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A.1. Technical Details of Simulation Methods 

To identify our seed partners, we used the social network census of households in all study 

villages. The social network structures observed in these data allow us to construct network adjacency 

matrices for each of the 200 villages.  Next, we conduct technology diffusion simulations for all villages 

using these matrices, where each individual in the village draws an adoption threshold τ from the data, 

which is normally distributed1 N(λ, 0.5) but truncated to be strictly positive. We conduct simulations 

with λ=1 and λ=2 in all villages to evaluate simple and complex contagion respectively.  

In the simulations, when an individual is connected to at least τ individuals who are informed, 

she becomes informed in the next period. Once an individual is informed, we assume that all other 

household members are immediately also informed. We also assume that becoming informed is an 

absorbing state.  As seed farmers are trained by extension agents, we assume all assigned seed farmers 

become informed. 

We run the model for four periods.2 Given the randomness built into the model, we simulate 

the model 2000 times for each potential pair of seeds in the village, and create a measure of the average 

information rate induced by each pair. We designate the pair that yields the highest average three-

                                                            
1 Heterogeneity in the model comes from variation across individuals in the net benefits realized by adopting pit planting. 
This affects the threshold number of connections an individual would need to have in order to get enough signals to be 
induced to adopt.  

2 We collected data for up to three agricultural seasons (“years”) after the interventions were implemented, so our 
theoretical set-up largely matches our empirical research design. With knowledge of the value of λ, a policymaker could 
use the model to maximize adoption over any timeframe they cared about, either more short-term or more long-term. 
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period information rate in our simulations as the two “optimal seeds” for each village for that particular 

model (simple contagion, λ=1 or complex contagion, λ=2). Armed with the identities of the optimal 

seeds under each model, we then randomly assign different villages in the sample to the treatment 

arms. Optimal seeds identified through the complex contagion (λ=2) simulation are trained in villages 

that were randomly assigned to treatment 1. Optimal seeds identified through the simple contagion 

(λ=1) simulation are trained in the randomly chosen villages assigned to treatment 2.  

 To determine seeds for villages in the Geo treatment arm, the simulation steps are the same 

as in the complex contagion case, except that we apply the procedure to a different adjacency matrix. 

To capture the idea that geography may be an easy way to capture key features of a social network, we 

generate an alternative adjacency matrix by making the assumption that two individuals are connected 

if their plots are located within 0.05 miles of each other in our geo-coded location data. We chose a 

radius of 0.05 miles because this characterization produces similar values for network degree measures 

in our villages as using the actual network connections measures. 

A.2. Effect of technology adoption on crop yields 

In order to estimate the returns of adopting the new technologies on yields, we compare seed 

farmers to shadow farmers. Online Appendix Table A4 demonstrates that there were large differences 

in adoption rates between seeds and shadow farmers. To estimate the impact of adoption on yields, 

we estimate an ITT specification exploiting that random difference in take-up: 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛾𝛾𝑋𝑋𝑣𝑣 + 𝛿𝛿𝑡𝑡 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖  (1) 

where 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 is log maize yields for farmer i in village v at time t, 𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖 is an indicator for being 

the selected seed farmer, 𝑋𝑋𝑣𝑣 are control variables used during the re-randomization routine (see notes 

in Table 2), village size, village size squared, district fixed effects plus baseline land size. 𝛿𝛿𝑡𝑡 are year 

dummies. We use data from years 2 and 3.  In the intent-to-treat specification in Online Appendix 

Table A1, column (1), maize yields among seed farmers are 13% greater than the yields experienced 
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by the shadow seeds. The fact that the technologies we promoted led to an increase in output strongly 

suggests that the information about pit planting that diffused through the networks was likely positive 

on average.  

Since only about 30% of seeds adopted pit planting, we also report the local average treatment 

effect using an IV regression in column (2) in which we instrument pit planting adoption with an 

indicator for being randomly assigned as the seed (rather than a shadow).  In this specification, pit 

planting adoption is associated with a 44% increase in maize yield.  However, we cannot rule out that 

CRM adoption also increased yields, potentially violating the exclusion restriction in the IV 

estimation.3 

A.3. Adoption rates among seeds (compared to shadow farmers) 

Online Appendix Table A4 compares the technology adoption behavior of seed farmers to 

shadow farmers. We focus on this sub-sample because shadow farmers act as the correct experimental 

counter-factual for the seed farmers to capture the causal effect of the intervention, removing any bias 

due to the seeds’ position within their networks. We estimate the following equation, and Panel A 

displays the results: 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛿𝛿𝑣𝑣 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖   (1) 

where the dependent variable is an indicator for adoption, and 𝛿𝛿𝑣𝑣 are village fixed effects. Column (1) 

shows that trained seeds are 52% more likely in year 1 to know how to pit plant than shadow farmers. 

Columns (4)-(6) show that seed farmers who are trained on pit planting adopt at a rate of 31-32% in 

all three years, compared to the low 5% adoption rate of shadow farmers in year 1.  

                                                            
3 We also cannot rule out any labor or other input use response to training which may have positively contributed to yields. 
Changes in other inputs makes it impossible for us to say that the yields increases map directly into increases in profits.  
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Panel B of Online Appendix Table A4 restricts the sample to only seed farmers (and drops all 

shadow farmers) and compares knowledge and adoption among seeds across the four experimental 

arms as follows: 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑣𝑣 + 𝛽𝛽2𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑥𝑥𝑣𝑣 + 𝛽𝛽3𝐺𝐺𝐺𝐺𝑜𝑜𝑣𝑣 + 𝛿𝛿𝑋𝑋𝑣𝑣 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖  (2) 

where Xv include the re-randomization controls (listed in table notes), village size, the square of village 

size, and district fixed effects. Standard errors are clustered at the village level. Column (1) shows that 

in the first year, Benchmark seeds are most likely to say they know how to pit plant, while all other 

seeds are similar. The extension agents evidently chose seed farmers carefully to ensure that their 

chosen extension partners receive the initial training from them. However, in years 2 and 3, familiarity 

between Benchmark, Simple and Complex seeds converge and have similar levels of familiarity with 

pit planting, though knowledge is declining over time. Geo seeds continue to display lower familiarity 

in subsequent years.  

Column (4) shows that there are no differences in adoption propensities across the four types 

of seeds in the first year. This implies that it is unlikely that any observed differences in village-wide 

adoption patterns across the four treatment arms, that we will examine later, are driven by initial 

adoption differences inside the sub-sample of seed farmers. Columns (5) and (6) show that seed 

farmers in simple contagion villages become relatively more likely over time to adopt the technology. 

This could be due to the technology diffusion process, or in other words, a consequence of the 

experiment.  Columns (7)-(8) show that there are no significant differences in adoption in years 1 or 

2 for crop residue management. 

A.4. Conversation frequency and adoption cascades 

 AMS establish that random seeding is sufficient to generate an adoption cascade when 𝐶𝐶𝐶𝐶 >

1, where 𝐶𝐶 refers to the probability that a conversation takes place on a given link and 𝐷𝐷 represents 
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the mean degree in the network.  Our experimental evidence found that at least 5% of randomly 

selected respondents were having conversations with seeds due to the training in each year.  To map 

this number to the 𝐶𝐶𝐶𝐶 framework, we first suppose that mean degree (the average number of contacts 

that a person has) is stable over time, so that the mean degree of trained seed partners is the same at 

the follow-up as in our listing (indeed, in results available from the authors, we demonstrate that 

whether a respondent reports knowing a seed or shadow farmer at follow-up is the same regardless 

of whether the seed was actually trained or not).   

 In our data, the mean village has 77 respondents (households), 2 of whom are seeds.  Thus, 

when we document that training induced at least 5% of respondents to have conversations about pit 

planting with seeds, we establish that at least 3.75 households per village had a conversation with a 

seed farmer (3.75 = 0.05*75).  Based on Table 1, the mean degree of seeds is 11.63; thus, we expect 

that seeds have a conversation with 32% of their connections.   In other words, the 5% lower bound 

on conversations about pit planting suggests that 𝐶𝐶 ≈ 0.32. 

 Mean degree among farmer households in our study villages is about 7.  Thus, in our data 

𝐶𝐶𝐶𝐶 > 7 ∗ 0.32 = 2.24, where the greater than inequality is due to the fact that the 5% of 

experimentally exogenous conversations is a very restrictive lower bound.  In other words, using this 

bounding exercise, we are confident that 𝐶𝐶𝐶𝐶 > 1 and so adoption cascades should take place with 

random seeding. 

A.5. Micro-foundation of threshold model 

We develop this micro-foundation by extending a framework presented in Banerjee et al. 

(2016) (hence: BBCM).  One key insight in BBCM is that the majority of members of a social network 

may not have access to any useful signal when they are confronted with an entirely new technology.  

Thus, there are two parts to the learning problem for new technologies: acquiring a signal in the first 
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place (becoming informed) which may be costly, and forming a revised belief on the profitability of 

the new technology based on the signals received from informed connections.  Optimizing farmers 

adopt a new technology only if their beliefs change, and they are convinced by others that this would 

be more profitable than alternatives.4 

There are three key phases of decision-making in our model: (1) the farmer has to decide 

whether to acquire information5, (2) she has to combine the new information with her priors, and (3) 

she then decides whether to adopt the new technology. We will present and solve the model 

backwards, starting with the third phase. 

The farmer will choose to adopt the new technology in phase 3 if she believes that adoption 

will be profitable. Suppose farmer j knows the technology will cost her 𝑐𝑐𝑗𝑗 to adopt and believes the 

new technology has either profit 𝜋𝜋� or  𝜋𝜋� �𝜋𝜋� <  𝑐𝑐𝑗𝑗 < 𝜋𝜋��. 5F

6 Since the technology is new and farmer j is 

initially uninformed, she has a uniform prior as to whether the technology is profitable or not.  She 

can aggregate signals given by her connections to update her prior and make an informed adoption 

decision.   

We adopt the same learning environment modeled in BBCM: first, informed farmer i 

disseminates a binary signal, 𝑥𝑥𝑖𝑖 ∈ {𝜋𝜋�,𝜋𝜋�}, which is accurate with probability 𝛼𝛼 > 1
2
.  Uninformed 

farmers do not disseminate a signal.  Second, farmers follow DeGroot learning (DeMarzo et al. 2003).  

                                                            
4 A very different micro-foundation for a similar model is explored in Jackson and Storms (2019).  In that model, thresholds 
become relevant as individuals face greater payoffs from conforming to the behavior of their connections.  Since 
coordination incentives for smallholder adoption of new agricultural technologies seem likely to be low, we pursue instead 
a model based on learning and individual optimization. 

5 There is a growing literature on how agents decide whether to seek out information. Banerjee et al. (2019a) – which builds 
on theoretical work by Chandrasekhar, Golub and Yang (2019) – demonstrate in the context of India’s demonetization 
that some agents choose to remain uninformed in order to avoid shame.  BenYishay et al. (2020) show that agents may 
choose not to receive agricultural information if the sender is a woman.  

6 Here for simplicity we follow BBCM in assuming that the distribution of profits is binary and known.  In practice, there 
will be uncertainty over a wider range of profits due to the potential performance of the technology under different 
agroclimatic conditions and different weather realizations.  While posterior distributions will be much more complicated 
under more realistic depictions of uncertainty, the key intuition driving the threshold model will be unchanged. 
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DeGroot learning can be interpreted as a boundedly rational version of Bayes learning, and suggests 

that farmers aggregate signals from their connections without attempting to calculate the inherent 

correlation structure between those signals. That is, if farmer j sees a signal of 𝜋𝜋� from both farmers i 

and k, she interprets that as two positive signals without decomposing the likelihood that farmer i and 

k are disseminating information obtained from the same source.7  Once farmers have observed signals 

from their informed connections, they aggregate those signals via Bayes’ rule. 

This framework suggests the following for the second phase of the farmer’s learning problem: 

suppose farmer j has 𝐷𝐷𝑗𝑗 informed contacts.  If farmer j decides to learn about the new technology 

from her informed contacts, and if H of those contacts provide the signal 𝑥𝑥 = 𝜋𝜋�, then the farmer’s 

posterior probability that 𝜋𝜋 =  𝜋𝜋� is given by8 

𝐸𝐸𝑗𝑗[𝜋𝜋 =  𝜋𝜋�] =
𝛼𝛼2𝐻𝐻−𝐷𝐷𝑗𝑗

𝛼𝛼2𝐻𝐻−𝐷𝐷𝑗𝑗 + (1 − 𝛼𝛼)2𝐻𝐻−𝐷𝐷𝑗𝑗  
 

Denote 𝜋𝜋�� = 𝜋𝜋� − 𝜋𝜋� and 𝑐𝑐𝚥𝚥� = 𝑐𝑐𝑗𝑗 − 𝜋𝜋�. With that posterior, the farmer would adopt the 

technology if  

𝑐𝑐𝑗̃𝑗
𝜋𝜋��
≤ 𝛼𝛼2𝐻𝐻−𝐷𝐷𝑗𝑗

𝛼𝛼2𝐻𝐻−𝐷𝐷𝑗𝑗+(1−𝛼𝛼)2𝐻𝐻−𝐷𝐷𝑗𝑗
≤ 𝛼𝛼𝐷𝐷𝑗𝑗

𝛼𝛼𝐷𝐷𝑗𝑗+(1−𝛼𝛼)𝐷𝐷𝑗𝑗
 (1) 

This model highlights a potential challenge to diffusing new technologies: when few other 

farmers are informed, then there is a ceiling on how much a new farmer’s priors would move even if 

they receive unanimously positive signals from the informed.  At early stages in the diffusion process, 

𝐷𝐷𝑗𝑗 may be small for most farmers. 

Last, we consider the first phase of the farmer’s learning problem, which is her decision to 

acquire signals and become informed.  Here, we depart from BBCM to suggest that there may be a 

                                                            
7 Chandrasekhar, Larreguy and Xandri (2020) provide laboratory evidence in support of DeGroot learning over Bayes 
learning in India.  Additional citations in favor of this boundedly-rational approximation can be found in BBCM. 

8 A simple proof is given in BBCM. 
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small cost to receiving a signal 𝜂𝜂.  This cost could be interpreted as “shoe leather” costs of acquiring 

information (which are not necessarily trivial in villages in rural Malawi as households may be fairly 

far apart), or as stigma from seeking information (e.g. Banerjee et al. 2019a).   

Thus, the farmer j with informed degree Dj  has an objective given by 

max
d≤Dj

�
1
2
��αh(1 − α)d−h�π� − cj� + (1 − α)hαd−h�π� − cj�� �I�

α2h−d
α2h−d + (1 − α2h−d) >

c�
π����� − ηd

h≤d

 

When η = 0, the dynamics of learning are explored by BBCM.  However, when η > 0 the 

dynamics are slightly different.  In that case (for small η), farmers will only become informed if   

αDj

αDj+(1−α)Dj
> c�j

π��  (2) 

In other words, farmers only choose to seek information if they have a large enough number 

of informed connections, such that it is possible that an informed decision would lead them to adopt.  

In this case (and for small η), farmers will choose to seek information when they have only one 

informed connection if 

α
α+(1−α)

> c�j
π��  (3) 

In general, they will choose to become informed with 𝜆𝜆 informed connections if  

αλ
αλ+(1−α)λ

> c�j
π��  (4) 

This implies that farmers choose to become informed about new technologies if expectations 

about the net benefits of technology are high (i.e., low costs and high potential gains), or if signals 

from individual other farmers are highly accurate. Under certain parameter values, just a single 

informed contact may be sufficient to induce farmers to seek information. That is the diffusion 

process that Centola and Macy (2007) refer to as a “simple contagion.” They demonstrate that some 

types of information – for example, job opportunities – spread in this way. On the other hand, if the 
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expected upside of the technology is more modest relative to costs, or if signals from other farmers 

have low accuracy, then farmers may only be persuaded to seek information when there is sufficient 

information to be gained from their network.9  In that case, for many farmers the lowest 𝜆𝜆 satisfying 

equation (4) may be larger than 1, and information diffusion follows a process termed “complex 

contagion” in the literature.10    

Our interpretation of the microeconomics of the threshold theory is that the thresholds result 

from an underlying process of farmers deciding whether to learn, given their information environment. 

This motivates an experimental design in which we seed new information in a network to improve 

the overall information environment, which can change incentives to learn and jump-start the 

technology diffusion process.  

Given that the econometrician is unlikely to observe signal accuracy (𝛼𝛼), the threshold 

required for adoption of a specific new technology is an empirical question.  As a numerical example, 

consider a technology with 30% potential returns (so that 𝜋𝜋�� = 1.3 𝑐𝑐𝚥𝚥�).  If signals are more than 77% 

accurate, farmers will choose to become informed if they have a single informed connection, and 

diffusion will follow a simple contagion.  If signal accuracy falls in the range of 65-77% accurate, then 

farmers will only become informed if they have 2 informed connections, and learning will follow a 

complex contagion.  If signals are less than 65% accurate, then farmers will need at least 3 informed 

connections to make an adoption decision.   In general, agents will face higher thresholds in contexts 

                                                            
9 Though not explicitly considered here, minimal thresholds for learning will also be higher if 𝜂𝜂 (the cost of information 
acquisition) is larger. 

10 Several theory papers have explored the implications of this model. In contrast to the “strength of weak ties” in labor 
markets proposed by Granovetter (1978), strong ties may be important for the diffusion of behaviors that require 
reinforcement from multiple peers. Centola (2010) provides experimental evidence that health behaviors diffuse more 
quickly through networks where links are clustered, consistent with complex contagion. Acemoglu et al. (2011) highlights 
that when contagion is complex, highly clustered communities will need a seed placed in the community in order to induce 
adoption. Finally, Monsted et al. (2017) provide experimental evidence generated by twitter-bots that twitter hashtag 
retweets follow a process which more closely resembles complex than simple contagion. 
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where signals are noisier, a point with implications for external validity which we return to in the 

concluding remarks. 

Model predictions and implications for the experiment 

The micro-foundation of the threshold model suggests that the model would need to be tested 

using the diffusion of a truly new technology, where would-be adopters are ex ante uninformed about 

the technology and face an important adoption decision. A corollary is that the threshold model should 

fit the data better in locations where the technology is more novel. A good empirical setting to test 

the model is also one in which agents are receiving noisy signals from the network.  

If thresholds exist and are above one, then seeding the network with multiple sources of 

information who are clustered in the same part of the network will achieve very different diffusion 

patterns than seeding the network with the same number of information sources spread more 

diffusely. Our experimental design will take advantage of this insight. When thresholds are above one, 

the information environment only induces learning when initial nodes share some connections, which 

we test using micro data on technology diffusion patterns.   

The model highlights that farmers will become informed when they have sufficiently many 

informed contacts.   However, conditional on being informed, they will only adopt the technology if 

the realization of signals from their connections are sufficiently positive.   These two facts suggest two 

different tests of the model. 

PREDICTION 1:  If most farmers in a village have a threshold 𝜆̅𝜆, then people who are 

connected to at least 𝜆̅𝜆 informed farmers should become informed themselves.  

PREDICTION 2: Adoption should increase most strongly among farmers who have high net 

benefits of adoption, who would adopt with a broader range of received signals.11  

                                                            
11 For clarity, the model assumed that the potential net benefits of production were known to the farmer before deciding 
whether to become informed about the technology.  In practice, farmers may or may not be aware that their private net 
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A.6. Simulation of cost-effective targeting strategies 

 For our simulations, we suppose that our extension agent starts with a random sample of 

candidate respondents, and is able to screen out individuals with less than 2 connections.  We suppose 

the extension agent starts with a list of 2-10 randomly selected farmers. 

Starting from that random sample of farmers, we solicit each farmer’s connections and 

calculate each random farmer’s degree.  We then focus on 6 candidate targeting strategies:  

A. Trains two randomly selected people from that list (used as a benchmark) 

B. Trains the two highest degree people from that list 

C. Select two random friends of the highest degree person from that list 

D. Trains the two highest degree connections of the highest degree farmer from the random 

sample (requires interviewing all connections of the highest degree respondent to 

determine their degree) 

E. Selects two farmers from that list at random; interviews two of their connections (selected 

at random) and trains two of the connections’ connections12 

F. Trains the highest degree respondent and one of his connections (at random). 

For each of these five candidate strategies, we simulate adoption rates after 4 rounds of 

simulations against the seeds chosen by our Complex treatment. We find that Strategy A, selecting 

two farmers at random, achieves 57% of the adoption produced by the Complex treatment.  We can 

then view the other targeting strategies in terms of their performance above the random benchmark.  

Strategy B is identical to random selection with only 2 initial interviews, and so similarly generates 

                                                            
benefits to adoption are high before becoming informed.  Only when a farmer is ex ante aware that she has relatively high 
net benefits will we see greater adoption associated with a greater propensity to become informed.    

12 This “friends of friends” approach to identifying central people was inspired by Feld (1991), Christakis and Fowler 
(2010), and Kim et al. (2015), who note that randomly selected connections tend to be more central than randomly selected 
nodes in a network.  We again assume that the extension agent is able to screen out potential trainees with less than two 
total connections. 
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57% adoption; however, as the extension agent interviews more people to identify these high degree 

individuals it performs somewhat better, achieving 70% of the complex contagion adoption with 10 

total interviews.  Strategies C and D both leverage the highest degree respondent from the initial 

random sample.  These perform the best out of the strategies we consider.  Strategy C achieves 73% 

of the optimized adoption with just two total interviews, which increases modestly to 76% of the 

optimized adoption as the number of interviews grows to 10 to better identify a high degree individual.   

Strategy D, our best performing strategy, achieves 84% of the optimized adoption with 2 initial 

interviews (necessitating 8 total interviews as the connections are interviewed), and up to 90% of the 

optimized adoption with 8 initial interviews (and 13 total interviews). Strategy E requires a total of 4 

interviews, and achieves 69% of the optimized adoption.  Strategy F achieves 60% of the optimized 

adoption with 2 interviews, and up to 67% of optimized adoption with up to 10 interviews. 

Clearly the most effective strategies are those that identify a high degree farmer and train her 

connections.  Given the nature of the complex contagion learning process, the intuition is clear: 

training two high degree friends of someone who is high degree means that three people with many 

connections in the same part of the network will become informed.  With clustered networks, it is 

likely that others will as well.   
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        (1)    (2)    
Seed 0.126    
        (0.061)       
Adopted Pit Planting 0.443

(0.210)    
N       959    959    
Mean of Shadows       
Year 2,3    2,3

Notes
1

2 Agricultural yields were winsorized. The specification also controls for total 
farm size; controls used in the re-randomization routine (percent of village 
using compost at baseline; percent village using fertilizer at baseline; percent 
of village using pit planting at baseline); village size and its square; and 
district and year fixed effects.  Standard errors are clustered at the village 
level.

Sample includes only seed and shadow farmers.  Benchmark villages are 
excluded. 

Log of Agricultural Yields

Table A1: Agricultural Yields of Seeds Relative to Shadow (Counterfactual) 
Farmers



Farm Size Wealth Index 
(PCA)

(1) (2)
Treatment arm:

Complex Contagion -0.037    0.380    
(0.19)    (0.23)    

Simple Contagion -0.152    0.113    
(0.19)    (0.23)    

Geographic -0.614 -0.740
(0.19)    (0.23)    

P-values for Tests of Equality in Seed Characteristics
Simple = Complex 0.335 0.067    
Complex = Geographic 0.000 0.000    
Simple = Complex = Geographic 0.000 0.000    

N       1248 1248    
Mean Value for Seeds in Benchmark Treatment 
(omitted category) 2.06 0.626

   

SD for Seeds in Benchmark Treatment 2.97    1.7    

Notes
1

2

The sample includes all seeds and shadows. The sample frame includes 100 Benchmark 
farmers (2 partners in 50 villages), as we only observe Benchmark farmers in Benchmark 
treatment villages, and up to 6 additional partner farmers (2 Simple partners, 2 Complex 
partners, and 2 Geo partners) in all 200 villages.

Table A2: Characteristics of the Seeds Chosen by Each Treatment Arm

Benchmark treatment seeds are the reference category.



(1) (2) (3) (4)
Path Distance to 
Closest Partner

Simple 
Partner

Complex 
Partner Geo Partner Benchmark 

Seed
1 38% 42% 24% 33%
2 50% 41% 46% 44%
3 9% 10% 20% 14%

4 + 4% 6% 10% 9%
N 4856 4856 4856 922

Notes
1

2

Table A3: Distribution of Distance to Partner Farmers

The data in this analysis includes respondents in our household surveys, linked to 
the social network census to capture their connections - direct and indirect - to the 
partner (or seed) farmers. Seed and shadow farmers are themsevles removed, as 
well as the 6.5% of households in our sample (419) with zero measured 
connections.

In columns (1)-(3), connections to both seeds and shadow farmers are analyzied, 
while in column (4) we only look at connections to the Benchmark seed in 
Benchmark villages.



        
(1) (2) (3) (4) (5) (6) (7) (8)

Panel A
Seeds 0.518 0.367 0.245 0.258 0.230 0.182 0.137 0.047    
        (0.04)    (0.04)    (0.05)    (0.03)    (0.03)    (0.04)    (0.04)    (0.04)    

Years 1 2 3 1 2 3 1 2
N       659    735    503    686    672    489    686    467    
Mean of Shadows 0.165    0.187    0.291    0.0541    0.0929    0.139    0.32    0.207    
SD of Shadows 0.371    0.39    0.455    0.227    0.291    0.347    0.467    0.406    

Panel B
Simple diffusion -0.133 -0.067    0.108    -0.006    0.129 0.176 0.078    -0.097    

(0.07) (0.07)    (0.08)    (0.07)    (0.07)    (0.09)    (0.08)    (0.09)    
Complex diffusion -0.120 -0.058    0.007    -0.020    0.002    0.037    -0.001    -0.077    

(0.07) (0.07)    (0.08)    (0.08)    (0.07)    (0.08)    (0.08)    (0.09)    
Geographic -0.193 -0.255 -0.150    -0.095    -0.064    -0.003    -0.011    -0.075    

(0.07)    (0.07)    (0.09)    (0.08)    (0.07)    (0.08)    (0.08)    (0.10)    

Years 1 2 3 1 2 3 1 2
N       343    383    264    353    352    259    353    243    
Mean of Benchmark 0.824    0.653    0.547    0.337    0.276    0.238    0.442    0.339    
SD of Benchmark 0.383    0.479    0.502    0.476    0.45    0.429    0.5    0.478    
p-value for tests of equality in adoption rates across treatment cells:

Simple = Complex 0.872    0.904    0.242    0.862    0.077    0.108    0.311    0.808    
Complex = Geographic 0.377    0.016    0.111    0.36    0.358    0.625    0.886    0.977    
Joint test of 3 treatments 0.472    0.021    0.011    0.252    0.008    0.049    0.235    0.795    

Notes
1

2

In Panel A, all columns compare seed farmers to shadow farmers. Village fixed effects are included, and standard errors are clustered at the village level.

In Panel B, the sample includes only seed farmers, and the reference group is Benchmark seed farmers. The specification also includes controls which were used 
in the re-randomization routine (percent of village using compost at baseline; percent village using fertilizer at baseline; percent of village using pit planting at 
baseline); village size and its square; and district fixed effects.  Standard errors are clustered at the village level.

Table A4: Seed Knowledge and Adoption

Knows How to Pit Plant Adopts Pit Planting Adopts CRM



Complex Simple Geo Benchmark N
p-value of 
joint test

(1) (2) (3) (4) (5) (6)
Housing (pca) -0.036 -0.160 0.022 0.107 14000 0.057

(0.09) (0.05) (0.21) (0.08)                 
Assets (pca) -0.035 -0.060 -0.040 -0.003 14300 0.880

(0.05) (0.07) (0.06) (0.08)                 
Livestock (pca) 0.026 0.012 -0.087 0.010 14300 0.223

(0.06) (0.06) (0.04) (0.06)                 
Basal fertiliser (kg) 53.113 51.978 50.917 50.937 10400 0.971

(3.14) (4.78) (3.17) (2.25)                 
Top dressing fertiliser (kg) 49.488 49.822 50.278 52.168 10500 0.779

(2.05) (3.33) (2.53) (2.01)                 
# of Adults 2.316 2.305 2.299 2.299 14000 0.975

(0.02) (0.02) (0.03) (0.02)                 
# of Children 2.650 2.617 2.619 2.587 14300 0.751

(0.05) (0.04) (0.05) (0.04)                 
Farm size (acres) 1.676 1.624 1.764 1.798 14000 0.071

(0.06) (0.08) (0.09) (0.08)                 
Own land 0.907 0.904 0.903 0.913 14300 0.932

(0.01) (0.01) (0.02) (0.01)                 
Yields 290 304 304 300 13400 0.852

(21.65) (18.63) (20.71) (25.59)                 
Provided Ganyu 0.250 0.254 0.242 0.234 14000 0.635

(0.02) (0.01) (0.02) (0.02)                 
Used Ganyu 0.134 0.123 0.150 0.140 14000 0.124

(0.01) (0.01) (0.01) (0.01)                 

Notes
1

2

3

4 Ganyu is the term used in Malawi for hired wage labor on the farm. 

Table A5: Test of Balance across Randomized Treatment Arms

Housing, assets and livestock in the first three set of rows are pca scores. Housing includes information on: materials 
walls are made of, roof materials, floor materials and whether the household has a toilet.  Assets includes the number of 
bicycles, radios and cell phones the household owns. Livestock is an index including the number of sheep, goats, 
chickens, cows, pigs, guinea fowl, and doves.

Columns (1)-(4) give the means and standard errors of the variable listed in the title column in each of the treatment 
arms. The seeds and the shadow seeds are excluded from the sample. The data is from the social network census.

Column (6) shows the p-value of a joint test of significance of all treatment arms. Also included in the specification 
used for the test are controls used in the re-randomization routine (percent of village using compost at baseline; percent 
village using fertilizer at baseline; percent of village using pit planting at baseline) and district fixed effects.  Standard 
errors are clustered at the village level.



Any Non-Seed 
Adopters

Adoption 
Rate

(1)    (2)    
Complex Diffusion Treatment -0.064    -0.026    

(0.060)    (0.027)    
Simple Diffusion Treatment -0.083    -0.037    

(0.062)    (0.027)    
Geographic treatment -0.152 -0.054

(0.070)    (0.029)    

Year 2 2
N       141    141    

Mean of Benchmark Treatment (omitted category) 0.971    0.204    
SD of Benchmark 0.169    0.109    

p -values for tests of equality of coefficients…
Test: Simple = Complex 0.794    0.680    
Test: Complex = Geo 0.258    0.366    
Test: Simple = Geo 0.336    0.583    

Notes
1

2
3

Table A6: Village Level Adoption Outcomes for Crop Residue Management (CRM)

The "Any non-seed adopters" indicator in columns (1) excludes seed farmers. The 
adoption rate in column (2) include all randomly sampled farmers, excluding seed and 
shadow farmers.  

Analysis restricted to data from Mwanza and Machinga.
All columns include controls used in the re-randomization routine (percent of village using 
compost at baseline; percent village using fertilizer at baseline; percent of village using pit 
planting at baseline); village size and its square; and district fixed effects.  Standard errors 
are clustered at the village level.
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