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Appendices

A Proofs

Proof of Fact 4. If c1,2(x) is less than c2,3(x), then, for any DM with preference ν s.t.

c1,2(x) < ν < c2,3(x), d2 is preferred to both d1 and d3, i.e. we are in Case (i). If

c1,2(x) > c2,3(x), then d2 is either dominated by either d1 or d3. The relative location

of c1,3(x) is established as follows. First, suppose c1,3(x) < c1,2(x) < c2,3(x). For any

ν ∈ (c1,3(x), c1,2(x)) we have Uν(d3, x) > Uν(d1, x) > Uν(d2, x) > Uν(d3, x), which is

an obvious contradiction. Second, suppose c2,3(x) < c1,2(x) < c1,3(x). Then, for any

ν ∈ (c1,2(x), c1,3(x)) we have Uν(d1, x) > Uν(d3, x) > Uν(d2, x) > Uν(d1, x), which is an

obvious contradiction. The remaining two possibilities are excluded following the same

logic.

We maintain that x has strictly positive density on S (Assumption T0), its density is con-

tinuous (Assumption T1), and that preferences are continuous and strictly monotone in x.

Therefore, if x is a scalar and c1,2(x) covers [νl, νu], it is sufficient to consider an interval

[xl, xu] ⊂ S such that [νl, νu] = {c1,2(x) : x ∈ [xl, xu]}.

The following lemma is useful for establishing Theorem 1.

Lemma A.1. Suppose Assumptions T0-T2 and I1 hold. Suppose c1,2(x) < c1,j(x), ∀x ∈ X .

Let {xt}∞t=1 be s.t. c1,2(xt) = c1,j(x
t+1), xt ∈ X . Then ∃T <∞ s.t. c1,2(xT ) < 0.

Proof. The cutoff {c1,2(xt)}∞t=1 is a strictly declining sequence. Suppose all its elements are

non-negative. Then it converges to some ν∞ ≥ 0 such that ν∞ = c1,2(x∞) = c1,j(x
∞) for

some x∞ ∈ X , a contradiction.

Proof of Theorem 1. The second condition in the theorem implies that the cutoffs are or-
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dered: c1,j(x) < c1,j+1(x) for all x ∈ X . Hence

Pr(d = d1|x) =
D∑
j=2

∑
K⊂D:
1,j∈K,

2,...,j−16∈K

Q(K)F (c1,j(x)) +Q({d1})

=
D∑
j=2

O({d1, dj}; {d2, . . . , dj−1})F (c1,j(x)) +O(d1; ∅)

≡
D∑
j=2

ΛjF (c1,j(x)) + Λ1,

so that

dPr(d = d1|x)

dx
=

D∑
j=2

Λjf(c1,j(x))
dc1,j(x)

dx
.

By Assumption I1, we can set xu = xν̄ s.t. c1,2(xν̄) = ν̄ and similarly xl = x0 s.t. c1,2(x0) = 0.

It may be the case that c1,D̂(x0) < ν̄ and c1,D̂+1(x0) > ν̄ for some D̂ ≥ 2. Then, ∀j > D̂,

Λj does not enter the expression for the derivative of Pr(d = d1|x), ∀x ∈ [x0, xν̄ ], because

f(c1,j(x)) = 0. Henceforth, we only consider the relevant alternatives for the derivative of

Pr(d = d1|x), namely j ≤ D̂.

Next, consider the derivative of Pr(d = dj|x). By Fact 3, the term Λj is the leading coefficient

on f(·) for this derivative. There exists xj ∈ X such that c1,j(x
j) = ν̄. Thus,

lim
x↗xj

dPr(d = dj|x)

dx
= −Λjf(ν̄)

dc1,j(x
j)

dx
, ∀j : 2 ≤ j ≤ D̂.

The ratio of lim
x↗xj

dPr(d = dj|x)/dx and lim
x↗x2

dPr(d = d2|x)/dx identifies Ωj ≡ Λj
Λ2

, where

Λ2 6= 0 by the first assumption in the theorem. Rewrite the derivative of Pr(d = d1|x) as
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follows:

dPr(d = d1|x)

dx
=

D̂∑
j=2

Λjf(c1,j(x))
dc1,j(x)

dx

=
D̂∑
j=2

Λj

Λ2

Λ2f(c1,j(x))
dc1,j(x)

dx

=
D̂∑
j=2

Ωj[Λ2f(c1,j(x))]
dc1,j(x)

dx

=
D̂∑
j=2

Ωj f̂(c1,j(x))
dc1,j(x)

dx
,

where f̂(ν) ≡ Λ2f(c1,j(x)). Equipped with Ωj, we can recover f̂(ν) sequentially. Note that

∀x s.t. c1,2(x) ≤ ν̄ and c1,3(x) > ν̄, the up-to-scale density f̂(c1,2(x)) is identified. Indeed, it

is the only unknown in the expression above. We proceed as follows.

First, let x1 be such that c1,3(x1) = ν̄. Then, f̂(·) is identified on [c1,2(x1), ν̄].

Second, let x2 be such that c1,2(x2) = c1,3(x1). Now f̂(ν) is identified on [c1,2(x2), ν̄] because

in the expression for the derivative of Pr(d = d1|x) all cutoffs c1,j(x), j > 2, lie on the part

of the support where the up-to-scale density is known.

Identification of f̂(ν) on [0, ν̄] attains by repeating the above step. Indeed, by Lemma A.1

c1,2(xt) reaches the lower end of the support in a finite number of steps. Finally, the scale is

recovered by integrating f̂(ν) over its support:

Λ2 = Λ2

∫ ν̄

0

f(ν)dν =

∫ ν̄

0

f̂(ν)dν.

Therefore f(·) is identified, as required. The term O(d1; ∅) = Λ1 = Pr(d = d1|xν̄) is also

identified, and so are O(d1, d2; ∅) = Λ2 and O({d1, dj}; {d2, . . . , dj−1}) = Λj.

Proof of Theorem 2. The second condition of Theorem 1 implies that the cutoffs are ordered:

c1,j(x) < c1,j+1(x) for all x ∈ X . Hence,

dPr(d = d1|x)

dx
=

D∑
j=2

Λj(c1,j(x))f(c1,j(x))
dc1,j(x)

dx
,
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where

Λj(ν) =


Λj ≡

∑
K⊂D:
1,j∈K,

2,...,j−16∈K

Q(K) if ν < ν∗

Λj ≡
∑

K⊂D:
1,j∈K,

2,...,j−16∈K

Q(K) if ν ≥ ν∗
.

Similar to the proof of Theorem 1, we only consider the relevant alternatives for the derivative

of Pr(d = d1|x), namely j ≤ D̂.

We start at xν̄ and hence c1,2(xν̄) = ν̄. As we lower x we check whether dPr(d=d1|x)
dx

jumps. If

it does not, identification of f(·) attains by the proof of Theorem 1.

Suppose there is a point of discontinuity. It arises when a cutoff c1,j(x) crosses the breakpoint

ν∗. The identity of the cutoff and hence ν∗ = c1,j(x) is identified by the fact there is a unique
dPr(d=dj |x)

dx
that also jumps. Equipped with the identity of ν∗ the proof proceeds similarly to

that of Theorem 1. Indeed, all Ωj ≡ Λj/Λ2 are identified and so is f̂(ν) ≡ Λ2f(ν) for all

ν > ν∗.

The additional step is how to identify Λj and Ωj ≡ Λj/Λ2. Start with Λ2. Consider an x∗

s.t. c1,2(x∗) = ν∗. The derivatives dPr(d=d1|x)
dx

from the left and from the right of x∗ identify

Λ2f(ν∗) and Λ2f(ν∗). Hence, the ratio Λ2/Λ2 is identified. Exactly the same logic applies

to all other Λj’s whenever c1,j(x) crosses ν∗. We can then rewrite

dPr(d = d1|x)

dx
=

D̂∑
j=2

(
Ωj

)1(c1,j(x)≥ν∗)
(

Ωj

Λ2

Λ2

)
1(c1,j(x)<ν∗)

f̂(c1,j(x))
dc1,j(x)

dx
,

Now all coefficients of f̂(c1,j(x)) are identified, and identification of f̂(·) proceeds to the left

of ν∗. Once it is identified, we integrate it over the support to recover Λ2. Hence Λ2 and

f(·) are identified.

When the breakpoint occurs at x∗ rather than ν∗, the same proof strategy can be applied.

Proof of Proposition 1. The second condition in the theorem implies that c1,2(x) < c1,j(x)

for any j > 2. The cutoffs c1,j(x)’s, j > 2, are irrelevant for evaluating Pr(d = d1|x) by the
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first condition of the theorem. Therefore,

dPr(d = d1|x)

dx
=

( ∑
K⊂D:1,2∈K

Q(K)

)
f(c1,2(x))

dc1,2(x)

dx
≡ αf(c1,2(x))

dc1,2(x)

dx
.

Consequently, the product αf(c1,2(x)) can be written in terms of data:

αf(c1,2(x)) =
dPr(d=d1|x)

dx
dc1,2(x)

dx

,

and hence variation in x guarantees that f(ν) is identified up-to-scale on [c1,2(xl), c1,2(xu)] =

[νl, νu]. It follows that F (ν|ν ∈ [νl, νu]) is identified.

Proof of Theorem 3. Under Condition 1 of the Theorem there can only be three types of

consideration sets. The first type are all possible subsets of {d1, . . . , dj}; the second type are

all possible subsets of {dj+1, . . . , dD}. The third type necessarily contains both dj and dj+1.

The probability of choosing an alternative in {d1, . . . , dj} is one for the first type and zero

for the second type. Hence,

dPr(d ∈ {d1, . . . , dj}|x)

dx
=

∑
K⊂D:j,j+1∈K

Q(K)f(cj,j+1(x))
dcj,j+1(x)

dx
.

The rest of the proof follows the same steps as in the proof of Proposition 1, except we now

track cj,j+1(x).

Proof of Theorem 4. Let ν, x̃, Nε(x̃) ≡ {x : ‖x− x̃‖ < ε} satisfy Condition 2 in the theorem.

Then, ν = cj,k(x̃) for all j, k. Consider any pair of alternatives (dj, dk). Since utility is strictly

monotone in xj and continuous, for each L ⊆ D \ {j, k} we can find x ∈ Nε(x̃) such that

Uν(dj, x) = Uν(dk, x); (A.1)

Uν(dl, x) > Uν(dj, x) ∀l ∈ L; (A.2)

Uν(dj, x) > Uν(dl, x) ∀l ∈ D \ {L ∪ {j, k}}; (A.3)

The remainder of the proof proceeds in two steps.

Step 1: Identification of f(ν)Qν(K): The singleton sets occur with zero probability by

Condition 1 in the theorem, so it remains to show identification for consideration sets larger

than one. Consider any two alternatives (dj, dk). We claim that the following statement
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holds for n = 0, . . . , D:

P (n): For all K ⊂ D \ {j, k} satisfying |K| ≤ n, the quantity f(ν)Qν({j, k} ∪K)

is identified.

To show this for P (0), set L = D\{j, k}. In this case K = ∅. Let x satisfy Equations (A.1)-

(A.3). Then, all alternatives dl, l 6= j, k, are preferred to dj and dk at ν and cj,k(x) = ν.

Hence:

∂ Pr(d=dj |x)

∂xk
∂cj,k(x)

∂xk

= f(ν)Qν({j, k}).

It follows that f(ν)Qν({j, k}) is identified.

Next, suppose P (n − 1) is true. Consider any K ⊂ D \ {j, k} such that |K| = n. Let

L = D \ (K ∪ {j, k}). Let x satisfy Equations (A.1)-(A.3). Then,

∂ Pr(d=dj |x)

∂xk
∂cj,k(x)

∂xk

= f(ν)
∑
C⊂K

Qν({j, k} ∪ C)

= f(ν)Qν({j, k} ∪ K) +
∑

C⊂K:|C|<n

f(ν)Qν({j, k} ∪ C).

The LHS of this expression is known, and the second term on the RHS is identified by the

induction step. Therefore P (n) holds.

Since dj and dk were chosen arbitrarily, it follows that f(ν)Qν(K) is identified for all K ⊂ D.

Step 2: Identification of f(ν) and Qν(K). Since

∑
K⊂D

f(ν)Qν(K) = f(ν)
∑
K⊂D

Qν(K) = f(ν),

f(ν) is identified. Identification of Qν(K) follows from Step 1.

Proof of Corollary 1. The proof follows the same steps as the proof of Theorem 4, but with

the following two modifications:

First modification: In Step 1 in the proof of Theorem 4, we start with dj = d1 and loop

over dk ∈ {d2, . . . , dD}. This ensures that we only take derivatives with respect to xk, k > 1.

Hence, f(ν)Qx1ν (K) is identified for all sets K ⊂ D : |K| > 1.
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Second modification: In Step 2 we obtain

f(ν)Qx1(d1) +
∑

K⊂D:|K|>1

f(ν)Qx1ν (K) = f(ν)
∑
K⊂D

Qx1ν (K) = f(ν).

Since the second term on the LHS is known, f(ν)(1−Qx1(d1)) is identified for all ν ∈ [0, ν̄].

The scale is identified, because

(1−Qx1(d1)) =

∫ ν̄

0

f(ν)(1−Qx1(d1))dν.

Once the scale is identified, f(ν) is identified and so are Qx1ν (K), ∀K ⊂ D.

Proof of Proposition 2. For the purpose of obtaining a contradiction, suppose that there is

full consideration. Then

Pr(d ∈ L|x) = Pr

(
arg max

j∈D
Uν(dj, x) ∈ L

∣∣∣∣x)
= Pr(ν ∈ [0, ν∗))

= F (ν∗)

= Pr

(
arg max

j∈D
Uν(dj, x

′) ∈ L′
∣∣∣∣x′)

= Pr(d ∈ L′|x′).

This is a contradiction. Therefore there is limited consideration.

The following two Lemmas are used in the proof of Theorem 5. The proofs of these Lemmas

rest on the following claims.

1. The probability of alternative dj being chosen can only increase in its consideration

probability.

2. The probability of alternative dj being chosen can only decline in consideration prob-

ability of any other alternative dk.

3. The probability of alternative dj or dk being chosen can only increase in the consider-

ation probability of dj as the positive effect of this change on Pr(d = dj|x) dominates

the negative effect on Pr(d = dk|x).
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4. The probability of an alternative in K being chosen can only decline in consideration

probability of any alternative that does not belong to K.

Lemma A.2. Consider the Basic ARC model. For any K ⊂ D,
∑

j∈K Pr(d = dj|x) is

increasing in ϕk, ∀k ∈ K, and decreasing in ϕk, ∀k /∈ K.

Proof. Fix K and consider any j ∈ K. For each ν and l ∈ K, l 6= j, either j ∈ Bν(dl, x) or

not. If j 6∈ Bν(dl, x), then Pr(d = dl|x, ν) does not depend on ϕj. Hence,

∑
l∈K

Pr(d = dl|x, ν) = A+ Pr(d = dj|x, ν) +
∑

l∈K:j∈Bν(dl,x)

Pr(d = dl|x, ν),

where A is a constant that collects terms that do not depend on ϕj. Continuing,

∑
l∈K

Pr(d = dl|x, ν) = A+ ϕj
∏

k∈Bν(dj ,x)

(1− ϕk) +
∑

l∈K:j∈Bν(dl,x)

ϕl
∏

k∈Bν(dl,x)

(1− ϕk)

= A+ ϕj
∏

k∈Bν(dj ,x)

(1− ϕk) +
∑

l∈K:j∈Bν(dl,x)

ϕl(1− ϕj)
∏

k∈Bν(dl,x)\{j}

(1− ϕk)

= A+
∑

l∈K:j∈Bν(dl,x)

ϕl ∏
k∈Bν(dl,x)\{j}

(1− ϕk)


+

 ∏
k∈Bν(dj ,x)

(1− ϕk)−
∑

l∈K:j∈Bν(dl,x)

ϕl
∏

k∈Bν(dl,x)\{j}

(1− ϕk)

ϕj

≡ Ã+Bϕj.

Since Bν(j, x) ⊂ Bν(dl, x) whenever j ∈ Bν(dl, x),

B =

 ∏
k∈Bν(dj ,x)

(1− ϕk)

1−
∑

l∈K:j∈Bν(dl,x)

ϕl
∏

k∈Bν(dl,x)\{Bν(dj ,x),j}

(1− ϕk)

 ≥ 0.

Therefore,
∑

j∈K Pr(d = dj|x) =
∫ ∑

j∈K Pr(d = dj|x, ν)dF is increasing in ϕj.

Finally, for any k 6∈ K, ϕk may only appear on the RHS as (1−ϕk). Hence
∑

j∈K Pr(d = dj|x)

is decreasing in ϕk.

Lemma A.3. Consider the Basic ARC model. For any K ⊂ D,
∑

j∈K Pr(d = dj|x) is strictly

increasing in ϕj, j ∈ K, whenever there is an open interval of ν’s at which alternative dj is

preferred to all of the always-considered alternatives. It is strictly decreasing in ϕk, j 6∈ K,
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whenever there is an open interval of ν’s and l ∈ K such that at these ν’s alternative dk is

preferred to dl and dl is preferred to all of the always-considered alternatives.

Proof. To show the first claim, notice that B = 0 in the proof of Lemma A.2 if and only if

ϕk = 1 for some k ∈ Bν(dj, x).

To show the second claim, consider any j ∈ K. Then,

Pr(d = dj|x, ν) = ϕj
∏

k∈Bν(dj ,x)

(1− ϕk).

For this to be strictly decreasing in ϕk, it must be the case that k ∈ Bν(dj, x) and ϕl < 1 for

all l ∈ Bν(dj, x) \ {k}.

Proof of Theorem 5. By the proof of Theorem 1, f(·) and Λ2 = ϕ1ϕ2 are identified. The

consideration parameter ϕ1 is identified by Pr(d = d1|xν̄) = ϕ1, where xν̄ is s.t. c1,2(xν̄) = ν̄.

Since Λ2 is known, ϕ2 is also identified. The rest of the proof is about identification of the

remaining consideration parameters.

To identify ϕj take an x such that Pr(d = dj|x) 6= 0. Denote E = {k : Pr(d = dk|x) 6= 0}.
We claim that Pr(d = dk|x), ∀k ∈ E , does not depend on ϕl for l /∈ E . Suppose otherwise.

That is, suppose there exists dl such that Pr(d = dl|x) = 0 and Pr(d = dk|x) depends on ϕl

for some k ∈ E . Then, for each ν there is an always-considered alternative that is preferred

to dl. Since Pr(d = dk|x) depends on ϕl, there exists ν ∈ [0, ν̄] such that dl is preferred to

dk. However, the always-considered alternative that is preferred to dl at ν is also preferred

to dk by transitivity. This leads to a contradiction, because a DM with such preferences will

never choose dk in the first place. Therefore, Pr(d = dk|x) does not on ϕl for any l 6∈ E .

Since F (·) is already identified, {Pr(d = dk|x)}k∈E defines a system of |E| non-linear equa-

tions, where the only unknowns are ϕk, k ∈ E . This system has a unique solution. Suppose

to the contrary that two sets of consideration parameters {ϕk}k∈E and {ϕ′k}k∈E solve this sys-

tem and they are distinct. Denote E+ = {k : ϕk > ϕ′k}. By Lemma A.3,
∑

k∈E+ Pr(d = dk|x)

is strictly larger at {ϕk}k∈E than at {ϕ′k}k∈E . Hence, only one of these sets could satisfy

data. Therefore there is a unique set of {ϕk}k∈E that solves this system of equations, and ϕj

is identified as claimed.
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Proof of Theorem 6. Step 1. Suppose D = 3. Then d∗ = 2 and

Pr(d = d1|x) =

∫ c1,2(x)

0

ϕ1(ν)dF and Pr(d = d3|x) =

∫ ν̄

c2,3(x)

ϕ3(ν)dF.

The ratio of the derivatives of these two moments yields ϕ1(ν)
ϕ3(ν)

, where

ϕ1(ν) = ϕ1(1− α(ν))

ϕ3(ν) = ϕ3(1 + α(ν)),

First, ϕ1

ϕ3
is identified when x and x′ are chosen such that c1,2(x) = c2,3(x′) = ν̄. Once ϕ1

ϕ3

is identified, 1−α(ν)
1+α(ν)

is known for all ν; hence, α(ν) can be solved for. Identification of f(ν)

follows from substituting α(ν) into the expression for Pr(d=d1|x)
dx

.

Step 2. Let D > 3. We identify d∗ at xν̄ . The smallest j such that Pr(d = dj|xν̄) = 0 yields

d∗ = j − 1 (or d∗ = D if no such j exists). We return to the case that d∗ = 1, d∗ = 2, or

d∗ = D at the end of this proof.

Step 3. Using large support we establish that ϕD is a decreasing function of ϕ1. We have

Pr(d = d1|xν̄) = ϕ1

∫ ν̄

0

(1− α(ν))dF (ν) = ϕ1(1− Eα(ν)).

Similarly,

Pr(d = dD|x0) = ϕD

∫ ν̄

0

(1 + α(ν))dF (ν) = ϕD(1 + Eα(ν)).

Hence

ϕ1 =
Pr(d = d1|x1)

2− Pr(d=dD|x0)
ϕD

.

Step 4. This is an intermediate step, which we use later in the proof. By Fact 3,

c1,j(x) < c∗j(x) ≡ min
k
{{ck,j(x)}1<k<j, {cj,k(x)}j<k≤D}, ∀j.

Moreover any sequence {xs}∞s=1 such that c∗j(x
s) = c1,j(x

s+1) will reach the lower bound of

the support in finite number of steps. Otherwise, by the argument in the proof of Lemma

A.1, c∗j(x
s) and c1,j(x

s) converge to the same point in the interior of the support, which

contradicts the assumptions of the theorem.

Step 5. Identification of {ϕj}1<j<d∗ . For each ν in a sufficiently small neighborhood near ν̄,
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say (ν̄ − ε, ν̄), and for each j, there is an xj such that c1,j(x
j) = ν and ck,j(x

j) > ν̄ for all

k 6= 1, j. It follows by Step 4 that the following equations hold:

dPr(d = d2|x2)

dx
/
dc1,2(x2)

dx
=ϕ1(ν)ϕ2(ν)f(ν)

dPr(d = d3|x3)

dx
/
dc1,3(x3)

dx
=ϕ1(ν)(1− ϕ2(ν))ϕ3(ν)f(ν)

dPr(d = d4|x5)

dx
/
dc1,4(x4)

dx
=ϕ1(ν)(1− ϕ2(ν))(1− ϕ3(ν))ϕ4(ν)f(ν)

...

dPr(d = dd∗|xd
∗
)

dx
/
dc1,d∗(x

d∗)

dx
=ϕ1(ν)(1− ϕ2(ν))(1− ϕ3(ν)) . . . (1− ϕd∗−1(ν))f(ν)

The summation of these expressions recovers the quantity ϕ1(ν)f(ν). Next, substitute

ϕ1(ν)f(ν) into the expressions above to sequentially recover {ϕj(ν)}2≤j≤d∗ . Since ν can

be made arbitrarily close to ν̄ by selecting a smaller value of ε and since α(·) is continuous,

limν→ν̄ ϕj(ν) = ϕj(ν̄) = ϕj(1− α(ν̄)) = ϕj is also identified. Hence, {ϕj}d
∗
j=2 are identified.

Step 6: Identification of ϕ1 and {ϕj}d∗<j≤D. The cutoffs are monotone in xt and all cutoffs

are on the right of ν̄ at xν̄ . Consequently, Pr(d = dj|xν̄) = 0 for all j > d∗. Continuously

decrease t until Pr(d = dj1 |xt) > 0 for some j1 ∈ J ≡ {d∗+ 1, . . . , D} and Pr(d = dk|xt) = 0

for all k ∈ J \ {j1}. This will happen when cd∗,j1(x
t) crosses ν̄, yielding

dPr(d = dj1 |xt)
dx

/
dcd∗,j1(x

t)

dx
= −ϕj1(ν)f(ν)M1(ν),

where ν is in a small neighborhood near ν̄ s.t. ck,j1(x
t) > ν̄ for all k > d∗, k 6= j1 and

M1(ν) ≡
∏

k∈{2,··· ,d∗−1}:ck,j1 (xt)>ν̄

(1− ϕk(ν)).

Near the end of this proof-step we will take the limit as ν → ν̄ after dividing out f(ν).

Importantly, M1 ≡ limν→ν̄M1(ν) is known, since all relevant ϕk’s are known, and M1 does

not depend on ϕ1, since c1,j1(x
t) < cd∗,j1(x

t) < ν̄.

Next, continuously decrease t further until Pr(d = dj2|xt) > 0 for some j2 ∈ J \ {j1} and

Pr(d = dk|xt) = 0 for all k ∈ J \ {j1, j2}. Again, this will happen when cd∗,j2(x) crosses ν̄.
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Hence,

dPr(d = dj2 |xt)
dx

/
dcd∗,j2(x

t)

dx
= −ϕj2(ν)f(ν)M2(ν),

M2(ν) ≡
∏

k∈{2,...,d∗−1,j1}:ck,j2 (xt)>ν̄

(1− ϕk(ν)).

The term M2 ≡ limν→ν̄M2(ν) is known, except possibly for the term (1 − ϕj1), since all

other relevant ϕk’s are known. The expression above defines ϕj2(ν) as a strictly increasing

function of ϕj1(ν) regardless of whether M2(ν) depends on ϕj1(ν) or not. Indeed, for the

case where j1 < j2 we have

ϕj2(ν) ∝

ϕj1(ν) if cj1,j2(x
t) < ν̄

ϕj1 (ν)

1−ϕj1 (ν)
if cj1,j2(x

t) ≥ ν̄
,

where the coefficients of proportionality are known in the limit. A similar expression holds

when j1 > j2. This argument immediately extends to all j ∈ J . In particular, for the case

where j2 < j3

ϕj3 ∝

ϕj2(ν) if cj2,j3(x
t) < ν̄

ϕj2 (ν)

1−ϕj2 (ν)
if cj2,j3(x

t) ≥ ν̄
.

Since Pr(d = dD|x0) 6= 0, the above sequential argument yields that ϕD(ν) is an increasing

function of ϕj1(ν). In turn, recall that ϕ1(ν)f(ν) is known for ν arbitrary close to ν̄. The

limit of the ratio between ϕ1(ν)f(ν) and ϕj1(ν)f(ν), which is also known, yields ϕD as an

increasing functions of ϕ1. Hence, taken with the result in Step 3, the quantity ϕ1 is uniquely

pinned down. Identification of all other ϕj’s immediately follow.

Step 7: Identification of α(ν) and f(ν). The identification argument is iterative. For each

alternative j, define

Γ0
j ≡ {ν ∈ [0, ν̄] : ∃x ∈ X s.t. ν = c1,j(x) and c∗j(x) ≥ ν̄}.

The set Γ0
j includes all preference parameters ν covered by the cutoff c1,j(·) before any other

relevant cutoffs for dj enter the support. Let Γ0 ≡
⋂D
j=1 Γ0

j . By Step 4, Γ0 is a non-trivial

interval and ν̄ ∈ Γ0. For each ν ∈ Γ0 and each dj, there is an xj ∈ X such that c1,j(x
j) = ν.

As a result, the following system of equations hold for each ν ∈ Γ0:
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− dPr(d = d2|x2)

dx
/
dc1,2(x2)

dx
=ϕ1(ν)ϕ2(ν)f(ν)

−dPr(d = d3|x3)

dx
/
dc1,3(x3)

dx
=ϕ1(ν)(1− ϕ2(ν))ϕ3(ν)f(ν)

−dPr(d = d4|x4)

dx
/
dc1,4(x4)

dx
=ϕ1(ν)(1− ϕ2(ν))(1− ϕ3(ν))ϕ4(ν)f(ν) (A.4)

...

−dPr(d = dd∗|xd
∗
)

dx
/
dc1,d∗(x

d∗)

dx
=ϕ1(ν)(1− ϕ2(ν))(1− ϕ3(ν)) . . . (1− ϕd∗−1(ν))f(ν),

The summation of these expressions recovers the quantity ϕ1(ν)f(ν). Substitute this into

the first equation to obtain ϕ2(ν) = ϕ2(1 − α(ν)). But ϕ2 is already known, so α(ν) is

identified on Γ0. Finally, since ϕ1(ν) = ϕ1(1− α(ν)) is now identified, so is f(ν) on Γ0.

In the next step of the iteration, let ν̄1 = minν∈Γ0 Γ0 be the smallest value of ν where α(ν)

and f(ν) are identified. Define

Γ1
j ≡ {ν ∈ [0, ν̄] : ∃x ∈ X s.t. ν = c1,j(x) and c∗j(x) ≥ ν̄1} and Γ1 ≡

D⋂
j=1

Γ1
j .

Then, a similar system to (A.4) holds ∀ν ∈ Γ1, but may include additional terms. These

terms are known, because they are functions of f(·) and α(·) evaluated at ν ∈ Γ0 (and also

of {ϕj}Dj=1). We can therefore repeat the argument from the base case to establish that α(ν)

and f(ν) are identified on Γ1. We repeat this iterative procedure. After a finite number of

steps T , we obtain ΓT = [0, ν̄] by Step 4; hence, f(·) and α(·) are identified.

Edge Case I: Suppose d∗ = d1 (the identity is known from Step 2). The following expressions

hold for ν close to ν̄:

−dPr(d = d2|x2)

dx
/
dc1,2(x2)

dx
=ϕ2(ν)f(ν)

−dPr(d = d3|x3)

dx
/
dc1,3(x3)

dx
=(1− ϕ2(ν))ϕ3(ν)f(ν)

−dPr(d = d4|x4)

dx
/
dc1,4(x4)

dx
=(1− ϕ2(ν))(1− ϕ3(ν))ϕ4(ν)f(ν) (A.5)

...

−dPr(d = dD|xD)

dx
/
dc1,D(xD)

dx
=(1− ϕ2(ν))(1− ϕ3(ν)) . . . (1− ϕD−1(ν))ϕD(ν)f(ν),
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The ratio of the first and second equations in System (A.5) yields:

ϕ2(ν)

ϕ3(ν)
= (1− ϕ2(ν))

1

A3(x3(ν))
,

where x(ν) = (x2(ν), x3(ν), . . . , xD(ν)) is a known implicit function of ν satisfying ν =

c1,j(x
j(ν)) for j = 2, . . . , D, and A3(x(ν)) is data:

A3(x(ν)) =
dPr(d=d3|x3(ν))

dx
/dc1,3(x3(ν))

dx
dPr(d=d2|x2(ν))

dx
/dc1,2(x2(ν))

dx

.

From this, we obtain

ϕ2

ϕ3

= (1− ϕ2(1− α(ν))
1

A3(x(ν))

A3(x(ν))

ϕ3

=
1

ϕ2

− (1− α(ν))

α(ν) = 1− 1

ϕ2

+
A3(x(ν))

ϕ3

α′(ν) =

[
∂A3(x(ν))

∂x2

dx2(ν)

dν
+
∂A3(x(ν))

∂x3

dx3(ν)

dν

]
1

ϕ3

≡ B3(x(ν))
1

ϕ3

,

where B3(x(ν)) is a known function of data. A similar idea yields

α′(ν) = B4(x(ν))
1

ϕ4

α′(ν) = B5(x(ν))
1

ϕ5

...

α′(ν) = BD(x(ν))
1

ϕD
.

Hence, the ratios ϕ3

ϕ4
, ϕ4

ϕ5
, ϕ5

ϕ6
. . . are identified. The ratio and the limit at the far end of the

support of the third and fourth equations in System (A.5) yields

0 = 1− 1

ϕ3

+ A4(x(ν̄))
1

ϕ4

ϕ3 = 1− A4(x(ν̄))
ϕ3

ϕ4

,

so ϕ3 is identified and so are ϕ4, . . . , ϕD. The ratio of the first and second equation in System

(A.5) identifies ϕ2. The proof continues on with Step 7. As such it does not require the
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second condition of the theorem.

Edge Case II: Suppose that d∗ = D. From Step 5 we obtain ϕj for j : 1 < j < D. Next,

we show how to identify ϕ1. We can find xj such that ν = cj,D(xj) is arbitrary close to zero

satisfying cj,k(x
j) < 0 for all k 6= j,D, and so the following system of equations holds:

dPr(d = dD−1|xD−1)

dx
/
dcD−1,D(xD−1)

dx
=ϕD−1(ν)f(ν)

dPr(d = dD−2|xD−2)

dx
/
dcD−2,D(xD−2)

dx
=(1− ϕD−1(ν))ϕD−2(ν)f(ν)

dPr(d = dD−3|xD−3)

dx
/
dcD−3,D(xD−3)

dx
=(1− ϕD−1(ν))(1− ϕD−2(ν))ϕD−3(ν)f(ν)

...

dPr(d = d1|x1)

dx
/
dc1,D(x1)

dx
=(1− ϕD−1(ν))(1− ϕD−2(ν)) . . . (1− ϕ2(ν))ϕ1(ν)f(ν).

The ratio of the first two equations yield

A =
ϕD−2

ϕD−1

· (1− ϕD−1(1 + α(ν)),

where A, ϕD−2, and ϕD−1 are known terms; hence, α(0) = limν→0 α(ν) is identified. Once

α(0) is identified, the term ϕ1 is identified from the ratio of the first and last equations in

the above system. Finally, f(ν) and α(ν) are identified by Step 7.

Edge Case III: Suppose d∗ = 2. By Steps 3, 5 and 6 all ϕj’s are identified. A modified version

of Steps 4 and 7 can be applied. We begin by starting at the lower end of the distribution

with dD taking the role of d1; dD−1 taking the role of d2, etc. Step 4 can be restated for

cj,D(x) > c∗∗j (x) ≡ max
k
{{ck,j(x)}1≤k<j, {cj,k(x)}j<k<D}, ∀j.

Finally Step 7 can be repeated starting at the lower end of the support and building on the
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following equations

dPr(d = dD−1|xD−1)

dx
/
dcD−1,D(xD−1)

dx
=ϕD(ν)ϕD−1(ν)f(ν)

dPr(d = dD−2|xD−2)

dx
/
dcD−2,D(xD−2)

dx
=ϕD(ν)(1− ϕD−1(ν))ϕD−2(ν)f(ν)

dPr(d = dD−3|xD−3)

dx
/
dcD−3,D(xD−3)

dx
=ϕD(ν)(1− ϕD−1(ν))(1− ϕD−2(ν))ϕD−3(ν)f(ν)

...

dPr(d = d3|x3)

dx
/
dc1,3(x3)

dx
=ϕD(ν)(1− ϕD−1(ν))(1− ϕD−2(ν)) . . . (1− ϕ3(ν))f(ν).

Proof of Theorem 7. Let ν, x, Nε(x) = {x′ : ‖x′ − x‖ < ε} satisfy the conditions in the

theorem. Then ν = cj,k(x) for all j, k. For any pair of alternatives (dj, dk) we can perturb

xk, k /∈ {j, d∗}, and xl, ∀l /∈ {j, d∗, k}, so that the resulting x′ ∈ Nε(x) is such that

Uν(dk, x
′
k) > Uν(dj, xj)

Uν(dj, xj) > Uν(dl, x
′
l), ∀l ∈ D \ {j, k, d∗}.

And we can do another perturbation of xl, ∀l /∈ {j, d∗}, so that the resulting x′′ ∈ Nε(x̃) is

such that

Uν(dj, xj) > Uν(dl, x
′′
l ), ∀l ∈ D \ {j, d∗}.

Then

∂ Pr(d = dj|x′)
∂xd∗

= ϕj(xj, ν)(1− ϕk(x′k, ν))f(ν)
∂cj,d∗(x)

∂xd∗

∂ Pr(d = dj|x′′)
∂xd∗

= ϕj(xj, ν)f(ν)
∂cj,d∗(x)

∂xd∗
.

Taking the ratio of the expressions above identifies (1−ϕk(x′k, ν)). By continuity we identify

ϕk(xk, ν). Identical steps identify ϕj(xj, ν), ∀j 6= d∗, and hence f(ν).

Proof of Proposition 4. Take any non-empty consideration set K. For a given preference
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coefficient ν, let jK(x, ν) denote the identity of the best alternative in this consideration set.

By the natural ordering, jK(x, ν) is an increasing step function in ν. Hence, I(jK(x, ν) ≤ J)

is a decreasing step function. The term Pr

(⋃J
j=1 dj

∣∣∣∣x, ν) is a non-negatively weighted sum

of I(jK(x, ν) ≤ J). Hence it is decreasing in ν.

Proof of Proposition 5. Consider a limited consideration model with preferences Uν(dj, x)

and consideration probability Qxν(K), K ⊂ D. The optimal choice from D conditional on the

DM facing the consideration set K 6= ∅ is the alternative with the largest value of Uν(dj, x)

subject to j ∈ K. This is the same solution as the one that maximizes Vν(dj, x, εj) where

εj = 0 for all j ∈ K and εj = −∞ for all j ∈ D \ K. Finally, since conditional on x the

consideration set K has the same distribution as the set of alternatives with εj = 0 (this

is by construction), the limited consideration model and this ORUM model yield the same

model predictions, and hence they are equivalent.

B Application: Verifying Cutoff Order

We start by recalling that CARA and CRRA utility functions satisfy the following basic

property (see, e.g., Pratt, 1964; Barseghyan, Molinari, O’Donoghue, & Teitelbaum, 2018).1

Lemma B.1. For any y0 > y1 > y2 > 0, the ratio R(y0, y1, y2) ≡ uν(y1)−uν(y2)
uν(y0)−uν(y1)

is strictly

increasing in ν.

It follows that CARA and CRRA utility functions also satisfy a slightly extended version of

the property above:

Lemma B.2. For any y0 > y1 > y2 > y3 > 0, the ratio Mν(y0, y1, y2, y3) ≡ uν(y2)−uν(y3)
uν(y0)−uν(y1)

is

strictly increasing in ν.

Proof.

Mν(y0, y1, y2, y3) =
uν(y2)− uν(y3)

uν(y0)− uν(y1)
=
uν(y2)− uν(y3)

uν(y1)− uν(y2)
× uν(y1)− uν(y2)

uν(y0)− uν(y1)

= Rν(y1, y2, y3)Rν(y0, y1, y2)

1This property is equivalent to condition (e) in Pratt (1964, Theorem 1). As shown there, it is equivalent
to assuming that an increase in ν corresponds to an increase in the coefficient of absolute risk aversion.
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For our application, we show that c1,j(p̄, µ) < c1,j+1(p̄, µ) for any j ≥ 2 under both CARA

and CRRA preferences.

Proposition B.1. Suppose deductibles and prices are such that

p1 − pj
p1 − pj+1

<
d1 − dj
d1 − dj+1

and dk + pk < w for all k. Under either CARA or CRRA expected utility preferences, the

cutoff mapping is unique and satisfies c1,j(p̄, µ) < c1,j+1(p̄, µ) for all j > 1.

Note that in a perfectly competitive markets where additional coverage is simply proportional

to its price both ratios will be equal. In practice, however, one might expect that with some

market power the prices increase faster than then coverage, and hence

p1 − pj
p1 − pj+1

<
d1 − dj
d1 − dj+1

This is exactly what we find in our data (as well as for a larger number of firms appearing

in Barseghyan, Prince, & Teitelbaum (2011)).

Proof. We start with CARA preferences. The existence and the uniqueness of cj,k(x) for all

j < k follows directly from the Lemma B.2. Indeed note that pj < pk < pk + dk < pj + dj.
2

At the cutoff the DM is indifferent between lotteries j and k. Equating two expected utilities

and rearranging we have that

e−ν(w−pk−dk) − e−ν(w−pj−dj)

e−ν(w−pj) − e−ν(w−pk)
=

1− µ
µ

, (B.1)

where w is the DM’s initial wealth. By Lemma B.2, the L.H.S. of Equation B.1 is strictly

monotone in ν, and it tends to +∞ when ν goes to +∞ and to zero when ν goes to −∞.

It follows that there exists a unique ν, i.e the cutoff cj,k(x), that solves the Equation B.1.

Moreover, since the L.H.S. is strictly monotone in ν it follows from the Implicit Function

Theorem that cj,k(x) is continuous in µ and p̄.

The next step is to establish c1,j(p̄, µ) < c1,j+1(p̄, µ), j > 1. For the purpose of obtaining

a contradiction, suppose that there exists (p̄, µ) and an j such that c1,j(p̄, µ) ≥ c1,j+1(p̄, µ).

2If pk + dk > pj + dj , then alterantive j first order stochastically dominates k and hence the cuttoff is
+∞.
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Since the expected utility of lottery k is proportional to

EUν(Lk) ∝ −eνpk
(
1− µ+ µeνdk

)
,

there exists ν = c1,j(p̄, µ) ≥ c1,j+1(p̄, µ) such that

1− µ+ µeνd1

1− µ+ µeνdj
eν(g1−gj)p̄ = 1 ≤ 1− µ+ µeνd1

1− µ+ µeνdj+1
eν(g1−gj+1)p̄

Taking logs yields

log

(
1− µ+ µeνd1

1− µ+ µeνdj

)
= −ν(g1 − gj)p̄

log

(
1− µ+ µeνd1

1− µ+ µeνdj+1

)
≥ −ν(g1 − gj+1)p̄.

Dividing through and using the fact that −ν(g1 − gj+1)p̄ ≥ −ν(g1 − gj)p̄ ≥ 0 yields

log
(

1−µ+µeνd1

1−µ+µeνdj

)
log
(

1−µ+µeνd1

1−µ+µeνdj+1

) ≤ g1 − gj
g1 − gj+1

.

The R.H.S. is less than one. We claim that the L.H.S. is monotonically decreasing in µ < 1.

To show this, denote µ̂ = 1−µ
µ

, ∆1 = eνd1 , ∆j = eνdj , and ∆j+1 = eνdj+1 to rewrite the L.H.S.

as follows

L.H.S = f

(
1− µ
µ

)
= f(µ̂) ≡ log(∆1 + µ̂)− log(∆j + µ̂)

log(∆1 + µ̂)− log(∆j+1 + µ̂)
.

First, we show that the above expression is monotonically increasing in µ̂. Observe that

f ′(µ̂)

f(µ̂)
=

(
1

∆1 + µ̂
− 1

∆j + µ̂

)
1

log(∆1 + µ̂)− log(∆j + µ̂)
−
(

1

∆1 + µ̂
− 1

∆j+1 + µ̂

)
1

log(∆1 + µ̂)− log(∆j+1 + µ̂)

After relabeling Λ1 = − log(∆1 + µ̂), Λj = − log(∆j + µ̂) and Λj+1 = − log(∆j+1 + µ̂) we

obtain

f ′(µ̂)

f(µ̂)
=
eΛ1 − eΛj+1

Λ1 − Λj+1

− eΛ1 − eΛj

Λ1 − Λj

.

Since Λ1 < Λj < Λj+1 and exponential function is convex, the expression above is positive.

Thus, the derivative of f
(

1−µ
µ

)
W.R.T. µ is negative as claimed. That is, f

(
1−µ
µ

)
achieves
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its lowest value at µ = 1 and is equal to
d1−dj
d1−dj+1

. Finally, a contradiction is obtained since

L.H.S ≥ min
µ
f

(
1− µ
µ

)
=

d1 − dj
d1 − dj+1

>
g1 − gj
g1 − gj+1

= R.H.S,

where the strict inequality is by assumption. Therefore, c1,j(p̄, µ) < c1,j+1(p̄, µ) under CARA

as claimed.

Under CRRA, cj,k(p̄, µ) exist and are continuous exactly for the same reasons as under

CARA. It remains to establish that c1,j(p̄, µ) < c1,j+1(p̄, µ). For the purpose of obtaining a

contradiction, suppose c1,j(p̄, µ) ≥ c1,j+1(p̄, µ) for some (p̄, µ). Consider the following Taylor

expansion for the CRRA Bernoulli utility function uν(w) ≡ w1−ν

1−ν :

(w − pk)1−ν

1− ν
=
w1−ν

1− ν
+
w−ν

1!
(−pk)− ν

w−ν−1

2!
(−pk)2 + ν(ν + 1)

w−ν−2

3!
(−pk)3 + . . .

Or, equivalently,

(1− ν)wν−1[uν(w − pk)− uν(w)] = (ν − 1)
1

1!
w−1pk + (ν − 1)ν

w−2

2!
p2
k + (ν − 1)ν(ν + 1)

w−3

3!
p3
k + . . .

Hence,

EUν(Lk) ∝ (1− µ)
∞∑
t=1

ωt(ν)ptk + µ
∞∑
t=1

ωt(ν) (pk + dk)
t .

where ωt(ν) ≡ (t!wt)−1
∏t−1

t′=0(ν − 1 + t′) < 0 when ν ∈ (0, 1). When ν > 1, ωt(ν) > 0 but

the factor premultiplying uν(w − pk) above is negative, so we would still come to the same

conclusion that EUν(Lk) is proportional to a power series with coefficients τt(ν) = −ωt(ν) <

0. The power series are absolutely convergence provided that pk + dk < w, so the difference

in the power series for EUν(Lj) and EUν(Lk) is equal to the sum of the difference:

EUν(Lj)− EUν(Lk) ∝ (1− µ)
∞∑
t=1

ωt(ν)
(
ptj − ptk

)
+ µ

∞∑
t=1

ωt(ν)
(
(pj + dj)

t − (pk + dk)
t)

= (pj − pk) (1− µ)
∞∑
t=1

ωt(ν)
t−1∑
h=0

phj p
t−h
k +

+ ((pj − pk) + (dj − dk))µ
∞∑
t=1

ωt(ν)
t−1∑
h=0

(pj + dj)
h (pk + dk)

t−h .
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The condition ν = c1,j(p̄, µ) ≥ c1,j+1(p̄, µ) implies

p1 − pj
p1 − pj+1

≥ p1 − pj + d1 − dj
p1 − pj+1 + d1 − dj+1

δ(ν), (B.2)

where

δ(ν) ≡
∑∞

t=1 ωt(ν)
∑t−1

h=0 (p1 + d1)h (pj + dj)
t−h∑∞

t=1 ωt(ν)
∑t−1

h=0 (p1 + d1)h (pj+1 + dj+1)t−h

∑∞
t=1 ωt(ν)

∑t−1
h=0 p

h
1p

t−h
j+1∑∞

t=1 ωt(ν)
∑t−1

h=0 p
h
1p

t−h
j

.

Under the assumption ν = c1,j(p̄, µ) ≥ c1,j+1(p̄, µ) it is also the case that ν = c1,j(p̄, µ) ≥
c1,j+1(p̄, µ) ≥ cj,j+1(p̄, µ) by Fact 4. Hence, pj+dj > pj+1+dj+1. Indeed otherwise pj+1−pj >
dj − dj+1 is a violation of the first order stochastic dominance. Taken with pj+1 > pj, it

follows that δ(ν) > 1. Finally, a contradiction will be obtained if

pj − p1

pj+1 − p1

≤ pj+1 − p1 + d1 − dj
p1 − pj+1 + d1 − dj+1

,

since then Equation (B.2) will not hold. Re-arranging this expression we obtain:

p1 − pj+1 + d1 − dj+1

pj+1 − p1

≤ p1 − pj + d1 − dj
pj − p1

d1 − dj+1

pj+1 − p1

≤ d1 − dj
pj − p1

p1 − pj
p1 − pj+1

≤ d1 − dj
d1 − dj+1

.

The latter inequality holds by assumption. It follows that c1,j(p̄, µ) < c1,j+1(p̄, µ), j > 1.

C Monetary Cost of Limited Consideration

We view limited consideration as a mechanism that constrains households from achieving

their first-best alternative either because the market setting forces some alternatives to be-

come more salient than others (e.g. agent effects) or because of time or psychological costs

that prevent the household from evaluating all alternatives in the choice set. Regardless

of the underlying mechanism(s) of limited consideration, we can quantify its monetary cost

within our framework. We ask, ceteris paribus, how much money the households “leave

on the table” when choosing deductibles in property insurance under limited consideration
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rather than under full consideration. This is likely to be a lower bound on actual monetary

losses arising from limited consideration, because insurance companies might be exploiting

sub-optimality of households choices when setting prices or choosing menus.

We measure the monetary costs of limited consideration as follows. For each household we

compute (the expected value of) the certainty equivalent of the lottery associated with the

households’ optimal choice, as well as of the one associated with their choice under limited

consideration.3 We then take the difference between these certainty equivalent values and

average them across all households in the sample. On average, we find that households lose

$50 dollars across the three deductibles because of limited consideration. See Table E.6 for

variation conditional on demographic characteristics and insurance score. We also find wide

dispersion in loss across households (see Figure E.6). In particular, the 10th percentile of

losses is $31 and the 90th is $73.

3Certainty equivalent of the lottery is defined as the minimum amount they are willing to accept in lieu
of the lottery. In our case, for alternative j, it is simply cej ≡ 1

ν ln[(1− µ) exp(νpj) + µ exp(ν(pj + dj))].
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D Data

Table D.1 Descriptive Statistics

Variable Mean Std. Dev. 1st % 99th %

Age 53.9 15.6 25.4 84.1

Female 0.40

Single 0.22

Married 0.55

Second Driver 0.43

Insurance Score 767 112 532 985

Table D.2 Frequency of Deductible Choices Across Contexts

Deductible 1000 500 250 200 100 50

Collision 0.063 0.676 0.122 0.129 0.009

Comprehensive 0.037 0.430 0.121 0.329 0.039 0.044

Home 0.176 0.559 0.262 0.002

Table D.3 Deductible Rank Correlations Across
Contexts

Collision Comprehensive Home

Collision 1

Comprehensive 0.61 1

Home 0.37 0.35 1
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Table D.4 Average Premiums Across Coverages

Deductible 1,000 500 250 200 100 50

Collision 145 187 243 285 327

Comprehensive 94 117 147 155 178 224

Home 594 666 720 885

24



E Empirical Results: Figures and Tables

E.1 The ARC Model with Observable Demographics

While it is ideal to control for households’ observable characteristics non-parametrically, it

is data demanding. In practice, it is commonly assumed that household characteristics shift

the expected value of the preference-coefficient distribution.4 We adopt the same strategy

here by assuming that for each household i, log
β1,i
β2

= Ziγ, where γ is an unknown vector to

be estimated. The terms β1,i and β2 denote the parameters of the Beta distribution, where

β1,i is household specific and β2 is common across households. The preference coefficients are

random draws from a distribution with an expected value that is a function of the observable

characteristics given by E(νi) =
β1,i

β1,i+β2
ν̄ = eZiγ

1+eZiγ
ν̄.5 The results of this estimation are in

line with our first estimation. (See Column 2 in Table E.1, as well as Figures E.1 and E.2.)

The new observation here is that the model closely matches the distribution of choices across

various sub-populations in the sample including gender, age, credit worthiness, and contracts

with multiple drivers. The model’s ability to match these conditional distributions can be

attributed, in part, to the dependence of risk preferences on household characteristics. The

model is, however, fairly parsimonious as the consideration parameters are restricted to be

the same across all households. Finally, estimated consideration probabilities are close in

magnitude to those estimated above. In particular, the highest deductibles ($1, 000 and

$500) are most likely to be considered, with respective frequencies of 0.94 and 0.92. The

remaining alternatives are considered at much lower frequencies.

4For exmaple, Cohen & Einav (2007) assume that log νi = Ziγ + εi, where Zi are the observables for

household i and εi is i.i.d. N(0, σ2). Hence, E(νi) = eZiγ+σ
2/2.

5If, instead, we assume log
β2,i

β1
= Ziγ̃, then we arrive to the same expression for the expected value with

the exception that γ̃ = −γ.
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E.2 Figures

Figure E.1: The ARC Model with Observable Demographics
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The first panel reports the distribution of predicted and observed choices. The second panel displays
consideration probabilities and the distribution of optimal choices under full consideration.

Figure E.2: The ARC Model with Observable Demographics: Conditional Distributions
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Figure E.3: The Mixed Logit
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Figure E.4: The Mixed Logit, Three Coverages
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Figure E.5: The ARC Model, Three Coverages:
Consideration and Optimal Choice Distribution
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Figure E.6: The ARC Model with Three Coverages:
Monetary Loss From Limited Consideration
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E.3 Tables

Table E.1 MLE Estimation Results for the ARC Model: Collision Only

ARC Model ARC Model with Observables

Average β1i 1.70 [1.56, 1.82] 2.23 [1.93, 2.50]

β2 7.45 [6.68, 8.08] 9.20 [8.09, 10.1]

Mean of ν 0.0037 [0.0036, 0.0038] 0.0038 [0.0036, 0.0040]

SD of ν 0.0024 [0.0023, 0.0026] 0.0022 [0.0021, 0.0023]

Intercept - - −1.41 [-1.47, -1.33]

Age - - 0.207 [0.173, 0.237]

Age2 - - 0.048 [0.022, 0.073]

Female Driver - - 0.077 [0.051, 0.104]

Single Driver - - 0.050 [0.022, 0.079]

Married Driver - - 0.103 [0.062, 0.144]

Credit Score - - 0.134 [0.107, 0.160]

2+ Drivers - - −0.302 [-0.370, -0.224]

Collision $100 0.059 [0.050, 0.068] 0.050 [0.042, 0.058]

Collision $200 0.412 [0.391, 0.433] 0.390 [0.364, 0.413]

Collision $250 0.206 [0.198, 0.214] 0.204 [0.193, 0.212]

Collision $500 0.920 [0.913, 0.926] 0.915 [0.909, 0.924]

Collision $1000 1.000 [1.000, 1.000] 0.944 [0.899, 1.000]
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Table E.2 MLE Estimation Results for the Proportionally Shifting Consideration
Model

ARC Model ARC Model with Observables

Average β1i 1.44 [1.31, 1.55] 2.11 [1.86, 2.28]

β2 6.07 [5.35, 6.67] 8.74 [7.73, 9.58]

Mean of ν 0.0038 [0.0037, 0.0040] 0.0038 [0.0036, 0.0040]

SD of ν 0.0027 [0.0026, 0.0028] 0.0023 [0.0021, 0.0024]

Intercept - - −1.40 [-1.47, -1.35]

Age - - 0.194 [0.160, 0.222]

Age2 - - 0.036 [0.010, 0.059]

Female Driver - - 0.070 [0.046, 0.096]

Single Driver - - 0.049 [0.021, 0.076]

Married Driver - - 0.091 [0.047, 0.130]

Credit Score - - 0.135 [0.110, 0.160]

2+ Drivers - - −0.283 [-0.348, -0.200]

Collision $100 0.061 [0.051, 0.070] 0.055 [0.046, 0.063]

Collision $200 0.424 [0.401, 0.446] 0.408 [0.382, 0.433]

Collision $250 0.211 [0.202, 0.220] 0.212 [0.201, 0.222]

Collision $500 0.985 [0.974, 0.998] 0.961 [0.929, 0.977]

Collision $1000 1.000 - 1.000 -

Average ξ1i 0.478 [0.277, 0.652] 0.148 [0.021, 0.212]

ξ2 26.7 [16.1, 37.9] 7.14 [0.939, 10.3]

ξ1: Intercept - - −2.24 [-3.59, 0.0011]

ξ1: Age - - 1.24 [-0.736, 1.75]

ξ1: Age2 - - −0.382 [-0.701, 0.584]

ξ1: Female Driver - - −0.323 [-1.16, 0.910]

ξ1: Single Driver - - 0.382 [-1.51, 0.650]

ξ1: Married Driver - - 0.0017 [-2.35, 1.45]

ξ1: Credit Score - - 0.405 [-0.688, 0.642]

ξ1: 2+ Drivers - - 0.485 [-2.22, 1.98]
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Table E.3 MLE Estimation Results for the
Mixed Logit:

Collision Only

Mixed Logit

Average β1i 9.07 [7.54, 10.2]

β2 124.4 [106.0, 137.5]

Mean of ν 0.0014 [0.0013, 0.0014]

SD of ν 0.0004 [0.0004, 0.0005]

Intercept −2.59 [-2.63, -2.55]

Age −0.139 [-0.156, -0.122]

Age2 −0.024 [-0.037, -0.010]

Female Driver −0.0035 [-0.019, 0.012]

Single Driver −0.0098 [-0.026, 0.0060]

Married Driver −0.030 [-0.054, -0.0078]

Credit Score 0.091 [0.076, 0.105]

2+ Drivers −0.016 [-0.061, 0.029]

Sigma 0.039 [0.037, 0.041]
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Table E.4 MLE Estimation Results for the ARC Model, Three Coverages

ARC Model

Average β1i 4.70 [3.89, 5.30]

β2 24.0 [19.7, 27.2]

Mean of ν 0.0032 [0.0032, 0.0033]

SD of ν 0.0013 [0.0012, 0.0014]

Intercept −1.68 [-1.72, -1.64]

Age 0.162 [0.146, 0.180]

Age2 0.041 [0.026, 0.054]

Female Driver 0.043 [0.027, 0.061]

Single Driver 0.010 [-0.0075, 0.028]

Married Driver 0.030 [0.0054, 0.054]

Credit Score 0.137 [0.121, 0.153]

2+ Drivers −0.097 [-0.141, -0.052]

(100,50,250) 0.041 [0.033, 0.049]

(100,50,500) 0.015 [0.0099, 0.021]

(100,50,1000) 0.013 [0.0048, 0.023]

(100,100,100) 0.0023 [0.0009, 0.0042]

(100,100,250) 0.0077 [0.0049, 0.010]

(100,100,500) 0.0050 [0.0027, 0.0078]

(100,100,1000) 0.0047 [0.0019, 0.0086]

(100,200,250) 0.0005 [0.0002, 0.0010]

(100,200,500) 0.0008 [0.0004, 0.0015]

(100,200,1000) 0.0036 [0.0013, 0.0065]

(200,50,100) 0.011 [0.0052, 0.016]

(200,50,250) 0.066 [0.057, 0.075]

(200,50,500) 0.061 [0.051, 0.071]

(200,50,1000) 0.033 [0.018, 0.048]

(200,100,100) 0.0020 [0.0008, 0.0037]

(200,100,250) 0.021 [0.017, 0.026]

(200,100,500) 0.028 [0.023, 0.034]

(200,100,1000) 0.023 [0.012, 0.033]

(200,200,100) 0.0017 [0.0007, 0.0032]

(200,200,250) 0.157 [0.147, 0.167]

(200,200,500) 0.165 [0.154, 0.176]

(200,200,1000) 0.136 [0.113, 0.158]

(200,250,250) 0.0004 [0.0002, 0.0006]

(200,250,500) 0.0005 [0.0002, 0.0009]

(200,500,250) 0.0015 [0.0008, 0.0023]

(200,1000,1000) 0.0047 [0.0017, 0.0085]

(250,50,100) 0.0020 [0.0008, 0.0037]

(250,50,250) 0.021 [0.017, 0.025]

(250,50,500) 0.033 [0.027, 0.039]

(250,100,250) 0.017 [0.015, 0.020]

(250,100,500) 0.016 [0.014, 0.020]

(250,100,1000) 0.019 [0.011, 0.026]

(250,200,100) 0.0010 [0.0003, 0.0019]

ARC Model

(250,200,250) 0.037 [0.033, 0.041]

(250,200,500) 0.056 [0.051, 0.061]

(250,200,1000) 0.045 [0.035, 0.055]

(250,250,100) 0.0011 [0.0004, 0.0020]

(250,250,250) 0.042 [0.038, 0.046]

(250,250,500) 0.061 [0.056, 0.066]

(250,250,1000) 0.026 [0.019, 0.034]

(250,500,500) 0.0007 [0.0004, 0.0013]

(500,50,250) 0.034 [0.028, 0.042]

(500,50,500) 0.053 [0.044, 0.063]

(500,50,1000) 0.033 [0.018, 0.047]

(500,100,250) 0.015 [0.012, 0.019]

(500,100,500) 0.043 [0.036, 0.049]

(500,100,1000) 0.048 [0.034, 0.062]

(500,200,100) 0.0079 [0.0040, 0.012]

(500,200,250) 0.126 [0.119, 0.133]

(500,200,500) 0.337 [0.322, 0.352]

(500,200,1000) 0.243 [0.221, 0.264]

(500,250,100) 0.0018 [0.0008, 0.0032]

(500,250,250) 0.038 [0.034, 0.042]

(500,250,500) 0.102 [0.095, 0.109]

(500,250,1000) 0.093 [0.080, 0.106]

(500,500,100) 0.0032 [0.0015, 0.0059]

(500,500,250) 0.110 [0.103, 0.116]

(500,500,500) 0.426 [0.413, 0.439]

(500,500,1000) 0.469 [0.450, 0.486]

(1000,50,250) 0.0069 [0.0020, 0.013]

(1000,50,500) 0.0085 [0.0022, 0.015]

(1000,50,1000) 0.029 [0.0031, 0.053]

(1000,100,250) 0.0049 [0.0019, 0.0090]

(1000,100,500) 0.0060 [0.0021, 0.011]

(1000,100,1000) 0.035 [0.0080, 0.064]

(1000,200,250) 0.032 [0.019, 0.045]

(1000,200,500) 0.082 [0.061, 0.105]

(1000,200,1000) 0.088 [0.046, 0.128]

(1000,250,250) 0.0067 [0.0027, 0.012]

(1000,250,500) 0.027 [0.015, 0.039]

(1000,250,1000) 0.053 [0.025, 0.083]

(1000,500,250) 0.033 [0.022, 0.044]

(1000,500,500) 0.140 [0.119, 0.161]

(1000,500,1000) 0.362 [0.309, 0.405]

(1000,1000,250) 0.082 [0.058, 0.107]

(1000,1000,500) 0.238 [0.199, 0.267]

(1000,1000,1000) 0.755 [0.652, 0.829]
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Table E.5 MLE Estimation Results for RUM,
Three Coverages

Mixed Logit

Average β1i 4.89 [4.60, 5.16]

β2 54.2 [51.6, 56.6]

Mean of ν 0.0017 [0.0016, 0.0017]

SD of ν 0.0007 [0.0007, 0.0007]

Intercept −2.37 [-2.39, -2.34]

Age −0.077 [-0.088, -0.066]

Age2 −0.015 [-0.024, -0.0059]

Female Driver 0.0008 [-0.0098, 0.012]

Single Driver −0.014 [-0.025, -0.0030]

Married Driver −0.018 [-0.033, -0.0029]

Credit Score 0.034 [0.023, 0.045]

2+ Drivers −0.048 [-0.075, -0.020]

Sigma 0.224 [0.209, 0.238]

Table E.6 Average Monetary Loss by Group

Average Monetary Loss

All −50.2 [-52.4, -47.3]

Female Driver −54.3 [-56.8, -51.0]

Single Driver −45.1 [-47.1, -42.3]

Young −45.5 [-47.2, -43.2]

Old −65.4 [-69.3, -59.4]

Low Credit Driver −47.6 [-49.3, -44.9]

High Credit Driver −54.3 [-57.3, -50.3]
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