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This Online Appendix provides the proof of Proposition 5 and supplementary results

that we discuss in the paper. We abbreviate Nash equilibrium by NE.

B Proof of Proposition 5

We consider the firm’s problem with initial capital W > 0. As stated, suppose 1/F (x) is

convex for x 2 [0, X], X > 0, and there exists an optimal return schedule guaranteeing

investments (xn)n2S with W + XN  X. We show that an optimal such schedule

specifies a permutation ⇡⇤ = (n⇤
1, . . . , n

⇤
N) and returns (r⇤

i , k
⇤
i )i2S as described in the

proposition. Since the claim is trivially satisfied for W � ✓XN (as noted in the text),

we assume below that W < ✓XN .

Optimal returns. We begin by showing that an optimal schedule specifies returns

(r⇤
i , k

⇤
i )i2S for some permutation ⇡ = (n1, . . . , nN). Observe that the result in Lemma 1

applies to this setting without change. Hence, any optimal schedule specifies some

permutation ⇡ = (n1, . . . , nN) and returns (ri, ki)i2S which satisfy, for each i 2 S and

each j 2 {i, . . . , N},

riF (W + Xj) + ki (1 � F (W + Xj)) � ✓. (25)

Suppose first that ri � ki for some i 2 S. By the arguments in the proof of

Proposition 1, we must then have ri � ✓ and (25) holding with equality at j = i:

riF (W + Xi) + ki (1 � F (W + Xi)) = ✓. (26)

Suppose next that ri < ki for some i 2 S. Then analogous arguments now yield ki > ✓

and (25) holding with equality at j = N :

riF (W + XN) + ki (1 � F (W + XN)) = ✓. (27)
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Let us define

⌘i ⌘ 1 � F (W + Xi)

F (W + Xi)

and

e⌘i ⌘

8
<

:
⌘i if ri � ki

⌘N if ri < ki.

Note that by (26) and (27), if ri 6= ki, changing ki by " > 0 arbitrarily small and ri by

�"e⌘i preserves agent i’s incentives to participate.

The following four claims yield that the returns (r⇤
i , k

⇤
i )i2S described in the propo-

sition are optimal.

Claim 1: There is an optimal return schedule satisfying r⇤
i � k⇤

i for all i 2 S.

Proof: Suppose by contradiction that ki > ri for some i 2 S in any optimal return

schedule. Take any such schedule and i 2 S. By (25), ki > ✓, and by (BCW ) and (25),

kj < ✓ < rj for some j 6= i. Consider a perturbation in which we increase kj by " > 0

arbitrarily small and reduce rj by "e⌘j, while at the same time reducing ki by "
xnj

xni

and increasing ri by "e⌘i

xnj

xni

. Note that e⌘i = ⌘N and e⌘j = ⌘j � ⌘N . The perturbed

schedule therefore continues to satisfy the firm’s budget constraint (BCW ) and, by (26)

and (27), it preserves the agents’ incentives to participate. Moreover, the perturbation

changes the firm’s expected payo↵ by

xnj"F (W + XN)
�
⌘j � ⌘N

�
.

If we can pick j < N , the perturbation strictly increases the firm’s expected payo↵,

contradicting the optimality of the original schedule. So suppose that in the original

schedule, k` � ✓ for all ` 6= N . Then we can perform the perturbation for j = N

without a↵ecting the firm’s expected payo↵. Moreover, we can continue performing

this perturbation until we obtain k` = ✓ = r` for all ` 6= N . Since the perturbation

keeps
P

`2S k`xn`
unchanged and we end up with

P
`6=N k`xn`

= ✓
P

`6=N xn`
, the fact

that we must have started with
P

`2S k`xn`
 W < ✓XN implies that we end up with

kNxnN < ✓xnN . Thus, we obtain kN < ✓ < rN , and this completes the construction of

an optimal schedule with r` � k` for all ` 2 S.

Claim 2: There is an optimal return schedule satisfying r⇤
i � k⇤

i � 0 for all i 2 S.
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Proof: By Claim 1 and (26), there is an optimal return schedule satisfying r⇤
i � k⇤

i and

r⇤
i F (W + Xi) + k⇤

i (1 � F (W + Xi)) = ✓ (28)

for all i 2 S. Claim 2 then follows from analogous arguments to those used in the proof

of Proposition 1.

Claim 3: There is an optimal return schedule satisfying r⇤
i � k⇤

i � 0 for all i 2 S and
P

i2S k⇤
i xni = W .

Proof: By Claim 2, there is an optimal return schedule satisfying r⇤
i � k⇤

i � 0 and

(28) for all i 2 S. Suppose towards a contradiction that
P

i2S kixni < W in any such

schedule, and take any one of them. Note that there must exist j 2 S with kj < ✓ < rj.

Then consider a perturbation in which we increase kj by " > 0 arbitrarily small and

reduce rj by "⌘j. Since
P

i2S kixni < W , the perturbed schedule continues to satisfy

the firm’s budget constraint (BCW ), and by (28) it preserves the agents’ incentives to

participate. Moreover, the perturbation changes the firm’s expected payo↵ by

xnj"
(F (W + XN) � F (W + Xj))

F (W + Xj)
,

which is positive (and strictly positive if j 2 {1, . . . , N � 1}). Since we can perform

this perturbation until
P

i2S kixni = W , and we continue to satisfy r⇤
i � k⇤

i � 0 and

(28) for all i 2 S, we obtain a contradiction, proving the claim.

Claim 4: In any optimal return schedule, k⇤
i 2 (0, ✓) for at most one agent ni 2 S.

Proof: Suppose by contradiction that there exists an optimal return schedule specifying

ki, kj 2 (0, ✓) for some i, j 2 S, i 6= j. Without loss, take i > j. Then we can

perform a perturbation like the one considered in Claim 1: we increase kj by " > 0

arbitrarily small, reduce rj by "e⌘j, reduce ki by "
xnj

xni

, and increase ri by "e⌘i

xnj

xni

. Since

e⌘j = ⌘j > ⌘i = e⌘i, the perturbation satisfies the firm’s budget constraint, preserves the

agents’ incentives to participate, and strictly increases the firm’s expected payo↵.

Optimal permutation. Given the characterization of the optimal returns, we next

show that the permutation ⇡⇤ = (n⇤
1, . . . , n

⇤
N) described in the proposition is optimal.

Consider a return schedule specifying some ⇡ = (n1, . . . , nN) and (r⇤
i , k

⇤
i )i2S. Note that

for some iW 2 S, we have (r⇤
i , k

⇤
i ) =

⇣
✓

F (W+Xi)
, 0

⌘
for all i < iW and (r⇤

i , k
⇤
i ) = (✓, ✓)
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for all i > iW . It then follows from Proposition 2 and 1/F (x) convex that an optimal

ranking of agents ni for i < iW satisfies

xn1 � . . . � xniW �1 .

Furthermore, by Proposition 3, any increase in the dispersion of investments (xni)i<iW

(in the sense of majorization) lowers the firm’s cost. Instead, for agents ni for i > iW ,

neither the ranking of these agents nor the distribution of their capital a↵ects the

firm’s cost. The reason is that the firm’s cost of raising (xni)i>iW is simply equal

to
P

i>iW
✓xni . Consequently, it follows that it is optimal for the firm to specify a

permutation satisfying

xn1 � . . . � xniW �1 � xniW +1 � . . . � xnN .

To complete the proof, we next show that an optimal permutation also satisfies

xniW �1 � xniW
� xniW +1 . Note that this follows immediately if iW = 1 or

P
i>iW

✓xni =

W . Suppose that neither of these holds. The firm’s cost of raising xniW
is equal to

F (W + XN)xniW
r⇤
iW

+ (1 � F (W + XN))xniW
k⇤

iW
.

Substituting with the optimal returns, taking into account that min{✓xniW
, WiW } =

WiW , yields

F (W + XN)

F (W + XiW )

h
xniW

✓ � WiW (1 � F (W + XiW )))
i

+ (1 � F (W + XN))WiW .

Rearranging terms yields

F (W + XN)
✓

F (W + XiW )


xniW

� WiW

✓

�
+ ✓

WiW

✓
.

This expression shows that the firm’s cost of raising xniW
is equal to the cost of pay-

ing net returns (riW , kiW ) = (✓, ✓) on the portion of capital WiW /✓ and net returns

(riW , kiW ) =
⇣

✓
F (W+XiW

) , 0
⌘

on the remaining portion xniW
�WiW /✓. By Proposition 3

and 1/F (x) convex, it follows that a permutation satisfying xniW �1 � xniW
� xniW +1

is optimal.
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C Simple Contracts

Let x⇤
n 2 [0, xn] be the amount of capital that the firm wishes to induce agent n to

invest in the unique NE. A bilateral contract for agent n is (rn(xn), kn(xn)), specifying

net returns under success and failure as a function of the amount xn that agent n

chooses to invest. We say that {rn(xn), kn(xn)}n2S is simple if for each n 2 S, agent

n’s minimum best response to any investment X�n ⌘
P

6̀=n x` by the other agents is

either 0 or x⇤
n under such returns. Without loss, a simple scheme therefore specifies

net returns for each n 2 S of the form:

(rn(xn), kn(xn)) =

8
<

:
(r⇤

n, k
⇤
n) if xn = x⇤

n,

(0, 0) otherwise.

The following proposition shows that, among bilateral contracts, simple contracts

are without loss of optimality if two conditions are satisfied. The first condition is

that the firm raises the full capital endowment of the agents. This condition is implied

by the surplus A from success being large enough and F 0(XN) > 0. The second

condition is that xF 0(x)/F (x) is weakly decreasing for x 2 [0, XN ]. One can verify

that this condition holds for many commonly used distribution functions, including

exponential, log-normal, Pareto, power, and uniform.

Proposition A1. Consider the firm’s problem allowing for any self-financing scheme

of bilateral contracts {rn(xn), kn(xn)}n2S. Suppose that an optimal scheme guarantees

investments x⇤
n = xn for each n 2 S. If xF 0(x)/F (x) is weakly decreasing for x 2

[0, XN ], a simple scheme is optimal.

Proof. Suppose by contradiction that a simple scheme is not optimal. Then any optimal

scheme guaranteeing investments (x⇤
n)n2S has (rn(xn), kn(xn)) 6= (0, 0) for some n 2

S and xn < x⇤
n = xn, where xn > 0 is agent n’s minimum best response to some

investment X�n < X⇤
�n ⌘

P
6̀=n x⇤

` =
P

6̀=n x` by the other agents. We will consider

a perturbation that increases all such best responses from xn to x⇤
n. The perturbation

therefore yields a simple scheme that guarantees (x⇤
n)n2S, and we show that it weakly

increases the firm’s expected payo↵ relative to the original scheme.

Specifically, take an optimal scheme and, for each agent n 2 S, consider the invest-

ments X�n  X⇤
�n by the other agents to which agent n has a minimum best response
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xn 2 (0, x⇤
n]. If there are multiple such X�n, take the smallest among them. Denote

that investment by X 0
�n and agent n’s minimum best response to it by x0

n. Note that

(rn(x0
n), kn(x0

n)) must satisfy

F (X 0
�n + x0

n)rn(x0
n)x0

n + (1 � F (X 0
�n + x0

n))kn(x0
n)x0

n � ✓x0
n. (29)

By definition of the unique NE, x⇤
n is the minimum best response to X⇤

�n, so

(rn(x⇤
n), kn(x⇤

n)) must satisfy

F (X⇤
�n+x⇤

n)rn(x⇤
n)x⇤

n + (1 � F (X⇤
�n + x⇤

n))kn(x⇤
n)x⇤

n

� F (X⇤
�n + x0

n)rn(x0
n)x0

n + (1 � F (X⇤
�n + x0

n))kn(x0
n)x0

n + (x⇤
n � x0

n)✓. (30)

Note that F (X⇤
�n + x0

n) � F (X 0
�n + x0

n) and the firm’s budget constraint requires

kn(xn)  0 for all xn 2 (0, xn] and n 2 S. Thus, among pairs of net returns

(rn(x0
n), kn(x0

n)) that satisfy (29) and the budget constraint, the right-hand side of

(30) is minimized under the pair (rn(x0
n), kn(x0

n)) = (✓/F (X 0
�n +x0

n), 0). It follows that

F (X⇤
�n + x⇤

n)rn(x⇤
n)x⇤

n + (1 � F (X⇤
�n + x⇤

n))kn(x⇤
n)x⇤

n

� F (X⇤
�n + x0

n)
✓

F (X 0
�n + x0

n)
x0

n + (x⇤
n � x0

n)✓.

(31)

Consider a perturbation in which we replace each agent n’s contract (rn(xn), kn(xn))

with a simple contract (r0
n(xn), k0

n(xn)) defined as follows:

(r0
n(xn), k0

n(xn)) =

8
<

:

�
✓/F (X 0

�n + x⇤
n), 0

�
if xn = x⇤

n,

(0, 0) otherwise,

where X 0
�n is the smallest investment by others to which the agent has a minimum best

response xn 2 (0, x⇤
n] in the original scheme. By construction, the perturbed scheme

guarantees investments (x⇤
n)n2S. We next show that the perturbed scheme weakly

reduces the firm’s costs. Since the perturbation sets the net returns under failure to

zero, this will su�ce to establish that the perturbed scheme continues to satisfy the

firm’s budget constraint, and to prove that a simple scheme is optimal.

By (31) and the definition of (r0
n(xn), k0

n(xn)), a su�cient condition for the firm’s
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costs to decline with the perturbation is

F (X⇤
�n + x⇤

n)

F (X 0
�n + x⇤

n)
x⇤

n 
F (X⇤

�n + x0
n)

F (X 0
�n + x0

n)
x0

n + (x⇤
n � x0

n).

If X 0
�n = X⇤

�n, then x0
n = x⇤

n (by definition of the unique NE) and this inequality holds

with equality. If X 0
�n < X⇤

�n, then the inequality is equivalent to

�
F (X⇤

�n + x⇤
n) � F (X 0

�n + x⇤
n)

�

(X⇤
�n � X 0

�n)

x⇤
n

F (X 0
�n + x⇤

n)


�
F (X⇤

�n + x0
n) � F (X 0

�n + x0
n)

�

(X⇤
�n � X 0

�n)

x0
n

F (X 0
�n + x0

n)
,

which is implied by x0
n  x⇤

n and xF 0(x)/F (x) being weakly decreasing.

D Relaxed Budget Constraint

Consider schemes for the firm specifying investments (xn)n2S and returns (rn, kn)n2S.

Suppose that we replace the firm’s budget constraint (BC) with the following relaxed

version:
NX

n=1

rnxn  A and
NX

n=1

knxn  0. (BCon-path)

The original constraint (BC) required that the firm have su�cient final capital to make

the payments o↵ered to the agents regardless of agents’ choices, i.e. for all profiles

Y = (y1, . . . , yN). Instead, (BCon-path) only requires the firm to satisfy budget balance

on the equilibrium path, i.e. under the profile Y1 ⌘ (1, . . . , 1). It is clear that in the

case of project success, the constraints imposed by (BCon-path) and (BC) are the same.

In the case of failure, however, (BCon-path) is a strict relaxation: whereas (BC) required

the net returns under failure to satisfy kn  0 for all n 2 S, (BCon-path) allows for net

returns kn > 0 for some n 2 S provided that
PN

n=1 knxn  0.

Nevertheless, we find that replacing (BC) with (BCon-path) does not a↵ect the so-

lution to the firm’s problem. The reason is that the firm wants to guarantee a unique

outcome, and the return an agent expects to receive depends on her conjectures of oth-

ers’ behavior. If agent n 2 S expects that only other agents ` 2 S 0 ✓ S \ n will invest

with the firm, then she will expect to receive a return under failure knxn no greater

7



than �
P

`2S0 k`x`. As a result, we show that while setting kn > 0 for some n 2 S is

feasible under (BCon-path), an optimal unique-implementation scheme sets kn  0 for

all n 2 S.

Specifically, observe first that Lemma 1 continues to apply when the firm’s budget

constraint is given by (BCon-path) (since the proof of the lemma does not make use of

the budget constraint). It follows that an optimal scheme guaranteeing investments

(xn)n2S specifies some permutation ⇡ = (n1, . . . , nN) of the set of agents and returns

(ri, ki)i2S such that, for each i 2 S and each j 2 {i, . . . , N}, equation (12) in the

paper’s Appendix is satisfied. Moreover, by arguments analogous to those in the proof

of Proposition 5, either agent ni’s returns satisfy ri � ki and

riF (Xi) + ki (1 � F (Xi)) = ✓,

or the agent’s returns satisfy ri < ki and

riF (XN) + ki (1 � F (XN)) = ✓.

Let us define

⌘i ⌘ 1 � F (Xi)

F (Xi)

and

e⌘i ⌘

8
<

:
⌘i if ri � ki

⌘N if ri < ki.

We prove by induction that an optimal scheme specifies ki  0 for all i 2 S and thus

satisfies (BC). Consider agent n1 in the permutation ⇡. This agent must be willing to

invest with the firm when expecting no other agent to invest and thus her return under

failure to be weakly negative. It follows that the firm cannot benefit from specifying a

return k1 > 0. Hence, k1  0 is optimal.

Now take any ` 2 {2, . . . , N � 1} and suppose ki  0 for all i 2 {1, . . . , `}. We

show that k`+1  0 is optimal. Agent n`+1 must be willing to invest with the firm when

expecting only agents (n1, . . . , n`) to invest and thus her return under failure to satisfy

k`+1xn`+1
 �

P`
i=1 kixni . Suppose by contradiction that k`+1  0 is not optimal, so

the firm specifies k`+1 > 0 and ki0 < 0 for some i0 2 {1, . . . , `}. Take any such i0 and

consider the following perturbation: we increase ki0 by " > 0 arbitrarily small, reduce
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ri0 by "e⌘i0 , reduce k`+1 by "
xni0

xn`+1

, and increase r`+1 by "e⌘`+1

xni0

xn`+1

. By the same logic

as in the proof of Proposition 5 and the fact that e⌘i0 = ⌘i0 > e⌘`+1, this perturbation

satisfies the firm’s budget constraint (BCon-path), preserves the agents’ incentives, and

strictly increases the firm’s expected payo↵. We thus obtain a contradiction, implying

that k`+1  0 is optimal.

E General Equilibrium

Consider a simple market setting with two firms, a and b, and two investors, 1 and 2,

investing capital amounts x1 and x2 respectively, where x2 > x1. The two firms have

the same technology: if x > 0 is invested in a firm’s project, the probability of success

is F (x) > 0, for F strictly increasing, and success yields an additional surplus A > 0.

The interaction is as follows. First, firms a and b simultaneously o↵er to the agents

publicly observable contracts, specifying net returns under success (ra
1 , r

a
2) and (rb

1, r
b
2)

respectively. Next, the two agents simultaneously decide whether to invest their capital

with firm a or with firm b. Finally, the uncertainty is resolved and payments are made.

In line with our analysis of the one-firm problem, we solve for equilibria in which

the firms’ o↵ers yield a unique outcome in the interaction between the agents. For

this, assume that if agent 1 (agent 2) is indi↵erent between investing with firm a and

investing with firm b given the firms’ o↵ers and her conjecture of the other agent’s

behavior, then she invests with firm a (firm b). Furthermore, assume that if a firm

deviates from its equilibrium o↵er, then the investors play the equilibrium that is

worst for the firm. We solve for the equilibrium within this class that maximizes the

firms’ expected profits.

Given our focus, in equilibrium the two firms must o↵er di↵erent returns, i.e. (ra
1 , r

a
2) 6=

(rb
1, r

b
2), and the two investors must choose to invest with di↵erent firms.35 Equilibrium

then requires that, given (ra
1 , r

a
2) and (rb

1, r
b
2) and the behavior of the other investor,

neither investor have an incentive to deviate unilaterally to the other investor’s firm.

In fact, each investor must be indi↵erent between deviating and not; otherwise the

firm where the investor invests would have an incentive to reduce her return. By our

assumption on behavior under indi↵erence, it follows that investor 1 invests with firm

35An equilibrium in which the firms’ return o↵ers are the same cannot induce a unique outcome in
the interaction between the agents. Moreover, such an equilibrium does not exist for F concave.
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a and investor 2 invests with firm b, where the indi↵erence conditions are

F (x1)r
a
1x1 = F (x1 + x2)r

b
1x1, (32)

F (x2)r
b
2x2 = F (x1 + x2)r

a
2x2. (33)

In addition, equilibrium requires that neither firm have an incentive to deviate unilater-

ally and change its o↵ers. This requires that both firm a and firm b make non-negative

expected profits, namely that their participation constraints be satisfied:

F (x1)(A � ra
1x1) � 0,

F (x2)(A � rb
2x2) � 0.

Moreover, to deter deviations in which a firm seeks to attract both investors, the firms’

profits must satisfy:

F (x1)(A � ra
1x1) � F (x1 + x2)(A � ra

1x1 � ra
2x2), (34)

F (x2)(A � rb
2x2) � F (x1 + x2)(A � rb

1x1 � rb
2x2), (35)

(where the right-hand side is zero if the firm’s budget constraint binds). Note that these

inequalities become tighter (the left-hand side minus the right-hand side decreases) as

the returns are lowered, being violated for returns that are low enough.

We use the conditions above to derive the firm’s equilibrium o↵ers. First, note

that combined with (32) and (33), the inequalities in (34) and (35) require that in

equilibrium both firms o↵er strictly positive returns to both investors. In turn, this

implies that for " > 0 small enough, an available deviation to firm a is to attract only

investor 2 by o↵ering (ra
1 , r

a
2) = (0, rb

2 + "), and an available deviation to firm b is to

attract only investor 1 by o↵ering (rb
1, r

b
2) = (ra

1 + ", 0). For these deviations not to be

profitable, it must be that in equilibrium the firms’ expected profits are the same:

F (x1)(A � ra
1x1) = F (x2)(A � rb

2x2). (36)

Next, we show that if both (34) and (35) hold as strict inequalities given the firms’

equilibrium o↵ers (ra
1 , r

a
2) and (rb

1, r
b
2), then there is another equilibrium yielding strictly
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larger profits to both firms. Specifically, for " > 0, consider the following returns:

(r̃a
1 , r̃

a
2) =

✓
ra
1 � ",

F (x2)r̃b
2

F (x1 + x2)

◆
,

(r̃b
1, r̃

b
2) =

✓
F (x1)r̃a

1

F (x1 + x2)
, rb

2 � "
F (x1)x1

F (x2)x2

◆
.

Given the original returns (ra
1 , r

a
2) and (rb

1, r
b
2), these returns are constructed so that the

indi↵erence conditions (32) and (33), as well as equation (36), continue to be satisfied.

Moreover, if (34) and (35) hold as strict inequalities under (ra
1 , r

a
2) and (rb

1, r
b
2), these

inequalities continue to be satisfied under (r̃a
1 , r̃

a
2) and (r̃b

1, r̃
b
2) for " > 0 small enough.

We thus obtain that, for small " > 0, there is an equilibrium in which firm a and

firm b o↵er (r̃a
1 , r̃

a
2) and (r̃b

1, r̃
b
2) respectively. Compared to the original equilibrium, the

behavior of the agents is unchanged (agent 1 invests with firm a and agent 2 invests

with firm b), but both firms make strictly larger profits.

It follows that in an equilibrium that maximizes the firms’ profits, at least one of

the inequalities in (34)-(35) must hold as an equality. We proceed by taking (34) to

hold as an equality, and it can be verified that the same solution is obtained by taking

(35) as an equality. Combining (34) as an equality with equation (36) yields

F (x2)(A � rb
2x2) = F (x1 + x2)(A � ra

1x1 � ra
2x2).

Using (33) to substitute for ra
2x2 yields

F (x2)(A � rb
2x2) = F (x1 + x2)

✓
A � ra

1x1 � F (x2)rb
2x2

F (x1 + x2)

◆
,

which simplifies to

F (x2)A = F (x1 + x2) (A � ra
1x1) .

Therefore, we obtain

ra
1 =

F (x1 + x2) � F (x2)

F (x1 + x2)x1
A,

and using (36) again,

rb
2 =

F (x1 + x2) � F (x1)

F (x1 + x2)x2
A.

The large investor 2 receives a strictly higher expected per-dollar return than the
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small investor 1 if and only if F (x2)rb
2 > F (x1)ra

1 . Using the solution above, this

inequality reduces to

F (x2)

x2(F (x1 + x2) � F (x2))
>

F (x1)

x1(F (x1 + x2) � F (x1))
. (37)

Condition (37) holds for many commonly used distribution functions, including uniform

and exponential, gamma, log-normal, and Pareto for a subset of their parameters.

Therefore, we obtain that under a weak distributional condition, our main qualitative

results extend to this competitive market setting.

12


