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A What’s Wrong with Different Priors?

Could it be that our analysis of model-based reasoning is simply a repackaged
version of allowing agents to hold different priors?

The starkest difference is that models with different prior beliefs impose
virtually no discipline on the relationship of the beliefs of different agents,
and hence on the “collective” beliefs of the agents.1 In contrast, model-
based reasoning ensures that agents’ beliefs about the events they deem
relevant are anchored to the data. This imposes restrictions on the beliefs
of individual agents as well as restrictions on how the beliefs of various agents
can differ.

It is a common characterization of Bayesian updating that (under natural
conditions) at least eventually “the data swamps the prior.” This suggests
that the discordance allowed by differing priors should be only temporary,
with the data eventually imposing as much discipline on a group of agents
with different priors as it does on a group of model-based reasoners. To
investigate this, we examine a sequence in which agents receive increasing
amounts of information. In order to focus clearly in the discipline imposed on
beliefs by this information, we assume the agents have common information.
In particular, let (In)∞n=0 be an increasing sequence of subsets of N. We
∗Department of Economics, University of Pennsylvania, and Research School of Eco-

nomics, Australian National University; gmailath@econ.upenn.edu
†Department of Economics, Yale University, New Haven, CT 06525,

larry.samuelson@yale.edu
1Di Tillio et al. (2019) come to a similar conclusion.

1



consider a sequence in which every agent’s information set Iin in the nth

term is given by In.
We begin with a model of different priors, holding fixed the other aspects

of agents’ models. Suppose each agent has the correct state space and
description f (i.e., is an oracle), but we place no restrictions on the priors
ρi, and in particular no restrictions on how these priors may differ across
agents.

Given the sequence, let (βi,n∞ )K ∞
i=1,n=0 be the sequence of induced limiting

beliefs, for each agent, about the event F . We now argue that once we allow
priors to differ, there are few restrictions placed on the sequence of limit
posteriors (βi,n∞ )K, ∞i=1,n=1, even though the agents are oracles.

Of course, the agents’ limit posteriors are not completely arbitrary, as the
mere fact that they are derived from Bayes’ rule imposes some restrictions.
Say that the sequence (βi,n∞ )K ∞

i=1,n=0 has the martingale property if, for any
agent i and ωIn , there exists ωIn+1 consistent with ωIn with

βi,n+1
∞ (ωIn+1) < βi,n∞ (ωIn), (A.1)

if and only if there also exists ω′In+1
consistent with ωIn with

βi,n+1
∞ (ω′In+1

) > βi,n∞ (ωIn). (A.2)

Intuitively, an agent can receive encouraging news if and only if it is also
possible for the agent to receive discouraging news. Note that this implies
that zero and unitary beliefs are absorbing.

We also impose minimal consistency with f . The consistency require-
ment is the following, where the antecedents should be interpreted as the
joint hypothesis that the limit exists and has the indicated sign, and [ωIn ]
is the cylinder set given by {ωIn , ω−In},

lim
n
βi,n∞ (ωIn) > 0 =⇒ ∃ω ∈ [ω∪nIn ] s.t. f(ω) = 1 (A.3)

and lim
n
βi,n∞ (ωIn) < 1 =⇒ ∃ω ∈ [ω∪nIn ] s.t. f(ω) = 0. (A.4)

Requirements (A.3) and (A.4) are the only ones that connect the event
F with agent beliefs. Without them, there is nothing precluding an agent
from, for example, assigning positive probability to F on the basis of some
information ω∪nIn when F is inconsistent with that information. If that
were to happen, there is clearly no hope for βi,n∞ (ωIn) = Eρi [f | ωIn ].

Proposition A.1 Consider a sequence of groups of agent oracles indexed
by n = 0, . . ., with each agent’s information set in group n given by In,
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where the sequence (In)∞n=0 is increasing. Suppose the sequences (βi,n∞ )K, ∞i=1,n=0

satisfy the martingale property and (A.3) and (A.4). Then there exists a
vector of prior beliefs (ρ1, . . . , ρK) generating the limiting posterior beliefs
(βi,n∞ )K, ∞i=1,n=0, i.e., βi,n∞ (ωIn) = Eρi [f | ωIn ].

Before proving this result, we make three observations. First, if ∪∞n=0In =
Ω, then since beliefs are a martingale, βi,n∞ → f ρi-almost surely. For states
with positive probability under ρi and ρ, the data then swamps the prior—
agent i attaches probability one to the event that her beliefs about F con-
verge to those of an omniscient oracle. However, the convergence in the pre-
vious observation is pointwise, not uniform. That is, for any finite sequence
(βi,n∞ ) satisfying the martingale property given in (A.1)–(A.2), there is a
prior rationalizing (βi,n∞ ). Notice that there need be no connection between
such a sequence and the event F . Hence, Bayesian updating from different
priors places no restrictions on finite sequences of agents’ beliefs, no matter
how long. Moreover, if ∪∞n=0In ( Ω, then beliefs over states conditional on
∪∞n=0In are essentially arbitrary, needing only to satisfy the property that
the conditional probability of F equals the limit of βi,n∞ . Hence, unless we are
dealing with a case in which the agents will eventually resolve every vestige
of uncertainty, updating places few restrictions on beliefs. If agents with dif-
ferent priors are also sufficiently romantic as to think the world will always
contain some mystery, then we cannot expect their beliefs to be coherent.

Proof. We fix an agent i and construct the prior belief ρi, proceeding by
induction. Note that βi,0∞ is the agent’s prior probability of F . If this prior
is either 0 or 1, then so must be all subsequent updates, and then any prior
belief with support contained either on the event F c or on the event F
(respectively, with the requisite set nonempty, by the martingale property)
suffices.

Suppose βi,0∞ ∈ (0, 1). By assumption, the measure βi,1∞ attaches condi-
tional probabilities to a collection of cylinder sets of the form [ωI1 ], with
some of these values larger than βi,0∞ and some smaller. Assign probabilities
ρi([ωI1 ]) to these sets so that the average of the conditional probabilities
is βi,0∞ . Continuing in this fashion, we attach a probability to every cylin-
der set [ωIn ]. It follows from Kolmogorov’s theorem (Billingsley, 2012, p.
517) that this measure extends to a probability measure ψi over X∪

∞
n=0In .

By construction, (βi,n∞ ) is a martingale with respect to ψi, and so converges
ψi-almost surely to some βi,∞∞ (which is measurable with respect to ∪∞n=0In).

Suppose f is measurable with respect to ∪∞n=0In. Then (A.3) and (A.4)
imply that βi,∞∞ = f almost surely: If ∪∞n=0In = N , set ρi = ψi and we have
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βi,n∞ (ωIn) = Eρi(·|ωIn )[f(ω)]. If ∪∞n=0In is a strict subset of N , then let ρi be
any probability measure whose marginal on X∪nIn agrees with ψi and we
again have βi,n∞ (ωIn) = Eρi(·|ωIn )[f(ω)].

Suppose f is not measurable with respect to ∪∞n=0In. This implies
that ∪∞n=0In is a strict subset of N . Requirements (A.3) and (A.4) im-
ply that we can choose ρi ∈ ∆(Ω) so that its marginal on X∪In agrees
with ψi and βi,∞∞ (ω∪In) = Eρi(·|ω∪In )[f(ω)]. This then implies βi,n∞ (ωIn) =
Eρi(·|ωIn )[f(ω)].

We now contrast this result with a group of model-based reasoners. We
again consider a sequence that receives increasing amounts of information
(In) and assume the agents have common information. We maintain our run-
ning assumption that agents observe information contained in their models.

Proposition 1 immediately implies the following.

Corollary A.1 Consider a sequence n = 1, . . . , of groups of model-based
reasoners, with agent i’s model given by M i, and each agent i’s information
set Iin in group n given by In. For each n and each agent i, In ⊆M i. Then
every agent’s limit belief equals the public oracular belief.

Model-based updating thus places considerably more structure on agents’
beliefs. Even when removing all other obstacles to disagreement, including
making information common, agents with different priors face virtually un-
limited possibilities for disagreement. In contrast to the case of different
priors, the only sources of disagreement among agents with different mod-
els arise out of the different ways agents interpret information they think
irrelevant.

B Subsequent Updating in Example 2

We complete the discussion of updating in Example 2. The second round
calls for the agents to announce their updated beliefs to one another. Agent
1 learns nothing new from this new announcement. Agent 2’s original an-
nouncement revealed all of 2’s information to 1, namely the value of ω4, and
so agent 1 draws no further inferences (and the table contains no further
column for agent 1).

Agent 2 does update in response to agent 1’s announcement, giving rise
to the column β2(ωI2 , b10, b

1
1, b

2
0). First, suppose agent 1 announces the belief

1/16 on the first round. This announcement reveals to agent 2 that ω3 = 0
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(and also that ω2 = 0, though 2 considers this information irrelevant), and
there is nothing more for 2 to learn from 1’s subsequent announcement of
either 0 or 1/4. Agent 2’s beliefs are unchanged in this case. A similar
argument applies if agent 1 announces a belief of 1.

Suppose that 1’s initial announcement was 13/16, and 2’s observation
is ω4 = 1 (and hence 2’s report was 29/32). Agent 1’s updated belief is
always 1 in this case, and hence there is no new information for agent 2
to process on the second round. In this case, 2’s beliefs remain unchanged.
Suppose, however, that 2’s initial observation was ω4 = 0 (and hence 2’s
report was 14/32). Now suppose 2 observes that 1 has revised her belief to
1/4. This reveals to 2 that ω3 = 1. (It also potentially reveals that ω2 = 0,
but 2 considers this information irrelevant.) Agent 2 then notes that when
(ω3, ω4) = (1, 0), the full-information belief of the event F is 5/8, and this
becomes 2’s new belief. Analogously, suppose that 2’s initial observation
was ω4 = 0 (and hence 2’s report was 14/32). Now 2 observes that 1 has
revised her belief to 3/4. This reveals to 2 that ω3 = 0. Agent 2 then
notes that when (ω3, ω4) = (0, 1), the full information belief of the event F
is 3/8, and this becomes 2’s new belief. We report these beliefs in column
β2(ωI2 , b10, b

1
1, b

2
0).

It is straightforward to check that subsequent rounds of announcements
have no further effect on beliefs.

C An Example with Infinite Iterations

Let N = N and Ω = {0, 1}∞. There are two agents, with M1 = N \ {1} and
M2 = N \ {2}. The data generating process ρ independently chooses each
variable to be 0 or 1 with probability 1/2. Agents 1 and 2 observe

I1 = {1, 3, 4, 6, 8, 10, . . .} and I2 = {2, 3, 5, 7, 9, 11, . . .}.

We first define two events, G and H, which are constituents of the event
F .

The event G occurs if and only if (ω1, ω2) = (1, 0).
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The event H occurs if at least one of the following statements holds:

ω3 = ω4 = ω5,

(ω3 + ω5)mod 2 = ω6 = (ω8 + ω9)mod 2 = (ω10 + ω11)mod 2,

(ω3 + ω4)mod 2 = ω7 = (ω8 + ω9)mod 2 = (ω10 + ω11)mod 2,

(ω3 + ω7)mod 2 = ω8 = (ω10 + ω11)mod 2 = (ω12 + ω13)mod 2

= (ω14 + ω15)mod 2,

(ω3 + ω6)mod 2 = ω9 = (ω10 + ω11)mod 2 = (ω12 + ω13)mod 2

= (ω14 + ω15)mod 2,

(ω3 + ω9)mod 2 = ω10 = (ω12 + ω13)mod 2 = (ω14 + ω15)mod 2

= (ω16 + ω17)mod 2 = (ω18 + ω17)mod 2,

(ω3 + ω8)mod 2 = ω11 = (ω12 + ω13)mod 2 = (ω14 + ω15)mod 2

= (ω16 + ω17)mod 2 = (ω18 + ω19)mod 2,

...

The probability of event H lies between 1/4 (the probability that ω3 = ω4 =
ω5) and 3/4 (the sum of the probabilities of each of the statements on the
list).

Now consider beliefs about the event F := G ∪H.
Upon observing ωI1 , agent 1’s posterior belief about every statement in

the definition of H other than the first is unchanged. However, 1 updates
positively the posterior probability that H holds if ω3 = ω4, and updates
negatively if this equality fails. Agent 1’s first announcement of the prob-
ability of F thus reveals the realization of ω4 to agent 2, but reveals no
additional information. Similarly, agent 2’s first announcement of the prob-
ability of F reveals the realization of ω5 (but no additional information) to
agent 1.

The first round of announcements may reveal that the event H occurs,
but with positive probability this is not the case. In the latter case, the
agents now update their posteriors about the second and third statements
in the definition of H (and no others), depending on their realizations of ω6

and ω7, and their next announcements of the probability of F reveal these
values. This in turn allows them to update their beliefs about the fourth
and fifth statements (and no others), and so on.

With positive probability, the event H has indeed occurred, in which
case the belief updating about the event H terminates after a finite number
of iterations, with probability 1 attached to H. However, with positive
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probability H has not occurred, in which case beliefs about H are revised
forever.

We then have the following possibilities concerning the event F = G∪H
(in all cases, after the initial exchange, subsequent exchanges of beliefs have
no effect on the probability they attach to event G, and cause them to
update the probability that H as described above):

• (ω1, ω2) = (0, 1). Both agents attach interim probability 0 to event G,
and each agent attaches the same probability to event F as they do to
event H. Beliefs about H converge to a common limit.

• (ω1, ω2) = (1, 0). Both agents attach interim probability 1/2 to the
event that G has occurred. Beliefs about F converge to either 1/2 (if
H has not occurred) or 1 (if H has occurred). In either case, beliefs
converge to a common limit.

• (ω1, ω2) = (0, 0). Agent 1 attaches interim probability 0 and agent 2
attaches interim probability 1/2 to event G. If H has occurred, the
beliefs of both agents will eventually place probability 1 on event F .
However, if H has not occurred, it will take an infinite number of
exchanges for beliefs about event F to converge to 0 for agent 1 and
1/2 for agent 2.

• (ω1, ω2) = (1, 1). This duplicates the previous case, with the roles of
agents 1 and 2 reversed.

Remark 1 A simplification of this example shows that Geanakoplos and
Polemarchakis’s (1982) protocol on an infinite space with a common prior
and model also need not terminate in a finite number of steps. Take the
event to be H, the common model to be N \ {1, 2}, and let agent 1 observe
{3, 4, 6, 8, . . . }, and agent 2 observe {3, 5, 7, 9, . . . }. �

D Common Knowledge

We now explore the sense in which, once beliefs in the belief revision process
have converged, the resulting beliefs, though different, are common knowl-
edge. Here, we find it most natural to adopt the interpretation that the
agents understand each others’ models.

We first discuss the case where each agent’s model Mi is finite. We
can think of agent i’s model as described by a finite partition of Ω and,
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since Ii ⊆ Mi, agent i’s information as a coarser partition of Ω. The
announcement of a belief bi implies that the event that led agent i to having
that belief is common knowledge, and so all agent’s information partitions
are refined. After round n announcements, all agents have new partitions,
and the intersection of the events leading to the round n announcements is
common knowledge (though beliefs conditional on the intersection need not
be common knowledge).

We say that a vector of beliefs (b1, . . . , bK) is common knowledge at state
ω if these beliefs prevail at every state in that element of the meet of the
agents’ partitions containing ω, and their announcement does not lead to
further revision of the partitions.

Intuitively, if the true state was not contained in a common knowledge
event containing the final posteriors to be announced, then there would be
further revision. This leads to:

Proposition D.1 If Mi is finite for all i, then once the updating process
terminates, the resulting beliefs are common knowledge.

Proof. Each agent’s interim belief, and each subsequent announcement by
that agent, must be measurable with respect to the agent’s partition. Each
announcement thus gives rise to a common knowledge event. Moreover, for
each player, these common knowledge events are descending, and hence form
a sequence that is eventually constant. By Proposition 1.4, the limit beliefs
are constant on this limit set, and so their announcement does not change
agents’ partitions. Moreover, since the Mi are finite, all players know the
finite time by which the updating process terminates, and so at that time
the beliefs are common knowledge.

The common knowledge of limit beliefs implies an agreement theorem.

Proposition D.2 If all agents have the same (finite) model M, then all
agents have the same limit beliefs, for all possible information structures.

Proof. In each round, all agents are updating their beliefs on the same
partition M, and since beliefs are common knowledge, they must agree
(Aumann, 1976).

When the models are infinite, as in Example C, the belief revision process
may continue without end. At no stage during the belief-revision process
in Appendix C are the beliefs common knowledge. Despite this difficulty,
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there is an appropriate notion of common knowledge when the models are
infinite.

Since we now must deal with conditioning on potentially zero probability
events, we follow Brandenburger and Dekel (1987) in defining knowledge as
probability one belief, and requiring conditional probabilities to be regular
and proper.2 Recall that the state space has prior ρ, and suppose that each
player’s information is described by a σ–algebra Gi. For each agent i, there
is a mapping ρi : F × Ω → [0, 1], where ρi(· | ω) is a probability measure
on F for all ω ∈ Ω; for each G ∈ F , ρi(G | ·) is a version of ρ(G | Gi); and
ρi(G | ω) = χG(ω) for all G ∈ Gi (in other words, ρi is a regular and proper
conditional probability). These are the beliefs used to define what it means
for agent i to know (assign probability 1 to) an event. By Brandenburger
and Dekel (1987, Lemma 2.1), an event G is common knowledge at some
ω (in the sense that every agent assigns probability one to the event, every
agent assigns probability one to every agent assigning probability one to the
event, and so on) if there is a set G′ in the meet ∧Gi such that ω ∈ G′ and
ρi({ω′ ∈ G′ : ω′ 6∈ G} | ω′′) = 0 for all ω′′ ∈ Ω.3 The last requirement is
simply that G′ is a subset of G, up to a zero measure set, under each agent’s
beliefs ρj .

We will say that limit beliefs are common knowledge if they are common
knowledge given the information provided to the agents by the entire infinite
sequence of belief announcements.

Proposition D.3 Limit beliefs are common knowledge.

Proof. Recall that Bn denotes the round n σ-algebra generated by the
announcements from the first n rounds. For each ω ∈ Ω, all events G
satisfying ω ∈ G ∈ Bn are common knowledge at ω. Recall also that (Bn)n
is a filtration with limit B∞, so that the beliefs βin+1 = E[f | Ii,Bn] are a
martingale and converge almost surely to E[f | Ii,B∞] =: βi∞. Moreover,
βi∞ =

∫
fdρi∞.

Fix bi in the range of βi∞ and let A := (βi∞)−1(bi). We now prove
that for all ω ∈ A there is a subset A′ in the meet ∧σ(Ii,B∞) containing
ω. Fix ω ∈ A, and define An := ∩j(βjn)−1(bj) where bj = βjn(ω). Since
An ∈ ∧σ(Ii,B∞), we have ∩nAn ∈ ∧σ(Ii,B∞). Suppose ∩nAn 6⊆ A, so that

2Bogachev (2007, Corollary 10.4.10) ensures the existence of such conditional proba-
bilities.

3This is a sufficient condition for common knowledge. The characterization requires a
little more (Brandenburger and Dekel, 1987, Lemma 2.3 and Proposition 2.1), which we
do not need.
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there exists ω̃ ∈ ∩nAn \A. But then βin(ω) = βin(ω̃) for all n, and since the
beliefs converge,4 βi∞(ω̃) = bi, a contradiction.

Green (2012) presents an agreeing-to-disagree result for infinite models
that would allow us to extend Proposition D.2 to this case.

E Implications of Necessary Agreement

Suppose X and N are finite, M2 ( M1, I1 = M1, and I2 = ∅, that is,
player 1 has full information, and player 2 observes nothing, but thinks only
a subset of the variables in 1’s model are relevant. We can, without loss
of generality, write XM1

= X1 × X2, XM2
= X2, and suppose all states

(ω1, ω2) ∈ X1 × X2 have positive probability. Since player 2 has no infor-
mation, there is no updating after 2 has updated from the announcement of
1’s full information beliefs. Necessary agreement in this context means that
for all (ω1, ω2) ∈ X1 ×X2, if f1(ω1, ω2) = α, then

α = E[f2(ω2) | b1 = α]

= E[E[f1(ω1, ω2) | ω2] | b1 = α].

We now argue that necessary agreement implies that the first coordinate of
1’s model is redundant for 1, that is, f1 is independent of ω1.

Let ᾱ := max f1(ω1, ω2), and let (ω̄1, ω̄2) be values that achieve ᾱ, i.e.,
f1(ω̄1, ω̄2) = ᾱ. Conditional on the announcement ᾱ, necessary agreement
implies

ᾱ = E[f2(ω2) | b1 = ᾱ],

which implies E[f1(ω1, ω2) | ω2] = ᾱ for all ω2 in the support of the condi-
tional beliefs ρ2(· | b1 = ᾱ) ∈ ∆(X2), But this implies that for all ω1 ∈ X1

and for all ω2 in the support of the conditional beliefs ρ2(· | b1 = ᾱ) ∈ ∆(X2),
f1(ω1, ω2) = ᾱ; in particular, for such ω2, f1 is independent of ω1.

Since X1 × X2 is finite, we can now argue inductively. Suppose α′ :=
max{f1(ω1, ω2) < ᾱ} and let (ω′1, ω

′
2) be values that achieve α′, i.e., f1(ω′1, ω

′
2) =

α′. After agent 1’s announcement of α′, agent 2 assigns positive probability
to ω′2. Moreover, from the previous paragraph, for all ω1, f1(ω1, ω

′
2) ≤ α′ (if

f1(ω1, ω
′
2) = ᾱ for some ω1, then ω′2 is in the support of ρ2(· | b1 = ᾱ) and so

f1(ω′1, ω
′
2) = ᾱ 6= α′, a contradiction). But then, for all ω1 ∈ X1 and for all

ω2 in the support of the conditional beliefs ρ2(· | b1 = α′), f1(ω1, ω2) = α′;
in particular, for such ω2, f1 is independent of ω1. Proceeding in this way

4The sentence previously footnoted implies we can assume beliefs converge on ∩nAn.
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State Prior Theories Interim beliefs First-round update
(ω1, ω2) ρ f∗(ω) f1(ωM1) f2(ωM2) β1(ωI1) β2(ωI2) β2(ωI2 , b10)

(0, 0) a x ax+by
a+b

ax+cz
a+c

ax+by
a+b ax+by+cz+dw a

a+b
ax+cz
a+c + b

a+b
by+dw
b+d

(0, 1) b y ax+by
a+b

by+dw
b+d

ax+by
a+b ax+by+cz+dw a

a+b
ax+cz
a+c + b

a+b
by+dw
b+d

(1, 0) c z cz+dw
c+d

ax+cz
a+c

cz+dw
c+d ax+by+cz+dw c

c+d
ax+cz
a+c + d

c+d
by+dw
b+d

(1, 1) d w cz+dw
c+d

by+dw
b+d

cz+dw
c+d ax+by+cz+dw c

c+d
ax+cz
a+c + d

c+d
by+dw
b+d

X = {0, 1}, M1 = {1}, M2 = {2},
I1 = {1}, I2 = ∅.

Figure F.1: Agreement need not imply redundancy in the presence of cor-
relation.

for progressively lower values of beliefs of agent 1, we conclude that f1 is
independent of ω1 for all ω2.

F An Example Illustrating Redundancy and Cor-
relation

We start with the general specification given in Figure F.1. Agent 1 ob-
serves every variable in 1’s model, and so never does any updating past the
interim belief. Agent 2, who observes nothing, ceases updating after the first
round. If the values of ω1 and ω2 are independently drawn, then it follows
immediately from Proposition 2 that beliefs can necessarily agree only if ω1

is redundant for agent 1.
We now seek values of the parameters for which ω1 is not redundant for

player 1, i.e.,
ax+ by

a+ b
6= cz + dw

c+ d
(F.1)

and for which there is necessary agreement, i.e. (after simplification),

(a+ c)by = ac(z − x) + b
a+ c

b+ d
(by + dw) (F.2)

and

(b+ d)cz = bd(y − w) + c
b+ d

a+ c
(ax+ cz). (F.3)
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Setting b = c = 0 gives the case where the two variables are perfectly
correlated (ω2 is simply a relabeling of ω1), and we trivially have necessary
agreement without redundancy.

It is straightforward that there are many parameters with the desired
characteristics. If we set z = x and y = w, then any specification of a, b, c,
d satisfies these equations, including values that also satisfy (F.1). In this
case, ω1 plays no role in the determination of F , and agent 1’s observation
of ω1 is informative only to the extent that it is correlated with ω2. In
addition, agent 2 receives no information of her own, and so must similarly
rely on gleaning information from the correlation of ω1 with ω2, leading the
two agents to agree. In the case of independence, or a = b = c = d, agent 1
learns nothing about the state, and the two agents necessarily agree on the
uninformative posterior of 1/2.

When at least one of z = x and y = w fails, then ω1 plays a role in
determining the event F . There then exist particular values of a, b, c, d
satisfying the equations (F.2)–(F.3) for necessary agreement.
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