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A Data Details and Omitted Empirical Analyses

A.1 Details on the Capitalization Approach

A.1.1 Details on the IRS SOI

The IRS Statistics of Income (SOI) reports tax return variables aggregated to the zip code

for 2004-2015 (and selected years before) and to the county for 1989-2015. Beginning in

2010 for the county files and in all available years for zip code files, the data aggregate

all returns filed by the end of December of the filing year. Prior to 2010, the county files

aggregate returns filed by the end of September of the filing year, corresponding to about

95% to 98% of all returns filed in that year. In particular, the county files before 2010

exclude some taxpayers who file form 4868, which allows a six month extension of the filing

deadline to October 15 of the filing year.1 To obtain a consistent panel, we first convert the

zip code files to a county basis using the HUD USPS crosswalk file. We then implement

the following algorithm: (i) for 2010 onward, use the county files; (ii) for 2004-2009, use

the zip code files aggregated to the county level and adjusted by the ratio of 2010 dividends

in the county file to 2010 dividends in the zip code aggregated file; (iii) for 1989-2003, use

the county file adjusted by the ratio of 2004 dividends as just calculated to 2004 dividends

1See https://web.archive.org/web/20171019013107/https://www.irs.gov/

statistics/soi-tax-stats-county-income-data-users-guide-and-record-layouts

and https://web.archive.org/web/20190111012726/https://www.irs.gov/statistics/

soi-tax-stats-individual-income-tax-statistics-zip-code-data-soi for data and doc-
umentation pertaining to the county and zip code files, respectively. For additional information
on the timing of tax filings, see https://web.archive.org/web/20190211151353/https:

//www.irs.gov/newsroom/2019-and-prior-year-filing-season-statistics .
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in the county files. We implement the same adjustment for labor income. We exclude

from the baseline sample 74 counties in which the ratio of dividend income from the zip

code files to dividend income in the county files exceeds 2 between 2004 and 2009, as the

importance of late filers in these counties makes the extrapolation procedure less reliable

for the period before 2004.2

Finally, since our benchmark analysis is at the quarterly frequency and the SOI income

data is yearly data, we linearly interpolate the SOI data to obtain a quarterly series.

Because the cross-sectional income distribution is persistent, measurement error arising

from this procedure should be small.

A.1.2 Dividend Yield Adjustment

This section describes the county-specific dividend yield adjustment used in the capital-

ization of taxable county dividends. We start with the Barber and Odean (2000) data set,

which contains a random sample of accounts at a discount brokerage, observed over the pe-

riod 1991-96. The data contain monthly security-level information on financial assets held

in the selected accounts. Graham and Kumar (2006) compare these data with the 1992

and 1995 waves of the SCF and show that the stock holdings of investors in the brokerage

data are fairly representative of the overall population of retail investors.

We keep taxable individual and jointly owned accounts and remove margin accounts.

We merge the monthly account positions data with the monthly CRSP stock price data

and CRSP mutual funds data obtained from WRDS. Since our merge is based on CUSIP

codes and mutual fund CUSIP codes are sometimes missing, we use a Fund Name-CUSIP

crosswalk developed by Terry Odean and Lu Zheng. Additionally, we use an algorithm

developed in Di Maggio, Kermani and Majlesi (forthcoming) based on minimizing the

smallest aggregate price distance between mutual fund prices in household portfolios and

in the CRSP fund-month data.3 We drop household-month observations for which the

2Anecdotally, the filing extension option is primarily used by high-income taxpayers who may
need to wait for additional information past the April 15 deadline (see e.g. Dale, Arden, “Late Tax
Returns Common for the Wealthy,” Wall Street Journal, March 29, 2013). Consistent with this,
we find much less discrepancy in labor income than dividend income reported in the zip code and
county files before 2010. Our results change little if we do not exclude the 74 counties from the
analysis. For example, the coefficient for total payroll at the 7 quarter horizon changes from 2.18 to
2.27 (s.e.=0.67), and the coefficient for nontradable payroll changes from 3.23 to 2.67 (s.e.=0.83).

3We are grateful to Marco Di Maggio, Amir Kermani, and Kaveh Majlesi for sharing their codes.
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Figure A.1: Dividend Yield by Age and Wealth
Note: The figures plot dividend yields by age and wealth quantile based on the Barber and Odean

(2000) data from a discount brokerage firm merged with data on CRSP stocks and mutual funds.
Wealth denotes the total position equity among all taxable accounts that a household has in the
discount brokerage firm.

value of total identified CRSP stocks and mutual funds is less than 95% of the value of

the household’s equity and mutual fund assets and also keep only identified CRSP stocks

and mutual funds.4 Finally, to be consistent with what we observe in the IRS-SOI data,

we drop household-month observations with a zero dividend yield. Such households tend

to be younger, hold few securities (around two on average), and hold only around 10% of

total equity in the brokerage data.

We compute dividend yields by household and month using these data. Figure A.1

shows the average dividend yield by age of the household head (left panel) and by stock

wealth percentile separately for different age bins (right panel), where household stock

wealth is the total position equity in all accounts. As the figure shows, dividend yields

increase with age. Moreover, within age bins, dividend yields have a weak relationship

with wealth. These patterns motivate our focus on age.

Table A.1 reports average dividend yields by age bin (weighted by wealth), separately

for each Census Region. A few features merit mention. First, dividend yield increases with

age, consistent with the pattern shown in Figure A.1. Second, the age bin coefficients are

precisely estimated and the R2s are high. In column (5), which pools all geographic areas

together, the five age bins explain 66% of the variation in dividend yield across households.

4We are able to match more than 95% of equity and mutual fund position-months. The main
type of equity assets that we cannot match are foreign stocks.
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Third, adding indicator variables for 10 wealth bins to the regression in column (6) has

essentially no impact on the explanatory power of the regression or on the relative age bin

coefficients.5

We combine the coefficients shown in columns (1)-(4) of Table A.1 with the county-

year specific age structure from the Census Bureau and average wealth by age bin from the

Survey of Consumer Finances (interpolated between SCF waves) to construct the wealth-

weighted average of the age bin dividend yields in the county’s Census region.6 The

resulting county-year yields account for time series variation in a county’s age structure

and in relative wealth of different age groups, but not for changes in market dividend yields

over time. Therefore, we scale these dividend yields so that the average dividend yield in

each year is equal to the dividend yield on the value-weighted CRSP portfolio.7

We end this section with a discussion of (implied) dividend yields in the SCF and how

those compare to the dividend yield distribution in the Barber and Odean (2000) data. The

SCF contains information on taxable dividend income reported on tax returns together with

self-reported information on directly held stocks (and stock mutual funds). Therefore, it is

tempting to use the SCF data directly to compute dividend yields by demographic groups

and use those for the dividend yield adjustment or, even more directly, use the relationship

between taxable dividend income and total stock wealth in the SCF to impute total stock

wealth directly from taxable dividends rather than doing the two-step procedure that we

perform here. Unfortunately, there is one key difficulty in implementing this procedure

with SCF data; in the SCF, stock wealth is reported for the survey year (more specifically,

at the time of the interview), while taxable dividend income is based on the previous year’s

tax return. This creates biases in any dividend yields computed as the ratio of (previous

year) dividend income to (current year) stock wealth. The bias is larger (in magnitude) for

participants that (dis-)save more (either actively or passively through capital gains that the

household does not respond to). Moreover, as we show in Figure A.2, a very large share of

respondent-wave observations (more than 45%) report zero dividend income and positive

5The age bin coefficients shift uniformly up by 0.37 to 0.38, reflecting the incorporation of average
wealth.

6County population-by-age is available from the Census Bureau Interncensal population esti-
mates (1990-2010) and Postcensal population estimates (2010-.). See https://www.census.gov/

programs-surveys/popest.html.
7We also experimented with allowing the age-specific yields to vary with the CRSP yield, with

almost no impact on our results.
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Table A.1: Dividend Yields By Age

Region 1 Region 2 Region 3 Region 4 Pooled Pooled

(1) (2) (3) (4) (5) (6)
Right hand side variables:

Age <35 2.81∗∗ 2.21∗∗ 2.28∗∗ 2.51∗∗ 2.45∗∗ 2.83∗∗

(0.16) (0.19) (0.25) (0.18) (0.11) (0.15)
Age 35-44 2.48∗∗ 2.25∗∗ 2.43∗∗ 2.50∗∗ 2.43∗∗ 2.81∗∗

(0.11) (0.16) (0.18) (0.14) (0.08) (0.12)
Age 45-54 2.65∗∗ 2.27∗∗ 2.51∗∗ 2.50∗∗ 2.49∗∗ 2.86∗∗

(0.16) (0.09) (0.30) (0.08) (0.08) (0.13)
Age 55-64 3.00∗∗ 2.39∗∗ 2.40∗∗ 2.82∗∗ 2.69∗∗ 3.07∗∗

(0.11) (0.14) (0.20) (0.10) (0.08) (0.13)
Age 65+ 2.91∗∗ 2.73∗∗ 2.96∗∗ 3.27∗∗ 3.03∗∗ 3.40∗∗

(0.12) (0.12) (0.17) (0.11) (0.07) (0.12)
Wealth bins No No No No No Yes
R2 0.73 0.69 0.62 0.63 0.66 0.66
Individuals 1,965 1,586 2,192 3,556 9,299 9,299
Observations 73,486 60,987 83,112 133,149 350,734 350,734

Note: The table reports the coefficients from a regression of the account dividend yield on the
variables indicated, at the account-month level. Standard errors in parentheses clustered by account.
For readability, all coefficients multiplied by 100.

stock wealth.8 A large share of those are respondents that establish direct holdings of

stocks (or mutual funds) some time between the end of the tax return year and the survey

date. An analogous extensive margin adjustment may be taking place for respondents that

report zero stock wealth and positive dividend income for the previous year. In that case

the implied dividend yield is infinite.

Even if one disregards these two groups and only considers respondents for which the

implied dividend yield is between zero and one, there is still substantial dispersion (and

a possible bias) in the implied dividend yields. Figure A.3 shows the median implied

8This is more than 2 times the account holders with zero dividend yield in the Barber and Odean
(2000) data.
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Figure A.2: SCF Implied Dividend Yield Categories
Note: The figure shows the distribution of implied dividend yields in the SCF based on a comparison
of the reported dividend income from tax returns against reported directly held stock market wealth.

dividend yields and inter-quartile ranges for 5 age groups for the 1992 and 1995 waves of

the SCF and compares them against the median dividend yields and inter-quartile ranges

of (positive) dividend yields in the Barber and Odean (2000) data. Clearly the dividend

yields in Barber and Odean (2000) are much more compressed around their median values

compared to the SCF dividend yields. Moreover, the SCF dividend yields (conditional on

being between zero and one) tend to be much higher than the Barber and Odean (2000)

dividend yields.9 Given these issues, we conclude that the SCF implied dividend yields

cannot reliably be used for stock wealth imputation.

A.1.3 Non-taxable Stock Wealth Adjustment

The SOI data exclude dividends held in non-taxable accounts (e.g. defined contribution

retirement accounts). In this section, we describe how we adjust for non-taxable stock

wealth to arrive at the stock market wealth variable we use in our empirical analysis.

We begin by plotting in Figure A.4 the distribution of household holdings of corporate

equity between taxable (directly held and non-IRA mutual fund) and non-taxable accounts

using data from the Financial Accounts of the United States. Roughly 2/3 of corporate

9This is also reflected in the mean dividend yields (not shown) in the SCF, which are substantially
higher than the medians, while in Barber and Odean (2000) the two are comparable.
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Figure A.3: Dividend yield distributions by age group in the SCF and Barber and
Odean (2000) data for 1992 (left) and 1995 (right)
Note: Dots denote median values and bars show the inter-quartile range. The figures plot the

distribution of implied dividend yields in the SCF (for dividend yields that are in (0, 1)) and
dividend yields in the Barber and Odean (2000) data from a discount brokerage firm (for positive
dividend yields) by age group for 1992 and 1995.

equity owned by households is held in taxable accounts.10

We next use data from the SCF to examine the relationship between total stock mar-

ket wealth and stock market wealth held in taxable accounts in the cross-section of U.S.

households. We pool all waves from 1992 to 2016, consistent with the sample period for

our benchmark analysis. We use the definition for stock-market wealth used in the Fed

Bulletins.11. Stock-market wealth appears as ”financial assets invested in stock”. Following

the Fed Bulletin definition of stock-market wealth, we define taxable stock wealth as the

sum of direct holdings of stocks, stock mutual funds and other mutual funds, and 1/2 of the

value of combination mutual funds. All variables are expressed in constant 2016 dollars.

Table A.2 reports summary statistics for total stock wealth and taxable stock wealth.

Table A.3 reports the coefficients from regressions of total stock wealth on taxable stock

wealth. There is a positive constant term, indicating that nontaxable stock market wealth

is more evenly distributed than taxable wealth. The coefficient on taxable stock wealth

10Non-taxable retirement accounts here include only defined contribution accounts and exclude
equity holdings of defined benefit plans. This definition accords with our empirical analysis since
fluctuations in the market value of assets of defined benefit plans do not directly affect the fu-
ture pension income of plan participants. The data plotted in Figure A.4 also include non-profit
organizations, which hold about 10% of directly held equity and mutual fund shares.

11The precise definition is available here: https://www.federalreserve.gov/econres/files/

bulletin.macro.txt
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Figure A.4: Household Stock Market Wealth in the FAUS
Note: The figure reports household equity wealth as reported in the Financial Accounts of the

United States. We define stock market wealth as total equity wealth (table B.101.e line 14, code
LM153064475Q) less the market value of S-corporations (table L.223 line 31, code LM883164133Q)
and similarly define directly held stock market wealth as directly held equity wealth (table B.101.e
line 15, code LM153064105Q) less the market value of S-corporations. Taxable mutual funds
are total mutual fund holdings of equity shares (table B.101.e line 21, code LM653064155Q) less
equity held in IRAs, where we compute the latter by assuming the same equity share of IRAs as
of all mutual funds, IRA mutual fund equity = IRA mutual funds at market value (table L.227
line 16, code LM653131573Q) × total equities held in mutual funds /total value of mutual funds
(table B.101.e line 21, code LM653064155Q + table B.101.e line 12, code LM654022055Q). Non-
taxable accounts include equities held through life insurance companies (table B.101.e line 17,
code LM543064153Q), in defined contribution accounts of private pension funds (table B.101.e
line 18, code LM573064175Q), federal government retirement funds (table B.101.e line 19, code
LM343064125Q), and state and local government retirement funds (table B.101.e line 20, code
LM223064213Q), and through mutual funds in IRAs.

is between 1.08 and 1.09 and the R2 is around 0.91. Therefore, total stock wealth and

taxable stock wealth vary almost one-for-one.

The high R2 from these regressions suggests that we can use the relationship between

total stock wealth, taxable stock wealth, and demographics in the SCF to account for

non-taxable stock wealth at the county level. Specifically, we again use all waves of the

SCF from 1992 to 2016. For each survey wave, we use a specification as in Column (2)

of Table A.3. We then interpolate these coefficient estimates for years in which no survey

took place. Finally, we use the estimate of (real) taxable stock wealth from capitalizing

taxable dividend income and county-level demographic information on population shares in

8



Table A.2: Summary Statistics (values are in 2016 dollars).

Variable Mean Std. Dev. Min Max
total stock wealth 119,402 1,144,358 0 9.87× 108

taxable stock wealth 65,428 1,001,526 0 9.84× 108

different age bins and the college share (interpolated at yearly frequency from the decadal

census and also extrapolated past 2010) to arrive at real total stock wealth for each county

and year.

A.1.4 Non-public Companies

One remaining source of measurement error in our capitalization approach arises because

dividend income reported on form 1040 includes dividends paid by private C-corporations.

Such income accrues to owners of closely-held corporations and is highly concentrated at

the top of the wealth distribution. Figure A.5 uses data from the Financial Accounts of the

United States to plot the market value of equity issued by privately held C-corporations

as a share of total equity issued by domestic C-corporations.12 This share never exceeds

7% of total equity, indicating that as a practical matter dividend income from non-public

C-corporations is small. Moreover, as described in Appendix A.1 our baseline sample

excludes a small number of counties with a substantial share of dividend income reported

by late filers who disproportionately own closely-held corporations. Therefore, non-public

C-corporation wealth does not appear to meaningfully affect our results.

A.1.5 Return Heterogeneity

Similar to the dividend yield adjustment we also compute a county-specific stock market

return. The systematic differences in dividend yields across households with different age

12Since 2015, table L.223 of the Financial Accounts of the United States has reported equity issued
by domestic corporations separately by whether the corporation’s equity is publicly traded, with
the series extended back to 1996 using historical data. While obtaining market values of privately
held corporations necessarily requires some imputations (Ogden, Thomas and Warusawitharana,
2016), we believe the results to be the best estimate of this split available and unlikely to be too
far off.
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Table A.3: Total stock wealth and taxable stock wealth

(1) (2)

Taxable stock wealth 1.09∗∗ 1.08∗∗

(0.01) (0.01)
Age < 25 -12933.06∗∗

(1225.68)
Age 25-34 -22996.77∗∗

(1097.07)
Age 35-44 -2788.01∗

(1236.89)
Age 45-54 29412.54∗∗

(1790.46)
Age 55-64 64398.51∗∗

(2894.11)
Age 65+ 34482.50∗∗

(2164.56)
College degree 102265.11∗∗

(2869.13)
Constant 48221.15∗∗

(943.52)
R2 0.91 0.91

Observations 44,633 44,497

Note: The table reports coefficient estimates from regressing (real) total stock wealth on (real)
taxable stock wealth, and household head demographics in the SCF using the pooled 1992-2016
waves. Robust standard errors in parenthesis. * denotes significance at the 5% level, and ** denotes
significance at the 1% level.

that are the basis for our dividend yield adjustment in Appendix A.1.2 imply possible

systematic differences in portfolio return characteristics across these same age groups. For

example, it is well-known that stocks with higher dividend yields tend to be value stocks

with a different return distribution than the stock market. Specifically, those stocks tend

to have market betas below one. In that case the portfolio betas of households living in

10
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Figure A.5: Equity of Privately Held C-Corporations
Notes: The figure reports the market value of equity of privately held C-corporations as a share

of total (privately held plus publicly-traded) equity of domestic C-corporations as reported in the
Financial Accounts of the United States table L.223 lines 29 and 32.

counties with predominantly older households will be lower than those of households liv-

ing in counties with predominantly younger households. In this section we first present

evidence using the Barber and Odean (2000) data set that there is indeed a systematic (al-

though quite small) relation between portfolio betas and age. Second, as with the dividend

yield adjustment from Appendix A.1.2 we use this relationship and county demographic

information to construct a county-specific beta and compute a county-specific stock market

return.

We use the household portfolio data described in Appendix A.1.2 and construct value-

weighted portfolios by age group (for the same 5 age groups as in Appendix A.1.2).13

We then construct monthly returns for these portfolios by computing the weighted one-

month return on the underlying CRSP assets.14 Using these monthly returns we estimate

13One difference relative to the sample we use in Appendix A.1.2 is that we also include household-
month observations that have zero dividends. The reason for keeping these households in this case
is that we want to construct a county-level stock market return that will be applied to county-level
stock market wealth, which also includes the stock wealth of households that hold only non-dividend
paying stocks in their portfolios.

14Household positions are recorded at the beginning of a month, so similar to Barber and Odean
(2000) we implicitly assume that each household holds the assets in their portfolio for the duration
of the month.
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Figure A.6: Portfolio Beta by Age and Wealth
Note: The figures plot the portfolio betas by age and wealth quantile based on the Barber and

Odean (2000) data from a discount brokerage firm merged with data on CRSP stocks and mutual
funds. Wealth denotes the total position equity among all taxable accounts that a household has
in the discount brokerage firm.

portfolio betas using the return on the CRSP value weighted index as the return on the

market portfolio and the 3-month T-Bill yield as the risk free rate. Figure A.6 (left panel)

plots the estimated portfolio betas together with a 95% confidence intervals. As the Figure

shows there is a negative (albeit small in magnitude) relationship between beta and age

with younger households having portfolios with higher beta (and beta above one) compared

to older households.

We next use this relationship to construct a county-specific beta and from it a county-

specific stock market return. Specifically, as with the dividend-yield adjustment, we com-

bine the estimated betas shown in the left panel of Figure A.6 with the county-year specific

age structure from the Census Bureau and average wealth by age bin from the Survey of

Consumer Finances (interpolated between SCF waves) to construct the wealth-weighted

average of the age bin portfolio betas for each county and year. Finally, we scale these

betas so that the average beta in each year is equal to one (that is, we assume that on

average counties hold the market portfolio). We then multiply CRSP total stock return by

these county-year specific betas to arrive at a county-specific stock-market return.
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Table A.4: Summary Statistics

Variable Source Mean SD
Within
county
SD

Within
county
and
state-
quarter
SD

Obs.

Quarterly total return on market CRSP 0.019 0.067 94
Capitalized dividends/labor income IRS SOI 2.316 1.177 0.628 0.309 269 057
Log empl., 8Q change QCEW 0.025 0.053 0.047 0.032 272 942
Log payroll, 8Q change QCEW 0.084 0.077 0.072 0.048 272 942
Log nontradable empl., 8Q change QCEW 0.031 0.069 0.064 0.054 269 774
Log nontradable payroll, 8Q change QCEW 0.081 0.089 0.084 0.064 269 774
Log tradable empl., 8Q change QCEW −0.018 0.130 0.123 0.106 258 856
Log tradable payroll, 8Q change QCEW 0.045 0.158 0.151 0.128 258 856

Note: The table reports summary statistics. Within county standard deviation refers to the
standard deviation after removing county-specific means. Within county and state-quarter standard
deviation refers to the standard deviation after partialling out county and state-quarter fixed effects.
All statistics weighted by 2010 population.

A.2 Summary Statistics

Table A.4 reports the mean and standard deviation of the 8 quarter change in the labor

market variables. It also reports the standard deviation after removing county-specific

means and state-quarter means, with the latter being the variation used in the main anal-

ysis.

A.3 County Demographic Characteristics and Stock Wealth

To more clearly illustrate that our empirical strategy does not depend on stock wealth to

labor income being randomly assigned across counties, we correlate the (time-averaged)

county level value of stock wealth to labor income with a number of county level demo-

graphics. Specifically, we use time-averaged data from the 1990, 2000 and 2010 US Census

to compute the county level shares of individuals 25 years and older with bachelor degree

or higher, median age of the resident population, share of retired workers receiving social

security benefits, share of females, and share of the resident population identifying them-

13



Table A.5: County demographics regressions

(1) (2) (3) (4) (5) (6)

Bachelor degree or higher (%) 0.06∗∗ 0.09∗∗

(0.01) (0.01)
Median age 0.10∗ −0.04∗

(0.04) (0.02)
Retired (%) 0.12∗∗ 0.31∗∗

(0.04) (0.03)
Female (%) 0.19∗∗ −0.06∗

(0.04) (0.03)
White (%) −0.00 −0.02∗∗

(0.00) (0.00)
Population weighted Yes Yes Yes Yes Yes Yes
State FE Yes Yes Yes Yes Yes Yes
R2 0.31 0.21 0.22 0.18 0.15 0.54
Observations 3,141 3,141 3,141 3,141 3,141 3,141

Note: The table reports coefficients and standard errors from regressing time-averaged total stock
wealth by labor income on county demographics. Standard errors in parentheses are clustered by
state. * denotes significance at the 5% level, and ** denotes significance at the 1% level.

selves as white.15 Table A.5 reports the coefficient estimates from population weighted

regressions of stock wealth to labor income on each demographic characteristics as well as

a regression including all demographic characteristics (last column). All regressions include

state fixed effects. Unsurprisingly, the share of retired workers and share with college de-

gree are robustly positively related with the average stock wealth to labor income ratio in

a county. The share of females and white is negatively related with stock wealth to labor

income although the effects are smaller. Median age does not co-move with stock wealth

to income after controlling for the other demographic characteristics.

15For the college share we use the American Community Survey rather than the 2010 US Census.
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A.4 Coefficients on Control Variables

This appendix reproduces the baseline results in Table 1 including the coefficients on the

main control variables.

A.5 Monte Carlo Simulation

In this section we perform Monte Carlo simulations to assess the possible impact of

household-level MPC heterogeneity on our empirical estimates. We start by construct-

ing a simulated data set containing the full distribution of household wealth by county. To

do so, we first stratify the 2016 SCF into eight groups based on total 2015 income (less

than $75k, $75k-$100k, $100k-$200k, and $200k+) and whether the household had any

2015 dividend income. For each group, we compute the share of households with positive

stock wealth in 2016 and fit a log-normal distribution to the stock wealth of the households

with positive stock wealth. We then obtain from the 2015 IRS SOI data the number of tax

returns by county that have adjusted gross income in the same four income groups as in

the SCF and within each income group the number of returns with dividend income. For

each return in a county and income group-by-dividend indicator category, we first simulate

whether the household holds stocks or not based on the estimated share in that category

in the SCF. Next, for each simulated household with positive stock wealth, we draw their

level of stock wealth from a log-normal distribution with mean and variance from the SCF

distribution of stock wealth for the respective category. This process yields a simulated

data set with 148,978,310 observations, of which 76,680,922 have positive stock wealth.

Table A.7 compares several moments in the simulated data and the actual data (2016

SCF for the first 5 moments and county-level capitalized dividend income from the 2015

IRS SOI for the remaining 2 moments). The simulated data capture very well key features

of the actual data.

We perform two experiments using the simulated data. In both experiments, we as-

sume a structure of household-level MPC heterogeneity out of stock wealth.16 We then

simulate the consumption change to a 1% increase in stock wealth, aggregate the wealth

and consumption changes across households in a county and divide by the total number of

16We are agnostic in these experiments about the MPC of non-stock holders. In particular, as in
our two agent model, there could be large differences in the MPCs of non-stock holders and stock
holders even if there is little or no heterogeneity in MPCs among the group of stock-holders.

15



Table A.6: Baseline Results

All Non-traded Traded

Emp. W&S Emp. W&S Emp. W&S

(1) (2) (3) (4) (5) (6)
Right hand side variables:

Sa,t−1Ra,t−1,t 0.77∗ 2.18∗∗ 2.02∗ 3.24∗∗ −0.11 0.71
(0.36) (0.63) (0.80) (1.01) (0.64) (0.74)

Bartik predicted employment 0.86∗∗ 1.46∗∗ 0.59∗∗ 0.84∗∗ 1.66∗∗ 2.11∗∗

(0.08) (0.14) (0.10) (0.10) (0.19) (0.25)
Labor income interaction −1.11+ −2.65∗∗ 0.96 −0.92 1.70 1.92

(0.62) (0.87) (0.99) (1.19) (1.92) (2.12)
Business income interaction 1.08+ 2.53∗∗ −1.26 0.58 −1.63 −1.90

(0.61) (0.83) (0.99) (1.17) (1.89) (2.05)
Bond return interaction −0.07 −0.14 3.58+ 2.80 0.20 −0.51

(0.82) (1.39) (1.87) (2.32) (1.20) (1.81)
House price interaction −1.55 5.45 −8.33∗ 2.29 −9.91 −4.88

(3.28) (4.40) (4.14) (5.25) (6.32) (6.87)
Horizon h Q7 Q7 Q7 Q7 Q7 Q7
Pop. weighted Yes Yes Yes Yes Yes Yes
County FE Yes Yes Yes Yes Yes Yes
State × time FE Yes Yes Yes Yes Yes Yes
Shock lags Yes Yes Yes Yes Yes Yes
R2 0.66 0.64 0.39 0.48 0.35 0.36
Counties 2,901 2,901 2,896 2,896 2,877 2,877
Periods 92 92 92 92 92 92
Observations 265,837 265,837 263,210 263,210 252,928 252,928

Note: The table reports coefficients and standard errors from estimating Eq. (1) for h = 7.
Columns (1) and (2) include all covered employment and payroll; columns (3) and (4) include em-
ployment and payroll in NAICS 44-45 (retail trade) and 72 (accommodation and food services);
columns (5) and (6) include employment and payroll in NAICS 11 (agriculture, forestry, fishing
and hunting), NAICS 21 (mining, quarrying, and oil and gas extraction), and NAICS 31-33 (man-
ufacturing). The shock occurs in period 0 and is an increase in stock market wealth equivalent to
1% of annual labor income. For readability, the table reports coefficients in basis points. Standard
errors in parentheses and double-clustered by county and quarter. * denotes significance at the 5%
level, and ** denotes significance at the 1% level.

returns to obtain the county-level average consumption and wealth change, and regress the

change in county-average consumption on the change in county-average wealth. This yields

16



Table A.7: Comparison of simulated and actual data.

Moment Simulated Observed
Own stocks (percent) 51.5 53.6
Mean stock wealth 193,806 178,785
St. dev. stock wealth 1,682,979 1,680,982
Mean stock wealth (stocks> 0) 376,533 333,667
St. dev. stock wealth (stocks> 0) 2,331,120 2,285,270
Mean county stock wealth 140,077 121,557
St. dev. county stock wealth 63,871 84,879

Note: Simulated moments are based on simulated household-level data that uses information on
stock ownership and stock wealth by 2015 dividend income (no dividend income vs. some dividend
income) and total gross income group (4 groups: less than $75k, $75k-$100k, $100k-$200k, and
$200k+) from the 2016 SCF and county-level information on number of returns in each (adjusted)
gross income group and number of returns with dividend income by income group from the 2015
IRS SOI data. Observed moments are based on the 2016 SCF (for first 5 moments) as well as
the 2015 county-level stock wealth (for the last 2 moments) based on capitalized dividend income,
where the capitalization approach is described in Appendix A.1.

a cross-county coefficient that mirrors our actual empirical design.17 We plot the regres-

sion coefficient and the true wealth-weighted average MPC as a function of the standard

deviation of the MPC of stock holders.

The first experiment assumes the heterogeneity in MPCs is random across households.

Specifically, MPCs are distributed uniformly over [0.03− k, 0.03 + k], where k is allowed to

vary between 0 (no heterogeneity) and 0.03. The left panel of Figure A.7 plots the resulting

regression coefficients and wealth-weighted MPCs as k varies. With random heterogeneity,

the regression recovers an unbiased and precise estimate of the wealth-weighted average

MPC out of stock wealth.

The second experiment assumes that the MPC declines in the amount of stock wealth

according to the relationship MPC = bW−a, where W denotes stock wealth and a pa-

rameterizes both the heterogeneity in MPCs and the strength of the relation between

stock wealth and MPC. A value of a = 0 implies no heterogeneity, while positive values

of a generate a negative relationship. For each value of a, we choose b such that the

county-level regression coefficient roughly equals our empirical estimate of 0.03. The right

17Since we use change in county-level spending rather than growth in spending, we do not need
to normalize the regressor by the level of spending as we do in Section 3.5.
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Figure A.7: Wealth-weighted MPC Versus County-level Regression Estimate
Note: The wealth-weighted MPC is computed based on simulated household-level data that uses

information on stock ownership and stock wealth by 2015 dividend income (no dividend income
vs. some dividend income) and total gross income group (4 groups: less than $75k, $75k-$100k,
$100k-$200k, and $200k+) from the 2016 SCF and county-level information on number of returns in
each (adjusted) gross income group and number of returns with dividend income by income group
from the 2015 IRS SOI data. The estimated MPC is computed by aggregating the household-level
changes in spending and wealth in response to a 1% stock return to the county level, dividing by
the number of tax returns, and regressing the change in county-level spending per tax return on
the change in county-level stock wealth per tax return and a constant term. In the left panel,
household-level MPCs are drawn from a uniform distribution over [0.03− k, 0.03 + k], where k
varies between 0 and 0.03. In the right panel, household-level MPCs are set to MPC = bW−a,
where W denotes stock wealth and a parameterizes the heterogeneity in MPCs and the strength of
the relation between stock wealth and MPC, and is allowed to vary between 0 and 0.2, while b is
chosen such that the county-level MPC estimate equals 0.03.

panel of Figure A.7 plots the regression coefficient and the wealth-weighted average MPC

against the MPC of stock holders, for different levels of a. With no dispersion, the cross-

county regression again exactly recovers the wealth-weighted MPC. More interesting, the

wealth-weighted MPC remains very close to the county-level coefficient even for substan-

tial dispersion in MPCs among stock-wealth holders. For example, an MPC standard

deviation of 0.02, shown in the middle of the plot, corresponds to an MPC of stock owners

at the 50th percentile that is double the MPC of stock owners at the 99th percentile, but

the county-level estimate remains within 10% of the wealth-weighted average MPC. The

assumed negative relationship between MPC and stock wealth implies that the regression

coefficient always lies below the wealth-weighted MPC, making our estimates if anything

a lower bound.
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A.6 Evidence of Unit Income Elasticity of Nontradable Con-

sumption in the Consumer Expenditure Survey

This appendix describes our analysis of the income elasticity of nontradable consumption

using the interview module of the Consumer Expenditure Survey (CE). The CE interviews

sampled households for up to four consecutive quarters about all expenditures over the

prior three months on a detailed set of categories. We perform two sets of exercises.

The first reports Engel curve estimation for selected expenditure categories, including our

nontradable grouping of retail and restaurants. The second extends the Dynan and Maki

(2001) and Dynan (2010) analysis of the conditional consumption expenditure response

by stock holders to an increase in the stock market to consider different categories of

consumption. Both exercises suggest a close to proportionate increase in consumption

expenditure on nontradable and other goods.

Engel Curve Estimation. Table A.8 reports the elasticity of selected expenditure

categories to total expenditure. We report two sets of specifications. The first uses the

Almost Ideal Demand System of Deaton and Muellbauer (1980):

xi,j,t
Xi,t

= αj,t + βj lnXi,t + ΓjZi + ui,j,t, (A.1)

where xi,j,t is the expenditure by household i on good j in year t, Xi,t is total expenditure by

household i, αj,t is a good-specific year fixed effect, and Zi contains as included covariates

categorical variables for age range, number of earners, and household size. To account for

measurement error in Xi,t, we follow Aguiar and Bils (2015) and estimate Eq. (A.1) using

instrumental variables with log after-tax income and income bins as excluded instruments.

A value of βj of 0 would indicate a unit income elasticity; more generally, the elasticity of

good j at the sample mean expenditure share is equal to β×expenditure share +1. The

second Engel curve estimation procedure follows Aguiar and Bils (2015) and others and

estimates:

xi,j,t − x̄j,t
x̄j,t

= αj,t + βj lnXi,t + ΓjZi + ui,j,t, (A.2)

where x̄j,t is the cross-sectional average expenditure on good j in year t and estimation

again proceeds via IV with the same set of excluded instruments. In this specification, βj
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Table A.8: Engel Curves in the Consumer Expenditure Survey

Category Share AIDS Deviation

Coef. SE Elasticity Elasticity SE

Jewelry 0.21 0.003 0.000 2.269 1.913 0.079
Restaurants 3.80 0.015 0.000 1.401 1.198 0.013
Food at home 14.31 −0.081 0.001 0.437 0.418 0.005
Retail and restaurants 33.39 −0.007 0.002 0.978 0.895 0.008

Note: The table estimates Engel curves for selected categories using the Consumer Expenditure
Survey. In the AIDS specification, the dependent variable is the expenditure share on the category
indicated. In the deviation specification, the dependent variable is the percent difference in ex-
penditure on the category indicated from the sample mean. In both specifications, the endogenous
variable is log total household expenditure, the excluded instruments are log of after-tax income and
categories of income and the included instruments are categorical variables for age range, number
of earners, and household size as well as a year fixed effect.

directly gives the elasticity.

We report Engel curve estimates for jewelry, restaurant meals, food purchased for home

consumption, and the total category of retail and restaurants, which includes the first three

categories as well as all other retail purchases. We report results corresponding to our full

sample of 1990-2016; we obtain similar results in sub-samples that address the possibility

of estimate stability, for example due to changes in relative prices. Table A.8 shows that

homotheticity does not hold across all sub-categories within retail and restaurants. Jewelry

is a luxury good, with an elasticity around 2 across specifications. Meals at restaurants

also have an elasticity above 1. Food at home is a necessity, with an elasticity around 0.4.

However, the combined category of retail and restaurants has an elasticity of close to 1 —

0.98 using the AIDS specification and 0.9 using the Aguiar and Bils (2015) specification.

Response to Changes in the Stock Market. The CE does not ask directly about

stock holdings. However, in the last interview the survey records information on security

holdings. Dynan and Maki (2001) and Dynan (2010) use this information and the short

panel structure of the survey to separately relate consumption growth of security holders

and non-security holders to the change in the stock market. We follow the analysis in

Dynan and Maki (2001) as closely as possible and extend it by measuring the response of

20



retail and restaurant spending separately.18

The specification in Dynan and Maki (2001) is:

∆ lnCi,t =

3∑
j=0

βj∆ lnWt−j + Γ′Xi,t + εi,t, (A.3)

where ∆ lnCi,t is the log change in consumption expenditure by household i between the

second and fifth CE interviews,19 ∆ lnWt−j is the log change in the Wilshire 5000 between

the recall periods covered by the second and fifth interviews (j = 0) or over consecutive,

non-overlapping 9 month periods preceding the second interview (j = 1, 2, 3), and Xi,t

contains monthly categorical variables to absorb seasonal patterns in consumption, taste

shifters (age, age2, family size), socioeconomic variables (race, high school completion, col-

lege completion), labor earnings growth between the second and fifth interviews, and year

categorical variables. Thus, this specification attempts to address the causal identification

challenge by controlling directly for contemporaneous labor income growth and including

year categorical variables, the latter which isolate variation in recent stock performance

for households interviewed during different months of the same calendar year. Following

Mankiw and Zeldes (1991), the specification is estimated separately for households above

and below a cutoff value for total securities holdings.

Table A.9 reports the results. The left panel contains our replication of table 2 in

Dynan and Maki (2001) and Dynan (2010). We find very similar results to those papers.

Notably, expenditure on nondurable goods and services rises on impact for households

categorized as stock holders and continues to rise over the next 18 months following a

positive stock return. This sluggish response accords with the sluggish adjustment of

labor market variables in our main analysis. Summing over the contemporaneous and lag

coefficients, the total elasticity of expenditure to increases in stock market wealth is about

18The Dynan and Maki (2001) sample covers the period 1983-1998. Dynan (2010) finds negligible
consumption responses when extending the sample through 2008, possibly reflecting the deterio-
ration in the quality of the CE sample in the more recent years and the difficulty in recruiting
high income and high net worth individuals to participate. Since our purpose is to compare the
responses of different categories of consumption, we restrict to periods when the data can capture
an overall response.

19The first CE interview introduces the household to the survey but does not collect consump-
tion information. Therefore, the span between the second and fifth interviews is the longest span
available.
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Table A.9: Consumption Responses in the Consumer Expenditure Survey

Non-durable goods and services Retail and restaurants

SH Other SH Other
(1) (2) (3) (4)

Right hand side variables:

Stock return 0.369 −0.015 0.198 −0.038
(0.133) (0.048) (0.277) (0.100)

Lag 1 0.385 0.074 0.519 0.121
(0.151) (0.053) (0.312) (0.109)

Lag 2 0.252 0.050 0.447 0.065
(0.134) (0.047) (0.278) (0.097)

Lag 3 0.039 0.038 0.104 0.135
(0.103) (0.037) (0.220) (0.077)

Sum of coefficients 1.044 0.146 1.268 0.283
R2 0.02 0.01 0.02 0.01
Observations 4,086 28,329 4,026 28,376

Note: The estimating equation is: ∆ lnCi,t =
∑3
j=0 βj∆ lnWt−j+Γ′Xi,t+εi,t, where ∆ lnCi,t is the

log change in consumption expenditure by household i between the second and fifth CE interviews
in the consumption category indicated in the table header and ∆ lnWt−j is the log change in the
Wilshire 5000 between the recall periods covered by the second and fifth interviews (j = 0) or
over consecutive, non-overlapping 9 month periods preceding the second interview (j = 1, 2, 3). All
regressions include controls for calendar month and year of the final interview, age, age2, family size,
race, high school completion, college completion, and labor earnings growth between the second
and fifth interviews. The sample is 1983-1998. Columns marked SH include households with more
than $10,000 of securities.

1. In contrast, total expenditure by non-stock holders does not increase.

The right panel replaces the consumption measure with purchases of non-durable and

durable goods from retail stores and purchases at restaurants. These categories provide the

closest correspondence to all purchases made at stores in the retail or restaurant sectors.20

The cumulative consumption responses of purchases of goods from retail stores and at

20Because we include durable goods, the categories in the right panel are not a strict subset of the
categories in the left panel. We have experimented with excluding durable goods from the basket
and obtain similar results.
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restaurants are very similar to the responses of total non-durable goods and services, albeit

estimated with less precision.

Overall, these results provide support for our assumption that expenditure on retail and

restaurants moves proportionally with total expenditure, which we use to structurally in-

terpret our empirical estimates in the paper. This conclusion holds both across households

in the Engel curve analysis and within households in response to stock market changes.

Even if one questions the causal identification of the Dynan and Maki (2001) framework

for stock market changes, their specification still has the interpretation of the relative re-

sponses across categories to general demand shocks rather than to the stock market in

particular.

B Model Details

In this appendix, we present the full model. In Section B.1, we describe the environment

and define the equilibrium. For completeness, we repeat the key equations shown in the

main text. In Section B.2, we provide a general characterization: specifically, we fully de-

scribe the long-run equilibrium, and we derive the equations for the short-run equilibrium

that we solve subsequently. In Section B.3, we provide a closed-form solution for a bench-

mark case in which areas have the same stock wealth. In Section B.4, we log-linearize the

equilibrium around the common-wealth benchmark and provide closed-form solutions for

the log-linearized equilibrium with heterogeneous stock wealth. In Section B.5, we use our

results to characterize the cross-sectional effects of shocks to stock prices. In Section B.6,

we establish the robustness of the benchmark calibration of the model that we present in

the main text. In Section B.7, we analyze the aggregate effects of shocks to stock prices

(when monetary policy is passive) and compare the results with our earlier results on the

cross-sectional effects. Finally, in Section B.8, we extend the model to incorporate uncer-

tainty, and we show that our results are robust to obtaining the stock price fluctuations

from alternative sources such as changes in households’ risk aversion or perceived risk.

B.1 Environment and Definition of Equilibrium

Basic Setup and Interpretation. There are two factors of production: capital and

labor. There is a continuum of measure one of areas (counties) denoted by subscript a.
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Areas are identical except for their initial ownership of capital.

There is an infinite number of periods t ∈ {0, 1, 2...}. We view period 0 as the “the

short run” with the key features that labor is specific to the area and nominal wages are

(potentially) partially sticky. Therefore, local labor bill and the local labor in the short

run are influenced by local aggregate demand. In contrast, periods t ≥ 1 are “the long

run” in which both factors are mobile cross areas. With appropriate monetary policy (that

we describe subsequently), this mobility assumption implies outcomes in periods t ≥ 1

are determined solely by productivity. (For simplicity, capital is mobile across areas in all

periods including period 0).

Importantly, each area is populated by two types of agents denoted by superscript

i = s (“stockholders”) and i = h (“hand-to-mouth”) with population mass 1 − θ and θ,

respectively (where θ ∈ (0, 1)). Stockholders own (and trade) the capital, and also supply

a fraction of the labor. They have a relatively low MPC that we estimate. Hand-to-

mouth households hold no capital, and they supply the remaining fraction of labor. They

have a much higher MPC equal to one. This heterogeneous MPC setup approximates

the data better than a representative household model and enables us to calibrate the

Keynesian multiplier. We also assume that the stockholders’ labor supply is exogenous (or

perfectly inelastic) but hand-to-mouth households’ labor supply (in period 0) is endogenous

(or somewhat elastic). This asymmetric labor supply assumption enables us to introduce

some labor elasticity while abstracting away from the wealth effects on labor supply.

Our focus is to understand how fluctuations in the price of capital affects cross-sectional

and aggregate outcomes in the short run. To this end, we will generate endogenous changes

in the capital price in period 0 from exogenous permanent changes to the productivity of

capital in period 1. We interpret these changes as capturing stock market fluctuations due

to a “time-varying risk premium.” We validate the risk premium interpretation in Section

B.8, where we introduce uncertainty about capital productivity in period 1.

Goods and Production Technologies. For each period t, there is a composite trad-

able good that can be consumed everywhere. For each area a, there is also a corresponding

nontradable good that can only be produced and consumed in area a. Labor and capital

are perfectly mobile across the production technologies described below. We assume all

production firms are competitive and not subject to nominal rigidities (we will assume

nominal rigidities in the labor market).
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The nontradable good in area a can be produced according to a standard Cobb-Douglas

technology,

Y N
a,t =

(
KN
a,t/α

N
)αN (

LNa,t/
(
1− αN

))1−αN
. (B.1)

Here, LNa,t,K
N
a,t denote the quantity of labor and capital used by the nontradable sector in

area a. The term 1− αN captures the share of labor in the nontradable sector.

In each period, the tradable good can be produced as a composite of tradable inputs

across areas, where each input is produced according to a standard Cobb-Douglas technol-

ogy:

Y T
t =

(∫
a

(
Y T
a,t

) ε−1
ε da

) ε
ε−1

(B.2)

where Y T
a,t =

(
KT
a,t/α

T
)αT (

LTa,t/
(
1− αT

))1−αT
. (B.3)

Here, LTa,t,K
T
a,t denote the quantity of labor and capital used by the tradable sector in area

a. The term 1 − αT captures the share of labor in the tradable sector. The parameter,

ε > 0, captures the elasticity of substitution across tradable inputs. When ε > 1 (resp.

ε < 1), tradable inputs are gross substitutes (resp. gross complements).

Starting from period 1 onward, the tradable good can also be produced with another

technology that uses only capital. This technology is linear,

Ỹ T
t = D1−αT K̃T

t for t ≥ 1. (B.4)

Here, K̃T
t denotes the capital employed in the capital-only technology, and Ỹ T

t denotes

the tradable good produced via this technology (we use the tilde notation to distinguish

them from KT
t and Y T

t ). The term, D1−αT , captures the capital productivity in period 1.

This technology ensures that the rental rate of capital in the long run (periods t ≥ 1) is

a function of the exogenous parameter, D (with our normalization, it will be proportional

to D). This in turn helps to generate fluctuations in the price of capital (in period 0) that

are unrelated to current or future labor productivity.

Nominal Factor Returns and Prices. We let PNa,t denote the nominal price of the

nontradable good in period t and area a. We let P Tt denote the price of the composite

tradable good, and P Ta,t denote the price of the tradable input produced in area a
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Likewise, we let Wa,t denote the nominal wage for labor in period t and area a. We let

Rt denote the nominal rental rate of capital in period t. There is a single rental rate for

capital since capital is mobile across areas by assumption. Starting from period 1 onward,

there is also a single wage (since labor is also mobile across areas), that is, Wa,t = Wt for

t ≥ 1.

Capital Supply. In each period t, aggregate capital supply is exogenous and normalized

to one,

Kt ≡ 1. (B.5)

Since capital is mobile across areas in all periods, we don’t need to specify its location.

There are two financial assets. First, there is a claim on capital that pays Rt units in

each period t. We let Qt denote its nominal cum-dividend price. Thus, Qt − Rt denotes

the nominal ex-dividend price. Second, there is also a risk-free asset in zero net supply.

We denote the nominal gross risk-free interest rate between periods t and t+ 1 with Rft .

Heterogeneous Ownership of Capital. Stockholders in different areas start with

zero units of the risk-free asset but they can differ in their endowments of aggregate capital.

Specifically, we let 1 + xa,t denote the share of aggregate capital held in area a in period

t. For simplicity, capital wealth in an area is evenly distributed among stockholders: thus,

each stockholder holds (1 + xa,t) / (1− θ) units of aggregate capital. The initial shares

across areas {1 + xa,0}a, are exogenous and can be heterogeneous. The common-wealth

benchmark corresponds to the special case with xa,0 = 0 for each a.

Households’ Choice Between Nontradables and Tradables. Households of

either type i ∈ {s, h} consume the tradable good, Ci,Ta,t , and the nontradable good, Ci,Na,t .

We assume households’ utility depends on these expenditures through a consumption ag-

gregator given by:

Cia,t =
(
Ci,Na,t /η

)η (
Ci,Ta,t / (1− η)

)1−η
.

Here, η denotes the share of nontradables in spending.

In view of this assumption, we can formulate households’ optimization problem in

two steps. Consider the expenditure minimization problem in period t given a target
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consumption level Cia,t,

min
CNa,t,C

T
a,t

PNa,tC
N
a,t + P Ta,tC

T
a,t (B.6)(

CNa,t/η
)η (

CTa,t/ (1− η)
)1−η ≥ Cia,t.

This problem is linearly homogeneous in Cia,t. Let Pa,t (the unit cost or the ideal price

index) denote the solution with Cia,t = 1. Then, given the price path, {Pa,t}∞t=0, house-

holds first choose the path of their consumption (aggregator),
{
Cia,t

}∞
t=0

(as we describe

subsequently). Households then split their consumption Cia,t between nontradables and

tradables to solve problem (B.6).

Throughout, we use CNa,t, C
T
a,t to denote the total nontradable and tradable spending

by the households in an area, that is,

CNa,t = (1− θ)Cs,Na,t + θCh,Na,t (B.7)

CTa,t = (1− θ)Cs,Ta,t + θCh,Ta,t .

Here, recall that 1−θ and θ denote stockholders’ and hand-to-mouth households’ population

share, respectively.

Stockholders’ Labor Supply. In each period, stockholders’ labor supply is still ex-

ogenous and the same across areas,

Lsa,t = L for each a. (B.8)

In contrast, hand-to-mouth households’ labor is endogenous as we describe below.

Stockholders’ Optimal Consumption-Saving and Portfolio Choice. Stock-

holders in area a have time separable log utility. They choose how much to consume and

save and how to allocate savings across capital and the risk-free asset. We formulate their

problem in period 0 as:

max{
Csa,t,Sa,t≥0,

1+xa,t+1
1−θ

}∞
t=0

∞∑
t=0

(1− ρ)t logCsa,t (B.9)
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Pa,tC
s
a,t + Sa,t = Wa,tL+

1 + xa,t
1− θ

Qt +Afa,t

Sa,t =
Afa,t+1

Rft
+

1 + xa,t+1

1− θ
(Qt −Rt)

with Afa,0 = 0 and 1 + xa,0 ≥ 0 given.

Here, we use 1 − ρ ∈ (0, 1) to denote the one-period discount factor. The parameter

ρ ∈ (0, 1) is inversely related to the discount factor and plays a central role in our analysis

(as we will see, it will be equal to the marginal propensity to consume). We require savings

(total asset holdings) Sa,t to be nonnegative—this does not bind in equilibrium and helps

to rule out Ponzi schemes.

The term,
1+xa,t+1

1−θ denotes the units of capital that the household purchases at the ex-

dividend price,
1+xa,t+1

1−θ (Qt −Rt). We normalize by 1− θ, so that xa,t+1 denotes the total

purchases in area a. Households invest the rest of their savings in the risk-free asset,
Afa,t

Rft
,

which delivers Afa,t units of cash in the next period. Areas start with the same cash positions

for simplicity, Afa,0 = 0 (which is zero to ensure market clearing), but heterogeneous capital

positions, {1 + xa,0}a.

Hand-to-mouth Households’ Labor Supply. Hand-to-mouth households are my-

opic (equivalently, they have time separable preferences with discount factor set equal to

0). Therefore, they spend their labor income in all periods

Pa,tC
h
a,t = Wa,tL

h
t . (B.10)

Their labor supply is endogenous. For the purpose of endogenizing the labor supply,

we work with a GHH functional form for the intra-period preferences between consump-

tion and labor that eliminates the wealth effects on the labor supply. These effects seem

counterfactual for business cycle analysis (Gaĺı (2011)).

Specifically, recall that in each area there is a mass θ of hand-to-mouth households.

Suppose each hand-to-mouth household corresponds to a “representative agent” that is

subdivided into a continuum of worker types denoted by ν ∈ [0, 1]. These workers provide

specialized labor services. A worker ν who specializes in providing a particular type of
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labor service has the utility function:

Cha,t (ν)− χ
(
Lha,t (ν)

)1+ϕh

1 + ϕh
. (B.11)

Since she is myopic, she is subject to the budget constraint:

Pa,tC
h
a,t (ν) = Wa,t (ν)Lha,t (ν) . (B.12)

Here, Lha,t (ν) denotes her labor and Cha,t (ν) denotes her consumption.

In each area a, there is also an intermediate firm that produces the (hand-to-mouth) la-

bor services in the area by combining specific labor inputs from each worker type according

to the aggregator:

Lha,t =

(∫ 1

0
Lha,t (ν)

εw−1
εw dν

) εw
εw−1

.

This leads to the labor demand equation:

Lha,t (ν) =

(
Wa,t (ν)

Wa,t

)−εw
Lha,t (B.13)

where Wa,t =

(∫ 1

0
Wa,t (ν)1−εw dν

)1/(1−εw)

. (B.14)

Here, Lha,t denotes the equilibrium labor provided by the representative hand-to-mouth

household. (The total labor by all hand-to-mouth households is θLha,t).

In period 0, a fraction of the workers in an area, λw, reset their wages to maximize the

intra-period utility function in (B.11) subject to the budget constraints in (B.12) and the

labor demand equation in (B.13). The remaining fraction, 1−λw, have preset wages given

by W—the nominal level targeted by monetary policy (as we describe subsequently).

The wage level in an area is determined according to the ideal price index (B.14). This

index also ensures: ∫ 1

0
Wa,t (ν)Lha,t (ν) dν = Wa,tL

h
a,t.

Substituting this into Eq. (B.12), we obtain the budget constraint for the representative
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hand-to-mouth household that we stated earlier [cf. (B.10)]:

Pa,tC
h
a,t ≡

∫ 1

0
Pa,tC

h
a,t (ν) dν = Wa,tL

h
a,t.

Here, we have defined Cha,t as the consumption by the representative hand-to-mouth house-

hold.

Optimal Wage Setting and the Labor Supply. First consider the flexible workers

that reset their wages in period 0. These workers optimally choose
(
W flex
a,t , Lh,flexa,t

)
that

satisfy:

W flex
a,t ≡ Pa,t

εw
εw − 1

MRSa,t (B.15)

where MRSa,t = χ
(
Lh,flexa,t

)ϕh
and Lh,flexa,t =

(
W flex
a,t

Wa,t

)−εw
Lha,t.

In particular, workers set a real (inflation-adjusted) wage that is a constant markup over

their marginal rate of substitution between labor and consumption (MRS). The functional

form in (B.11) ensures that the MRS depends on the level of labor supply but not on the

level of consumption.

Note that W flex
a,t appears on both side of Eq. (B.15). Solving for the fixed point, we

further obtain:

(
W flex
a,t

)1+ϕhεw
=

εw
εw − 1

χPa,tW
εwϕh

a,t

(
Lha,t

)ϕh
. (B.16)

Next consider the sticky workers. These workers have a preset wage level, W . They

provide the labor services demanded at this wage level (as long as their markup remains

positive, which is the case in our analysis since we focus on log-linearized outcomes).

Next we use (B.14) to obtain an expression for the aggregate wage level and the (hand-

to-mouth) labor supply:

Wa,t =

(
λw

(
W flex
a,t

)1−εw
+ (1− λw)W

1−εw
)1/(1−εw)

30



=

(
λw

(
εw

εw − 1
χW εwϕh

a,t Pa,t

(
Lha,t

)ϕh)(1−εw)/(1+ϕhεw)
+ (1− λw)W

1−εw
)1/(1−εw)

.

(B.17)

Here, the first line substitutes the wages of flexible and sticky workers. The second line sub-

stitutes the optimal wage for flexible workers from Eq. (B.16). This expression illustrates

that greater hand-to-mouth labor in an area, Lha,t, creates wage pressure. The amount of

pressure depends positively on the fraction of flexible workers, λw, and negatively on the

labor supply elasticity, 1/ϕh, as well as on the elasticity of substitution across labor types,

εw. An increase in the local price index, Pa,t, also creates wage pressure.

It is also instructive to consider the (hand-to-mouth) labor supply in two special cases.

First, consider the “frictionless” case without nominal rigidities: that is, suppose wages are

fully flexible, λw = 1. All workers set the same wage, which implies W flex
a,t = Wa,t. Using

this observation Eq. (B.17) becomes:

Wa,t

Pa,t
=

εw
εw − 1

χ
(
Lha,t

)ϕh
. (B.18)

Hence, the frictionless hand-to-mouth labor supply in each area a is described by a neo-

classical intra-temporal optimality condition. In particular, the real wage is a constant

markup over the MRS between labor and consumption.

Next consider the case in which the nominal wage in the area is equal to the monetary

policy target, Wa,t = W . Substituting this expression into (B.17), we obtain,

W

Pa,t
=

εw
εw − 1

χ
(
Lha,t

)ϕh
. (B.19)

This is equivalent to (B.18) (since Wa,t = W ). Hence, our model features a version of

“the divine coincidence”: stabilizing the nominal wage at the target (W ) is equivalent to

stabilizing the labor supply at its frictionless level.
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Monetary Policy. We assume monetary policy sets the nominal interest rate Rft to

stabilize the average nominal wage at the target level W :∫
a
Wa,tda = W for each t. (B.20)

In periods t ≥ 1, nominal wages are equated across regions (since labor is mobile).

Therefore, Eq. (B.20) implies Wa,t = W for each area, which in turn implies Eq. (B.19).

For these periods, monetary policy replicates the frictionless labor supply.

In period 0, wages are not necessarily equated across areas. Thus, monetary policy

cannot stabilize labor supply in every area. For this period, the policy rule in (B.20)

can be thought of as stabilizing the labor supply “on average” at its frictionless level.

When areas have common initial wealth (and therefore common initial wage, Wa,0 = W ),

monetary policy stabilizes the labor supply at its frictionless level also in period 0.

Market Clearing Conditions. First consider the nontradable good. Recall that we

use Y N
a,t to denote nontradable production and CNa,t to denote the total nontradable spending

in an area [cf. (B.1) and (B.7)]. Thus, we have the market clearing condition,

Y N
a,t = CNa,t for each a, t. (B.21)

Next consider the composite tradable good. We use Y T
t to denote the tradable produc-

tion with the standard CES technology in either period, and Ỹ T
t to denote the production

with the capital-only technology in periods t ≥ 1 [cf. (B.2) and (B.4)]. We also use CTa,t

to denote the total tradable spending in an area [cf. (B.22)]. Thus, we have the market

clearing conditions:

Y T
0 =

∫
CTa,0da. (B.22)

Y T
t + Ỹ T

t =

∫
a
CTa,tda for t ≥ 1. (B.23)

There is a single market clearing condition for each period since the tradable good can be

transported across areas costlessly.

Next consider the tradable good produced in area a. This market clearing condition is

already embedded in our notation, since we use Y T
a,t to denote the tradable production in
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area a as well as the tradable input used in the CES production technology [cf. (B.3) and

(B.2)].

Next consider factor market clearing conditions. In period 0, for labor we have:

La,0 = (1− θ)L+ θLha,0 = LNa,0 + LTa,0 for each a. (B.24)

Labor supply comes from stockholders, who supply exogenous labor, Lsa,0 = L, and hand-

to-mouth households, who supply endogenous labor, Lha,0. Labor demand comes from non-

tradable and tradable production firms in the area. For capital, we have

1 =

∫
a

(
KN
a,0 +KT

a,0

)
da. (B.25)

Capital supply is exogenous and normalized to one. Capital demand comes from nontrad-

able and tradable production firms in all areas. There is a single market clearing condition

since capital is mobile across areas.

For future periods t ≥ 1, both factors are mobile across areas. Therefore, we have the

following analogous market clearing conditions,∫
a

(
(1− θ)L+ θLha,t

)
da =

∫
a

(
LNa,t + LTa,t

)
da (B.26)

1 =

∫
a

(
KN
a,t +KT

a,t

)
da+ K̃T

t for each t ≥ 1. (B.27)

Capital demand reflects that capital can also be used with the alternative linear technology,

K̃T
t .

Finally, the asset market clearing conditions can be written as,∫
a
xa,tda = 0 and

∫
a
Afa,t = 0. (B.28)

This condition ensures that the holdings of capital across areas sum to its supply (one).

The second condition says the holdings of the risk-free asset sum to its supply (zero). We

can then define the equilibrium as follows.

Definition 1 Given an initial distribution of ownership of capital, {xa,0}a (that sum to

zero across areas), and otherwise symmetric regions, an equilibrium is a collection of

cross-sectional and aggregate allocations together with paths of (nominal) factor prices,
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{
{Wa,t}a , Rt

}
t
, goods prices,

{{
PNa,t

}
a
, P Tt

}
t
, the asset price, {Qt}t, and the interest rate,{

Rft

}
t
, such that:

(i) Competitive firms maximize according to the production technologies described in

(B.1−B.4).

(ii) Stockholders choose their consumption and portfolios optimally [cf. problem (B.9)].

All households split their consumption between nontradable and tradable goods to solve the

expenditure minimization problem (B.6).

(iii) Capital supply is exogenous and given by (B.5). Labor supply of stockholders is

also exogenous and given by (B.8). Labor supply of hand-to-mouth households is endogenous

and satisfy Eq. (B.17).

(iv) Monetary policy stabilizes the average wage in each period at a particular level W

[cf. (B.20)].

(v) Goods, factors, and asset markets clear [cf. Eqs. (B.21−B.28)].

B.2 General Characterization of Equilibrium

We next provide a general characterization of equilibrium. In subsequent sections, we use

this characterization to solve for the equilibrium under different specifications. Throughout,

we assume the parameters satisfy:

D ≥ α

1− α
L (B.29)

χ =
εw − 1

εw

(
1− α
α

)α 1

L
α+ϕh

(B.30)

The first condition ensures that the capital-only production technology is actually used

when it is available, K̃t ≥ 0 for t ≥ 1. The second condition ensures that in period 0 the

frictionless hand-to-mouth labor supply (and thus, the frictionless aggregate labor supply)

is the same as the stockholders’ exogenous labor supply, L. This is a symmetry assumption

that simplifies the notation but otherwise does not play an important role.

We start by establishing general properties on the supply and the demand side that

apply in all periods. We then fully characterize the equilibrium in periods t ≥ 1 (long run).

Finally, we derive the equations that characterize the equilibrium in period 0 (short run).
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B.2.1 General Properties

Supply Side. First consider households’ choice between nontradable and tradable

goods. Households solve (B.6), which implies:

Pa,t ≡
(
PNa,t

)η (
P Tt
)1−η

(B.31)

PNa,tC
i,N
a,t = ηPa,tC

i
a,t and P Ta,tC

i,T
a,t = (1− η)Pa,tC

i
a,t. (B.32)

Here, recall that Pa,t (the unit cost or the ideal price index) denotes the solution to the

problem with Cia,t = 1. Aggregating across all households in an area, we further obtain

PNa,tC
N
a,t = ηPa,tCa,t and P Tt C

T
a,t = (1− η)Pa,tCa,t.

In view of the Cobb-Douglas aggregator, the shares of nontradables and tradables in house-

hold spending are constant.

Next consider optimization by firms that produce the nontradable good, which implies

[cf. (B.1)]:

PNa,t = (Wa,t)
1−αN Rα

N

t (B.33)

wa,tL
N
a,t =

(
1− αN

)
PNa,tY

N
a,t and RtK

N
a,t = αNPNa,tY

N
a,t. (B.34)

Similarly, optimization by firms that produce the tradable input in an area implies [cf.

(B.3)]:

P Ta,t = (Wa,t)
1−αT Rα

T

t (B.35)

wa,tL
T
a,t =

(
1− αT

)
P Ta,tY

T
a,t and RtK

T
a,t = αTP Ta,tY

T
a,t. (B.36)

Here, we use P Ta,t to denote the price of the tradable input produced in an area. In view of

Cobb-Douglas technologies, the shares of labor and capital in production of the nontradable

good as well as the local tradable input are constant.

Next consider the firms that produce the composite tradable good with the CES pro-

duction technology [cf. (B.2)]. These firms’ optimization implies:

P Tt =

(∫
a

(
P Ta,t

)1−ε
da

)1/(1−ε)
(B.37)
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P Ta,tY
T
a,t =

(
P Ta,t

P Tt

)1−ε

P Tt Y
T
t . (B.38)

The unit cost of the composite tradable good is determined by the ideal price index. The

share of tradable inputs from an area depends on the price in that area relative to the unit

cost,
PTa,t
PTt

, as well as the elasticity of substitution across tradables, ε.

Finally, consider the firms that produce the composite tradable good in periods t ≥ 1

with the linear technology [cf. (B.4)]. These firms’ optimization implies,

P Tt = Rt/D
1−αT
t as long as K̃T

t > 0 (for t ≥ 1). (B.39)

As we will verify below, the parametric restriction in (B.29) ensures K̃T
t > 0.

Recall also that we have the labor supply equation (B.17) for each area a.

Demand Side. We next turn to the demand side. First consider the nontradable

sector. Combining the market clearing condition (B.21) with the factor shares in (B.32)

and (B.34), we solve for the factor bills as:

Wa,tL
N
a,t =

(
1− αN

)
ηPa,tCa,t (B.40)

RtK
N
a,t =

αN

1− αN
Wa,tL

N
a,t

For the nontradable sector, the demand comes from the nontradable expenditure within

the area. In view of the Cobb-Douglas technologies, this demand is split across factors in

constant proportions.

Next consider the tradable sector. We combine the market clearing conditions (B.22)

and (B.23) with the factor shares in (B.32) , (B.36), and (B.38) to solve:

Wa,tL
T
a,t =

(
1− αT

)(P Ta,t
P Tt

)1−ε(
(1− η)

∫
a
Pa,tCa,tda− Ỹ T

t

)
(B.41)

and RtK
T
a,t =

αT

1− αT
wa,tL

T
a,t

where Ỹ T
0 = 0 and Ỹ T

t = D1−αT
t K̃T

t for t ≥ 1.

For the tradable sector (that use standard technologies), the demand comes from the
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tradable expenditure from all areas. The demand also depends on the relative price in

that area,
PTa,t
PTt

, as well as the elasticity of substitution across tradable inputs, ε. The

expression, Ỹ T
t denotes the production of the composite tradable good via the alternative

capital-only technology, which is zero in period 0 but not in periods t ≥ 1 (as the technology

is only available in periods t ≥ 1).

Stockholders’ Optimality Conditions. Finally, we characterize stockholders’ opti-

mality conditions at any period t [cf. problem (B.9)]. First consider their portfolio choice.

Since there is no risk in capital (for simplicity), problem (B.9) implies that stockholders

take a non-zero position on capital if and only if its price satisfies, Qt+1

Qt−Rt = Rft . This

implies,

Qt = Rt +
Qt+1

Rft

=
∞∑
n≥0

Rt+n

Rft ..R
f
t+n−1

. (B.42)

Here, the second line rolls the equation forward to write the stock price as the

present discounted value of the rental rate. We assume the transversality condition,

limn→∞
Rt+n

Rft ..R
f
t+n−1

= 0, which will hold in the equilibria we will characterize. Given the

capital price in (B.55), stockholders are indifferent between saving in the risk-free asset

and in capital.

Next consider stockholders’ consumption choice. Given the capital price in (B.55), we

can aggregate stockholders’ budget constraints from time t onward to obtain a lifetime

budget constraint at time t:

∞∑
n≥0

Pa,t+nC
s
a,t+n

Rft ..R
f
t+n−1

=
∞∑
n≥0

Wa,t+nL

Rft ..R
f
t+n−1

+
1 + xa,t
1− θ

Qt +Afa,t. (B.43)

As before, we assume the transversality condition, limn→∞
Wa,t+nL

Rft ..R
f
t+n−1

= 0. In addition, the

optimality condition for safe savings Afa,t+1 implies the Euler equation,

1

Pa,t+n−1Csa,t+n−1

=
(1− ρ)Rft+n−1

Pa,t+nCsa,t+n
for each t ≥ 0, n ≥ 1. (B.44)
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Solving this backward, we obtain
Pa,t+nCsa,t+n

Rft ..R
f
t+n−1

= (1− ρ)n Pa,tC
s
a,t. After substituting this

into (B.43) and calculating the sum, we obtain

Pa,tC
s
a,t = ρ

 ∞∑
n≥0

Wa,t+nL

Rft ..R
f
t+n−1

+
1 + xa,t
1− θ

Qt +Afa,t

 . (B.45)

Hence, in each period t, stockholders spend a fraction of their lifetime wealth. Their lifetime

wealth consists of the present discounted value of their labor income as well as their stock

wealth and cash at the beginning of the period. The marginal propensity to spend out of

wealth is given by ρ.

B.2.2 Long Run Equilibrium

We next characterize the equilibrium further in periods t ≥ 1. For these periods, labor

(as well as capital) is mobile across areas. In addition, production technologies remain

constant over time. In view of these features, we conjecture an equilibrium in which the

economy immediately reaches a steady state in period t = 1. Specifically, we prove the

following.

Proposition 1 Suppose conditions (B.29) and (B.30) hold. Starting from period t ≥ 1

onward, there is a steady-state equilibrium in which the capital-only technology is (weakly)

used, K̃T
t ≥ 0. In this equilibrium, nominal wages, rental rates, price indices, hand-to-

mouth labor, and aggregate labor are constant across areas and over time:

Wa,t = W and Rt = WD (B.46)

P Ta,t = WDαT , PNa,t = WDαN , Pa,t = WDα where α = ηαN + (1− η)αT (B.47)

Lha,t = Lh,long ≤ L where D−α =
εw

εw − 1
χ
(
Lh,long

)ϕh
. (B.48)

The interest rate and the price of capital are constant over time:

Rft =
1

1− ρ
(B.49)

Qt =
WD

ρ
. (B.50)
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Stockholders’ capital and cash holdings and consumption are constant over time and deter-

mined by their capital and cash holdings in period 1:

xa,t = xa,1, A
f
a,t = Afa,1 (B.51)

Pa,tC
s
a,t = ρ

(
WL

ρ
+

1 + xa,1
1− θ

WD

ρ
+Afa,1

)
. (B.52)

Proof. We first show factor and goods prices satisfy Eqs. (B.46) and (B.47). Since labor

is mobile across areas, wages are equated across areas, Wa,t ≡ Wt. This proves Wa,t = W

since monetary policy stabilizes the wage at the target level [cf. (B.20)]. Substituting this

into the unit cost equations (B.35) and (B.37), we find P Tt = W
1−αT

Rα
T

t . Combining this

with (B.39), we establish (B.46). Substituting Eq. (B.46) into the remaining unit cost

equations (B.31) and (B.33), we also establish (B.47). Since the capital only technology

is used (as we verify shortly), the rental rate is determined by the productivity of this

technology, D. This provides a simple expression also for other prices.

Substituting the expression for the price index Pt into the frictionless labor supply

equation (B.19), we also establish that hand-to-mouth labor is constant and given by

(B.48). Consider how the solution changes with D. First consider the lowest level of D

allowed by condition (B.29), D = α
1−αL. In this case the solution is given by Lh,long = L

in view of condition (B.30). Next note that increasing D decreases Lh,long. Intuitively,

increasing the productivity of the capital-only technology draws capital from the standard

technologies (as we verify shortly), which in turn lowers the labor supply. Therefore, the

solution satisfies Lh,long ≤ L.

Next we verify that the capital-only technology is used in equilibrium, K̃T
t ≥ 0. To

this end, we aggregate the factor demands used in the standard technologies across both

sectors and across all areas to obtain [cf. Eqs. (B.40) and (B.41)]:

W
(

(1− θ)L+ θLh,long
)

=

 (
1− αN

)
η
∫
a Pa,tCa,tda

+
(
1− αT

) (
(1− η)

∫
a Pa,tCa,tda− Ỹ

T
t

) 
= (1− α)

∫
a
Pa,tCa,tda−

(
1− αT

)
Ỹ T
t

and

Rt

(
1− K̃T

t

)
= α

∫
a
Pa,tCa,tda− αT Ỹ T

t
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Here, we have substituted the factor market clearing conditions LTa,t + LNa,t = (1− θ)L +

θLh,long and KT
a,t +KN

a,t + K̃T
t = 1 [cf. (B.26) and (B.27)].

Combining these expressions, we solve for the capital bill used in the standard tech-

nologies:

Rt

(
1− K̃T

t

)
=

α

1− α
W
(

(1− θ)L+ θLh,long
)

+
α− αT

1− α
Ỹt.

After substituting Ỹ T
t = RtK̃

T
t and Rt = WD, we find K̃T

t ≡ K̃T,long (D) where:

D

(
1− 1− αT

1− α
K̃T,long (D)

)
=

α

1− α

(
(1− θ)L+ θLh,long (D)

)
. (B.53)

Since Lh,long (D) is a decreasing function, K̃T,long (D) that solves (B.53) is an increasing

function of D. Moreover, when D = α
1−αL, we have Lh,long (D) = L, which implies

K̃T,long (D) = 0. This proves K̃T,long (D) ≥ 0 for each D ≥ α
1−αL and establishes that the

capital-only technology is used in equilibrium.

Finally, we verify that the constant interest rate path in (B.49) corresponds to an

equilibrium along with the asset price and allocations in (B.50) , (B.51), and (B.52).

Substituting Rft = 1/ (1− ρ) into (B.42), and using (B.46), we establish that the

stock price satisfies (B.50). Substituting this expression along with Eq. (B.49) and the

solution for the wage and the rental rate into Eq. (B.45), we establish that stockholders’

consumption satisfies

Pa,tC
s
a,t = ρ

(
WL

ρ
+

1 + xa,t
1− θ

WD

ρ
+Afa,t

)
. (B.54)

Note also that stockholders are indifferent between saving in capital and the risk-free asset.

In particular, xa,t+1 = xa,t is a solution as long as the implied cash holding is non-negative,

Aa,t+1 ≥ 0. To verify this, consider the stockholders’ budget constraint with the equilibrium

wage and the rental rate [cf. (B.9)]:

Pa,tC
s
a,t +

Afa,t+1

Rft
+

1 + xa,t+1

1− θ
(
Qt −WD

)
= WL+

1 + xa,t
1− θ

Qt +Afa,t.

Substituting xa,t+1 = xa,t along with Eq. (B.54), we obtain Aa,t+1 = Aa,t. By induction,

we further obtain xa,t+1 = xa,1, Aa,t+1 = Aa,1. Since Aa,1 ≥ 0, this verifies Aa,t+1 ≥
0 and establishes (B.51). Substituting this into (B.45), we establish that stockholders’

40



consumption is constant over time and given by (B.52).

Note also that this allocation satisfies the asset market clearing conditions [cf. (B.28)],

which implies that it also satisfies the aggregate goods market clearing conditions. In

fact, aggregating Eq. (B.52) across all areas, it is easy to verify that stockholders in the

aggregate spend their labor income and capital income. Hand-to-mouth households spend

their labor income. Since asset and goods markets clear, the conjectured interest rate path

(B.49) corresponds to an equilibrium, which completes the proof.�

Therefore, the economy reaches a steady state immediately in period t = 1. This

simplifies the analysis as it enables us to focus on the allocations in period t = 0, which

we turn to subsequently. Note also that using Proposition 1 together with Eqs. (B.40)

and (B.41) we could characterize the labor employed in nontradable and tradable sectors

separately for periods t ≥ 1. We skip this step since it will not play an important role for

our analysis of the equilibrium in period 0.

B.2.3 Short Run Equilibrium

We next characterize the conditions that determine the equilibrium in period 0. In subse-

quent sections, we use these conditions to solve the equilibrium for different specifications

of initial wealth across areas.

Asset Price in Period 0. Using Eqs. (B.42) and (B.50), we obtain

Q0 = R0 +
Q1

Rf0
= R0 +

1

Rf0

WD

ρ
. (B.55)

Hence, the stock price in the first period depends on the future productivity in the capital

only technology, D, the current interest rate, Rf0 , and the current rental rate, R0.

We next claim the rental rate satisfies

R0 =
α

1− α

∫
a
Wa,0La,0da. (B.56)

In view of the Cobb-Douglas technologies, the equilibrium rental rate of capital is pro-

portional to the aggregate labor bill (and aggregate output). Combined with (B.55), this

describes the stock price in terms of the aggregate labor bill and the interest rate.

41



To prove the claim in (B.56), we aggregate Eqs. (B.40) and (B.41) over the two sectors

to obtain

Wa,0

(
LNa,0 + LTa,0

)
=

(
1− αN

)
ηPa,0Ca,0 +

(
1− αT

)(P Ta,0
P T0

)1−ε

(1− η)

∫
a
Pa,0Ca,0da

R0

(
KT
a,0 +KN

a,0

)
= αNηPa,0Ca,0 + αT

(
P Ta,t

P Tt

)1−ε

(1− η)

∫
a
Pa,tCa,tda.

Aggregating further across all areas and using the market clearing conditions LNa,0 +LTa,0 =

La,0 and KN
a,0 +KT

a,0 = 1 [cf. (B.24) and (B.25)] along with (B.37), we obtain:∫
a
Wa,0La,0da = (1− α)

∫
a
Pa,0Ca,0da

R0 = α

∫
a
Pa,0Ca,0da.

Here, recall that α = ηαN + (1− η)αT is the weighted-average capital share. Combining

these expressions, we establish (B.56).

Stockholders’ Consumption in Period 0. It remains to characterize the house-

holds’ consumption demand in period 0, which determines the labor demand and completes

the characterization of equilibrium [cf. Eqs. (B.40) and (B.41)]. Hand-to-mouth agents

spend their income,

Pa,tC
h
a,t = Wa,tL

h
a,t. (B.57)

Consider the stockholders. Note that their consumption is generally characterized by

Eq. (B.45). Using Proposition 1, and the assumption Afa,0 = 0, we can write this as

Pa,0C
s
a,0 = ρ

(
Wa,0L+

1

Rf0

WL

ρ
+

1 + xa,0
1− θ

Q0

)
. (B.58)

Hence, stockholders spend a fraction of their lifetime wealth, which is determined by their

current and future labor income as well as their stock wealth.

Aggregating Eqs. (B.57) and (B.58) with households’ population shares, we character-
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ize the aggregate household demand in an area [cf. (4)]:

Pa,0Ca,0 = θWa,0L
h
a,0 + ρ

(
(1− θ)

(
Wa,0L+

1

Rf0

WL

ρ

)
+ (1 + xa,0)Q0

)
. (B.59)

Hence aggregate demand in the area is determined by spending by the hand-to-mouth

households (that depends on local wages) and the spending by stockholders (that depends

on local wealth).

Labor Demand in Period 0. Combining Eq. (B.59) with (B.40), and substituting

θLha,0 = La,0 − (1− θ)L (by definition), we calculate the labor demand in the nontradable

sector as:

Wa,0L
N
a,0 =

(
1− αN

)
η


Wa,0

(
La,0 − (1− θ)L

)
+

ρ

 (1− θ)
(
Wa,0L+ 1

Rf0

WL
ρ

)
+ (1 + xa,0)Q0


 . (B.60)

Likewise, we combine Eq. (B.59) with (B.41) to obtain the labor demand in the tradable

sector as:

Wa,0L
T
a,0 =

(
P Ta,0

P T0

)1−ε (
1− αT

)
(1− η)


∫
aWa,0

(
La,0 − (1− θ)L

)
da+

ρ

 (1− θ)
(
Wa,0L+ 1

Rf0

WL
ρ

)
+ (1 + xa,0)Q0


 . (B.61)

After summing Eqs. (B.60) and (B.61), and using the labor market clearing condition

La,0 = LTa,0 + LNa,0 [cf. (B.24)], we solve for the total labor demand in an area as follows,

Wa,0La,0 =
(
1− αN

)
η


Wa,0

(
La,0 − (1− θ)L

)
+

ρ

 (1− θ)
(
Wa,0L+ 1

Rf0

WL
ρ

)
+ (1 + xa,0)Q0


 (B.62)

+

(
P Ta,0

P T0

)1−ε (
1− αT

)
(1− η)


∫
aWa,0

(
La,0 − (1− θ)L

)
da+

ρ

 (1− θ)
(
Wa,0L+ 1

Rf0

WL
ρ

)
+ (1 + xa,0)Q0



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The first line illustrates the local labor demand due to local spending on the nontradable

good. The second line illustrates the local labor demand due to aggregate spending on

the tradable good. While this expression looks complicated, it will be simplified once we

log-linearize around the common wealth allocation.

Given the unit costs and the aggregate variables, Eq. (B.62) is a collection of |I|
equations in 2 |I| local variables, {La,0,Wa,0}a∈I . Recall also that we have Eq. (B.17)

that determines the local labor supply of hand-to-mouth households in each area. After

substituting θLha,0 = La,0 − (1− θ)L, we write this expression as:

Wa,0 =

 λw

(
εw
εw−1χW

εwϕh

a,0 Pa,0

(
La,0−(1−θ)L

θ

)ϕh)(1−εw)/(1+ϕhεw)

+ (1− λw)W
1−εw


1/(1−εw)

. (B.63)

This provides |I| additional equations in {La,0,Wa,0}a∈I . Thus, Eqs. (B.62) and (B.63)

can be thought of as determining the equilibrium in labor markets in each area.

Recall also that we have characterized the aggregate variables earlier. In particular,

the capital price is given (B.55), which depends on the rental rate R0 given by (B.56) and

the interest rate Rf0 . The interest rate is set by monetary policy to ensure the average

nominal wage is equal to a target level,
∫
aWa,0 = W [cf. (B.20)]. This completes the

general characterization of equilibrium.

B.3 Benchmark Equilibrium with Common Stock Wealth

We next characterize the equilibrium in period 0 further in special cases of interest. In

this section, we focus on a benchmark case in which areas have common wealth, xa,0 = 0

for each a, and provide a closed-form solution. In the next section, we log-linearize the

equilibrium around this benchmark and provide a closed-form solution for the log-linearized

equilibrium.

Labor Market Equilibrium. First consider the labor supply. By symmetry, wages,

price indices, and labor are the same across areas. We denote these allocations by dropping

the area subscript W0, P0, L
h
0 , L0. Then, the monetary policy rule (B.20) implies W0 = W .

Hence, in this case monetary policy ensures labor supply is at its frictionless level also in
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period 0 [cf. Eq. (B.19)]:
W

P0
=

εw
εw − 1

χ
(
Lh0

)ϕh
. (B.64)

Next consider the labor demand. Using Eq. (B.56) the rental rate of capital is given

by:

R0 =
α

1− α
WL0. (B.65)

When wages are the same across all areas, the unit cost is given by P0 = W
1−α

Rα0 [cf. Eqs.

(B.31) , (B.33), and (B.37)]. Combining this with Eq. (B.65), we obtain,

P0 = Rα0W
1−α

=

(
α

1− α

)α
Lα0W where L0 = (1− θ)L+ θLh0 . (B.66)

After rearranging this expression, we obtain a labor demand equation

W

P0
=

(
1− α
α

)α (
(1− θ)L+ θLh0

)−α
. (B.67)

Eqs. (B.64) and (B.67) uniquely determines the hand-to-mouth labor. Condition

(B.30) ensures that the solution satisfies:

Lh0 = L. (B.68)

In sum, with common wealth, monetary policy ensures hand-to-mouth labor is at its fric-

tionless level. In view of the normalizing condition (B.30), this is the same as stockholders’

labor supply. This ensures that the total labor is also at its frictionless level

LT0 + LN0 = L0 = (1− θ)L+ θLh0 = L. (B.69)

Asset and Goods Market Equilibrium. Next consider the price of capital. Com-

bining Eqs. (B.65) , (B.69) with Eq. (B.55), we obtain:

Q0 =
α

1− α
WL+

1

Rf0

WD

ρ
. (B.70)
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Next note that we can aggregate the labor demand Eq. (B.62) to obtain:

WL

1− α
=

θWL+

ρ

(
(1− θ)

(
WL+ 1

Rf0

WL
ρ

)
+ α

1−αWL+ 1

Rf0

WD
ρ

)
.

Rearranging terms, we obtain:

Y 0 ≡
LW

1− α
= MAρ

[
1

Rf0

(
(1− θ) WL

ρ
+
WD

ρ

)]
(B.71)

where MA =
1

1− (1− α) (θ + ρ (1− θ))− ρα

=
1

(1− ρ) (1− (1− α) θ)

Here, we have also defined the frictionless output Y 0. The last line simplifies the multiplier.

The expression says that the value of the stockholders’ future claims (the bracketed term)

should be at a particular level such that its direct spending effect, combined with the

multiplier effects, are just enough to ensure output is equal to its frictionless level.

Using Eq. (B.71), we characterize the equilibrium interest rate (“rstar”):

Rf0 = (1− α)MA (1− θ)L+D

L

=
1

1− ρ
1− α

1− (1− α) θ

(1− θ)L+D

L
. (B.72)

As expected, greater impatience (ρ) or greater future capital productivity (D) increases

the equilibrium interest rate.

Using (B.70) and (B.72), we can also solve for the equilibrium price of capital as:

Q0/W =
L

1− α

(
α+

1− ρ
ρ

(1− (1− α) θ)
D

(1− θ)L+D

)
. (B.73)

It is easy to check that (as long as θ < 1) an increase in the future productivity of capital,

D, also increases the equilibrium price of capital. The interest rate reacts to this change

to ensure output is at its supply determined level. This mitigates the rise in the stock

price somewhat but does not completely undo it, since some of the interest rate response
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is absorbed by stockholders’ human capital wealth. (The last point is the difference from

Caballero and Simsek (2020): here, “time-varying risk premium” translates into actual

price movements because we have two different types of wealth and the “risk premium”

varies only for one type of wealth.)

Next consider the determination of tradable and nontradable labor. Using (B.60) and

(B.61), along with symmetry across areas, we obtain:

LN0
LT0

=

(
1− αN

)
η

(1− αT ) (1− η)
.

Combining this with LN0 + LT0 = L, we further solve:

LN0 =
1− αN

1− α
ηL, (B.74)

LT0 =
1− αT

1− α
(1− η)L.

Hence, the labor employed in the nontradable and tradable sectors is determined by the

share of the corresponding good in household spending, with an adjustment for the differ-

ences in the share of labor across the two sectors. The following result summarizes this

discussion.

Proposition 2 Suppose conditions (B.29) and (B.30) hold. Consider the equilibrium in

period 0 when areas have common stock wealth, xa,0 = 0 for each a. All areas have identical

allocations and prices. Nominal wages are given by W0 = W . Monetary policy ensures

hand-to-mouth labor is at its frictionless level. This is equal to stockholders’ labor, Lh0 = L,

which also implies L0 = LT0 + LN0 = L [cf. (B.68−B.69)]. The nominal interest rate is

given by Eq. (B.72) and the price of capital is given by Eq. (B.73). The shares of labor

employed in the nontradable and tradable sectors is given by Eq. (B.74). An increase in

the future productivity of capital D increases the interest rate and the price of capital but

does not affect the labor market outcomes in period 0.
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B.4 Log-linearized Equilibrium with Heterogeneous Stock

Wealth

We next consider the case with a more general distribution of stock wealth, {xa,0}a,
that satisfies

∫
a xa,0da = 0. In this case, we log-linearize the equilibrium conditions

around the common-wealth benchmark (for a fixed level of D), and we characterize

the log-linearized equilibrium. To this end, we define the log-deviations of the local

equilibrium variables around the common-wealth benchmark: y = log
(
Y/Y b

)
, where

Y ∈
{
La,0, L

N
a,0, L

T
a,0,Wa,0, Pa,0, P

T
a,0

}
a
. We also define the log-deviations of the endoge-

nous aggregate variables: y = log
(
Y/Y b

)
, where Y ∈

{
P T0 , R0, Q0, R

f
0

}
. The following

lemma simplifies the analysis (proof omitted).

Lemma 1 Consider the log-linearized equilibrium conditions around the common-wealth

benchmark. The solution to these equations satisfies
∫
a la,0da =

∫
awa,0da = 0 and pT0 =

r0 = q0 = rf0 = 0. In particular, the log-linearized equilibrium outcomes for the aggregate

variables are the same as their counterparts in the common-wealth benchmark.

We next log-linearize the equilibrium conditions and characterize the log-linearized

equilibrium outcomes for each area a. We start by Eqs. (B.31) , (B.33), and (B.37) that

characterize the price indices in terms of nominal wages in an area. Log-linearizing Eqs.

(B.33) and (B.37) we obtain,

pNa,0 =
(
1− αN

)
wa,0 (B.75)

pTa,0 =
(
1− αT

)
wa,0.

Log-linearizing Eq. (B.31), we further obtain,

pa,0 = ηpNa,0 = η
(
1− αN

)
wa,0. (B.76)

Next, we log-linearize the labor supply equation (B.63) to obtain,

wa,0 =
λw

1 + ϕhεw

(
pa,0 + ϕhεwwa,0 + ϕh

la,0
θ

)
.
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After rearranging terms and simplifying, we obtain Eq. (7) from the main text:

wa,0 = λ (pa,0 + ϕla,0) (B.77)

where λ =
λw

1 + (1− λw)ϕhεw
and ϕ =

ϕh

θ

Note that we derive the wage flexibility and labor inelasticity parameters, λ and ϕ, in

terms of the more structural parameters, λw, ϕ, εw, ϕ
h, θ. As expected, wage flexibility is

greater when a greater fraction of members adjust wages (greater λw), labor supply is more

inelastic (greater ϕh), labor types are less substitutable (smaller εw). To understand the

parameter ϕ, note that stockholders always supply the frictionless labor and thus their

labor elasticity is effectively zero, 1/ϕs = 0. Therefore, the aggregate “weighted-average”

labor elasticity reflects the hand-to-mouth households’ elasticity and their population share,

1/ϕ = (1− θ) /ϕs + θ/ϕh = θ/ϕh.

Combining Eqs. (B.76) and (B.77), we obtain the reduced form labor supply equation:

wa,0 = κla,0, where κ =
λϕ

1− λη (1− αN )
. (B.78)

As expected, the wage adjustment parameter, κ, depends on the wage flexibility parameter,

λ, and the inverse elasticity of the labor supply, ϕ. It also depends on the share of the

nontradable sector and the share of labor in the nontradable sector, η, 1 − αN . These

parameters capture the extent to which a change in local wages translate into local inflation,

which creates further wage pressure.

Next, we log-linearize the labor demand equation (B.62) to obtain,

(wa,0 + la,0)WL =
(
1− αN

)
η

[
θWL

(
wa,0 +

la,0
θ

)
+ ρ

(
(1− θ)WLwa,0

+xa,0Q0

)]
(B.79)

−pTa,0 (ε− 1)WLT0 .

Here, the first line captures the local expenditure on nontradable labor, which comes from

both hand-to-mouth households and stockholders. Hand-to-mouth households’ spending

depends on the local wage, wa,0, as well as the local aggregate labor la,0 (multiplied by 1/θ

to capture the implied local hand-to-mouth labor). Stockholders’ spending depends on the

local wage, wa,0, as well as the local stock wealth, xa,0. The second line captures the local
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expenditure on tradable labor that depends on the local price of nontradables, pTa,0, as well

as the elasticity of substitution, ε − 1. The term, WLT0 =
(
1− αT

)
(1− η) WL

1−α , captures

the expenditure on tradable labor in the common-wealth benchmark [cf. (B.74)].

After rearranging terms, and using Eq. (B.78), we solve for the labor bill:

(wa,0 + la,0)WL = M
((

1− αN
)
ηρxa,0Q0 − pTa,0 (ε− 1)WLT0

)
, (B.80)

where M =
1

1− (1− αN ) η
{
θκ+1
κ+1 + ρκ(1−θ)

κ+1

} .

Here, we have used wa,0 = κla,0 to write the wage and the labor in terms of the labor bill.

We have also defined, M, which captures the local Keynesian multiplier effects. The term

in set brackets can be thought of as a weighted-average MPCs out of labor income between

hand-to-mouth households (MPC given by 1) and stockholders (MPC given by ρ). The

relative weights, θκ+1
κ+1 and κ(1−θ)

κ+1 , capture the extent to which additional labor income is

split between hand-to-mouth households and stockholders. This depends not only on the

population shares (θ) but also on the wage adjustment parameter (κ), because agents have

different labor supply elasticities (a simplifying assumption).

Finally, using Eq. (B.75) to substitute for the price of tradables in terms of local wages,

pTa,0 =
(
1− αT

)
wa,0, and using Eq. (B.78) once more, we obtain the following closed-form

solution:

wa,0 + la,0 =
1 + κ

1 + κζ
M
(
1− αN

)
ηρ
xa,0Q0

WL
(B.81)

la,0 =
1

1 + κ
(wa,0 + la,0) (B.82)

wa,0 =
κ

1 + κ
(wa,0 + la,0) , (B.83)

where ζ = 1 + (ε− 1)
(
1− αT

) LT0
L
M

= 1 + (ε− 1)

(
1− αT

)2
1− α

(1− η)M.

Here, the last line defines the parameter, ζ, and the last line substitutes for LT0 from (B.74).

Eq. (B.81) illustrates that the local spending on nontradables affects the local labor bill.

Eqs. (B.82) and (B.83) illustrate that this also affects labor and wages according to the

wage adjustment parameter, κ.
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The term, 1+κ
1+κζ , in Eq. (B.81) captures the effect that works through exports. In par-

ticular, an increase in local spending increases local wages, which generates an adjustment

of local exports. As expected, this adjustment is stronger when wages are more flexible

(higher κ). The adjustment is also stronger when tradable inputs are more substitutable

across regions (higher ε, which leads to higher ζ). In fact, when tradable inputs are gross

substitutes (ε > 1, which leads to ζ > 1), the export adjustment dampens the direct spend-

ing effect on the labor bill. When tradable inputs are gross complements (ε < 1, which

leads to ζ < 1), the export adjustment amplifies the direct spending effect.

Finally, consider the effect on local labor employed in nontradable and tradable sectors.

First consider the tradable sector. Log-linearizing Eq. (B.61), we obtain

wa,0 + lTa,0 = − (ε− 1) pTa,0

= − (ε− 1)
(
1− αT

)
wa,0

= − (ε− 1)
(
1− αT

) κ

1 + κζ
M
(
1− αN

)
ηρ
xa,0Q0

WL
. (B.84)

Here, the third line uses Eqs. (B.83) and (B.81). These expressions illustrate that the

export adjustment described above affects the tradable labor bill. While the effect of stock

wealth on the tradable labor bill is ambiguous (as it depends on whether ε > 1 or ε < 1),

we show that the effect on tradable labor is always (weakly) negative, dlTa,0/dxa,0 ≤ 0.

Intuitively, the increase in local wages always generate some substitution of labor away

from the area. On the other hand, labor bill can increase or decrease depending on the

strength of the income effect relative to this substitution effect.

Next consider the nontradable sector. Note that the total labor bill is the sum of

nontradable and tradable labor bills:

(wa,0 + la,0)WL =
(
wa,0 + lNa,0

)
WLN0 +

(
wa,0 + lTa,0

)
WLT0 .

Substituting this into (B.80) we obtain

(
wa,0 + lNa,0

)
WLN0 = M

[(
1− αN

)
ηρxa,0Q0 − (ε− 1) pTa,0WLT0

]
+ (ε− 1) pTa,0WLT0

= M
(
1− αN

)
ηρxa,0Q0 − (M− 1) (ε− 1) pTa,0WLT0

After substituting wa,0 + lTa,0 = − (ε− 1) pTa,0 from (B.84), normalizing by WL, using Eq.
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(B.74), we further obtain:

wa,0 + lNa,0 =M (1− α) ρ
xa,0Q0

WL
+ (M− 1)

1− αT

1− αN
1− η
η

(
wa,0 + lTa,0

)
. (B.85)

This expression illustrates that greater stock wealth affects the nontradable labor bill

due to a direct and an indirect effect. The direct effect is positive as it is driven by

the impact of greater local wealth on local spending. There is also an indirect effect

due to the impact of the stock wealth on the tradable labor bill—the multiplier effects

of which accrue to the nontradable labor bill. The indirect effect has an ambiguous sign

because stock wealth can decrease or increase the tradable labor bill depending on ε.

Nonetheless, we show that the direct effect always dominates. Specifically, regardless of ε,

we have d
(
wa,0 + lNa,0

)
/dxa,0 > 0, dlNa,0/dxa,0 > 0: that is, greater stock wealth increases

the nontradable labor bill as well as nontradable labor. The following result summarizes

this discussion.

Proposition 3 Consider the model with Assumption D when areas have an arbitrary dis-

tribution of stock wealth, {xa,0}a, that satisfies
∫
a xa,0da = 0. In the log-linearized equilib-

rium, local labor and wages in a given area,(la,0, wa,0), are characterized as the solution to

Eqs. (B.78) and (B.80). The solution is given by Eqs. (B.82) and (B.83). Local labor bill

in nontradables and tradable sectors are given by Eqs. (B.84) and (B.85). In particular,

local labor and wages satisfy the following comparative statics with respect to stock wealth:

dla,0/dxa,0 > 0, dwa,0/dxa,0 ≥ 0 and d (la,0 + wa,0) /dxa,0 > 0.

Moreover, regardless of ε, the labor bill in the nontradable sector and the labor in each

sector satisfy the following comparative statics:

d
(
lNa,0 + wa,0

)
/dxa,0 > 0, dlNa,0/dxa,0 > 0 and dlTa,0/dxa,0 ≤ 0.

Proof. Most of the proof is presented earlier. It remains to establish the comparative

statics for the tradable labor, the nontradable labor and the nontradable labor bill.

First consider the tradable labor. Note that the first line of the expression in (B.84)

implies

lTa,0 = −
(
1 + (ε− 1)

(
1− αT

))
wa,0. (B.86)
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Since (ε− 1)
(
1− αT

)
> −1 (because ε > 0) and dwa,0/dxa,0 ≥ 0 (cf. Eq. (B.83)), this

implies the comparative statics for the tradable labor, dlTa,0/dxa,0 ≤ 0.

Next consider the nontradable labor. Note that La,0 = LTa,0 +LNa,0. Log-linearizing this

expression, we obtain,

lNa,0L
N
a,0 = la,0L− lTa,0LTa,0.

Differentiating this expression with respect to xa,0 and using dla,0/dxa,0 > 0 and

dlTa,0/dxa,0 ≤ 0, we obtain the comparative statics for the nontradable labor, dlNa,0/dxa,0 >

0. Combining this with dwa,0/dxa,0 ≥ 0, we further obtain the comparative statics for the

nontradable labor bill, d
(
lNa,0 + wa,0

)
/dxa,0 > 0.�

B.5 Comparative Statics of Local Labor Market Outcomes

We next combine our results to investigate the impact of a change in aggregate stock wealth

(over time) on local labor market outcomes. Specifically, consider the comparative statics

of an increase in the future capital productivity from some Dold to Dnew > Dold.

First consider the effect on the common-wealth benchmark. By Proposition 2, the

equilibrium price of capital increases from Qold0 to Qnew0 > Qold0 . The labor market

outcomes remain unchanged: in particular, L0 = L,W0 = W,LN0 /L0 = 1−αN
1−α η and

LT0 /L0 = 1−αT
1−α (1− η).

Next consider the effect when areas have heterogeneous wealth. We use the notation

∆X = Xnew−Xold for the comparative statics on variable X. Consider the effect on labor

market outcomes, for instance, the (log of the) local labor bill log (Wa,0La,0). Note that

we have:

log (Wa,0La,0) ' log
(
WL

)
+ wa,0 + la,0.

Here, wa,0, la,0 are characterized by Proposition 3 as linear functions of capital ownership,

xa,0; and the approximation holds up to first-order terms in capital ownership, {xa,0}a.
Note also that the change of D does not affect log

(
WL

)
. Therefore, the comparative

statics in this case can be written as,

∆ log (Wa,0La,0) ' ∆ (wa,0 + la,0)

=
(
wnewa,0 + lnewa,0

)
−
(
wolda,0 + lolda,0

)
.
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Here, the approximation holds up to first-order terms in {xa,0}a. Put differently, up to a

first order, the change of D affects the (log of the) local labor bill through its effect on the

log-linearized equilibrium variables.

Recall that the log-linearized equilibrium is characterized by Proposition 3. In partic-

ular, considering Eq. (B.81) for Dold and Dnew, we obtain:

wolda,0 + lolda,0 =
1 + κ

1 + κζ
M
(
1− αN

)
ηρ
xa,0Q

old
0

WL0

,

wnewa,0 + lnewa,0 =
1 + κ

1 + κζ
M
(
1− αN

)
ηρ
xa,0Q

new
0

WL0

.

These equations illustrate that the change of D affects the log-linearized equilibrium only

through its effect on the price of capital, Q0. Taking their difference, we obtain Eq. (10)

in the main text that describes ∆ (wa,0 + la,0).

Applying the same argument to Eqs. (B.82) , (B.85) , (B.84), we also

obtain Eqs. (11) , (12) , (13) in the main text that describe, respectively,

∆la,0,∆
(
wa,0 + lNa,0

)
,∆
(
wa,0 + lTa,0

)
. These equations illustrate that an increase in

local stock wealth due to a change in aggregate stock wealth has the same impact on

local labor market outcomes as an increase of stock wealth in the cross section that we

characterized earlier.

Comparative Statics of Local Consumption. We next derive the comparative

statics of local consumption that we use in Section 5 (see Eq. (18)). For simplicity, we

focus on the case ε = 1. Using (B.62), we have

Pa,0Ca,0 =
Wa,0L

N
a,0

(1− αN ) η
.

Log-linearizing this expression around the common-wealth benchmark, we obtain

(pa,0 + ca,0)P0C0 =
(
wa,0 + lNa,0

) WLN0
(1− αN ) η

= Mρxa,0Q0

Here, the second line uses Eqs. (B.85) and (B.74), and observes that wa,0 + lTa,0 = 0 when

ε = 1. After rearranging terms, and considering the change from Dold to Dnew > Dold, we
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obtain

∆ (pa,0 + ca,0) =Mρ
xa,0∆Q0

P0C0
. (B.87)

After an appropriate change of variables, this equation gives Eq. (18) in the main text.

B.6 Details of the Calibration Exercise

This appendix provides the details of the calibration exercise in Section 5. We start by

summarizing the solution for the local labor market outcomes that we derived earlier. In

particular, we write Eqs. (B.81−B.85) as follows:

∆ (wa,0 + la,0)

SR
=

1 + κ

1 + κζ
M
(
1− αN

)
ηρ,

∆la,0
SR

=
1

1 + κ

∆ (wa,0 + la,0)

SR
(B.88)

∆wa,0
SR

=
κ

1 + κ

∆ (wa,0 + la,0)

SR

∆
(
wa,0 + lTa,0

)
SR

= − (ε− 1)
(
1− αT

) ∆wa,0
SR

∆
(
wa,0 + lNa,0

)
SR

= Mρ (1− α)− (M− 1)

(
1− αT

)2
1− αN

1− η
η

(ε− 1)
∆wa,0
SR

(B.89)

where S =
xa,0Qa,0

WL0

, R =
∆Q0

Q0

and M =
1

1− (1− αN ) η
{
θκ+1
κ+1 + ρ (1−θ)κ

κ+1

}
and ζ = 1 + (ε− 1)

(
1− αT

)2
1− α

(1− η)M.

Our calibration relies on two model equations that determine the key parameters κ and

ρ. Specifically, we calibrate κ by using Eq. (B.88), which replicates Eq. (19) from the

main text. We calibrate ρ by using Eq. (B.89) which generalizes Eq. (15) from the main

text. For reasons we describe in the main text, we do not use the response of the tradable

sector for calibration purposes (see Footnote 36).

Note that combining Eq. (B.88) with the empirical coefficients for employment and
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the total labor bill from Table 1 (for quarter 7), we obtain:

0.77% ≤ 1

1 + κ
2.18%

As we discuss in the main text, while the model makes predictions for total labor supply

including changes in hours per worker, in the data we only observe employment. A long

literature dating to Okun (1962) finds an elasticity of total hours to employment of 1.5.

Applying this adjustment and using the coefficients for total employment and the total

labor bill from Table 1 yields:

∆la,0
Sa,0R0

= 1.5× 0.77%

∆ (wa,0 + la,0)

Sa,0R0
= 2.18%.

Combining these with Eq. (19), we obtain:

κ = 0.9. (B.90)

Thus, a one percent change in labor is associated with a 0.9% change in wages at a horizon

of two years.

That leaves us with Eq. (B.89) to determine the stock wealth effect parameter, ρ. In

the main text, we focus on a baseline calibration that assumes unit elasticity for tradables,

ε = 1, which leads to a particularly straightforward analysis. In this appendix, we first

provide the details of the baseline calibration. We then show that this calibration is robust

to considering a wider range for the tradable elasticity parameter, ε ∈ [0.5, 1.5].

Throughout, we set the labor share parameters in the two sectors so that the weighted-

average share of labor is equal to the standard empirical estimates [cf. (6)]:

1− α =
2

3
.

To keep the calibration simple, we set the same labor share for the two sectors:

1− αL = 1− αN =
2

3
.

Eq. (B.89) (when ε = 1) shows that our analysis is robust to allowing for heterogeneous
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labor share across the two sectors.

B.6.1 Details of the Baseline Calibration

Setting ε = 1, Eq. (B.89) reduces to Eq. (15) in the main text,

∆
(
wa,0 + lNa,0

)
SR

=M (1− α) ρ.

Combining this expression with the empirical coefficient for the nontradable labor bill from

Table 1 (for quarter 7), we obtain:

M (1− α) ρ = 3.23% with 1− α =
2

3
. (B.91)

We also require the local income multiplier to be consistent with empirical estimates from

the literature, that is:

M=
1

1− (1− αN ) η
{
κθ+1
κ+1 + ρκ(1−θ)

κ+1

} = 1.5 (B.92)

After substituting 1− αN = 2/3, and rearranging terms, we obtain:

η

{
κθ + 1

1 + κ
+ ρ

(1− θ)κ
1 + κ

}
= 0.5. (B.93)

Note also that we already have κ = 0.9. Hence, for a given ρ, the calibration of the

multiplier provides a restriction in terms of the share of nontradables, η, and the fraction

of hand-to-mouth households, θ. For instance, when η = 0.5, we require θ = 1. In this

case, we need the weighted-average MPC (the term inside the set brackets) to be one,

which happens only if the hand-to-mouth population share is equal to one. More generally,

increasing η decreases the implied θ.

Given Eq. (B.92), Eq. (B.91) determines the stock wealth effect parameter indepen-

dently of the other parameters:

ρ = 3.23%.

The parameter, η, is difficult to calibrate precisely because there is no good measure of the
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trade bill at the county level. We allow for a wide range of possibilities:

η ∈
[
η, η
]

, where η = 0.5 and η = 0.8. (B.94)

For each η, we obtain the implied θ from Eq. (B.93), which falls into the range:

θ (η) ∈
[
θ, θ
]

, where θ = θ (η) = 0.18 and θ = θ
(
η
)

= 1. (B.95)

B.6.2 Robustness of the Baseline Calibration

Next consider the case with a more general elasticity of substitution between tradable

inputs, ε. In this case, Eq. (B.89) is more complicated and given by:

∆
(
wa,0 + lNa,0

)
SR

=Mρ (1− α)− (M− 1) (ε− 1)

(
1− αT

)2
1− αN

1− η
η

∆wa,0
SR

.

In particular, the nontradable labor bill also depends on the effect on local wages. The

intuition is that the change in local wages affects the tradable labor bill, which generates

spillover effects on the local spending and the local nontradable labor bill. Consistent with

this intuition, the magnitude of this effect depends on the elasticity ε and the multiplier

M as well as the parameters, αT , αN , η.

Recall also that we have Eq. (B.88) that describes the change in wages as a function

of the change in the total labor bill:

∆wa,0
SR

=
κ

1 + κ

∆ (wa,0 + la,0)

SR
.

Substituting this expression into Eq. (B.89), and using the empirical coefficients for the

nontradable and the total labor bill from Table 1 (for quarter 7), we obtain the following

generalization of (B.91):

Mρ (1− α) = 3.23% + (M− 1) (ε− 1)

(
1− αT

)2
1− αN

1− η
η

κ

1 + κ
2.18%. (B.96)

Thus, the stock wealth effect parameter in this case is not determined independently

of the remaining parameters. We have already calibrated κ = 0.9 and M =1.5 [cf. Eq.
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(B.90) and (B.92)] as well as 1 − α = 1 − αT = 1 − αN = 2/3. After substituting these,

we obtain:

ρ = 3.23% +
1

3
(ε− 1)

1− η
η

0.9

1.9
2.18%.

For any fixed ε, Eq. (B.96) describes ρ as a function of η, where η is required to lie in the

range (B.94). Substituting this (as well as κ) into (B.93), we also obtain θ as a function

of η.

Figure B.1 illustrates the possible values of ρ for ε = 0.5 (the left panel) and ε = 1.5

(the right panel). As the figure illustrates the implied values for ρ remain close to their

corresponding levels from the baseline calibration with ε = 1. As expected, the largest

deviations from the benchmark obtain when the share of nontradables is small—as trade

has the largest impact on households’ incomes in this case. However, ρ lies within 5% of

its corresponding level from the baseline calibration even if we set η = 0.5.

The intuition for robustness can be understood as follows. As we described earlier, the

additional effects emerge from the adjustment of the tradable labor bill due to a change in

local wages. As long as wages do not change by much, the effect has a negligible effect on our

baseline calibration. As it turns out, the value of κ that we find is such that the deviations

from the benchmark are relatively small. Put differently, our analysis suggests that wages

in an area do not change by much in response to stock wealth changes. Consequently, the

tradable labor bill of the area also does not change by much either even if ε is somewhat

different than 1.

B.7 Aggregation When Monetary Policy is Passive

So far, we assumed the monetary policy changes the interest rate to neutralize the im-

pact of stock wealth changes on aggregate labor. In this appendix, we characterize the

equilibrium under the alternative assumption that monetary policy leaves the interest rate

unchanged in response to stock price fluctuations. In Section 6 of the main text, we use

this characterization together with our calibration to describe how stock price fluctuations

would affect aggregate labor market outcomes if they were not countered by monetary

policy.

Specifically, consider some D and let R
f
0 denote the “frictionless” interest rate that we
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Figure B.1: Robustness to the elasticity of substitution between tradable inputs
Note: The left panel (resp. the right panel) illustrates the implied ρ as a function of η given ε = 0.5

(resp. ε = 1.5), as we vary η over the range in (B.94). The red dashed lines illustrate the implied
ρ for the baseline calibration with ε = 1.

characterized earlier corresponding to this level of productivity [(B.72)]:

R
f
0 =

1

1− ρ
1− α

1− (1− α) θ

(1− θ)L+D

L
. (B.97)

Suppose the expected productivity D changes and is not necessarily equal to D. In period

0, monetary policy leaves the interest rate unchanged at R
f
0 . Starting period t ≥ 1 onward,

monetary policy follows the same rule as before (B.20). The model is otherwise the same

as in Section B.1. Our goal is to understand how the change in expected D affects the

aggregate equilibrium allocations in period 0 when the interest rate does not respond. For

simplicity, we focus on the common-wealth benchmark, xa,0 = 0 (more generally, the results

apply for the aggregate outcomes up to log linearization).

Most of our earlier analysis applies also in this case. In particular, Proposition 1 still

applies and characterizes the equilibrium starting periods t ≥ 1.
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The differences concern the aggregate allocations in period 0. The analysis proceeds

similar to Section B.3. Wages are the same across regions, Wa, but not necessarily equal

to W . Therefore, Eq. (B.64) does not necessarily apply. Instead, we aggregate the labor

supply Eq. (B.63) to obtain

W 1−εw
0 = λw

(
εw

εw − 1
χW εwϕh

0 P0

(
L0 − (1− θ)L0

θ

)ϕh)(1−εw)/(1+ϕhεw)

+(1− λw)W
1−εw

.

(B.98)

We also have the following analogues of Eqs. (B.65) and (B.66):

R0 =
α

1− α
W0L0

P0 = Rα0W
1−α
0 =

(
α

1− α

)α
Lα0W0. (B.99)

This implies the price of capital is now given by:

Q0 =
α

1− α
W0L0 +

1

R
f
0

WD

ρ
. (B.100)

Finally, we also aggregate Eq. (B.62) to obtain the labor demand equation:

W0L0 = (1− α)

 W0

(
L0 − (1− θ)L

)
+

ρ

(
(1− θ)

(
W0L+ 1

R
f
0

WL
ρ

)
+Q0

)  . (B.101)

The equilibrium is characterized by Eqs. (B.98−B.101) in four variables,

(W0, L0, P0, Q0). When D = D, these equations are satisfied with L0 = L and W0 = W

and corresponding Q0, P 0 [cf. (B.97)]. To characterize the equilibrium further, we next

log-linearize the equations around the allocations corresponding to D = D.

Log-linearized Aggregate Equilibrium. We start with the supply side. Log-

linearizing Eq. (B.99), we obtain:

p0 = αl0 + w0. (B.102)
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Log-linearizing the labor supply equation (B.98), we obtain the aggregate analogue of (7)

from the main text:

w0 = λ (p0 + ϕl0) (B.103)

where λ =
λw

1 + (1− λw)ϕhεw
and ϕ =

ϕh

θ
.

Combining the last two equations, we further obtain:

w0 = κAl0, where κA ≡ λ (ϕ+ α)

1− λ
> κ =

λϕ

1− λη (1− αN )
. (B.104)

Here, κA denotes the aggregate wage adjustment parameter, and κ denotes the local wage

adjustment as before [cf. (B.78)]. We discuss the comparison between κA and κ subse-

quently.

We next turn to the demand side. Log-linearizing Eq. (B.100), we obtain,

q0Q0 = (w0 + l0)
α

1− α
WL+ d

1

R
f
0

WD

ρ
. (B.105)

Log-linearizing the labor demand Eq. (B.101), we obtain,

(w0 + l0)WL = (1− α)

(
w0 +

l0
θ

)
θWL+ ρ

(
w0 (1− θ)WL+ q0Q0

)
=

(
w0 +

l0
θ

)
θWL+ ρ

 w0 (1− θ)WL

+ (w0 + l0) α
1−αWL+ d 1

R
f
0

WD
ρ

 .

Here, the second line substitutes Eq. (B.105).

After rearranging terms to account for the multiplier effects, and using Eq. (B.103) to

simplify the expression, we obtain the effect on the aggregate labor bill:

(w0 + l0)WL = (1− α)MAρQA (B.106)

where QA = d
1

R
f
0

WD

ρ
(B.107)

and MA =
1

1− (1− α)
{
θκA+1
κA+1

+ ρ (1−θ)κA
κA+1

}
− αρ
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Here, QA denotes the exogenous part of the stock wealth—the valuation of future payoffs

excluding current payoffs (that respond endogenously). This is multiplied by ρ to obtain

total spending. This spending is then amplified by the aggregate multiplier, MA, which

is different than the local multiplier, M. We discuss the comparison of MA and M
subsequently. The amplified spending is then multiplied by the effective labor share, 1−α,

to obtain the aggregate labor bill.

Combining Eq. (B.107) with Eq. (B.104), we also obtain the separate effects on

aggregate labor and wages:

l0WL =
1

κA + 1
(1− α) ρQA (B.108)

w0WL =
κA

κA + 1
MA (1− α) ρQA (B.109)

Substituting Eq. (B.107) into Eq. (B.105), we obtain the actual stock price (that

incorporates the endogenous change in R0):

q0Q0 =
(
αMAρ+ 1

)
QA. (B.110)

Recall also that Eq. (B.102) provides the solution for aggregate price index p0 = αl0 +w0.

Finally, considering Eqs. (B.107) and (B.108) for two different levels of future divi-

dends, dold and dnew, and taking the difference, we obtain Eqs. (21) and (22) in the main

text.

Comparison with the Log-linearized Local Equilibrium. It is instructive to

compare the log-linearized aggregate equilibrium with its counterpart we characterized

earlier.

First consider the labor supply equations (B.103) and (B.104). Note that Eq. (B.103)

is the same as its local counterpart, Eq. (B.77). Hence, controlling for prices as well as

labor, the aggregate labor supply curve is the same as the local one. However, Eq. (B.104)

is different than its local counterpart, Eq. (B.78). This is because the impact of aggregate

nominal wages on the aggregate price index is greater than the impact of local wages on the

local price index: specifically, we have p0 = αl0+w0 as opposed to p0,a = w0,aη
(
1− αN

)
[cf.

Eqs. (B.102) and (B.76)]. The real wage w−p increases locally whereas it decreases in the

aggregate. Therefore, there is a positive neoclassical labor supply response locally whereas
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a negative one in the aggregate, with strength of both determined by the magnitude of the

Frisch elasticity 1/φ.

To characterize these differences further, we rewrite the expressions for κ and κA to

eliminate the wage stickiness parameter, λ, which gives:

1

κA
=

1

1 + α/ϕ

{
1

κ
− 1

ϕ

(
1− η

(
1− αN

))}
. (B.111)

This expression calculates the aggregate labor response 1/κA in two steps. The term in

set brackets starts with the local response but “cleanses” it from the local neoclassical

effect to isolate the effect due to wage stickiness that extends to the aggregate. The term

outside the set brackets adjusts the aggregate wage stickiness effect further for the aggregate

neoclassical effect.

Next consider the aggregate labor bill equation (B.107). Recall that its local counter-

part is given by [cf. Eqs. (B.82) and (B.83)]:

(la,0 + wa,0)WL

xa,0Q0
=M 1 + κ

1 + κζ

(
1− αN

)
ηρ. (B.112)

Hence, the aggregate effect differs from the local effect for three reasons. First, the direct

spending effect is greater in the aggregate than at the local level, (1− α) ρ > η
(
1− αN

)
ρ.

Here, the inequality follows since 1 − α = η
(
1− αN

)
+ (1− η)

(
1− αT

)
. Intuitively,

spending on tradables increases the labor bill in the aggregate but not locally. Second,

the aggregate labor bill does not feature the export adjustment term, 1+κ
1+κζ , because this

adjustment is across areas.

Third, the aggregate multiplier is different and typically greater than the local multi-

plier. To see this, note we can the local and the aggregate multipliers as:

MA =
1

1−mA
,mA = (1− α)

{
θκA + 1

κA + 1
+ ρ

(1− θ)κA

κA + 1

}
+ αρ (B.113)

M =
1

1−m
,m = η

(
1− αN

){θκ+ 1

κ+ 1
+ ρ

(1− θ)κ
κ+ 1

}
.

Here, mA (resp. m) denote the additional spending induced by a dollar of income at the

aggregate (resp. local) level. At the aggregate level, a dollar of income is split between labor

and capital (according to their shares) and both components induce additional aggregate
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spending. At the local level, there are two differences. First, while the dollar is still split

between labor and capital, the latter does not induce local spending—because capital is

not held locally. Second, a fraction 1 − η of the spending through labor income spills to

other areas—because it is used to purchase tradables.

In view of these differences, if the additional (demand-induced) labor income were

distributed symmetrically across households in the aggregate and in the local area, then

the aggregate multiplier would always exceed the local multiplier. Formally, if the terms

inside the set brackets were the same (which happens if κA = κ), then we would have

mA > m since 1 − α > η
(
1− αN

)
and α > 0. In our model, this comparison is slightly

complicated by the fact that the aggregate and local wage flexibility terms are different,

κA 6= κ, which changes the extent to which additional labor income accrues to wages

compared to labor. This in turn affects the distribution of this income across stockholders

and hand-to-mouth agents (that have heterogeneous MPCs), because these agents have

heterogeneous labor supply elasticities (a simplifying assumption). As we will illustrate

shortly, for our calibration these distributional effects are small and the slippage effects we

described earlier dominate and imply that the aggregate multiplier is greater, mA > m and

MA >M.

Finally, going back to (B.112), note that as long as ε ≥ 1 (andMA >M), the aggregate

effect is greater than the local effect. In this case, ζ ≥ 1 and thus the export adjustment

also dampens the local effect relative to the aggregate effect. When ε < 1, the export

adjustment tends to make the local effect greater than the aggregate effect. However, all

other effects (the direct spending effect as well as the multiplier effect) tend to make the

aggregate effect greater than the local effect.

Details and Robustness of the Aggregate Calibration. We next provide the

details of the aggregate calibration exercise in Section 5. Most of the analysis is presented

in the main text. Here, we show that our calibration of the aggregate wage adjustment

coefficient, κA, is robust [cf. (B.111)]. We then verify that with our calibration the

aggregate multiplier is greater than the local multiplier, MA >M.

First consider the wage adjustment coefficient. Recall from Section B.6 that we take

1 − α = 1 − αN = 2
3 . As we describe in Section 5, we also use ϕ−1 = 0.5 for the

(effective) Frisch elasticity. Combining these observations with Eq. (B.111), and our

estimate κ = 0.9, we obtain the aggregate wage adjustment coefficient as a function of the
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share of nontradables, κA (η). Recall that we consider a wide range of parameters for the

share of nontradables, η ∈
[
η, η
]
, where η = 0.5 and η = 0.8 [cf. (B.94)]. Calculating the

wage adjustment coefficient over this range, we obtain

κA (η) ∈
[
κA, κA

]
, where κA = κA (η) = 1.32 and κA = κA

(
η
)

= 1.5. (B.114)

A higher κA implies a smaller labor response to a change in labor bill, 1/
(
1 + κA

)
[cf.

(21)]. Hence, the calibration we use in the main text, η = η = 0.5 and κA = κA = 1.5,

implies the smallest aggregate labor response (a conservative calibration). Eq. (B.114)

illustrates further that this calibration is robust. With other choices for η, the implied κA

(as well as the implied labor adjustment, 1/
(
1 + κA

)
) remains within 10% of our baseline

calibration.

Next consider the aggregate multiplier. Recall from Section 5 that our baseline calibra-

tion implies ρ = 3.23%. Recall also that, for each choice of η in (B.94), we set the share of

hand-to-mouth agents θ (η) that ensure the local multiplier is given by, M =1.5. Substi-

tuting these observations together with the implied κA (η) from (B.114) into (B.113), we

calculate the aggregate multiplier as a function of the share of nontradables, MA (η).

Figure B.2 plots the possible values of the aggregate multiplier together with the local

multiplier (which is 1.5 by assumption). As expected, the difference between the two

multipliers is smallest when the share of nontradables is largest. Nonetheless, the implied

aggregate multiplier exceeds the local multiplier for each level of η that we consider. This

verifies that our calibration the aggregate multiplier is greater than the local multiplier,

MA >M.

B.8 Extending the Model to Incorporate Uncertainty

In this appendix, we generalize the baseline model to introduce uncertainty about capital

productivity in period 1. We show that changes in households’ risk aversion or perceived

risk generate the same qualitative effects on the price of capital (as well as on “rstar”) as

in our baseline model. Moreover, conditional on a fixed amount of change in the price of

capital, the model with uncertainty features the same quantitative effects on local labor

market outcomes. Therefore, this exercise illustrates that our baseline analysis is robust to

generating stock price fluctuations from alternative channels than the change in expected

stock payoffs that we consider in our baseline analysis.
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Figure B.2: Comparison between the aggregate and the local multipliers
Note: The solid line illustrates the implied aggregate multiplierMA as a function of η, as we vary
η over the range in (B.94). The dashed line illustrates the local multiplier that we calibrate as,
M = 1.5.

The model is the same as in Section B.1 with two differences. First, there is un-

certainty about the productivity of the future capital-only technology. Formally, we let

D ⊂ [ α
1−αL,∞) denote a finite set of productivities. This domain ensures condition (B.29)

holds for each D ⊂ D. Let π (D) (with
∑
D π (D) = 1) denote a probability distribution

over D. The productivity parameter D is uncertain in period 0 and it is realized in the

beginning of period 1 with probability π (D). Starting period 1 onward, there is no further

uncertainty. The baseline model is the special case in which D has a single element. We

denote the equilibrium allocations for periods t ≥ 1 as a function of D, e.g., Csa,t (D).

Second, to analyze the effect of risk aversion, we allow stockholders to have Epstein-Zin

preferences that are more general than time-separable log utility. Specifically, we continue

to assume the elasticity of intertemporal substitution is equal to one but allow for more

general risk aversion.

Formally, we replace stockholders’ preferences in (3) with the recursive utility defined
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by:

Va,t =
(
Csa,0

)ρ
U1−ρ
a,t+1 where Ua,t+1 =

(
E
[
V 1−γ
a,t+1

])1/(1−γ)
. (B.115)

Here, U sa,t+1 captures a certainty-equivalent measure of the next period’s continuation

utility. The parameter, γ, captures relative risk aversion. The baseline model is the special

case with γ = 1. The rest of the model is unchanged.

General Characterization of Equilibrium with Uncertainty. For periods t ≥
1, since there is no remaining uncertainty, our earlier analysis still applies. In particular,

the utility function in (B.115) becomes the same as in the baseline analysis. To see this,

note that Ua,t+n = Va,t+n for each t + n ≥ t ≥ 1. Substituting this into (B.115), taking

logs, and iterating forward, we obtain:

log Va,t = ρ

∞∑
n=0

(1− ρ)n logCsa,t+n for t ≥ 1.

This is equivalent to time separable log utility that we use in our baseline analysis [cf. (3)].

Therefore, Proposition 2 still applies and characterizes the equilibrium for periods t ≥ 1.

In particular, consumption is constant over time, Csa,t = Csa,1 (D) for each t ≥ 1. Using

this observation, we calculate,

Va,t = Csa,1 (D) for t ≥ 1. (B.116)

Hence, for periods t ≥ 1, the continuation utility is equal to consumption in period 1.

Using Proposition 2, we also have an explicit characterization of this consumption:

Pa,1 (D)Csa,1 (D) = ρ

(
WL

ρ
+

1 + xa,1
1− θ

Q1 (D) +Afa,1

)
(B.117)

where P1 (D) = WDα and Q1 (D) =
WD

ρ
(B.118)

For period 0, since there is uncertainty, stockholders’ utility is different than before.

Using Eqs. (B.115) , (B.116), and (B.117), we write the stockholders’ problem as [cf.
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problem (B.9)]:

max
Csa,0,

1+xa,1
1−θ

ρ logCsa,0 + (1− ρ) logUa,1 (B.119)

where Ua,1 =
(
E
[
Csa,1 (D)1−γ

])1/(1−γ)

s.t. Pa,0C
s
a,0 +

Afa,1

Rf0
+

1 + xa,1
1− θ

(Q0 −R0) = Wa,0L+
1 + xa,0

1− θ
Q0

and P1 (D)Csa,1 (D) = ρ

(
WL

ρ
+

1 + xa,1
1− θ

Q1 (D) +Afa,1

)
The following lemma characterizes the solution to this problem.

Lemma 2 Consider stockholders in area a. Their optimal consumption in period 0 satis-

fies:

Pa,0C
s
a,0 = ρ

(
Wa,0L+

1

Rf0

WL

ρ
+

1 + xa,0
1− θ

Q0

)
. (B.120)

Their optimal portfolios are such that the risk-free interest rate satisfies,

1

Rf0
= E [Ma,1 (D)] (B.121)

and the price of capital satisfies,

Q0 = R0 + E [Ma,1 (D)Q1 (D)] with Q1 (D) =
WD

ρ
, (B.122)

where Ma,1 (D) denotes the nominal stochastic discount factor (SDF) for area a (per unit

time) and is given by

Ma,1 (D) = (1− ρ)
Pa,0C

s
a,0

P1 (D)Csa,1 (D)

Csa,1 (D)1−γ

E
[
Csa,1 (D)1−γ

] . (B.123)

Eq. (B.120) illustrates that the consumption wealth effect remains unchanged in this

case [cf. Eq. (B.59)]. This is because we use Epstein-Zin preferences with an intertemporal

elasticity of substitution equal to one. Eqs. (B.121) and (B.122) illustrate that standard

asset pricing conditions apply in this setting. Specifically, the risk-free asset as well as
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capital are priced according to a stochastic discount factor (SDF) that might be specific

to the area. Eq. (B.123) characterizes the SDF. When γ = 1, the SDF has a familiar form

corresponding to time-separable log utility. We relegate the proof of Lemma B.119 to the

end of this section.

Since the optimal consumption Eq. (B.120) remains unchanged (and the remaining

features of the model are also unchanged), the rest of the general characterization in Section

B.2 also applies in this case.

We next characterize the equilibrium further in the common-wealth benchmark.

Common-wealth Benchmark with Uncertainty. Consider the benchmark case

with xa,0 = 0 for each a. Most of the analysis from Section B.3 also applies in this case.

In particular, wages and labor are at their frictionless levels W0 = W,L0 = Lh0 = L. The

rental rate, R0, and the unit cost are given Eqs. (B.65) and (B.66).

The main difference concerns the pricing of stocks, which now reflects risk. To calcu-

late the stochastic discount factor, note that Afa,1 = xa,1 = 0 since areas are symmetric.

Therefore, using Eqs. (B.117) and (B.118) stockholders’ consumption in period 1 is given

by,

P1 (D)Cs1 (D) = WL+
WD

1− θ
(B.124)

and Cs1 (D) =
L+ D

1−θ
Dα

.

Likewise, substituting xa,0 = xa,1 = Afa,1 = 0 into the stockholders’ budget constraint

in (B.119), we obtain stockholders’ current expenditure:

P0C
s
0 = W0L+

R0

1− θ
.

Since stockholders’ aggregate savings is zero, their aggregate spending is equal to the sum

of their labor and capital income. Combining this with W0 = W and R0 = α
1−αWL [cf.

(B.65)], we also calculate stockholders’ spending in period 0 in terms of the parameters

P0C
s
0 = WL

(
1 +

α

1− α
1

1− θ

)
. (B.125)

70



Combining Eqs. (B.124) and (B.125) with (B.123), we also calculate the stochastic

discount factor as

M1 (D) = (1− ρ)
P0C

s
0

P1 (D)Cs1 (D)

Cs1 (D)1−γ

E
[
Cs1 (D)1−γ

]

= (1− ρ)
L
(

1 + α
1−α

1
1−θ

)
L+ D

1−θ

(
L+ D

1−θ
Dα

)1−γ

E

[(
L+ D

1−θ
Dα

)1−γ
] (B.126)

Thus, in view of Lemma B.119, we obtain closed-form solutions for the interest rate

and the price of capital:

1

Rf0
= E [M1 (D)] (B.127)

Q0/W =
α

1− α
L+ E

[
M1 (D)

D

ρ

]
. (B.128)

When there is a single state, it is easy to check that Eqs. (B.127) and (B.128) give the same

expression as in our baseline analysis [cf. (B.72) and (B.73)]. Hence, these expressions

generalize our baseline analysis to the case with uncertainty.

Here, we have arrived at these equations using a different method than in Section B.3.

As before, we could also aggregate the labor demand and solve for the multiplier to obtain

the following analogue of (B.71):

LW

1− α
= MAρ

[
1

Rf0
(1− θ) WL

ρ
+ E

[
M1 (D)

WD

ρ

]]
where MA =

1

(1− ρ) (1− (1− α) θ)

As before, stockholders’ future wealth should be at a particular level such that its direct

spending effect, combined with the multiplier effects, are just enough to ensure output is

equal to its frictionless level. Specifically, the term inside the set brackets is equal to a
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constant given by:

(1− θ) 1

Rf0

L

ρ
+ E

[
M1 (D)

D

ρ

]
=

(1− ρ) (1− (1− α) θ)

(1− α) ρ
L. (B.129)

After substituting 1

Rf0
= E [M1 (D)] and the SDF from (B.126), it can be checked that this

equation indeed holds.

Recall that, in the baseline model without uncertainty, we generate fluctuations in Q0 as

well as Rf0 from changes in D. We next show that this aspect of the model also generalizes.

In particular, after summarizing the above discussion, the following proposition establishes

that changes in risk or risk aversion generate the same effects on asset prices as changes in

future productivity in the baseline model.

Proposition 4 Consider the model with uncertainty described earlier where D takes values

in the finite set D ⊂ [ α
1−αL,∞) according to the probability distribution function (π (D))D.

Suppose areas have common stock wealth, xa,0 = 0 for each a. In equilibrium, all areas

have identical allocations and prices. In period 0, nominal wages and labor are at their

frictionless levels, W0 = W,L0 = L; the stochastic discount factor is given by Eq. (B.126);

the nominal interest rate is given by Eq. (B.127); the price of capital is given by Eq.

(B.128); the shares of labor employed in the nontradable and tradable sectors are given by

Eq. (B.74).

Consider any one of the following changes:

(i) Suppose γ = 1 and the probability distribution,
(
πold (D)

)
D, changes such that

(πnew (D))D first-order stochastically dominates
(
πold (D)

)
D.

(ii) Suppose γ = 1 and the probability distribution,
(
πold (D)

)
D, changes such that(

πold (D)
)
D is a mean-preserving spread of (πnew (D))D.

(iii) Suppose
(
πold (D)

)
D remains unchanged but risk-aversion decreases, γnew < γold.

These changes increase Q0 and reduce Rf0 in equilibrium but do not affect the labor

market outcomes in period 0.

The first part is a generalization of the comparative statics exercise that we consider

in the baseline model. It shows that the price of capital increases also if agents perceive

greater capital productivity in the first-order stochastic dominance sense. The second part

shows that a similar result obtains if agents’ expected belief for capital productivity remains
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unchanged but they perceive less risk in capital productivity. For analytical tractability,

these two parts focus on the case, γ = 1, which corresponds to time-separable log utility

as in the baseline model. The last part considers the case with general γ, and shows that

a similar result obtains also if agents’ belief distribution remains unchanged but their risk

aversion declines. We relegate the proof of Proposition 4 to the end of this section.

Comparative Statics of Local Labor Market Outcomes with Uncertainty.

Recall that since the optimal consumption Eq. (B.120) remains unchanged, all equilibrium

conditions for period 0 derived in Section B.2.3 continue to apply conditional on Q0 and

Rf0 . Therefore, the log-linearized equilibrium conditions derived in Section B.4 also con-

tinue to apply conditional on Q0. Moreover, as we show in Section B.5, the comparative

statics in Proposition 4 affect these conditions only through their effect on Q0. It follows

that, conditional on generating the same change in the price of capital, ∆Q0, the model

with uncertainty features the same quantitative effects on local labor market outcomes as

in our our baseline model. Combining this result with the comparative static results in

Proposition 4, we conclude that our baseline analysis is robust to generating stock price

fluctuations from alternative sources such as changes in households’ risk aversion or per-

ceived risk about stock payoffs.

Proof of Lemma 2. To simplify the problem, consider the change of variables,

S̃a,0 =
Afa,1 +WL/ρ

Rf0
+

1 + xa,1
1− θ

(Q0 −R0) .

Here, S̃a,0 can be thought of as the stockholder’s “effective savings” that incorporates the

present discounted value of her lifetime wealth in subsequent periods, 1

Rf0

WL
ρ . We also

define

ωa,1 ≡
1 + xa,1

1− θ
Q0 −R0

S̃a,0
.

Here, ωa,1 captures the fraction of the stockholder’s effective savings that she invests in

capital (recall that Q0 − R0 denotes the ex-dividend price of capital). The remaining

fraction, 1 − ωa,1, is invested in the risk-free asset. After substituting this notation into
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the budget constraints, the stockholder’s problem can be equivalently written as,

max
S̃a,0,ωa,1

ρ logCsa,0 + (1− ρ) logUa,1 (B.130)

where Ua,1 =
(
E
[
Csa,1 (D)1−γ

])1/(1−γ)

s.t. Pa,0C
s
a,0 + S̃a,0 = Wa,0L+

WL

ρ
+

1 + xa,0
1− θ

Q0

P1 (D)Csa,1 (D) = ρS̃a,0

(
Rf0 + ωa,1

(
Q1 (D)

Q0 −R0
−Rf0

))
.

Here, Q1(D)
Q0−R0

denotes the gross return on capital. When ωa,1 = 0, the stockholder does not

invest in capital so her portfolio return is the gross risk-free rate, Rf0 . When ωa,1 = 1, the

stockholder invests all of her savings in capital so her portfolio return is the gross return

to capital, Q1(D)
Q0−R0

.

Next consider the optimality condition for S̃a,0 in problem (B.119). This gives:

ρ

Pa,0Csa,0
= (1− ρ)

Uγa,1
Ua,1

E

[
Csa,1 (D)−γ

1

P1 (D)
ρ

(
Rf0 + ωa,1

(
Q1 (D)

Q0 −R0
−Rf0

))]
.

Using the budget constraint in period 1 to substitute for the return in terms of Csa,1 (D)

and simplifying, we further obtain:

ρ

Pa,0Csa,0
= (1− ρ)Uγ−1

a,1 E

[
Csa,1 (D)−γ

Csa,1 (D)

S̃a,0

]
= (1− ρ)Uγ−1

a,1 U1−γ
a,1

1

S̃a,0

= (1− ρ)
1

S̃a,0
.

Here, the second line uses U1−γ
a,1 = E

[
Csa,1 (D)1−γ

]
(from the definition of the certainty-

equivalent utility). The last line simplifies the expression. Combining the resulting expres-

sion with the budget constraint in period 0, we obtain,

Pa,0C
s
a,0 = ρ

(
Wa,0L+

WL

ρ
+

1 + xa,0
1− θ

Q0

)
.
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This establishes (B.120).

Next, to establish the asset pricing condition for the risk-free asset, consider the opti-

mality condition for Afa,1 in the original problem (B.119) (as this corresponds to saving in

the risk-free asset). This gives:

ρ

Pa,0Csa,0
= (1− ρ)Uγ−1

a,1 E

[
1

P1 (D)Csa,1 (D)γ
ρRf0

]

= (1− ρ)
1

E
[
Csa,1 (D)1−γ

]E [ 1

P1 (D)Csa,1 (D)γ
ρRf0

]
(B.131)

Here, the second line substitutes U1−γ
a,1 = E

[
Csa,1 (D)1−γ

]
. Rearranging terms and substi-

tuting Ma,1 (D) from Eq. (B.123), we obtain Eq. (B.121).

Finally, to establish the asset pricing condition for capital, consider the optimality

condition for ωa,1 in problem (B.130). This gives:

E

[
Csa,1 (D)−γ

Pa,1 (D)
ρ

(
Q1 (D)

Q0 −R0
−Rf0

)]
= 0.

Rearranging terms, we obtain,

Q0 = R0 +
1

Rf0

1

E
[

1
Pa,1(D)Csa,1(D)γ

]E [ 1

Pa,1 (D)Csa,1 (D)γ
Q1 (D)

]

= R0 + (1− ρ)
1

E
[
Csa,1 (D)1−γ

]E [ Pa,0C
s
a,0

P1 (D)Csa,1 (D)γ
Q1 (D)

]
= R0 + E [Ma,1 (D)Q1 (D)] .

Here, the second line uses Eq. (B.131) to substitute for 1/Rf0 and the last line substitutes

for Ma,1 (D) from Eq. (B.123). This establishes (B.122). Note that we also have Q1 (D) =
WD
ρ from (B.118). This completes the proof of the lemma.�

Proof of Proposition 4. It remains to establish the comparative statics exercises. Recall

that stockholders’ future wealth satisfies (B.129). Using (B.128) and R0 = α
1−αL we can
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rewrite this as:

(1− θ) 1

Rf0

L

ρ
+Q0/W −

α

1− α
L =

(1− ρ) (1− (1− α) θ)

(1− α) ρ
L.

Note that the probability distribution, (π (D))D, or the risk aversion, γ, affect this equa-

tion only through their effect on Q0 and Rf0 . The equation then implies that if these

changes increase Q0 then they must also increase Rf0 . Therefore, it suffices to establish the

comparative statics exercises for the price of capital, Q0.

First consider the comparative statics exercises in parts (i) and (ii). After substituting

γ = 1 into Eqs. (B.128) and (B.126), we obtain the following expression for the price of

capital:

Q0/
(
WL

)
=

α

1− α
+

1− ρ
ρ

(
1− θ +

α

1− α

)
E [f (D)] (B.132)

where f (D) =
D

L (1− θ) +D

Here, the second line defines the function f : R+ → R+. Note that this function is

strictly increasing and strictly concave: that is, f ′ (D) > 0 and f ′′ (D) < 0 for D >

0. Combining this observation with Eq. (B.132) proves the desired comparative statics.

To establish (i), note that Enew [f (D)] ≥ Eold [f (D)] because f (D) is increasing in D,

and πnew (D) first-order stochastically dominates πold (D). To establish (ii), note that

Enew [f (D)] ≥ Eold [f (D)] because f (D) is increasing and concave in D, and πnew (D)

second-order stochastically dominates πold (D) (which in turn follows because πold (D) is a

mean-preserving spread of πnew (D)).

Finally, consider the comparative statics exercise in part (iii). In this case, Eqs. (B.128)

and (B.126) imply,

Q0/
(
WL

)
=

α

1− α
+

1− ρ
ρ

(
1− θ +

α

1− α

) E
[
f (D) g (D)1−γ

]
E
[
g (D)1−γ

] , (B.133)

where g (D) =
L (1− θ) +D

Dα
.

Here, the second line defines the function g : R+ → R+. We first claim that this function

is increasing in D over the relevant range. To see this, note that,
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g′ (D) = D−α−1 (1− α)

(
D − (1− θ) α

1− α
L

)
.

This is strictly positive since D ≥ α
1−αL [cf. condition (B.29)]. Therefore, g (D) is increas-

ing in D over the relevant range.

Next note that Eq. (B.133) can be rewritten as

Q0/
(
WL

)
=

α

1− α
+

1− ρ
ρ

(
1− θ +

α

1− α

)
E∗ [f (D)] ,

where E∗ [·] denotes the expectations under the endogenous probability distribution

(π∗ (D))D, defined by,

π∗ (D) =
π (D) g (D)1−γ∑

D̃∈D π
(
D̃
)
g
(
D̃
)1−γ for each D ∈ D. (B.134)

Hence, using our result from part (i), it suffices to show that π∗,new (D) (which corresponds

to γnew < γold) first-order stochastically dominates π∗,old (D).

To establish the last claim, define the cumulative distribution function corresponding

to the endogenous probability distribution,

Π∗ (D, γ) =
∑
D̃≤D

π∗
(
D̃
)

=

∑
D̃≤D,D̃∈D π

(
D̃
)
g
(
D̃
)1−γ

∑
D̃∈D π

(
D̃
)
g
(
D̃
)1−γ for each D ∈ D. (B.135)

We made the dependence of the distribution function on γ explicit. To prove the claim,

it suffices to show that ∂Π∗(D,γ)
∂γ ≥ 0 for each D ∈ D (so that a decrease in γ decreases

Π∗ (D, γ) for each D and thus increases the distribution in the first-order stochastic domi-

nance order). We have:

∂Π∗ (D, γ)

∂γ
/


∑

D̃≤D π
(
D̃
)
g
(
D̃
)1−γ

∑
π
(
D̃
)
g
(
D̃
)1−γ


= −

∑
D̃≤D π

(
D̃
)
g
(
D̃
)1−γ

log g
(
D̃
)

∑
D̃≤D π

(
D̃
)
g
(
D̃
)1−γ +

∑
π
(
D̃
)
g
(
D̃
)1−γ

log g
(
D̃
)

∑
π
(
D̃
)
g
(
D̃
)1−γ
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= −
∑
D̃≤D

π∗
(
D̃
)

Π∗ (D, γ)
log g

(
D̃
)

+
∑

π∗
(
D̃
)

log g
(
D̃
)

= −E∗
[
log g

(
D̃
)
|D̃ ≤ D

]
+ E∗

[
log g

(
D̃
)]

.

Here, the second line substitutes the definition of the endogenous distribution and its

cumulative distribution from Eqs. (B.134) and (B.135). The last line substitutes the

unconditional and conditional expectations. It follows that ∂Π∗(D,γ)
∂γ ≥ 0 for some

D ∈ D if and only if the unconditional expectation exceeds the conditional expectation,

E∗
[
log g

(
D̃
)]
≥ E∗

[
log g

(
D̃
)
| D̃ ≤ D

]
. This is true because log g (D) is increasing in

D (since g (D) is increasing). This proves the claim and completes the proof of part (iii).�
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