (and available to
player m) deviation to stop observing the signals in DM . Hence, if agent m is not willing to stop observing the signals in DM ,

then agent m is not willing to take the hypothetical deviation described above (i.e. to stop observing the signals in DL).
To simplify the notation, from now on we call the set DL as D, for deviation.

(iii) The rest of the proof consists of showing that, if player m is not willing to deviate and stop observing signals in DL,

then it would be optimal for agent l to deviate and start observing signals in DL. We do this is in a few steps:
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1) Lemmata A.7 and A.8 show that the influence of signals inside (outside) of the set D is higher (lower) if the average

action excludes player l than if it excludes player m, as agent l does not observe those signals.

2) We construct the ex-ante payoff gain for player m to take the hypothetical deviation of stop observing the set D of
signals. We call this ∆Πm, which is formally the payoff of player m under the hypothetical deviation minus the payoff

without the hypothetical deviation which is to keep observing the signals in the set D. Similarly, we construct the

ex-ante payoff gain for player l to take the deviation of start observing the set D of signals. We call this ∆Πl, which is
formally the payoff of player l under the deviation minus the payoff without the deviation which is to keep not observing

the signals in the set D.

3) By assumption, player m is not willing to take the deviation, thus ∆Πm must be weakly negative. That is, ∆Πm ≤ 0.
Also by the contradiction assumptions, player l is not willing to accept the deviation, thus ∆Πl must be weakly negative

as well. That is, ∆Πl ≤ 0. To formally show our contradiction, we show that ∆Πm + ∆Πl > 0. To show this last

inequality, we use the results in Lemmata A.10 and A.9 to simplify the expression for the payoff gains.

Next, we proceed by showing these three step above, starting with Lemmata A.7 and A.8.

LEMMA A.7: For a given non-empty set of signals D and two distinct agents l and m such that m observe all signals in D

while agent l does not observe signals in D, the summed influence of the signals in the set D is higher if the average action

excludes agent l’s action than if it excludes agent m’s action:

β−l,j > β−m,j for every j ∈ D.

PROOF:
This is a direct result of the fact that l is not observing any signal in D while m is observing signals of D. This implies

that l’s action cannot respond to signals in D, i.e., λlj = 0∀ j ∈ D. Using the expressions for β−m,j and β−l,j from Equation

(A.13), we have that:

βj =
n− 1

n
β−m,j +

1

n
λm,j =

n− 1

n
β−l,j +

1

n
λl,j =

n− 1

n
β−l,j

Hence,

β−m,j = β−l,j −
λm,j

n− 1
< β−l,j ,

since λmj > 0 whenever gmj = 1, i.e., for every j ∈ D, as discussed in Appendix A.1 (Equation A.6). �

LEMMA A.8: For a given non-empty set of signals D and two distinct agents l and m such that m observe all signals in D

while agent l does not observe signals in D such that
∑n
j=0(gmj − glj)βj ≥

∑
j∈D βj , then:

∑
j /∈D

gm,jβ−m,j −
∑
j /∈D

gl,jβ−l,j ≥
1

n− 1

∑
j∈D

λm,j > 0

PROOF:

Observe that l is not tapping into any signal in D, i.e., glj = 0 ∀ j ∈ D, thus we have:

∑
j /∈D

gl,jβ−l,j =

n∑
j=0

gl,jβ−l,j = 1−
n∑
j=0

(1− gl,j)β−l,j .

Player m is tapping into all signals in the set D, i.e., gmj = 1 ∀ j ∈ D, and thus:

∑
j /∈D

gm,jβ−m,j =

n∑
j=0

gm,jβ−m,j −
∑
j∈D

β−m,j = 1−
n∑
j=0

(1− gm,j)β−m,j −
∑
j∈D

β−m,j .

Subtracting the first from the second, we have:

∑
j /∈D

gm,jβ−m,j −
∑
j /∈D

gl,jβ−l,j =

n∑
j=0

(1− gl,j)β−l,j −
n∑
j=0

(1− gm,j)β−m,j −
∑
j∈D

β−m,j .

We can partition all signals in the economy into four groups. The set of signals they are both observing SB ; the set of signals
neither is observing SN ; the set of signals m is observing and l is not, SM ; and the set of signals l is observing and m is not,
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SL. ∑
j /∈D

gm,jβ−m,j −
∑
j /∈D

gl,jβ−l,j =
∑
j∈SN

(
β−l,j − β−m,j

)
+
∑
j∈SM

β−l,j −
∑
j∈SL

β−m,j −
∑
j∈D

β−m,j

From Equation (A.13), βj = n−1
n
β−m,j + 1

n
λm,j . According to Equation (A.6) in Appendix A.1, we know that λij = 0

whenever gij = 0. Hence, for a signal j in SN , both λm,j and λl,j are zero. For a signal in SM , λl,j = 0 and for a signal in SL,
λm,j = 0. Thus, using these relationships, we can rewrite the difference above as

∑
j /∈D

gm,jβ−m,j −
∑
j /∈D

gl,jβ−l,j =
n

n− 1

 ∑
j∈SM

βj −
∑
j∈SL

βj

−∑
j∈D

β−m,j

=
n

n− 1


∑
j∈SM

βj −
∑
j∈SL

βj −
∑
j∈D

βj

︸ ︷︷ ︸
≥0

+
∑
j∈D

λm,j

n

 ≥
1

n− 1

∑
j∈D

λm,j︸ ︷︷ ︸
>0

> 0.

where the first inequality holds because
∑
j∈SM

βj −
∑
j∈SL

βj =
∑n
j=0(gmj − glj)βj ≥

∑
j∈D βj , using the condition of this

lemma. �

Given that all players are ranked according to a common list (lemmata A.3 and A.4), for the players l and m defined in this
proof, the condition in the lemma above is satisfied by definition.

Using the lemmata proven above, we now proceed to look at agent’s payoffs if they deviated and chose to observe different
signals. Let ∆Πm be the difference of ex-ante expected payoff of player m between breaking those d extra links in D or

maintaining them. Notice that if player m unilaterally deviates and breaks those links, no other player changes her action.

Thus the influence of signals to other players action will not change, and β−m,j must be constant. Similarly, let ∆Πl be the
difference of ex-ante expected payoff of player l between observing those d signals or not forming those links. Given that by

assumption we are at strict equilibrium, both expected payoff differences should be strictly smaller than zero.

Regarding notation, we keep gi,j to be the original linking strategy of the proposed equilibrium, in which m observes the
signals from D and agent l does not observe them. Thus, we have to add or subtract elements to the expression accordingly.

Formally, in both payoff expressions used in ∆Πm—one where player m observes the signals in D, and one where she does

not—we consider the same gm,j with gm,j = 1 ∀j ∈ D. Analogously, we consider for both elements of ∆Πl that gl,j = 0 ∀j ∈ D.
Using the payoff function from Proposition 2, we compute ∆Πm as follows:

∆Πm =−
σ2
(

1− r
∑
j /∈D gmjβ−m,j

)2

σ2 +Km − d+ 1︸ ︷︷ ︸
Without observing

+
σ2
(

1− r
∑n
j=0 gmjβ−m,j

)2

σ2 +Km + 1︸ ︷︷ ︸
Observing D

− r2σ2

 n∑
j=0

(1− gmj)β2
−m,j +

∑
j∈D

β2
−m,j


︸ ︷︷ ︸

Without observing

+ r2σ2
n∑
j=0

(1− gmj)β2
−m,j︸ ︷︷ ︸

Observing D

+ ∆C︸︷︷︸
Cost difference of
not observing signals

where the first element sums over j /∈ D, as player m is not observing the signals in D, while gm,j = 1 ∀j ∈ D. For the same

reason, the third term includes the additional sum over j ∈ D,
∑
j∈D β

2
−m,j . Simplifying the expression above,

∆Πm =−

1− r
∑
j /∈D

gmjβ−m,j

2 (
σ2

σ2 +Km − d+ 1
−

σ2

σ2 +Km + 1

)

− 2
rσ2

σ2 +Km + 1

1− r
∑
j /∈D

gmjβ−m,j

∑
j∈D

β−m,j +
r2σ2

σ2 +Km + 1

∑
j∈D

β−m,j

2

− r2σ2
∑
j∈D

β2
−m,j + ∆C
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If we analyze the ex-ante expected payoff difference for player l, we have:

∆Πl = −
σ2
(

1− r
∑n
j=0 gljβ−l,j − r

∑
j∈D β−l,j

)2

σ2 +Kl + d+ 1︸ ︷︷ ︸
Observing D

+
σ2
(

1− r
∑n
j=0 gljβ−l,j

)2

σ2 +Kl + 1︸ ︷︷ ︸
Without observing

− r2σ2

 n∑
j=0

(1− glj)β2
−l,j −

∑
j∈D

β2
−l,j


︸ ︷︷ ︸

Observing D

+ r2σ2
n∑
j=0

(1− glj)β2
−l,j︸ ︷︷ ︸

Without observing

− ∆C︸︷︷︸
Cost difference

where the first element includes an additional term, a sum over j ∈ D, as player l is observing the signals in D, while

gl,j = 0 ∀j ∈ D. For the same reason, the third element subtracts the additional term,
∑
j∈D β

2
−l,j .

Notice that
∑
j /∈D gljβ−lj =

∑n
j=0 gljβ−lj because glj = 0 ∀ j ∈ D. Hence, payoff difference can be written as:

∆Πl =

1− r
∑
j /∈D

gljβ−l,j

2(
σ2

σ2 +Kl + 1
− σ2

σ2 +Kl + d+ 1

)
+ 2

rσ2

σ2 +Kl + d+ 1

1− r
∑
j /∈D

gljβ−l,j

∑
j∈D

β−l,j

− r2σ2

σ2 +Kl + d+ 1

(∑
j∈D

β−l,j

)2

+ r2σ2
∑
j∈D

β2
−l,j −∆C

Before we proceed, note that the cost difference is the same in both cases, and also that Kl + d = Km. Thus, as we sum the

two differences, we write as follows:

∆Πl + ∆Πm =

(
σ2

σ2 +Kl + 1
− σ2

σ2 +Kl + d+ 1

)1− r
∑
j /∈D

gljβ−l,j

2

−

1− r
∑
j /∈D

gmjβ−m,j

2
+ 2

rσ2

σ2 +Kl + d+ 1

1− r
∑
j /∈D

gljβ−l,j

∑
j∈D

β−l,j −

1− r
∑
j /∈D

gmjβ−m,j

∑
j∈D

β−m,j


+ r2σ2

(∑
j∈D

β2
−l,j −

∑
j∈D

β2
−m,j

)
−

(∑
j∈D β−l,j

)2

−
(∑

j∈D β−m,j
)2

σ2 +Kl + d+ 1


We are now ready to sign the first two lines of the expression above. First, d > 0 and Lemma A.8 give us that the first line

is the product of two strictly positive terms. For the second line, by Lemma A.7 and Lemma A.8, we have that the second line
is also strictly positive. In what follows, we show that the third line is non-negative, characterizing the contradiction. To sign

the third line is equivalent to sign the following expression:

(∑
j∈D β

2
−l,j −

∑
j∈D β

2
−m,j

)
d

−
d

σ2 +Kl + d+ 1

(∑
j∈D β−l,j

)2
−
(∑

j∈D β−m,j
)2

d2

≥

∑
j∈D

(
β2
−l,j − β

2
−m,j

)
d

−

(∑
j∈D β−l,j

)2
−
(∑

j∈D β−m,j
)2

d2

=
1

d

∑
j∈D

β−l,j − 1

d

∑
s∈D

β−l,s

2

−
1

d

∑
j∈D

β−m,j − 1

d

∑
s∈D

β−m,s

2

From Equation (A.13) along with the fact that λlj = 0, we know that β−l,j = β−m,j+ 1
n−1

λm,j , and therefore the expression

14



simplifies to:

=
1

d

∑
j∈D

β−m,j +
1

n− 1
λm,j −

1

d

∑
s∈D

(
β−m,s +

1

n− 1
λm,s

)2

−
1

d

∑
j∈D

β−m,j − 1

d

∑
s∈D

β−m,s

2

=

(
1

n− 1

)2 1

d

∑
j∈D

λm,j − 1

d

∑
s∈D

λm,s

2

+

(
2

n− 1

)
1

d

∑
j∈D

β−m,j − 1

d

∑
s∈D

β−m,s

λm,j − 1

d

∑
s∈D

λm,s


≥
(

2

n− 1

)
1

d

∑
j∈D

β−m,j − 1

d

∑
s∈D

β−m,s

λm,j − 1

d

∑
s∈D

λm,s

 .

We still have to show that this term is positive. It amounts to show that a player considers more, and thus gives it a higher
weight (higher λ−m,j) to more influential signals (higher β−m,j). The next lemma rewrite λij as a function of {β−i,j}nj=0, and

then Lemma A.10 shows that this relation holds.

LEMMA A.9: For every agent i, λij can be expressed as a function of β−i,j as follows:

(A.27) λi,j = gi,j

[
1− rβ−i,0
σ2 +Ki + 1

+ rβ−i,j −
r

σ2 +Ki + 1

n∑
s=1

β−i,sgi,s

]
for j = 1, . . . , n.

PROOF:

We start by computing the best action, as a function of signals observed. From Appendix A.3, Equation (A.20) and

(A.21), we know that a∗i = F ′iω, and that ai = E
[
F ′iω|Ii

]
= F ′iCov (ω,XiΓω)′ Var (XiΓω)−1 XiΓω, where Fi, Xi, Γ, and

ω were all defined in Appendix A.3, Equations (A.17), (A.18), and (A.20). Let us start by computing the following term:

Cov (ω,XiΓω)′ Var (XiΓω)−1Xi =

[
B1

B2

]
(n+1)×n

, where B1 and B2 are given by:

B1 = 1′(XiΦΦ′X′i)
−1Xi −

1

φi
1′(XiΦΦ′X′i)

−111′(XiΦΦ′X′i)
−1Xi

B2 = Φ′X′i(XiΦΦ′X′i)
−1Xi −

1

φi
Φ′X′i(XiΦΦ′X′i)

−111′(XiΦΦ′X′i)
−1Xi.

The matrix Φ is a diagonal matrix of σ’s, and φi = 1+
∑n
j=1 gijσ

−2, both terms are defined in Appendix A.3, and in Equations

(A.24) and (A.25). We can further simplify some expressions as follows:

XiΦΦ′X′i = σ2IKi+1

1′(XiΦΦ′X′i)
−1Xi = σ−2[gi,1, gi,2, ...gi,n]1×n

1′(XiΦΦ′X′i)
−11 = σ−2(Ki + 1)1×1

φi = 1 + (Ki + 1)σ−2,

which gives us a simplified expressions for B1 and B2:

B1 =
1

σ2 +Ki + 1
[gi,1, gi,2, ...gi,n]1×n, and B2 = σ−1diag([gi,1, gi,2, ...gi,n])−

σ−1

σ2 +Ki + 1


gi,1
gi,2
...
gi,n


n×1

[gi,1, gi,2, ...gi,n].

Next, we combine the simplified expressions for B1 and B2 along with the definition of Fi. For any signal ej , j ∈ {1, 2, ..., n},

we can compute the linear coefficient λij of that particular signal over the action of agent i: [λi1, λi2, ..., λin] = F ′i

[
B1

B2

]
, where

F ′i = [1− rβ−i,0, rσβ−i,1, rσβ−i,2, · · · , rσβ−i,n]. Hence: λi,j = gi,j

[
1−rβ−i,0

σ2+Ki+1
+ rβ−i,j − r

σ2+Ki+1

∑n
s=1 β−i,sgi,s

]
. �

LEMMA A.10: Consider a subset D of an agent m’s information set, i.e., gmj = 1 for every j ∈ D. The covariance between
the influence a signal has over the average action not including agent m’s action and how influential that particular signal is
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to agent m’s action is non-negative.

1

d

∑
j∈D

β−m,j − 1

d

∑
s∈D

β−m,s

λm,j − 1

d

∑
s∈D

λm,s

 ≥ 0

PROOF:

Using Lemma A.9, when agents are ex-ante identical we have that:

λi,j = gi,j

[
1− rβ−i,0
σ2 +Ki + 1

+ rβ−i,j −
r

σ2 +Ki + 1

n∑
s=1

β−i,sgi,s

]
.

For i = m and j ∈ D, we have that gmj = 1. Hence, λm,j =
1−rβ−m,0

σ2+Km+1
+rβ−m,j− r

σ2+Km+1

∑n
s=1 β−m,sgm,s for every j ∈ D.

Now that we have written λm,j for j ∈ D as a function of {β−i,s}s=1, we conclude the proof of this lemma as follows:

1

d

∑
j∈D

β−m,j − 1

d

∑
s∈D

β−m,s

λm,j − 1

d

∑
s∈D

λm,s

 =
1

d

∑
j∈D

β−m,j − 1

d

∑
s∈D

β−m,s

rβ−m,j − 1

d

∑
s∈D

rβ−m,s


= r

1

d

∑
j∈D

β−m,j − 1

d

∑
s∈D

β−m,s

2

≥ 0.

�

This gives us that ∆Πm + ∆Πl > 0, even though by assumption both elements were smaller than zero, characterizing our

contradiction.

2. Example of out-of-equilibrium violation of Proprerties 1, 2, and 3

In this section, we provide a numerical example highlighting that Properties 1, 2, and 3 do not hold in out of equilibrium
networks. Let us assume an economy with 10 agents with identical preference parameters given by r = 0.5 and σ2 = 1. Also, we

assume a linear cost function given by C(K) = 0.12K. Agents are connected as described in Figure A.2. In this informational
structure, agents 1, 2, and 8 observe agent 3’s signal in additional to their own respective signal and the common prior. Agents

3, 9, and 10 do not observe any additional signal. Finally, agents 4, 5, 6, and 7 observe agent 6’s, 7’s, 8’s, 9’s, and 10’s signal

in addition to their own respective signal and the common prior.

98 10

6

4 5

7

3

21

Figure A.2. : Example showing that Properties 1 and 2 do not hold in out of equilibrium networks.

Although this network is not an equilibrium, we can compare all possible deviations using the payoff deviation formula from

Proposition 2, and numerically verify that agents 3 and 8 do not want to deviate, taking all other agents actions and connections
as given. That is, all agents choose optimal actions given their connections and agents 3 and 8 do not want to form or break

connections. This example violates Property 1 because agent 8 wants to keep observing agent 3 instead of, for instance, agent
10. However, agent 10’s signal is observed by 4 other agents in addition to agent 10 herself, i.e. K10 = 4, while 3’s signal is
observed by 3 other agents in addition to agent 3 herself, i.e. K3 = 3. Hence, K10 > K3. This is a clear violation of Property 1.

Property 2 does not hold in this example because agent 3 wants to keep observing no additional signal, i.e., K3 = 0, while agent
8 wants to keep observing agent 3’s signal, i.e. K8 = 1. However, agent 8’s signal is observed by 4 other agents in additional

to agent 8 herself, i.e. K8 = 4, while 3’s signal is observed by 3 other agents in additional to agent 3 herself, i.e. K3 = 3.

This violates Property 2 since K8 > K3 and K8 > K3. Finally, this example violates Property 3 as while player 6 observes the
signals of players 8 and 9, player 8 does not find it optimal to observe player 9’s signal.
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3. Proof of Theorem 1

We present the proof below. We inductively construct the sets from Definition 2, A1,...,An. To characterize the set A1,
the key step is to show that all agents not in A1 must be observing any agent in it. We do so by using one more inductive

argument. Consider a directed network G that satisfies Property 1 and Property 2. Let us define the following sets, B1, B2,

..., BN . The first set, B1, is such that i ∈ B1 ⇐⇒ Ki ≥ Kk ∀k. To construct the second set, B2, consider the auxiliary
network G2 obtained from G by omitting all agents from B1 and their respective connections. We can compute K’s and K’s

using the network G2, and the set B2 is defined in a similar fashion as the set B1, but using G2 instead of G. Inductively, we

can construct the sets B3, B4, . . . , BN . The proof consists in showing that the set Bs satisfies the definition for the set As. The
argument proceeds inductively, and we first show that the set B1 above is, indeed, the set A1 of the definition of hierarchical

directed network.

If for every agent i, gi,j = 0 for every j /∈ {i, 0}, then the proof is done. The empty network is a hierarchical network. Let
us focus on the interesting case: The network is not empty. Let k1 be an element of the non-empty set B1.

(i) First, we need to show that if k2 /∈ B1, then it must be the case that gk2,k1
= 1. That is, if k2 is not among the

set of most-connected agents, it must be observing k1. The structure of the argument will be based on contradiction. By
contradiction, assume that there exists k2 /∈ B1, such that gk2,k1

= 0. There are two cases to be considered, depending on

whether or not agent k2 observes any signal, j.
If agent k2 observes some agent j, gk2,j = 1 for an agent j, the contradiction is immediate. Agent k2 violates Property 1, as

Kk1
≥ Kj should imply gk2,j = 1 =⇒ gk2,k1

= 1. Agent k2 should be observing agent k1. Observe that this holds true even

if j ∈ B1.
If agent k2 does not observe any other agent j, gk2,j = 0 for any j, then we proceed with the following steps to reach a

contradiction:

1. We know that, in particular, gk2,s = 0 for any s such that Ks ≥ Kk1
.

2. Let BN be the group of least-observed agents. It must be that k2 /∈ BN ; otherwise, by Property 2, all other agents

would also not be observing any additional signal, and we would have an empty network.

3. Given that k2 /∈ B1, we know that Kk2
< Kk1

, and, thus, there is an agent k3 such that gk3,k2
= 0 and gk3,k1

= 1. By

Property 1, it also holds that gk3,s = 0 for all s such that Ks ≤ Kk2
.

4. Given that Kk3
> Kk2

, by Property 2 it must be that Kk3
< Kk2

.

5. By the same argument as in (3) above, it must be that there is an agent k4 such that gk4,k3
= 0 and gk4,k2

= 1.

6. Note that gk3,k4
= 0. If gk3,k4

= 1, then we would have Kk4
> Kk2

> Kk3
. By Property 2, this would imply Kk4

< Kk3
.

From Property 1 we would have that gk4,s = 1 implies gk3,s = 1 for any s 6= k4, k3, which contradicts gk3,k2
= 0 but

gk4,k2
= 1.

7. Given that gk3,k2
= 0 (step 3) and gk4,k2

= 1 (step 5), we have from Property 1 that gk3,s = 1 implies gk4,s = 1 for
any s 6= k4, k3. Combined with the fact that gk3,k2

= 0 (step 3), gk4,k3
= 0 (step 5), gk4,k2

= 1 (step 5) and gk3,k4
= 0

(step 6), we have that Kk4
> Kk3

. By Property 2, we have that Kk4
> Kk3

implies Kk4
< Kk3

.

8. As the number of agents is finite, this induction must end. There exists a final agent kN̄ such that gkN̄ ,kN̄−1
= 0 and

gkN̄ ,kN̄−2
= 1. Since this is the last step of the induction, there is no agent, s, outside of the sequence, s /∈ {k1, ..., kN−2},

such that gs,kN̄−1
= 1 and gs,kN̄ = 0. Also, from the penultimate step of the induction, we have gkN̄−1,kN̄−2

= 0 and
gkN̄−1,kN̄−3

= 1.

9. Given that gkN̄−1,kN̄−2
= 0 and gkN̄ ,kN̄−2

= 1, we have from Property 1 that gkN̄−1,s
= 1 implies gkN̄ ,s = 1 for

any s 6= kN̄ , kN̄−1. Also, remember that gkN̄ ,kN̄−1
= gkN̄−1,kN̄−2

= gkN̄−1,kN̄
= 0 and gkN̄ ,kN̄−2

= 1. Hence,

KkN̄−1
< KkN̄ . By Property 2, KkN̄−1

< KkN̄ implies that KkN̄−1
> KkN̄ . If KkN̄−1

> KkN̄ , then there is an agent
kN̄+1 such that gkN̄+1,kN̄

= 0 and gkN̄+1,kN̄−1
= 1. This contradicts agent kN̄ being the final agent in the sequence.

(ii) Second, we need to show that if an agent in B1 is observed by any other member of B1, then she must observe and be

observed by all agents in B1.

1. If k1 ∈ B1 is observed by m ∈ {1, 2, ..., n} other agents in B1, then all agents in B1 are observed by m other members
of B1. As all agents in B1 are observed by the same number of agents from outside B1, and by the same number of

agents in total, they must also be observed by the same number of agents in B1.

2. If an agent k1 ∈ B1 observes another agent in B1, then, by Property 1, she observes all other agents in B1. Thus, if all
agents observe someone, from Property 1, we already have that all agents observe everyone else in B1.
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3. The last step is to show that if only a subset of agents from B1 observe other agents in B1, then we reach a contradiction.

We proceed by considering a partition of the set B1: the subset of agents who observe at least one other agent in B1,
Sl ⊂ B1, and its complement Sb = B1\Sl. Let C(Sl) be the cardinality of the set Sl. By Property 1, every member of

Sl observes everyone else in B1.

The contradiction to be reached regards the number of agents observing the signal from an agent in Sl and the number
of agents observing the signal from an agent in Sb. Since they are all in B1, this number should be the same. However,

we show that the number of agents observing a signal of an agent in Sl is strictly smaller than the number of agents

observing a signal of an agent in Sb. An agent in Sb is observed by other agents in B1—in particular, by all agents in
Sl; thus, her signal is observed by C(Sl) + 1 agents in B1—the plus one refers to herself. However, an agent in Sl’s

signal is observed by only Sl agents in B1. Contradiction.

(iii) To complete the construction of B1, we need to show that if an agent j in B1 observes a signal from an agent s not in
B1, then: (a) j observes the signals of all agents in B1; (b) all other agents in B1 observe agent s’s signal; (c) agent s is in B2;

and (d) j observes no signal from an agent not in B1, except for s.

The proofs of items (a) and (c) are direct applications of Property 1. The proof of item (b) proceeds by contradiction.
Consider any two agents i, j ∈ B1, and suppose, by contradiction, that agent j observes the signal of agent s, but agent i does

not, gi,s = 0 and gj,s = 1. By definition of the set B1, agents i, j ∈ B1 have the same number of agents observing their signal,

Ki = Kj . By part (ii) above, i, j ∈ B1 observe the same number of players in B1. Thus, by Property 2, they must observe the
same number of signals, Ki = Kj . Thus, there exists an agent k, k /∈ B1, such that gi,k = 1 and gj,k = 0. If Kk ≥ Ks, then

agent j violates Property 1; and, if Kk ≤ Ks, then agent i violates Property 1. Finally, the proof of item (d) also proceeds by

contradiction. Suppose not—that is, suppose that gi,j = 1 and gi,l = 1 with i ∈ B1 and j, l ∈ B2. It cannot be that all agents
in B2 observe each others’ signal; otherwise, Kj = Kl = Ki, but agent i is a member of B1, and, thus, j and l would not be

members of the second tier, but of the first. Thus, members of B2 do not observe signals from other members of B2. The final
step is to count the number of signals each agent observes. Agent j ∈ B2 observes only all members of B1; thus, Kj = C(B1).

However, agent i ∈ B1 observes Ki = C(B1)− 1 + 2, where the minus one refers to herself, and plus two refers to agents j and

l. This contradicts Property 2.
Items (i), (ii), and (iii) of the proof show that the set B1 satisfies the conditions (i), (ii), and (iii) of the definition of a

hierarchical directed network, respectively. Thus, the set B1 constructed satisfies the definition of the set A1.

The next step is to show that B2 satisfies the definition of the set A2. Follow the same steps (i), (ii), and (iii) detailed
above using the network G2. By induction, this guarantees that the sets B2, B3, . . . , BN are the sets A2, A3, . . . , AN from the

definition of hierarchical directed networks.

4. Proof of Proposition 4

Given Assumption 1, Properties 1 and 2 hold in equilibrium (Proposition 3), and any strict Nash equilibrium is a hierarchical
directed network (Theorem 1 and Corollary 1). Hence, we have to show that Property 3 holds in equilibrium given Assumptions

1 and 2.

We will prove Proposition 4 by contradiction. Let us assume that there are three agents, a, b, and c, such that c is connected
to both a and b, i.e., gca = 1 and gcb = 1, but a and b are not connected to each other, i.e., gab = 0. We know that

the equilibrium features a hierarchical network as information structure. Hence, the connections between these three agents

characterize different hierarchical networks, and there are only three possibilities:7 (i) networks in which members of the top
tier do not observe each other (a and b in the top tier); and (ii) networks in which members of the bottom tier observe each

other (b and c in the bottom tier); or (iii) networks with more than two tiers (a, b, and c each in a different tier).

Due to the hierarchical structure, agent c observes at least as many signals as agent a in addition to the signal from b and
her own. Thus, if agent c stopped observing agent b’s signal, her information set would still be a strict super set of agent a’s.

We will compare two deviations, for agent c to break the link with all players she is observing and player a is not, call such
set D, and for player a to form links with such set. Note that the set D is not empty, and has d ≥ 1 elements. Note also that,

even after player a forms links with all players in D, player a’s information set will still be a strict subset of player c’s. The
reason is that c is observing a, but the converse is not true. This follows from the definition of hierarchical network. If a and
b are in same tier (case i above), than it must be that gac = 0 because gab = 0. If a and b are not in the same tier, there are
two possibilities. One possibility is that b and c are in the same tier (case ii above), then gcb = 1 implies gbc = 1 (full tier).

Also, gca = 1 implies gba = 1 and thus a is in a tier above b and c’s tier; and, since gab = 0 and the tier of agents b and c is
full, then gac = 0 because otherwise c would be in a’s tier and a would have to observe b’s signal as well. Finally, the other

possibility is that a, b, and c are in different tiers (case iii above), then we know that b is in a tier above c’s, and thus gab = 0
implies gac = 0.

Notice that Ka + d = Kc − 1 < Kc because c is connected to a but a is not connected to c, which makes d = Kc − Ka − 1.
Regarding notation, we keep gi,j to be the original linking strategy of the proposed equilibrium, in which c observes the signals

from D and agent a does not observe them. Thus, we have to add or subtract elements to the expression accordingly. Formally,

7Notice that these are the only three possibilities: (i) gba = 0; (ii) gba = 1 and gbc = 1; or (iii) gba = 1 and gbc = 0.
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in both payoff expressions used in ∆Πc—one where player c observes the signals in D, and one where she does not—we consider

the same gc,j with gc,j = 1 ∀j ∈ D. Analogously, we consider for both elements of ∆Πa that ga,j = 0 ∀j ∈ D. First we use

Proposition 2 to compute the payoff difference for player c, comparing the payoff of deviating with the payoff of maintaining
the links.

∆Πc = −
σ2
(

1− r
∑
j /∈D gcjβ−c,j

)2

σ2 +Kc − d+ 1︸ ︷︷ ︸
Without observing

+
σ2
(

1− r
∑n
j=0 gcjβ−c,j

)2

σ2 +Kc + 1︸ ︷︷ ︸
Observing D

− r2σ2

 n∑
j=0

(1− gcj)β2
−c,j +

∑
j∈D

β2
−c,j


︸ ︷︷ ︸

Without observing

+ r2σ2
n∑
j=0

(1− gcj)β2
−c,j︸ ︷︷ ︸

Observing D

+C(Kc)− C(Kc − d)︸ ︷︷ ︸
Cost difference of
not observing signals

where the first element sums over j /∈ D, as player c is not observing the signals in D, while gc,j = 1 ∀j ∈ D. For the same

reason, the third term includes the additional sum over j ∈ D,
∑
j∈D β

2
−c,j . Simplifying the expression above,

∆Πc = −

1− r
∑
j /∈D

gc,jβ−c,j

2 (
σ2

σ2 +Kc − d+ 1
−

σ2

σ2 +Kc + 1

)
− 2

rσ2

σ2 +Kc + 1

1− r
∑
j /∈D

gc,jβ−c,j

∑
j∈D

β−c,j

− r2σ2

∑
j∈D

β2
−c,j −

1

σ2 +Kc + 1

∑
j∈D

β−c,j

2+ C(Kc)− C(Kc − d)

For this not be a profitable deviation for agent c, it must be that Πc < 0, which implies that:

C(Kc)− C(Kc − d) <

1− r
∑
j /∈D

gc,jβ−c,j

2(
σ2

σ2 +Kc − d+ 1
− σ2

σ2 +Kc + 1

)

+ 2
rσ2

σ2 +Kc + 1

1− r
∑
j /∈D

gc,jβ−c,j

∑
j∈D

β−c,j

+ r2σ2

[∑
j∈D

β2
−c,j −

1

σ2 +Kc + 1

(∑
j∈D

β−c,j

)2]

Following similar steps for agent a, we compute a’s payoff gain, i.e., ∆Πa, from deviating and observing the signals from D.

We have that:

∆Πa = −
σ2
(

1− r
∑
j /∈D ga,jβ−a,j − r

∑
j∈D β−a,j

)2

σ2 +Ka + d+ 1︸ ︷︷ ︸
Observing D

+
σ2
(

1− r
∑n
j=0 ga,jβ−a,j

)2

σ2 +Ka + 1︸ ︷︷ ︸
Without observing

− r2σ2

(
n∑
j=0

(1− gaj)β2
−a,j −

∑
j∈D

β2
−a,j

)
︸ ︷︷ ︸

Observing D

+ r2σ2

(
n∑
j=0

(1− gaj)β2
−a,j

)
︸ ︷︷ ︸

Without observing

− [C(Ka + d)− C(Ka)]︸ ︷︷ ︸
Cost difference
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where the first element includes an additional term, a sum over j ∈ D, as player a is observing the signals in D, while
ga,j = 0 ∀j ∈ D. For the same reason, the third element subtracts the additional term,

∑
j∈D β

2
−a,j .

∆Πa = −

1− r
∑
j /∈D

ga,jβ−a,j

2(
σ2

σ2 +Ka + d+ 1
− σ2

σ2 +Ka + 1

)

+ 2
rσ2

σ2 +Ka + d+ 1

1− r
∑
j /∈D

ga,jβ−a,j

∑
j∈D

β−a,j

+ r2σ2

[∑
j∈D

β2
−a,j −

1

σ2 +Ka + d+ 1

(∑
j∈D

β−a,j

)2]
− [C(Ka + d)− C(Ka)]

For this not to be a profitable deviation for agent a, it must be that Πa < 0, which implies that:

C(Ka + d)− C(Ka) >

1− r
∑
j /∈D

ga,jβ−a,j

2(
σ2

σ2 +Ka + 1
− σ2

σ2 +Ka + d+ 1

)

+ 2
rσ2

σ2 +Ka + d+ 1

1− r
∑
j /∈D

ga,jβ−a,j

∑
j∈D

β−a,j

+ r2σ2

[∑
j∈D

β2
−a,j −

1

σ2 +Ka + d+ 1

(∑
j∈D

β−a,j

)2]

Given that Kc = Ka + d + 1 > Ka + d, by convexity of the cost curve (Assumption 2), we have that
C(Kc)− C(Kc − d) ≥ C(Ka + d)− C(Ka), which combined with Πc < 0 and Πa < 0 gives us:

1− r
∑
j /∈D

gc,jβ−c,j

2 (
σ2

σ2 +Kc − d+ 1
−

σ2

σ2 +Kc + 1

)
+ 2

rσ2

σ2 +Kc + 1

1− r
∑
j /∈D

gc,jβ−c,j

∑
j∈D

β−c,j

+ r2σ2

∑
j∈D

β2
−c,j −

1

σ2 +Kc + 1

∑
j∈D

β−c,j

2
>

1− r
∑
j /∈D

ga,jβ−a,j

2 (
σ2

σ2 +Ka + 1
−

σ2

σ2 +Ka + d+ 1

)
+ 2

rσ2

σ2 +Ka + d+ 1

1− r
∑
j /∈D

ga,jβ−a,j

∑
j∈D

β−a,j

+ r2σ2

∑
j∈D

β2
−a,j −

1

σ2 +Ka + d+ 1

∑
j∈D

β−a,j

2
and can be simplified to:

1− r
∑
j /∈D

gc,jβ−c,j

2 (
σ2

σ2 +Kc − d+ 1
−

σ2

σ2 +Kc + 1

)
+ r2σ2

∑
j∈D

β2
−c,j

+
rσ2

σ2 +Kc + 1

∑
j∈D

β−c,j

2

1− r
∑
j /∈D

gc,jβ−c,j

− r∑
j∈D

β−c,j


>

1− r
∑
j /∈D

ga,jβ−a,j

2 (
σ2

σ2 +Ka + 1
−

σ2

σ2 +Ka + d+ 1

)
+ r2σ2

∑
j∈D

β2
−a,j

+
rσ2

σ2 +Ka + d+ 1

∑
j∈D

β−a,j

2

1− r
∑
j /∈D

ga,jβ−a,j

− r∑
j∈D

β−a,j

 .
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We will show that the above inequality never holds, characterizing a contradiction. Observe that the following in-
equalities hold: (i) Kc − d > Ka because d = Kc −Ka − 1; (ii) β−a,j > β−c,j for every j ∈ D from Lemma A.7; and (iii)∑
j /∈D gc,jβ−c,j ≥

∑
j /∈D ga,jβ−a,j from Lemma A.8.8 These three inequalities combined imply:

1− r
∑
j /∈D

gc,jβ−c,j

2 (
σ2

σ2 +Kc − d+ 1
−

σ2

σ2 +Kc + 1

)
<

1− r
∑
j /∈D

ga,jβ−a,j

2 (
σ2

σ2 +Ka + 1
−

σ2

σ2 +Ka + d+ 1

)

and r2σ2
∑
j∈D β

2
−c,j < r2σ2

∑
j∈D β

2
−a,j . Finally, we can work with the last term so that:

rσ2

σ2 +Kc + 1

∑
j∈D

β−c,j

2

1− r
∑
j /∈D

gc,jβ−c,j

− r∑
j∈D

β−c,j


<

rσ2

σ2 +Ka + d+ 1

∑
j∈D

β−a,j

2

1− r
∑
j /∈D

ga,jβ−a,j

− r∑
j∈D

β−a,j


because (i) Kc > Ka + d, which makes rσ2

σ2+Ka+d+1
> rσ2

σ2+Kc+1
; (ii) from Lemma A.7 we have that

∑
j∈D β−a,j >

∑
j∈D β−c,j ;

and (iii) using Lemma A.8 along with the definitions of β−a,j and β−c,j (Equation A.13) and the fact that λaj = 0 for every

j ∈ D, we have that

2

1− r
∑
j /∈D

ga,jβ−a,j

− r∑
j∈D

β−a,j −

2

1− r
∑
j /∈D

gc,jβ−c,j

− r∑
j∈D

β−c,j


= 2r

∑
j /∈D

gc,jβ−c,j −
∑
j /∈D

ga,jβ−a,j

− r∑
j∈D

β−a,j + r
∑
j∈D

β−c,j

≥ 2r

 1

n− 1

∑
j∈D

λc,j

− r∑
j∈D

β−a,j + r
∑
j∈D

β−c,j = r

2
1

n− 1

∑
j∈D

λc,j −
1

n− 1

∑
j∈D

λc,j

 = r
1

n− 1

∑
j∈D

λc,j > 0.

This characterizes a contradiction.

5. Proof of Theorem 2

We know, by Theorem 1, that any directed network satisfying Properties 1 and 2 is a hierarchical directed network. Next, we

show in three steps that Property 3 restricts the set of possible networks to core-periphery. First, we show that a hierarchical
network satisfying Property 3 has, at most, two tiers. Second, we show that all agents in the top tier must be connected to

each other. Third, we show that agents in the bottom tier are not connected to each other.

(i) Suppose that there are more than two tiers. Thus, there exists an agent in the bottom tier connected to all agents in the
top tier and all agents in a medium tier. There also exists an agent in a medium tier not being observed by an agent in the top

tier—otherwise, there would not exist a medium tier. This violates property 3.

(ii) Suppose that there is more than one agent in the top tier and at least one agent in the bottom tier. From the definition
of hierarchical networks, all agents in the top tier are either connected to each other or to no one at all. If the top-tier agents

are not connected to each other, then this would violate Property 3 because an agent in the bottom tier is connected to those

in the top tier, but they are not connected to each other.
(iii) Suppose that there is at least one agent in the top tier and more than one in the bottom tier. From the definition of

hierarchical networks, all agents in the bottom tier are either connected to each other or to no one at all. If the bottom-tier

agents are connected to each other, then this would violate Property 3 because an agent in the bottom tier is connected to
those in the top tier and those in the bottom tier, but they are not connected to each other.

6. Proof of Proposition 5

For item (a), as r approaches zero, according to Proposition 2, the expected payoff of agent i only depends on Ki. In fact,

agent i chooses Ki to maximize − σ2

σ2+Ki+1
− c(Ki). Given Assumptions 1 and 2, all agents choose exactly the same number

8The condition in Lemma A.8 holds with equality by the definition of the set D.
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of links, which implies a core-periphery network with members of the core also observing one signal from a peripheral agent

(core-periphery observing down network). Hence, the equilibrium is unique.
For item (b), as r approaches one, all betas of non-public signal converge to zero (Lemma 1). When costs of forming an

additional link is strictly positive, we have that when βj is sufficiently close to zero no agent is willing form a link with agent

j. Thus, for r sufficiently close to one, agents only connect to public signals, which delivers a simple core-periphery network
structure.

From Equation (A.7), under the simple-core-periphery network, we have that λij → 0 for every j ≥ 1, j /∈ PU:

lim
r→1−

λij = lim
r→1−

gijβj + g̃ij

1− lim
r→1−

β0 −
∑
s∈ PU

lim
r→1−

βs

 = lim
r→1−

gijβj = 0, ∀j /∈ PU.

As a result, from Equation (A.13), we have that limr→1− β−i,j = 0, ∀j ≥ 1, j /∈ PU. Thus agents do not want to observe

non-public signals as r goes to one. Formally, in any simple core periphery network, agents never want to form additional links
because it leads to a close-to-zero benefit in expected payoff as r approaches one, but they still have to pay the link formation

costs.

A first implication of the result above is that the empty network is always an equilibrium as players do not want to form
links. Next, we look at players incentives to break links. For j ∈ PU, under the simple core periphery network, we have from

Equation (A.7):

lim
r→1−

λij = lim
r→1−

βj + g̃ij

1− lim
r→1−

β0 −
∑
s∈ PU

lim
r→1−

βs

 = lim
r→1−

βj =

{
σ2

σ2+nc
if j = 0

1
σ2+nc

if j ≥ 1, j ∈ PU

Finally, based on Equation (A.13), we have that limr→1− β−i,j = limr→1− βj .

When deciding whether to break a link or not in a simple core-periphery network with nc core players, according to Proposition
2, an agent compares the benefit and costs. We know that i will not want to observe non-public signals. Thus, agent i will

observe up to nc public signals and her optimization problem is simplified to choose the number of core players signals to

observe.
Core players observe one core signal for free (their own signal), thus their optimization problem is given by:

max
Ki∈{0,...,nc−1}

−
σ2

σ2 +Ki + 1

(
1−

σ2

σ2 + nc
−
Ki + 1

σ2 + nc

)2

− σ2 (nc −Ki − 1)

(
1

σ2 + nc

)2

− C (Ki) .(A.28)

while, for peripheral agents, the optimization is given by:

max
Ki∈{0,...,nc}

−
σ2

σ2 +Ki + 1

(
1−

σ2

σ2 + nc
−

Ki
σ2 + nc

)2

− σ2 (nc −Ki)
(

1

σ2 + nc

)2

− C (Ki) .(A.29)

Both objective functions are strictly concave and thus feature a unique solution. Also, we focus on the link-breaking incentives

of peripheral agents, as the marginal benefit of peripheral agents is higher than of core players. If the optimal solution implies

Ki 6= nc, then a simple core periphery network with nc core players would not be equilibrium.
The marginal benefit of breaking a link increases with the number of core players. Hence, if a player does not want to break

a link under a simple core periphery network with nc core players, then she will not break the link in a simple core periphery
network with n < nc core players. Thus, if a simple core periphery network with nc core player holds in equilibrium, then
any simple core periphery network with fewer than nc core player also holds in equilibrium. Formally, there is a upper bound
n∗c ≤ n, such that any simple core periphery network with nc ∈ {0, . . . , n∗c} core players is an equilibrium, and these n∗c + 1

network structure fully characterize the set of possible equilibria. The value of n∗c is the highest number of core players such
that peripheral agent are not willing to break a link. Formally, a peripheral agent observing nc core players prefers not to break
a link if, and only if, the payoff from observing all nc core signals is greater than the payoff from observing nc − 1 core players
(and saving on the link formation cost).
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