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A Dynamics after a Monetary Shock

A.1 Exact Dynamics

Proof of Proposition 1. If the consumer maximizes

Z
e
�rt


C(t)1�s

1 � s
� N(t)1+y

1 + y
+

m(t)1�c

1 � c

�
dt

we have

˙C(t)
C(t)

=
1
s
(R(t)� p(t)� r)

N(t)y
C(t)s =

W(t)
P(t)

) y
˙N(t)

N(t)
=

˙W(t)
W(t)

� R(t) + r

M(t)�c
P(t)c

C(t)s = R(t)

We look for an equilibrium with constant nominal interest rate R(t) = R and nominal
wage W(t) = W following a permanent shock to M. Suppose y = 0 then we get

˙W(t)
W(t)

= R � r
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To get constant wage W(t) = W we need R = r (this is necessary, otherwise we
would get permanent wage inflation). The constant wage implies

P(t)C(t)s = W

Then the third equation gives

rM
c = P(t)c

C(t)s

So we need c = 1 for our guess to be indeed an equilibrium.
The representative consumer’s expenditure in sector s at time t is

Es(t) = Ps(t)
1�w [C(t)P(t)w]

where P(t) is the aggregate price level
�R

s
Ps(t)1�w

ds
� 1

1�w hence the real demand vec-
tor in sector s is (given our within-sector CRS assumption as in Kimball)

D
��

pj,s(t)
 

, Es(t)
�
= D

��
pj,s(t)

 
, 1
�

Ps(t)
1�w

C(t)P(t)w

where Ps is the sectoral price index. Denote the function of prices in sector s only

d
��

pj,s
 �

= D
��

pj,s
 

, 1
�

Ps
1�w

The nominal profit of firm i in sector s given all the other prices in the economy is

d
i (pi,s, p�i,s)C(t)P(t)w

"
pi,s � W(t)

f
�1 �

d
i (pi,s, p�i,s)C(t)P(t)w

�

di (pi,s, p�i,s)C(t)P(t)w

#

where p�i,s =
�

pj,s
 

j 6=i
. Thus the real profit is

d
i (pi,s, p�i,s)C(t)P(t)w�1

"
pi,s � W(t)

f
�1 �

d
i (pi,s, p�i,s)C(t)P(t)w

�

di (pi,s, p�i,s)C(t)P(t)w

#

Firm i maximizes the present value of real profits discounted using the SDF e
�rt

C(t)�s,
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that is

Z
e
�rt

C(t)1�s
P(t)w�1

d
i (pi,s, p�i,s)

"
pi,s � W(t)

f
�1 �

d
i (pi,s, p�i,s)C(t)P(t)w

�

di (pi,s, p�i,s)C(t)P(t)w

#
dt.

With general s (but linear disutility of labor and log-utility of real balances, that are
needed to obtain constant nominal interest rate and wage) we have that

P(t)C(t)s = W,

therefore if
ws = 1

then the terms

C(t)1�s
P(t)w�1 = W

1
s�1

P(t)w� 1
s

C(t)P(t)w = W
1
s P(t)w� 1

s

are constant. Denote p̂s =
�

p1,s
1+d , . . . , pn,s

1+d

�
the vector of normalized prices. The present

discounted value of real profits is

W
1/s�1

Z
e
�rt

d
i ( p̂s)

"
pi,s � W

f
�1 �

d
i (pi,s, p�i,s)W

1/s
�

di (pi,s, p�i,s)W1/s

#
dt

=W
1/s�1
� (1 + d)1/s�w

Z
e
�rt

d
i ( p̂s)

2

4 p̂i,s � W�
f
�1
⇣

d
i ( p̂s)W

1/s
� (1 + d)1/s�w

⌘

di ( p̂s)W
1/s
� (1 + d)1/s�w

3

5 dt

=W
1/s�1
�

Z
e
�rt

d
i ( p̂s)

2

4 p̂i,s � W�
f
�1
⇣

d
i ( p̂s)W

1/s
�

⌘

di ( p̂s)W
1/s
�

3

5 dt

which is exactly the same as before the shock up to the change of variables p ! p̂.

A.2 Approximate Dynamics

Proof of Proposition 2. Fix n and a sector s 2 [0, 1]. Define the state vs(t) as

vs = (z1, . . . , zn)
0
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where zi = log pi � log p̄. Denote the first-order expansion of the best response p
0
i
=

g (p�i, P) by

z
0
i
= aZ + b

 

Â
j 6=i

zj

!

where Z(t) = log P(t)� log p̄ is the log deviation of the aggregate price level. Propo-
sition 1 shows that a = 0 if ws = 1; otherwise a will be non-zero and we derive the
aggregation in the general case.

When firm i adjusts its price, the state of sector s changes to

v
0
s(t) = aZ(t)ui + Mivs(t)

where ui is the vector (0, . . . , 0, 0
"
i

, 0, . . . , 0) Mi is the identity matrix except for row i

which is equal to (b, . . . , b, 0
"
i

, b, . . . , b).

First suppose that all sectors are identical. Define the aggregate state variable

V(t) =
Z

s2[0,1]
vs(t)ds 2 Rn

Between t and t + Dt, a mass nlDt of firms adjusts prices so V evolves as

V(t + Dt) = (1 � nlDt)V(t) +
Z

a firm in s adjusts
vs(t + Dt)ds

= (1 � nlDt)V(t) + (lnDt)


aZ(t)

Âi ui

n
+

Âi Mi

n
V(t)

�

therefore in the limit Dt ! 0

V̇(t) = laZ(t)U + nl

✓
Âi Mi

n
� In

◆
V(t)

where U = Âi ui = (1, . . . , 1)0 and

Âi Mi

n
� In =

0

BBBB@

�1
n

b
n

· · · b
n

b
n

�1
n

· · · b
n

...
... . . . ...

b
n

b
n

· · · �1
n

1

CCCCA

The aggregate price level is then Z(t) = LVt where L = 1
n
(1, . . . , 1). The eigenvalues

A.5



of nl
⇣

Âi Mi

n
� In

⌘
are:

• µ1 = �l(1 + b) with multiplicity n � 1,

• µ2 = �l[1 � (n � 1)b] with multiplicity 1.

The vector U is an eigenvector associated with µ2, so if we start from symmetric initial
conditions V(0) = (log p0 � log p̄)U we have

V(t) = V (0) e
(la+µ2)t

hence finally, the price index evolves to first order in d as:

log
✓

P(t)
P̄

◆
= log

✓
P(0)

P̄

◆
e
�l[1�a�(n�1)b]t

= �de
�l[1�a�(n�1)b]t

With heterogeneous sectors s the aggregation across sectors yields

log
✓

P(t)
P̄

◆
= �d

Z

s

zse
�ls[1�as�(ns�1)bs]tds

where zs is the steady state expenditure share of sector s.

B Markov Equilibrium and Sufficient Statistics

Let V
i,s(p; t) denote the value function for firm i, where p is the vector of ns prices.

We focus on equilibria with differentiable g and V satisfying the Bellman equation

R(t)Vi,s(p; t) = Pi,s(p; t) + ls Â
j2Is

⇣
V

i,s(g
j,s(p�j; t), p�j; t)� V

i,s(p; t)
⌘
+

∂V
i,s

∂t
(p; t)

(A.1)
where g

j,s(p�j; t) satisfies the optimality condition g
j,s(p�j; t) 2 arg maxpj

V
j,s(pj, p�j; t)

with first-order necessary condition

V
j,s
pj
(g

j,s(p�j; t), p�j; t) = 0 (A.2)

for all j.
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Proof of Proposition 4. Differentiating the Bellman equation (A.1) and making use
of symmetry, we obtain at the steady state p̄ of a symmetric equilibrium:

0 = Pi

pi
( p̄) + l Â

j 6=i


V

i

pj
( p̄)

∂g
j

∂pi

( p̄)

�

V
i

pj
( p̄) =

Pi
pj
( p̄)

r + l
+

l

r + l Â
k 6=i,j

"
V

i

pk
( p̄)

∂g
k

∂pj

( p̄)

#
8j 6= i

Using Âj Âk 6=i,j V
i
pk
( p̄) = (n � 2)Âj 6=i V

i
pj
( p̄), the second condition becomes

Â
k 6=i

V
i

pk
( p̄) =

Âk 6=i

Pp
k
( p̄)

r+l

1 � l(n�2)bn

r+l

Hence the first condition becomes

0 = Ppi
( p̄) +

lbn

r + l [1 � (n � 2)bn]
Â
k 6=i

Ppk
( p̄)

and the symmetry of Pi
pj

across j 6= i, we obtain

0 = Pi

i
( p̄) +

l (n � 1) b

r + l [1 � (n � 2)b]
Pi

j
( p̄)

thus the formula for B = (n � 1) b is

B =
r + l

l

1

n�2
n�1 +

✓
Pi

j

�Pi

i

◆ . (A.3)

We can reexpress
Pi

j

�Pi

i

=
ei

j
(1 � 1/µ)

�ei

i
(1 � 1/µ)� 1

where µ = p̄

W/ f 0
�

f�1
�
di( p̄)

�� is the steady state markup (the denominator is the marginal

cost) to rewrite (A.3) in terms of demand own-elasticity ei

i
= ∂ log d

i

∂ log pi

and cross-elasticity
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ei

j
= ∂ log d

i

∂ log pj

:

B =
r + l

l

1
n�2
n�1 +

ei

j

�ei

i
� µ

µ�1

.

Homothetic preferences imply that the cross-elasticity is related to the own-elasticity
through (n � 1)ei

j
= �(w + ei

i
).

B =
l + r

l

1

1 + 1�(µ�1)(w�1)
(n�1)[(e�1)(µ�1)�1]

where e =
��ei

i

��.

C Demand Elasticities

C.1 General non-parametric results

We first assume an outer elasticity w = 1. Differentiating the budget constraint, we
have for any i and p

c
i + Â

j

pj

∂c
j

∂pi

= 0 (A.4)

Then Slutsky symmetry and constant returns to scale imply

ei

i
+ Â

j 6=i

ei

j
= �1 (A.5)

where ei

j
= ∂ log c

i

∂ log pJ
. At a symmetric price, this becomes

ei

j
= �

1 + ei

i

n � 1
(A.6)

so the convergence to Nash holds as long as the own elasticity ei

i
is bounded. Call for

any pair j, k

ei

jk
=

∂2 log di

∂ log pk∂ log pj
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We can differentiate (A.5) with respect to log pi to get

ei

ii
+ Â

j 6=i

ei

ij
= 0

hence at a symmetric price,
ei

ii
+ (n � 1)ei

ij
= 0 (A.7)

Differentiating once more the budget constraint with respect to pi

2
∂c

i

∂pi

+ Â
j

∂2
c

j

∂p
2
i

= 0 (A.8)

Elasticities and second-derivatives are related by

∂2
c

i

∂pk∂pj

=
c

i

pk pj

h
ei

jk
+ ei

j
ei

k

i
for any j 6= k

∂2
c

i

∂p
2
j

=
c

i

p
2
j


ei

jj
� ei

j
+
⇣

ei

j

⌘2
�

for any j

At a symmetric price (using e
j

ii
= ei

jj
), we have from (A.8)

ei

jj
= ei

j

⇣
1 � ei

j

⌘
� 1

n � 1

h
ei

ii
+ ei

i

⇣
1 + ei

i

⌘i
(A.9)

Finally, differentiating (A.4) with respect to pk for some k 6= i gives

∂c
i

∂pk

+
∂c

k

∂pi

+ Â
j 6=i,k

pj

∂2
c

j

∂pk∂pi

+ pi

∂2
c

i

∂pk∂pi

+ pk

∂2
c

k

∂pk∂pi

= 0

and at a symmetric price p

2
p

∂c
i

∂pk

+ (n � 2)
∂2

c
i

∂pk∂pj

+ 2
∂2

c
i

∂pk∂pi

= 0

Therefore, in elasticities at a symmetric price,

2ei

j
+ (n � 2)


ei

jk
+
⇣

ei

j

⌘2
�
+ 2

h
ei

ij
+ ei

j
ei

i

i
= 0 (A.10)
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for k 6= j, i, j 6= i. The own-superelasticity is defined as the elasticity of (minus the)
elasticity:

S =
∂ log(�ei

i
)

∂ log pi

=
ei

ii

ei

i

So in the end we have two degrees of freedom:
�

ei

i
, ei

ii

 
or equivalently {e, S} to

parametrize a symmetric steady state.
In the non-Cobb-Douglas case w 6= 1, all the steps are almost the same except that

we start from the sectoral budget constraint

Â
i2Is

pid
i = P1�w

s

where Ps is the sectoral price index. As a result the elasticities at a symmetric price
satisfy (A.7), (A.10) as before, but (A.6) and (A.9) become respectively

ei

j
= �

w + ei

i

n � 1

ei

jj
= ei

j

⇣
1 + ei

j

⌘
� 1

n � 1

h
ei

ii
+ ei

i

⇣
w + ei

i

⌘i
.

Special case: n = 2. If n = 2 there is only 1 degree of freedom, so CES is without
loss of generality (locally), even when the outer aggregation is not Cobb-Douglas (i.e.,
w 6= 1). From (A.10), the cross-superelasticity ei

ij
is determined by elasticities, hence

so is ei

ii
= �(n � 1)ei

ij
.

C.2 Closed-form elasticities with Kimball Demand

Here again we outline the steps under Cobb-Douglas preferences across sectors, w =

1, but give the general expressions with w 6= 1 below.
Start with a general Kimball (1995) aggregator that defines C as

1
n

Â
i

Y
⇣

ci

C

⌘
= 1 (A.11)

where Y is increasing, concave, and Y(1) = 1 which ensures the convention that at a
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symmetric basket ci = c, we have C = c. The consumer’s problem is

min
{ci}

Â
i

pici s.t.
1
n

Â
i

Y
⇣

ci

C

⌘
= 1

There exists a Lagrange multiplier l > 0 such that for all i

pi = lY0
⇣

ci

C

⌘ 1
C

(A.12)

If we define the Kimball sectoral price index P (which differs from the ideal price
index except under CES) by

1
n

Â
i

j
⇣

Y0(1)
pi

P

⌘
= 1

where
j = Y � (Y0)�1

then at a symmetric price pi = p we have P = p, and lY0(1) = PC so we can rewrite
(A.12) as

pi

P
Y0(1) = Y0

⇣
ci

C

⌘

Taking logs and differentating (A.12) with respect to log pi yields

1 =
∂ log P

∂ log pi

+
Y00 � ci

C

�

Y0 � ci

C

� ci

C


ei

i
� ∂ log C

∂ log pi

�

Differentiating (A.11) yields

Â
j

Y0
✓

cj

C

◆
cj

C


∂ log cj

∂ log pi

� ∂ log C

∂ log pi

�
= 0

hence

∂ log C

∂ log pi

=
Âj Y0

⇣
cj

C

⌘
cj

C
e

j

i

Âj Y0
⇣

cj

C

⌘
cj

C

Using Slutsky symmetry pje
j

i
= pie

i

j
to express this using demand elasticities for good
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i only, we can reexpress as

∂ log C

∂ log pi

=
Âj Y0

⇣
cj

C

⌘
cj

C

pi

pj
ei

j

Âj Y0
⇣

cj

C

⌘
cj

C

At a symmetric price, budget exhaustion with constant returns implies

∂ log C

∂ log pi

=
1
n

Â
j

ei

j
=

�1
n

For any k 6= i we can differentiate

log Y0
✓

c
i

C

◆
� log Y0

 
c

k

C

!
= log pi � log pk

with respect to log pi to get

Y00
⇣

c
i

C

⌘

Y0
⇣

ci

C

⌘
✓

c
i

C

◆
∂

∂ log pi

h
log c

i � log C

i
�

Y00
⇣

c
k

C

⌘

Y0
⇣

ck

C

⌘
 

c
k

C

!
∂

∂ log pi

h
log c

k � log C

i
= 1

or, defining

R(x) = �xY00 (x)
Y0 (x)

We have

R

 
c

k

C

!
ek

i
� ∂ log C

∂ log pi

�
� R

✓
c

i

C

◆ 
ei

i
� ∂ log C

∂ log pi

�
= 1 (A.13)

Hence at a symmetric steady state, using ek

i
= ei

k
= � 1+ei

i

n�1 we have

ei

i
= �

✓
n � 1

n

1
R(1)

+
1
n

◆

Differentiating once more with respect to log pi,

�R
0
✓

c
i

C

◆ 
ei

i
� ∂ log C

∂ log pi

�2
+ R

0
 

c
k

C

!
ek

i
� ∂ log C

∂ log pi

�2
� R

✓
c

i

C

◆ 
ei

ii
� ∂2 log C

∂2 log pi

�
+ R

 
c

k

C

!
ek

ii
� ∂2 log C

∂2 log pi

�
= 0
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At a symmetric steady state,

�R
0 (1)


ei

i
+

1
n

�2
+ R

0 (1)


ek

i
+

1
n

�2
� R (1)

h
ei

ii
� ek

ii

i
= 0

�R
0 (1)


ei

i
+

1
n

�2
+ R

0 (1)


ek

i
+

1
n

�2
� R (1)

h
ei

ii
� ei

jj

i
= 0

Using (A.9) we get

�R
0 (1)


n � 1

n

1
R(1)

�2
+ R

0 (1)

"
�

1 + ei

i

n � 1
+

1
n

#2

� R (1)


ei

ii

n

n � 1
� ei

j

⇣
1 � ei

j

⌘
+

1
n � 1

h
ei

i

⇣
1 + ei

i

⌘i�
= 0

Now differentiating (A.13) with respect to log pj for some j 6= i, k

R
0
✓

c
i

C

◆"
ei

j
� ∂ log C

∂ log pj

# 
ei

i
� ∂ log C

∂ log pi

�
+ R

✓
c

i

C

◆"
ei

ij
� ∂2 log C

∂ log pi∂ log pj

#

�R
0
 

c
k

C

!
ek

i
� ∂ log C

∂ log pi

� "
ek

j
� ∂ log C

∂ log pj

#
� R

 
c

k

C

!"
ek

ij
� ∂2 log C

∂ log pi∂ log pj

#
= 0

At a symmetric price,

R
0 (1)


ei

j
+

1
n

� 
ei

i
+

1
n

�
+ R (1) ei

ij
= R

0 (1)


ei

j
+

1
n

�2
+ R (1) ei

jk

Therefore, using (A.10) we have

ei

i
= �

✓
n � 1

n

◆
1

R (1)
+

1
n

�
(A.14)

ei

j
=

1
R(1) � 1

n

ei

ii
= �n � 1

n2

"
R(1) [1 � R(1)]2 + (n � 2)R

0(1)
R(1)3

#

ei

ij
=

R(1) [1 � R(1)]2 + (n � 2)R
0(1)

n2R(1)3 (j 6= i)

ei

jj
=

�(n � 1)R(1) [1 � R(1)]2 + (n � 2)R
0(1)

n2R(1)3 (j 6= i)

ei

jk
=

R(1) [1 � R(1)]2 � 2R
0(1)

n2R(1)3 (j 6= k, n � 3)
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In the general case w 6= 1, following similar steps these expressions generalize to

ei

i
= �

✓
n � 1

n

◆
1

R (1)
+

1
n

w

�

ei

j
=

1
R(1) � w

n

ei

ii
= �n � 1

n2


R(1) [1 � R(1)] [1 � R(1)w] + (n � 2)R

0(1)
R(1)3

�

ei

ij
=

R(1) [1 � R(1)] [1 � R(1)w] + (n � 2)R
0(1)

n2R(1)3 (j 6= i)

ei

jj
=

�(n � 1)R(1) [1 � R(1)] [1 � R(1)w] + (n � 2)R
0(1)

n2R(1)3 (j 6= i)

ei

jk
=

R(1) [1 � R(1)] [1 � R(1)w]� 2R
0(1)

n2R(1)3 (j 6= k, n � 3)

Equations (10)-(11) are written using the more convenient j (x) = 1/R (x).
Klenow and Willis (2016) use the functional form

Y0(x) =
h � 1

h
exp

 
1 � x

q/h

q

!

Y00(x) = �x
q
h �1

h
Y0(x)

Y000(x) =

2

64

0

@x
q
h �1

h

1

A
2

�
✓

q � h

h2

◆
x

q
h�2

3

75Y0(x)

Therefore

R(1) =
1
h

R
0(1) =

q

h2
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so that this nests CES with q = 0. We thus have

ei

i
= �h (n � 1) + w

n
(A.15a)

ei

j
=

h � w

n
(A.15b)

ei

ii
= � (n � 1)

n2

h
h2 � (1 + w) h + w + (n � 2)qh

i
(A.15c)

ei

ij
=

h2 � (1 + w) h + w + (n � 2) qh

n2 (A.15d)

ei

jj
=

(n � 2)qh � (h � 1)(n � 1) (h � w)
n2 (A.15e)

ei

jk
=

h2 � (1 + w) h + w � 2qh

n2 (A.15f)

With w = 1 as in the main text, the superelasticity, defined as S =
ei

ii

ei

i

, satisfies

S = =
1

S

1�S
+ h

h
qh +

⇣
(h � 1)2 � 2qh

⌘
S

i

⇡ q +

"
(h � 1)2

h
� 2q

#
S

with S = 1/n denoting the market share. The approximation in the second line holds
if S is small relative to h/ (1 + h), as is the case in a calibration with h = 10. With
constant q and h, the superelasticity is approximately linear in the Herfindahl index.

If q is lower than (h�1)2

2h which equals 4.05 when h = 10 (as in the CES case q = 0)
then S increases with S. With high enough q, it can actually decrease with S, but a
high fixed q is at odds with pass-through being larger for smaller firms.

D Solution Method

Iteratively differentiating the Bellman equation (A.1) and the optimality condition
(A.2) generates a system of equations relating the derivatives of the reaction function
g
0, g

00, and so on, to the steady state markup, demand elasticity ei

i
, superelasticity ei

ii
,

and so on. Our formula (9) is one of such equations.
The standard interpretation of this system treats the sequence of derivatives of g

as unknowns, and the infinite sequence of higher-order elasticities as given structural
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parameters. Instead, we acknowledge that it is empirically impossible to know such
fine properties of preferences or demand functions, since we can only estimate a fi-
nite number of elasticities. This leads us to take a dual view of the same system of
equations: we still take low order elasticities as given, but choose the values of the
unknown higher order elasticities to achieve some desired properties for the deriva-
tives of g. In particular, we can find primitives such that the reaction function g is
locally polynomial of order m, meaning that all its derivatives of higher order than m

vanish when evaluated at the steady state.
Formally, let

e(1) =
∂ log d

i

∂ log pi

, e(k) =
∂e(k�1)

∂ log pi

8k � 2.

Proposition 9. For any order m � 1 and target elasticities

⇣
e(1), . . . , e(m)

⌘
, there exist

Kimball within-sector preferences f̃ such that

(i) the resulting elasticities up to order m match the target elasticities, and

(ii) any MPE of the game with within-sector preferences f̃, strategy g̃ and steady state p̃

satisfies g̃
(k) ( p̃) = 0 for k � m.

Another interpretation is to view the infinite sequence of elasticities as structural:
for instance, we could assume that preferences are exactly CES and compute the im-
plied elasticities of any order. In this context our method is then an approximation of
the exact solution given by the limit m ! • where we can match all elasticities.

Under this interpretation we can evaluate the accuracy of the approximation by
noting that for low n, we can compute the exact solution m ! • using standard value
function iteration. We then compare the resulting steady state price to what follows
from our solution method with finite m. Figure D1 plots the steady state markup
with m = 1, 2, 3 in the case of a duopoly, showing that m = 2 already provides an
excellent approximation (within 1%) to the exact solution m ! • and going to a
higher order m = 3 improves the fit but not by much. Note that low n allows us
to check numerically the accuracy of the approximation, but we know theoretically
that the approximation should be even better as n grows, since all the orders m of
approximation coincide with monopolistic competition as n ! •.
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p
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Figure D1: Steady state markup p with n = 2 firms, under our solution method with
m = 1, 2, 3, relative to exact solution p

exact (which corresponds to m ! •).

Proof of Proposition 9. We start from the system that defines an MPE:

(r + nl)V(p) = P(p) + l Â
j

V
�

g(p�j), p�j

�
(A.16)

Vp (g(p�i), p�i) = 0 (A.17)

Differentiating k times the Bellman equation (A.16) gives us for each k � 1 a linear
system in the kth-derivatives V(k) = (V11...11, V11...12, V11...22, . . . ) of the value function
V (evaluated at the symmetric steady state p̄), which we can invert to obtain these
derivatives as a function of the profit derivatives P(k) = (P11...11, . . . ) and derivatives
of the policy function (there are k + 1 such equations in the case of n = 2 firms).

We can then compute P(k) as a function of p̄ and own- and cross-superelasticities
of the demand function d of order up to k.

Combining the solution V(k) with the k � 1th-derivative of the FOC (A.17) gives
us a sequence of equations that must be satisfied at a steady state

F
k

⇣
p̄, g

0 ( p̄) , g
00 ( p̄) , . . . , g

(k) ( p̄) ; e(0), e(1), e(2), . . . , e(k)

⌘
= 0

where F
k is linear in ẽ(k). Thus we can construct recursively a unique sequence ẽ(k)
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starting from k = m + 1, using

F
m+1

⇣
p̄, g

0, . . . g
(m�1), 0, 0; e(1), e(2), . . . , ẽ(m+1)

⌘
= 0

F
m+2

⇣
p̄, g

0, . . . g
(m�1), 0, 0, 0; e(1), e(2), . . . , ẽ(m+1), ẽ(m+2)

⌘
= 0

and so on. Below we show that for n � 3 there are indeed enough degrees of freedom
to make the equations F

m, F
m+1, . . . independent.

Define j̃ as

j̃ (x) =
•

Â
k=0

j̃(k) (1)
k!

(x � 1)k

where j̃(k+1)(1) is characterized by
⇣

e(1), . . . , e(m), ẽ(m+1), . . . , ẽ(k)

⌘
through the same

computations as in Appendix C. Given this construction, p̄, g
0, . . . , g

(m�1) are pinned
down by

⇣
e(1), . . . , e(m)

⌘
as the solution to the system of equations F

k for k = 1, . . . , m.
The main potential impediment to the proof is that demand integrability (e.g.,

demand functions being generated by actual utility functions) imposes restrictions
on higher-order elasticities that would prevent us from constructing the sequence
ẽ. Indeed, in Appendix C we saw that with n = 2 firms, general Kimball demand
functions cannot generate superelasticities beyond those arising from CES demand.
We now show that as long as n � 3, this is not the case, by proving that the number
of elasticities exceeds the number of restrictions.

Formally, we want to compute #n (m), the number of cross-elasticities of order m,
that is derivatives

∂m log d
1(p)

∂i1 log p1∂i2 log p2 . . . ∂in log pn

where

0  i1, . . . , in  m

i1 + · · ·+ in = m

as functions of the own-mth-elasticity e1
11 . . . 1| {z }

m times

, and compare #n (m) to the number of

restrictions imposed by demand integrability and symmetry arguments.
By Schwarz symmetry, in a smooth MPE, we can always invert 2 indices in the

derivatives. Moreover, from the viewpoint of firm 1 (whose demand d
1 we’re differ-

entiating), firms 2 and 3 are interchangeable. For instance, in the case of n = 3 firms
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and order of differentiation m = 3, these symmetries reduce the number of potential
elasticities n

m = 27 to only 6 elasticities

e1
111, e1

112, e1
122, e1

123, e1
222, e1

223.

Denote
qn (M)

the number of partitions of an integer M into n non-negative integers. For M � n we
have

qn (M) = pn (M + n)

where pn (M) is the number of partitions of an integer M into n positive integers. We
can see this by writing, starting from a partition of M into n non-negative integers
i1, . . . , in:

M + n = (i1 + 1) + · · ·+ (in + 1)

We can then compute pj (M) using the recurrence formula

pj (M) = pj (M � j)
| {z }

partitions for which ik � 2 for all k

+ pj�1 (M � 1)
| {z }

partitions for which ik = 1 for some k

Lemma 1. For any n � 1 and m � 1 the number of elasticities of order m is

#n (m) =
m

Â
k=0

qn�1 (m � k) (A.18)

hence #n (m + 1) = #n (m) + qn�1 (m + 1).

Proof. Firm 1 is special, so we need to count the number of times we differentiate with
respect to log p1, which generates the sum over k. Then we get each term in the sum
by counting partitions of m � k into n � 1 non-negative integers.

Next, we want to count the reduction in the number of degrees of freedom im-
posed by economic restrictions. Our restrictions are

F(p) = Â
j

pjd
j(p) = 0 8p (A.19)

d
i

j
(p) = d

j

i
(p) 8p, 8i, j (A.20)
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The first equation is the budget constraint. The second equation is the Slutsky sym-
metry condition (constant returns to scale allow to go from Hicksian to Marshallian
elasticities). Note that F defined in (A.19) is symmetric, unlike the demand function
d

1 we are using to compute elasticities. Therefore F’s derivatives give us fewer re-
strictions than what we need in (A.18), leaving room for restrictions to come from the
Slutsky equation.

We need to differentiate these two equations to obtain independent equations that
relate the mth-cross-elasticities to the mth-own-elasticity. The number of restrictions
coming from derivatives of F at order m is simply the number qn (m) of partitions
of m into n non-negative integers. Denote [n (m) the number of restrictions we have
from derivatives of the Slutsky equation. The initial equation d

1
2 = d

2
1 is irrelevant at

a symmetric steady state; it only starts mattering once we differentiate it. We actually
do not need to compute [n (m) exactly. The following lemma shows that there are
always enough degrees of freedom #n (m) to construct the Kimball aggregator in 9:

Lemma 2. For n � 3 and any m we have

qn (m) + [n (m) + 1  #n (m) (A.21)

Proof. We know by hand that (A.21) holds for m = 1, 2 so take m � 3. Then all the
Slutsky conditions can be written as starting with

d
1
12... = . . .

hence we have

[n (m)  #n (m � 2) = #n (m)� pn�1 (n + m � 1)� pn (n + m � 2)

hence the number of equations is bounded by

qn (m) + [n (m)  pn (n + m) + #n (m)� pn�1 (n + m � 1)� pn (n + m � 2)
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Then we have (A.21) if

pn (n + m) < pn�1 (n + m � 1) + pn (n + m � 2)

,pn�1 (n + m � 1) + pn (m) < pn�1 (n + m � 1) + pn (n + m � 2)

,pn (m) < pn (n + m � 2)

which holds for n � 3.

Note that so far we have considered general CRS demand functions. Restricting
attention to the Kimball class makes the inequality (A.21) bind, meaning that we can
parametrize all the cross-elasticities of order m using the own-elasticity of order m.

What fails in the knife-edge case n = 2? Slutsky symmetry imposes too many
restrictions: at m = 2 we only have 3 elasticities e1

11, e1
12, e1

22 and also 3 restrictions, so
we can solve out all the superelasticities as functions of e1

1, which prevents us from
constructing the Kimball aggregator in Proposition 9.

E Model Solution

We apply the solution method described in Appendix D to derive analytical expres-
sions in the case m = 2.

E.1 Symmetric Firms

We first solve the linear system in
n

V
i

j
, V

i

ii
, V

i

ij
, V

i

jj
, V

i

jk

o
obtained from envelope con-

ditions

(r + l)V
i

j
= Pi

j
+ l (n � 2)V

i

j
b

(r + l)V
i

ii
= Pi

ii
+ l (n � 1)

⇣
V

i

jj
b2 + 2V

i

ij
b
⌘

(r + 2l)V
i

ij
= Pi

ij
+ l (n � 2)

⇣
V

i

jj
b2 + V

i

ij
b + V

i

jk
b
⌘

(r + l)V
i

jj
= Pi

jj
+ l (n � 2)

⇣
V

i

jj
b2 + 2V

i

jk
b
⌘
+ l

⇣
V

i

ii
b2 + 2V

i

ij
b
⌘

(r + 2l)V
i

jk
= Pi

jk
+ l (n � 3)

⇣
V

i

jj
b2 + 2V

i

jk
b
⌘
+ l

⇣
V

i

ii
b2 + 2V

i

ij
b
⌘
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Injecting the solution into the derivative of the first-order condition

V
i

ii
b + V

i

ij
= 0

yields an equation

0 = AiiPi

ii
( p̄) + AijPi

ij
( p̄) + AjjPi

jj
( p̄) + AjkPi

jk
( p̄) (A.22)

with coefficients

Aii =b((b + 1)l3 �b2 ��2n
2 + 9n � 10

�
+ b3(n � 2) + 6b(n � 2)� 4

�
(A.23a)

� l2r
�

b3 �
n

2 � 5n + 6
�
+ b2 �2n

2 � 15n + 22
�
+ b(24 � 9n) + 8

�

+ lr2 �b2(n � 2) + b(3n � 8)� 5
�
� r3)

Aij =� 2(b + 1)l3
⇣
�2b3 �

n
2 � 3n + 2

�
+ b4(n � 1) + 2b2(n � 1)� b(n � 2) + 1

⌘
(A.23b)

+ l2r
⇣

b4 ��2n
2 + 7n � 5

�
� 4b3 �

n
2 � 4n + 3

�
+ 3b2

n � 4b(n � 3) + 5
⌘

+ lr2 �b2
n � 2b(n � 3) + 4

�
+ r3

Ajj =b2l((b + 1)l2 �2
�

b2 + 3b + 2
�
+ b(b + 1)n2 �

�
3b2 + 7b + 2

�
n
�

(A.23c)

+ lr
�
4b2 + 10b + b(b + 1)n2 �

�
5b2 + 9b + 3

�
n + 6

�

+ r2(b � (b + 1)n + 2))

Ajk =� bl(n � 2)((b + 1)l2 ��b + b3(n � 1) + 3b2(n � 1) + 1
�

(A.23d)

+ lr
�
2b3(n � 1) + b2(3n � 4) + 2

�
+ r2)

Finally p̄
3Pi

ii
( p̄) , p̄

3Pi

ij
( p̄) , p̄

3Pi

jj
( p̄) , p̄

3Pi

jk
( p̄) are all linear functions of p̄ and

W. Therefore, multiplying (A.22) by p̄
3

W
we get a linear equation in µ which can be

solved to obtain a function

µ = µ (B, w, e, S, n, l/r) . (A.24)

Equation (A.24) together with the sufficient statistic formula (9)

B = B (µ, w, e, n, l/r)

form a system of two equations in the two unknowns µ and b.
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E.2 Heterogeneous Firms

The demand faced by firm i is

ci =
1
xi

d
i ( p̃i, p̃�i)

where d
i is the demand function from the symmetric case (xi = 1 for all i) and p̃j =

pj/x j is the normalized price of good j. As a result the nominal profit of firm i can be
written as

Pi(t) = p̃i(t)d
i ( p̃i(t), p̃�i(t))� W(t) f

�1
✓

d
i ( p̃i(t), p̃�i(t))

xizi

◆
(A.25)

where d
i is the previous demand function from the symmetric firms model, and p̃j =

pj/x j is the normalized price of good j. If xizi = 1, the model with normalized prices
is isomorphic to one with symmetric firms.

Suppose as in Section 5.2 that there are two types of firms, a and b, with n = na +

nb. a and b firms can differ permanently in their productivity z, their demand shifters
x, or both. With two types we need to solve for six unknowns: two steady state prices
{pa, pb} and four slopes

�
ba

a, ba

b
, bb

a, bb

b

 
where bi

j
is the slope of the reaction of a firm

of type i to the price change of a firm of type j. The envelope conditions for firms of
type a are

(r + l)V
i,a
i

= Pi,a
i
+ l (na � 1)V

i,a
ja

ba

a + lnbV
i,a
jb

bb

a

(r + l)V
i,a
ja

= Pi,a
ja
+ l (na � 2)V

i,a
ja

ba

a + lnbV
i,a
jb

bb

a

(r + l)V
i,a
jb

= Pi,a
jb
+ l (na � 1)V

i,a
ja

ba

b
+ l (nb � 1)V

i,a
jb

bb

b
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and, in the locally linear equilibrium:

(r + l)V
i,a
ii

= Pi,a
ii
+ l (na � 1)

h
V

i,a
ja ja

(ba

a)
2 + 2V

i,a
ija
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
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jb jb
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h
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�

We can use these 11 envelope conditions to solve linearly for
n

V
i,a
i

, V
i,a
ja

, V
i,a
jb

, V
i,a
ii

, . . .
o

,
and then inject the solution into the first-order conditions

V
i,a
i

= 0

V
i,a
ii

ba

a + V
i,a
ija

= 0

V
i,a
ii

ba

b
+ V

i,a
ijb

= 0

The same steps for firms of type b give us 3 more equations.

F Calibration to Pass-Through Evidence

In Section 3 we use evidence on own-cost pass-through from Amiti, Itskhoki and
Konings (2019) (henceforth AIK) to calibrate how the superelasticity S varies with
concentration. We describe the procedure in more detail here.

In the presence of permanent shocks to marginal costs mcj, when firm i adjusts its
price it sets

log pi � log p̄i = a (log mci � log c̄i) + B
Âj 6=i log pj � log p̄j

n � 1
+ g Â

j 6=i

�
log cj � log c̄j

�

(A.26)
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where the coefficients

a =
∂g

i

∂mci

, B = (n � 1)
∂g

i

∂pj

, g =
∂g

i

∂mcj

can be computed as before using our envelope conditions applied to a generalization
of the Bellman equation (A.1) that allows for permanent cost shocks:

(r + nl)V
i (p, mc) = Pi (p, mci) + l Â

j

V
i

⇣
g

j
�

p�j, mc
�

, p�j, mc

⌘
. (A.27)

Unlike in static models of oligopoly (see Remark 2 below) g is non-zero in general:
although competitor j’s cost cj does not affect firm i’s current profits, it will affect
how firm j sets its price pj in the future, which is relevant for firm i’s future payoffs.
Anticipating this, firm i will already respond itself to cj when it gets to reset its price.
The coefficients must satisfy the homogeneity restriction

a + B + (n � 1) g = 1,

which says that if all firms’ marginal costs increase by 1% then all firms’ prices also
increase by 1%.

Rewrite (A.26) in vector form as

Dp̃ = (aI + gS)Dfmc + bSDp̃

where S = J � I and J is the matrix with 1’s everywhere, Dp̃ = [log pi � log p̄i]
0,

Dfmc = [log mci � log m̄ci]
0. The following result describes the mapping from the

parameters a, B in (A.26) to the regression estimates â, B̂ in (12).

Proposition 10. There exist unique scalars â, B̂ such that for all vectors Dmc

D p̃i = âDfmci + B̂
Âj 6=i D p̃j

n � 1

for all i, namely

â =
na + B � 1

a + B + n � 2
(A.28)

B̂ =
(n � 1) (1 � a)
a + B + n � 2

(A.29)
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thus they satisfy â + B̂ = 1.

Proof. We need for all Dc

Dp̃ = âDfmc + b̂SDp̃

that is
�

I � b̂S
�
(I � bS)�1 (aI + gS) = âI

where b = B

n�1 , b̂ = B̂

n�1 . Using M = (I � bS)�1 = Âk�0 bk
S

k this is equivalent to

Â
k�0

bk

h
S

k � b̂S
k+1
i
(aI + gS) = âI

Â
k�0

bk

h
aS

k + gS
k+1 � ab̂S

k+1 � gb̂S
k+2
i
= âI

aM +
g

b
(M � I)� a

b̂

b
(M � I)� g

b̂

b2 (M � I � bS) = âI

abM +
�
g � ab̂ � gb̂/b

�
(M � I) + gb̂S = âbI

Multiplying by I � bS this becomes

abI +
�
g � ab̂ � gb̂/b

�
bS + gb̂

⇣
S � bS

2
⌘
= âb (I � bS)

⇣
gb � abb̂ + âb2

⌘
S � gb̂bS

2 = (â � a) bI

Using
J

2 = nJ

(recall that J is the matrix with ones everywhere) we have

S
2 = (n � 1) I + (n � 2)S

Therefore â, b̂ must satisfy

⇣
gb � abb̂ + âb2 � gb̂b(n � 2)

⌘
S =

⇥
(â � a) b + gb̂b (n � 1)

⇤
I

which can only be true if both sides are zero, that is (after replacing g using the ho-
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Figure F1: Pass-through â as a function of market share 1/n.

mogeneity restriction):

â =
na + B � 1

a + B + n � 2

B̂ =
(n � 1) (1 � a)
a + B + n � 2

Amiti, Itskhoki and Konings (2019) show that the empirical behavior of â as a
function of market share is well approximated by

â ⇡ 1

1 + (h�1)(1�s)s(h�w)
w(h�1)�s(h�w)

with h = 10 and w = 1. Therefore in a sector with n firms we set as target the
corresponding pass-through ân = 1

1+9/n
. Then, fixing other parameters (e.g., h, l, r),

for each (q, n) we can compute a and B and solve for qn that sets allows to match ân.
Figure F1 shows the resulting pass-through as a function of market share 1/n

under this “AIK” calibration, contrasting with the case of fixed q = 0 (CES) and fixed
q = 10.

G Other Comparative Statics

Changes in Preference Parameters h and q. Changes in h and q affect both the
steady state markup µ and the half-life of the price level following monetary shocks.

Figure G1 shows the half-life as a function of the steady state markup, when vari-
ation in markups is produced through variation in the within-sector elasticity of sub-
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Figure G1: Half-life as a function of steady state markup µ when h varies.

stitution h; higher h implies lower markups. The effect on the half-life is ambiguous,
however, except in the special case n = 2 in which there is always a negative rela-
tion between the markup and the half-life.1 In particular, as soon as there are at least
n = 3 firms, the value of q matters. When q = 0 (CES), we have the same negative re-
lation as in the duopoly case, but with a high enough value of q, the half-life becomes
negatively related to the steady state markup. We explain these patterns in Section 4.

We argued that under dynamic oligopoly, markups are not fully determined by
demand elasticities. Figure G2 shows the half-life as a function of the steady state
markup, when variation in markups is produced through the superelasticity param-
eter q in an example with n = 3 firms. Higher q implies higher markups, even though
the demand elasticity e is unchanged throughout. As we vary q, all the objects ap-
pearing in the right-hand side of (9) remain fixed except µ, hence this experiment
yields a transparent application of the formula showing how B and the half-life in-
crease with µ.

Changes in Discount Rates and Price Stickiness. The discount rate r and the fre-
quency of price changes l can also affect the steady state markup (and therefore the
slope B). These two parameters only enter through the ratio r/l, so a higher fre-
quency is isomorphic to a lower discount rate and we focus the discussion on l.

Figure G3 shows that markups increase with l, especially when n is low. This

1In Appendix B we show that for any homothetic preferences, e and S are the same as under CES
when there are only n = 2 symmetric firms, whether the cross-sector aggregator has unit elasticity w
or not. This means that q is irrelevant when n = 2, as can be seen in Figure 2, where all the curves
coincide when n = 2. When n is above 2, however, knowing the markup is not enough to infer the
slope, which is why formula (9) also requires information on demand elasticities.
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Figure G3: Steady state markup µ and slope B as a function of frequency of price
changes l under “AIK” calibration. Dashed horizontal lines correspond to the static
Bertrand-Nash equilibrium (µNash and B

Nash).

shows once again that equilibrium markups are complex objects that depend on
many features of the environment beyond demand elasticities. In the limit of in-
finitely sticky prices l ! 0, firms play the one-shot best-response, and so the Markov
equilibrium coincides with the static Bertrand-Nash equilibrium, both in terms of
steady state markup and reaction functions, which is apparent in Figure G3. Inter-
estingly, the limit of infinitely frequent price changes l/r ! • does not equal the
frictionless (flexible price) model, in which firms would play the static Bertrand-Nash
equilibrium at each instant. For instance, when n = 3 (in red), the static markup is
µNash = 1.17 while the steady state markup converges to µ = 1.24 as l ! •. For
higher n, the gap between the Nash markup and the l ! • limit becomes negligi-
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ble.2

H Solution of the Naive Model

The quadratic approximation of profit Pi of firm i around the naive steady state
which is the static Nash p

Nash writes

pi (zi, z�i) = BQi + CQ
2
i
+ DziQi + Ez

2
i
+ FRi

where zj = log pj � log p
Nash for each j and

Qi = Â
j 6=i

zj

Ri = Â
j 6=i

z
2
j

There is no term Azi because we are approximate around the Nash price p
Nash where

Pi

i
= 0 for all i. The most important coefficients D and E are

D = Pij

⇣
p

Nash
⌘

E =
Pii

2

⇣
p

Nash
⌘

We look for a symmetric equilibrium where each resetting firm j sets

z
⇤
j
= bQj.

Then between s and s + Ds we have

EtQi(s + Ds) = (1 � (n � 1)lD) EtQi(s) + lDEt Â
j 6=i

⇥
Qi(s)� pj(s) + bQj(s)

⇤

2This discontinuity in markups in the limit of flexible prices or very patient firms has been noted in
other contexts, such as the alternating moves model of Maskin and Tirole (1988) and the model with
quadratic Rotemberg adjustment costs in Jun and Vives (2004). A recent empirical IO literature, e.g.,
Brown and MacKay (2021), finds that algorithms allowing for fast repricing do lead to higher markups.
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hence taking the limit Ds ! 0

d

ds
EtQi(s) = l

(
b Â

j 6=i

EtQj(s)� EtQi(s)

)

thus the variable Z(s) = Âi EtQi(s) follows

d

ds
Z(s) = �l [1 � b(n � 1)] Z(s)

Therefore, by symmetry

EtQi(s) = Qi(t)e
�l[1�b(n�1)](s�t)

When it resets, firm i chooses z
⇤
i
(t) such that

max
z⇤

i
(t)

Et

Z •

t

e
�(l+r)(s�t)pi(z⇤

i
(t), zi(t + s))ds

�

The FOC is

z
⇤
i
(t) = �

R •
t

e
�(l+r)(s�t)

DEt [Qi(s)] ds
R •

t
e�(l+r)s2Eds

= �

R •
t

e
�(l+r)(s�t)

⇣
DQi(t)e�l(1�(n�1)b)(s�t)

⌘
ds

R •
t

e�(l+r)(s�t)2Eds

= � D(l + r)
2E [l + r + l(1 � (n � 1)b)]

Qi(t)

Therefore B = (n � 1) b solves

B =
B

Nash

1 + l
r+l [1 � B]

(A.30)

where the ratio B
Nash =

(n�1)Pij

�Pii
is the slope of the static best response to a simulta-

neous price change by all firms j 6= i in a static model. We need B
Nash to be strictly

lower than 1 for a static symmetric Nash equilibrium to exist. (A.30) shows that the
slope of the dynamic naive best response at a stable steady state is always smaller
than the slope of the static best response B

Nash and is decreasing in l/r. The stable
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root in (0, 1) is

B
Naive =

✓
r + 2l

2l

◆"
1 �

s

1 � 4
l(r + l)
(r + 2l)2 BNash

#
.

I Derivation of the Oligopolistic Phillips Curve

Consider the general non-stationary versions of the Bellman equation (A.1) and the
first-order condition (A.2):

(Rt + nl)V
i (p, t) = V

i

t (p, t) + Pi (p, MCt, Zt) + l Â
j

V
i

⇣
g

j
�

p�j, t
�

, p�j, t

⌘
(A.31)

V
i

i

⇣
g

i (p�i, t) , p�i, t

⌘
= 0 (A.32)

Nominal profits are given by

Pi (p, MC, Z) = ZD
i(p) [pi � MC]

where Z is an aggregate demand shifter that can depend arbitrarily on Ct and Pt.3

Define a(t) as the solution to

g
i (a(t), a(t), . . . , a(t), t) = a(t).

This is the price that each firm would set if all the firms were resetting at the same
time. a is the counterpart of the reset price in the standard New Keynesian model.

To obtain the dynamics of a from (A.31), we start by deriving time-varying enve-
lope conditions evaluated at the symmetric price p1 = p2 = · · · = pn = a(t). After
applying symmetry and using Proposition 9 to make the strategies approximately
linear in the neighborhood of the steady state, the non-linear first-order and second-
order envelope conditions of the non-stationary game imply the following partial

3In Section 2, conditions (5) ensured a constant Zt.
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differential equations (PDEs)

0 = V
i

it
+ Pi

i
+ l (n � 1)V

i

j
b (A.33a)

(it + l)V
i

j
= V

i

jt
+ Pi

j
+ l (n � 2)V

i

j
b (A.33b)

(it + l)V
i

ii
= V

i

iit
+ Pi

ii
+ l (n � 1)

⇣
V

i

jj
b2 + 2V

i

ij
b
⌘

(A.33c)

(it + 2l)V
i

ij
= V

i

ijt
+ Pi

ij
+ l (n � 2)

⇣
V

i

jj
b2 + V

i

jk
b + bV

i

ij

⌘
(A.33d)

(it + l)V
i

jj
= V

i

jjt
+ Pi

jj
+ l (n � 2)

⇣
V

i

jj
b2 + 2bV

i

jk

⌘
+ l

⇣
V

i

ii
b2 + 2bV

i

ij

⌘
(A.33e)

(it + 2l)V
i

jk
= V

i

jkt
+ Pi

jk
+ l (n � 3)

⇣
V

i

jj
b2 + 2bV

i

jk

⌘
+ l

⇣
V

i

ii
b2 + 2bV

i

ij

⌘
(A.33f)

Denote the functions

W
i

i
(t) = V

i

i
(a(t), . . . , a(t), t) , W

i

ii
(t) = V

i

ii
(a(t), . . . , a(t), t)

and so on for all derivatives of the value function V
i. We can transform the system

(A.33) into a system of ordinary differential equations in the functions W
i

i
(t), W

i

j
(t),

and so on. The partial derivatives with respect to time such as

V
i

it
=

∂V
i

i

∂t
(a(t), . . . , a(t), t)

in equations (A.33) can be mapped to corresponding total derivatives of W functions
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Ẇ
i

it
=

dW
i

it

dt
using

V
i

it
= Ẇ

i

i
�
"

V
i

ii
+ Â

j 6=i

V
i

ij

#
ȧ

V
i

jt
= Ẇ

i

j
�
"

V
i

ij
+ V

i

jj
+ Â

k 6=i,j
V

i

jk

#
ȧ

V
i

iit
= Ẇ
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ii
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"

V
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V
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iij

#
ȧ

V
i

ijt
= Ẇ
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ij
�
"

V
i

iij
+ V

i

ijj
+ Â

k 6=i,j
V

i

ijk

#
ȧ

V
i

jjt
= Ẇ

i

jj
�
"

V
i

ijj
+ V

i

jjj
+ Â

k 6=i,j
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jjk

#
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V
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�
"

V
i

ijk
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jjk
+ V

i

jkk
+ Â

l 6=i,j,k
V

i

jkl

#
ȧ

where the third derivatives of V at the steady state come from the third-order enve-
lope conditions of the stationary game, solving the linear system:

(r + l)V
i

iii
= Pi

iii
+ l (n � 1)

n
V

i

jjj
b3 + 3V

i

ijj
b2 + 3V

i

iij
b
o

(r + 2l)V
i

iij
= Pi

iij
+ l (n � 2)

n
V

i

jjj
b3 + 2V

i

ijj
b2 + V

i

jjk
b2 + 2V

i

ijk
b + V

i

iij
b
o

(r + 2l)V
i

ijj
= Pi

ijj
+ l (n � 2)

n
V

i

jjj
b3 + 2b2

V
i

jjk
+ b2

V
i

ijj
+ 2bV

i

ijk
+ bV

i

jjk

o

(r + 3l)V
i

ijk
= Pi

ijk
+ l (n � 3)

n
V

i

jjj
b3 + 2b2

V
i

jjk
+ b2

V
i

ijj
+ 2bV

i

ijk
+ bV

i

jkl

o

(r + l)V
i

jjj
= Pi

jjj
+ l (n � 2)

n
b3

V
i

jjj
+ 3b2

V
i

jjk
+ 3bV

i

jjk

o

+ l
n

b3
V

i

iii
+ 3b2

V
i

iij
+ 3bV

i

ijj

o

(r + 2l)V
i

jjk
= Pi

jjk
+ l (n � 3)

n
b3

V
i

jjj
+ 3b2

V
i

jjk
+ bV

i

jjk
+ 2bV

i

jkl

o

+ l
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b3
V

i
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+ 3b2

V
i

iij
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i

ijj
+ 2bV

i

ijk

o

(r + 3l)V
i

jkl
= Pi

jkl
+ l (n � 4)

n
b3

V
i

jjj
+ 3b2

V
i

jjk
+ 3bV

i

jkl

o

+ l
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i
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+ 3b2

V
i
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+ 3bV

i

ijk

o

Importantly, to approximate the second derivatives of V
i, we need to solve for the
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third derivatives of V
i around the steady state by applying the envelope theorem one

more time.
Imposing symmetry again, the following non-linear system of ODEs in the func-

tions
⇣

a, b, W
i

j
, W

i

ii
, W

i

ij
, W

i

jj
, W

i

jk

⌘
holds exactly (omitting the time argument):

0 = �
h
W

i

ii
+ (n � 1)W

i

ij

i
ȧ + Pi

i
+ l (n � 1)W

i

j
b (A.35a)
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(A.35c)
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(A.35g)

Next, we linearize system (A.35) around a symmetric steady state ā = a (•) with zero
inflation (and steady state values of aggregate variables C̄, P̄). Let lower case variables
denote log-deviations, e.g., a(t) = log a(t)� log ā, and write nominal marginal cost
as

p(t) + k(t)

where k(t) is the log-deviation of the real marginal cost. Profit derivatives such as
Pi

i
(t) in (A.35) are evaluated at the moving price a(t), hence become once linearized4

pi

i
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h
Pi

ii
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where P̄i

i
, P̄i

ii
etc. denote steady state values.

4It is more convenient to linearize and not log-linearize profit derivatives, but we use the notation
pi

i
(t) = Pi

i
(t)� P̄i

i
.
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This yields the system of 6 linear ODEs in
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In general there are thus 6 ODEs because b may be time-dependent hence b(t) 6= 0.
But note that if b(t) = 0 then the system becomes block-recursive and we can solve
separately the first two equations in a and w

i

j
. From the optimality conditions we

have
ḃ = �ȧ

h
W

i

iij
[1 � (n � 1) b] + (n � 1)W

i

ijj
� bWiii

i

Using our perturbation argument we can show that there exists a third-order cross-
elasticity ei

iij
such that at the steady state

V
i

iij
[1 � (n � 1) b] + (n � 1)V

i

ijj
� bViii = 0 (A.36)

A.36



where Viij, Vijj, Viii are solutions to the system (A.34). Thus in what follows we con-
sider b as constant for the first-order dynamics to simplify expressions, although we
could solve the larger system without this assumption.

The last step is to replace the single “reset price” variable a(t) with two variables,
the aggregate price level p(t) and inflation p(t) = ṗ(t) using our aggregation result
that inflation follows

p(t) = l [1 � (n � 1) b(t)] [log a(t)� log P(t)] .

After log-linearization we have

a(t) =
p(t)

l [1 � (n � 1) b]
+ p(t).

Therefore, we obtain in matrix form that the vector

Y(t) =
⇣

p(t), p(t), w
i

j
(t)
⌘0

solves the linear differential equation

Ẏ(t) = AY(t) + Zkk(t) + Zcc(t) + ZR [R(t)� r]

where A 2 R3⇥3, Zk, Zc, ZR 2 R3 collect the terms above (evaluated at the steady
state), with boundary conditions limt!• Y(t) = 0. The solution is given by

Y(t) = �
Z •

0
e

sA {Zkk (t + s) + Zcc (t + s) + ZR [R (t + s)� r]} ds

where e
sA = Â•

k=0
s

kAk

k! denotes the matrix exponential of sA. Proposition 8 then
follows by taking the first component of Y.

To obtain the scalar higher-order ODE for p, let [M]
i

and [M]
xy

denote the ith
line and the (x, y) element of a generic matrix M respectively. Let B(t) = Zkk(t) +

Zcc(t) + Zr [r(t)� r]. Iterating Ẏ(t) = AY(t) + B(t), we have for all k � 1

Y(k)(t) = AkY(t) +
k�1

Â
j=0

AjB(k�1�j)(t).
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Taking the first line for each k = 1, . . . , K = 3, we have K equations

d
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dtk
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which we can each rewrite as
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Take any vector ap =
⇣

ap
j

⌘K

j=1
in ker M0 (whose dimension is at least 1), i.e., such that
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A = 0.

and we can define ap
0 = �ÂK

k=1 ap
k

⇥
Ak
⇤

11. This simplifies to

...
p = (App + Aww) p̈ (A.37)

+
�
App + ApwAwp � AppAww

�
ṗ

+
�
ApwAwp � AppAww

�
p

+ ApwḂw + B̈p � AwwḂp
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I.1 One-time shocks

Given (19) we can guess and verify that x = yxe
�xt for all variables x 2 {p, k, c, R � r}

and solve for the coefficients yx using the system
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J Additional Figures
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Figure J1: Pass-through â as a function of market share: symmetric vs. heterogeneous
firms.
Note: Black line: market share varies through the number n = 2, 3, . . . of symmetric firms (black). Gray
dashed line: market share varies through heterogeneity in productivity among a fixed number n = 10
of firms. The two lines lie almost exactly on top of each other. Nested CES preferences with h = 10,
w = 1.
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Figure J2: Green functions gmc (s) , gc (s) , gR (s) for different numbers of firms n.
Note: AIK calibration. Solid black line: Strategic oligopoly. Dashed gray line: Naive model.
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Figure J3: Impulse responses for consumption and inflation following date-0 news
about monetary policy shock happening at tshock indicated by the vertical line.
Note: n = 3 firms with AIK calibration. Solid black line: Strategic oligopoly. Dashed gray line: Naive
model. c and p denote log-deviations from steady state values in %.
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Figure J4: Date-0 consumption and inflation in a liquidity trap lasting from t = 0 to
t = T, for different values of T.
Note: Solid black line: n = 3. Dotted gray line: n = •. c and p denote log-deviations from steady state
values in %.
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Figure J5: Date-0 consumption and inflation in a liquidity trap lasting from t = 0 to
t = T, for different values of T.
Note: n = 3 firms with AIK calibration. Solid black line: Strategic oligopoly. Dashed gray line: Naive
model. c and p denote log-deviations from steady state values in %.
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Figure J6: In white: convergence of value function iteration algorithm towards a
monotone MPE in (l, h) space, with n = 2 firms.
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