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ONLINE APPENDIX

A Proofs and Additional Results

A.1 Proofs of Results in Section IA

Proof of Lemma 1. The equilibrium characterization is shown in the main text in the

discussion preceding Lemma 1. We now show that in an equilibrium where the correct policy

is chosen with a probability (weakly) greater than 0.5 in both states,  = Pr( = |)
and  = Pr( = |) must hold. Assume that the correct policy is chosen with a
probability (weakly) greater than 0.5 in both states in equilibrium. This is true if and only

if the relative turnout rate for the correct policy is weakly greater than 05. As a result,

Pr(|) ≥ Pr(|) and Pr(|) ≥ Pr(|) must hold. Now, suppose towards
a contradiction that  6= Pr( = |). This implies that Pr( = |)  Pr( =

|) by (2), which in turn implies that Pr( = |)  Pr( = |) because
Pr( = |) = 1 − Pr( = |) for  ∈ { }. Thus,  6= Pr( = |) by
(3). More generally,  6= Pr( = |) if and only if  6= Pr( = |). Rewriting
Pr( = |)  Pr( = |) and using Pr(|) ≥ Pr(|), we obtain

(1− ) Pr(|)
(1− ) Pr(|) + Pr(|) 

(1− ) Pr(|)
(1− ) Pr(|) + Pr(|) 

which implies that Pr(|)  Pr(|), a contradiction. Finally, as shown above  =
Pr( = |) if and only if  = Pr( = |). Hence, the result is proved.

We next show that if  = 05, then  = Pr( = |) and  = Pr( = |)
must hold. It is enough to show that  = Pr( = |) given that  = Pr( = |)
if and only if  = Pr( = |). Assume towards a contradiction that Pr( = |) 
Pr( = |). Then, given the definitions of  and  in (2)-(3), it can be checked that

there is full no abstention in equilibrium, and + = 1 must hold. Thus, either  ≥ 05 or
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 ≥ 05 (or  =  = 05). Due to symmetry with  = 05, it is without loss of generality to

only consider the case in which  ≥ 05 and show that there is a contradiction. In particular,
we will show that

 Pr(|)− (1− ) Pr(|) = (1− ) Pr(|)−  Pr(|)

cannot hold, but it is a necessary condition as an individual who obtains an  signal and

has  =  must be indifferent between voting for policy  and for policy . There are two

cases to consider: (i)   05 and (ii)  = 05. First, assume that   05. There are five

cases to consider depending on the values of ,  and ̄.

Case 1:  ≥ ̄, and 1 −  ≤ . Note that 1 −  ≤  and  ≥ ̄ imply that  ≤  and

1 −  ≥ ̄ since  +  = 1. Thus, this is analogous to a nonresponsive equilibrium in

which no individual is pivotal since every individual votes for  regardless of their signal and

accuracy, which we rule out.

Case 2:     ̄, and 1 −   .55 In this case, the benefit from voting for  for an

individual who obtains an  signal with an accuracy of  equals


µ
 − 1
b−1

2
c
¶
()

b−1
2
c()

−1−b−1
2
c−(1− )

µ
 − 1
b−1

2
c
¶
()

b−1
2
c()

−1−b−1
2
c (4)

where () and () represent the respective turnout rate for policy  and policy  in state

; i.e.,

() =
R ̄

 +

R 1−


(1− )

() =
R 

 +

R ̄
1−(1− )

() =
R ̄

(1− ) +

R 1−




() =
R 

(1− ) +

R ̄
1−

and the same individual’s benefit from voting for  equals

(1− )

µ
 − 1
b−1

2
c
¶
()

b−1
2
c()

−1−b−1
2
c − 

µ
 − 1
b−1

2
c
¶
()

b−1
2
c()

−1−b−1
2
c (5)

Recall that since + = 1, there is no abstention and thus ()+() = 1 for  ∈ {}.
However, we will show that (4) is strictly greater than (5), which is a contradiction. To see

55Note that 1−  ≤ ̄ must always hold by the initial hypothesis that   05.
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why, note that since   05, () + () = 1, and () is the largest turnout term,

()()  ()() must hold, and therefore,


µ
 − 1
b−1

2
c
¶
()

b−1
2
c()

b−1
2
c(() + ())

is greater than

(1− )

µ
 − 1
b−1

2
c
¶
()

b−1
2
c()

b−1
2
c(() + ())

which ensures that the benefit from voting for  exceeds the benefit from voting for  with

 =  and  = , regardless of whether  is even or odd. Thus, there cannot be an

equilibrium with   ̄, and 1−   .

Case 3:     ̄, and 1−  ≤ . The steps in the proof of Case 2 still apply (with minor

modifications in () and () due to 1−  ≤ ).

Case 4:  ≥ ̄, and 1 −   . The steps in the proof of Case 2 still apply (with minor

modifications in () and () due to 
 ≥ ̄).

Case 5:  ≤ . This case is possible only if   05 since   05 by initial hypothesis. It

also follows from  +  = 1 that    must hold. In this case, everyone votes and does

so according to their signal. However, since we have a symmetric environment with  = 05,

this implies that  = . But then from  +  = 1,  = 05 must hold, a contradiction.

Hence, we have shown that Pr( = |)  Pr( = |) cannot hold if   05
and  = 05. Next, assume that  = 05. From +  = 1,  = 05 must hold. It is easy to

see that this results in a case in which the correct policy is chosen with a probability greater

than 05 in either state, and therefore, Pr( = |)  Pr( = |) cannot hold given
what we proved above.

Finally, we show that if  = 05 and  = 05, then  = . Suppose towards a

contradiction (and without loss of generality) that   . There are three possibilities:

either    ≥ 05 or   05   or 05 ≥   .

(1) First, assume that    ≥ 05.56 In that case, voting is informative as no individual
votes against their signal. In particular, by Lemma 1 every  with  =  and  ≥  votes

for policy  and every  with  =  and  ≥  votes for policy . Consider the benefit from

voting for  for an individual with  =  and  = . This benefit, which we denote by

56Note that    ≥ ̄ can never hold as this implies no one votes in equilibrium, a contradiction. Our

proof also works if   ̄ as pivotality conditions below adjust to that.
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Π( ), equals


−1X
=0

µ
 − 1



¶
(1− )

−1−
µ



b 
2
c
¶³R ̄




´b 
2
c ³R ̄


(1− )

´−b 
2
c
−

(1− )

−1X
=0

µ
 − 1



¶
(1− )

−1−
µ



b 
2
c
¶³R ̄


(1− )

´b 
2
c ³R ̄




´−b 
2
c


where  represents the turnout rate in state ; i.e.,  =
R ̄

 +

R ̄

(1 − ) and

 =
R ̄

(1− ) +

R ̄

 . Next, consider the benefit from voting for  for an individual

with  =  and  = . This benefit, which we denote by Π( ) equals


−1X
=0

µ
 − 1



¶
(1− )

−1−
µ



b 
2
c
¶³R ̄


(1− )

´−b 
2
c ³R ̄




´b 
2
c
−

(1− )

−1X
=0

µ
 − 1



¶
(1− )

−1−
µ



b 
2
c
¶³R ̄




´−b 
2
c ³R ̄


(1− )

´b 
2
c


Note that an individual who obtains an  signal with an accuracy of  is indifferent between

voting for  and abstaining, and an individual who obtains a  signal with an accuracy of

 ≥ 05 weakly prefers voting for  over abstaining; i.e., Π( ) = Π( ) = 0 must

hold. However, we will show that Π( )  Π( ) resulting in a contradiction. To see

why, first note that    and thus, 1−   1− . To see why Π( )  Π( ),

first note that for realized turnout  = 0,57  + 1−    + 1− , for   0 even,

R ̄



R 
05
(1− ) 

R ̄

(1− )

R ̄

 (6)

and for   0 odd,


R ̄

(1− ) + (1− )

R ̄

  

R ̄

(1− ) + (1− )

R ̄

 (7)

It can be checked that (6) holds as
R ̄

(1 −  ()) 

R 
05
(1 −  ()). Suppose

towards a contradiction that (7) does not hold. But this implies that

(1−  ())− (1−  ()) ≤ R 



which cannot hold as    and ( ()−  ()) 
R 



57If   ̄, only  = 0 and  = 1 are relevant.
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(b) Next, assume that  ≥ 05  . In that case, voting is informative only for those who

obtain a  signal. In particular, since 05  , by Lemma 1 every individual who obtains

a  signal votes for policy , every  who obtains an  signal but has  ≤ 1 −  votes for

policy  and finally, every  who obtains an  signal and has  ≥  votes for policy  (recall

that  ≥ 1−  holds by the definition of  and ). Consider the benefit from voting for

 for an individual with  =  and  = . This benefit, Π( ), equals


−1X
=0

µ
 − 1



¶
(1− )

−1−
µ



b 
2
c
¶³R ̄




´b 
2
c ³R 1−

05
 +

R ̄
05
(1− )

´−b 
2
c
−

(1− )

−1X
=0

µ
 − 1



¶
(1− )

−1−
µ



b 
2
c
¶³R ̄


(1− )

´b 
2
c ³R 1−

05
(1− ) +

R ̄
05


´−b 
2
c


where  represents the turnout rate in state ; i.e.,  =
R ̄

+

R 1−
05

+
R ̄
05
(1−) ,

and  =
R ̄

(1− ) +

R 1−
05

(1− ) +
R ̄
05
 . Next, consider the benefit from voting

for  for an individual with  =  and  = 1−  (note that by hypothesis 1−   05).58

This benefit, denoted by Π(1−  ), equals


−1X
=0

µ
 − 1


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(1− )

−1−
µ



b 
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
(1− )

´−b 
2
c ³R 1−

05
(1− ) +

R ̄
05


´b 
2
c
−

(1− )

−1X
=0

µ
 − 1



¶
(1− )

−1−
µ



b 
2
c
¶³R ̄




´−b 
2
c ³R 1−

05
 +

R ̄
05
(1− )

´b 
2
c


First, assume that   1−. Then, an individual who obtains an  signal with an accuracy
of  is indifferent between voting for  and abstaining, and an individual who obtains an 

signal with an accuracy of 1 −   05 is indifferent between voting for  and abstaining;

i.e., Π( ) = Π(1 −  ) = 0 must hold. Next, assume that  = 1 − . In this case,

there is no abstention in equilibrium and an individual who obtains an  signal with an

accuracy of  is indifferent between voting for  and voting for  (and prefers either one

over abstaining). In equilibrium, Π( ) = Π(1−  ) must hold. However, we will now

show that Π( )  Π(1− ) holds, resulting in a contradiction. To see why, first note
that    and thus, 1 −   1 −  if 

  1 −  and  =  = 1 if 
 = 1 − .

Then, to show Π( )  Π(1−  ), it is enough to note that  + 1−    + 1− 

58We assume that 1−  ≤ ̄ which is without loss of generality for the results.
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for realized turnout  = 0, and for   0, it is enough to show that³R ̄



´³R 1−
05
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R ̄
05
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´
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´³R 1−
05

(1− ) +
R ̄
05


´


(8)

and that


³R 1−

05
 +

R ̄
05
(1− )

´
+
¡
1− 

¢ R ̄

  (9)


R ̄

(1− ) + (1− )

³R 1−
05

(1− ) +
R ̄
05


´


Suppose towards a contradiction that (8) does not hold. This implies that

R ̄

 ≤ R ̄



R 1−
05

 − R ̄



R 1−
05

 − R ̄


R 1−
05

 +
R ̄


R ̄
05


must hold. This inequality implies in turn that

R ̄

 (1 +  (1− )) + (1−  ()

R 1−
05

 ≤ (1−  ())( (1− ) +
R ̄
05
 )

Dividing both sides by 1− () and then taking R 1−
05

 to the right-hand side, we obtainR ̄



1−  ()
(1 +  (1− )) ≤  (1− ) +

R ̄
1−

However, writing (1+ (1−)) above as (1− (1−)+2 (1−)) and noting that
R ̄



1− () 

, it can be checked that the right-hand side of the inequality above is strictly greater thanR ̄



1− ()(1 −  (1 − )) + 2 (1 − ), which in turn is greater than  (1 − ) +
R ̄
1−

because 2 ≥ 1 and by  ≥ 1−,
R ̄



1− () ≥
R ̄
1−

1− (1−) holds, which is a contradiction. Thus,

(8) must hold. Next, suppose towards a contradiction that (9) does not hold. This implies

that +
R ̄

 ≤ (1− ())+

R ̄
1− +(1− ) (1− ), and so, (1+ (1− )) ≤

(1−  ()) +
R 
1− +  (1− ). Noting that

R 
1−  ( () −  (1− )), this

implies (1 + 2 (1− )−  ())  (1−  ()) +  (1− ). However, this cannot hold

as    and 2  1.

(c) Finally, we rule out the case where 05 ≥   . As mentioned above, it can be checked

from the definition of  and  that  ≥ 1−  must hold. Thus, it is not possible to have

05 ≥   .

Proof of Lemma 2. First, consider the case in which   05. Let ̂ be such that
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̂ =
R 05

(1 − ) +

R ̄
05
 – this is the expected precision if  votes for (against)  for

every   05 (  05). Obviously, ̂  05. Next, let 
∗ be such that

∗ =
X

=
2
+1

µ




¶
(̂)(1− ̂)− + 05

µ


2

¶
(̂)


2 (1− ̂)


2

for  even, and for  odd, let ∗ =
P

=+1
2

¡




¢
(̂)(1 − ̂)−. Since ̂  05, ∗  05.

In fact, ∗  ̂ for  ≥ 3 (∗ = ̂ for  = 1 2) by Lemma 4 below. By construction, the

optimal symmetric equilibrium must be a responsive equilibrium for every  ∈ (1 − ∗∗).

This is because: (i) the efficiency of a nonresponsive equilibrium cannot be greater than

max{1−  }; (ii) there exists an optimal symmetric strategy by Lemma 3 below, which in
turn is the optimal symmetric equilibrium; and (iii) by construction, the expected accuracy

in the optimal symmetric equilibrium with  ∈ (1 − ∗∗) must be higher than ∗. Next,

we show that the optimal equilibrium must have an interior cutoff for every  ∈ (1− ∗∗).

Suppose not. We can immediately rule out the case in which no individual votes as this

is clearly suboptimal. Moreover, the case in which every  who receives an  signal (a 

signal) votes for  () and every  who receives a  signal (an  signal) abstains cannot be an

equilibrium. It is enough to consider the case where every  who receives an  signal votes for

 and every  who receives a  signal abstains (the other case is symmetric). By Lemma 1,

this implies that  ≤   05 (this is necessary for  with  =  and  ≥  to prefer voting

for  over abstention or voting for ), and as a result, 1−   05. Thus, every individual

with  =  and   1−  must strictly prefer voting for , contradicting the strategy. In

a similar vein, Lemma 1 rules out the case in which every  with  =  ( = ) votes for

 () and every  with  =  ( = ) abstains cannot be an equilibrium. The remaining

cases are the cases in which every  votes either always for or always against  regardless of

. Consider the former case. Again, by Lemma 1, this cannot be an equilibrium because if

 ≤   05 then 1−  05, and every individual with  =  and   1− must strictly
prefer voting for  over abstention or voting for , a contradiction. The latter strategy can

also not be part of an equilibrium as, by Lemma 1, ̄ ≤ 1−  must hold (this is necessary

for every  with  =  to prefer voting for  over abstention or voting for ), but this implies

that   05. Therefore, every  with  =  and    (for example  = 05) must

strictly prefer voting for  over abstention or voting for , which is a contradiction. Hence,

the optimal equilibrium must have an interior cutoff for every  ∈ (1− ∗ ∗).
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Next, consider the case in which  = 05. Let ∗ be such that

∗ =
X

=
2
+1

µ




¶
(E())(1− E())− + 05

µ


2

¶
(E())


2 (1− E())2

for  even, and for  odd, let ∗ =
P

=+1
2

¡




¢
(E())(1−E())−, where E() = R ̄

05
 .

By Lemma 4 below, ∗  E() if  ≥ 3 (and ∗ = E() if  = 1 2). First, consider the case

in which  is even. As shown above, by construction, the optimal equilibrium must be a

responsive equilibrium for every  ∈ (1−∗ ∗). Next, we show that the optimal equilibrium
must have an interior cutoff for  ∈ (1 − ∗ ∗). Suppose not. We can immediately rule

out the case where no individual votes. Next, it can be shown that the case in which every

 with  =  ( = ) votes for  () and every  with  =  ( = ) abstains cannot

be an equilibrium (except possibly in one knife-edge case). It is enough to consider the

case where every  with  =  votes for  and every  with  =  abstains. In this case,

05 =
(1−) Pr(|=)

Pr(|=)+(1−)Pr(|=) and ̄  1 must hold by Lemma 1. This equality requires

 to satisfy  =

R ̄
05



−1
R ̄
05



−1
+

R ̄
05
(1−)

−1 (as well as   ̄), a nongeneric case we rule

out. In a similar vein, Lemma 1 rules out the case in which every  with  =  ( = )

votes for  () and every  with  =  ( = ) abstains. Remaining cases are the cases

in which every  votes either always for or always against  regardless of . Consider the

former case. This cannot be an equilibrium because it can be shown that given the described

strategy,  =   05 if  = 05 (since  is even),   05 if   05 and   05 if

  05, but this contradicts with the hypothesized strategy since  = 05. Now, consider

the latter case. By Lemma 1, ̄ ≤ 1−  must hold (this is necessary for  with  signal and

 ≤ ̄ to prefer voting for  over voting for ), but this implies that   05, and therefore,

every individual with a  signal must strictly prefer voting for  over abstention or voting

for , which is a contradiction. The proof for the case in which  is odd is analogous except

that the optimal equilibrium with  = 1
2
may not involve interior cutoffs.

Finally, consider the case in which   05. First, let ̂ be analogous to ∗ as

defined in the case with  = 05 above. As shown in Lemma 4, ̂  E() if  ≥ 3 and

̂ = E() otherwise. We now define ∗ = min{̄ ̂}. First, consider the case in which  is

even. Similar to our discussion above with  ≤ 05, for every  ∈ (1 − ∗ ∗), the optimal

equilibrium must be a responsive equilibrium (note that   E()  ∗). We will now show

that the optimal equilibrium must have an interior cutoff if  ∈ (1 − ∗ 1 − ] ∪ [ ∗).
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Suppose not. We can immediately rule out the case in which no individual votes. Moreover,

by construction, the case in which every  with  =  ( = ) votes for  () and every

 with  =  ( = ) abstains cannot be an equilibrium. It is enough to consider the

case where every  with  =  votes for  and every  with  =  abstains. Since ∗ ≤ ̄

by definition, and since Pr(| = )  Pr(| = ) given the prescribed strategy,

 =
Pr(|=)

Pr(|=)+(1−)Pr(|=)    ̄ holds for every  ∈ (1 − ∗ 1 − ] ∪ [ ∗).
Thus, abstention cannot be optimal for every  if  = . As in the previous cases above,

Lemma 1 rules out the case in which every  with  =  ( = ) votes for  () and every

 with  =  ( = ) abstains. Remaining cases are the cases in which every  votes either

always for or always against  regardless of . Consider the former case. This cannot be

an equilibrium because given the described strategy,    must hold if  ≤ 1−  (because

Pr(| = )  Pr(| = ) and  =
(1−)Pr(|=)

Pr(|=)+(1−) Pr(|=)  1−  ≥ ) and

similarly    must hold if  ≥ , which contradicts the voting strategy described. Now,

consider the latter case. In this case, ̄ ≤ 1 −  must hold by Lemma 1, but this implies

that   05, and therefore, an individual with a  signal must strictly prefer voting for 

over abstention or voting for , which is a contradiction. The proof for the case where  is

odd and  ∈ (1− ∗ 1− ) ∪ ( ∗) is analogous.
For the existence of a responsive equilibrium, see Corollary 1 below.

Proof of Proposition 1. We first prove the existence of the optimal symmetric strategy

in Lemma 3. To do that, we first define a “cutoff strategy”: a cutoff strategy consists of four

cutoffs  ∈ [ ̄] and ̄ ∈ [ ̄],  ∈ { } such that individual  votes for policy  if  = 

and  ≥ ̄ or if  =  and  ≤ , and  votes for policy  if  =  and  ≥ ̄ or if  = 

and  ≤ .

Lemma 3 For every symmetric (measurable-)strategy that is not a cutoff strategy, there

exists a cutoff strategy that strictly dominates it. As a result, by the Weierstrass theorem,

there exists an optimal strategy among all symmetric measurable strategies.

Proof. Let  : [ ̄]× { }→ [0 1]× [0 1] represent a strategy that maps every  and 

to a probability of voting for the policy that matches  and to a probability of voting for

the opposite policy ( abstains with the remaining probability). Next, let () denote the

expected turnout rate for policy  ∈ { } in state  ∈ {}. Fix an arbitrary symmetric
strategy that doesn’t have the cutoff form. In particular, abusing notation let () represent

the probability with which  votes for  ∈ { } given  =  and  = , and assume that

() does not have a cutoff form for at least one ( ) pair. Assuming that  is the signal
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consistent with state  (i.e.,  for  and  for ) and  6= 0,

() =
R ̄


¡
() + 


0()(1− )

¢


for policy  ∈ { } in state  ∈ {}. We assume without loss of generality that

() is such that the correct policy is chosen with a probability (weakly) greater than

05 in both states (see Footnote 59). We first look for  ∈ [ ̄] and ̄ ∈ [ ̄] such

that () remains constant as follows: 
 satisfies

R 

 =

R ̄

() , and ̄ satisfiesR ̄

̄
(1− ) =

R ̄

()(1− ) . We will show that the former equality implies that

R 

(1− ) ≥ R ̄


()(1− )

with strict inequality unless () = 1≤ for some  ∈ [ ̄]. Similarly, we will show thatR ̄
̄
(1− ) =

R ̄

()(1− ) implies that

R ̄
̄
 ≥ R ̄


()

with strict inequality unless () = 1≥ for some  ∈ [ ̄]. We first prove the former
claim. The proof is trivial if () = 1≤ for some  ∈ [ ̄], so assume that () 6= 1≤
for any  ∈ [ ̄]. Thus,  ∈ ( ̄). Suppose towards a contradiction that R 


(1− ) ≤R ̄


()(1− ) . This and

R 

 =

R ̄

() imply that

R 

 ≤ R ̄


() =

R 

() +

R ̄

()

and thus
R 

(1 − ()) ≤

R ̄

() . Multiplying both sides of this inequality by

 ∈ ( ̄), the right hand side is strictly lower than R ̄

() (since   ̄)), and

the left hand side is strictly greater than
R 

(1 − ()) (since   )), contradictingR 


 =

R ̄

() . Next, let ̄

 be such that
R ̄
̄
(1 − ) =

R ̄

()(1 − ) , and

assume towards a contradiction that
R ̄
̄
 ≤ R ̄


() , where () 6= 1≥ for any

 ∈ [ ̄]. These imply that
R ̄
̄
 ≤ R ̄


() =

R ̄

() +

R ̄
̄
()

and thus
R ̄
̄
(1−()) ≤

R ̄

() . Multiplying both sides of the inequality by 1− ̄,

and rearranging we obtain a contradiction to
R ̄
̄
(1− ) =

R ̄

()(1− ) . As a result,

() strictly increases in our construction, unless 

() = 1≤ and () = 1≥̄ both

10



hold (() remains unchanged in that case).

Next, we look for  ∈ [ ̄) such that R 

 =

R ̄

() .

59 If this equality

cannot be satisfied for any  ∈ [ ̄), then we set  = ̄ (in that case, there is no

abstention after an  signal). Similarly, we look for ̄ ∈ ( ̄] such that R ̄
̄
(1 − ) =R ̄


()(1 − ) , and if there exists no ̄ ∈ ( ̄] that satisfies the equality, then we set

 = ̄ (in that case, there is no abstention after a  signal). Thus, () weakly increases

in our construction (strictly if   ̄ and () 6= 1≤ for any  ∈ [ ̄] or if ̄   and

() 6= 1≥ for any  ∈ [ ̄]). While () may decrease due to having to set  = ̄

or  = ̄, () + () cannot decrease in our construction since 
 = ̄ implies that

there is no abstention after an  signal and  = ̄ implies that there is no abstention

after a  signal. Thus, given these four cutoffs we construct from the initial strategy, the

expected turnout rate () + () weakly increases in both states, and it can be checked

that the “relative turnout rate” for the correct policy weakly increases in both states; i.e.,

both
()

()+()
and

()

()+()
increase. In fact, at least one of these relative turnout rates

must strictly increase by construction since () does not have a cutoff form for at least one

( ) pair.

To see why, first assume that () remains constant in our construction because

the initial strategy is such that () = 1≤ for  ∈ [ ̄] and () = 1≥̄ for ̄ ∈
[ ̄] (recall that () is constant by construction). Then, it can be checked that ()

must be constant as well given our construction: there must exist  ∈ [ ̄] such thatR 

 =

R ̄

() , and ̄

 ∈ [ ̄] such that R ̄
̄
(1−) = R ̄


()(1−) (otherwise,

() + ()  1, which is a contradiction). If   ̄ or if ̄  , then () and
()

()+()
strictly increase as desired. Indeed one of the two (  ̄ or ̄  ) must

hold as otherwise () is a cutoff strategy in contrast to our initial hypothesis. As a

result, if () remains constant in our construction, then the expected turnout rate in

state , () + (), is constant, but
()

()+()
and () + () are strictly higher.

Next, assume that () strictly increases because 

() 6= 1≤ for any  ∈ [ ̄] and/or

() 6= 1≥ for any  ∈ [ ̄]. As discussed above, by construction, () + () cannot

decrease, and () weakly decreases. As a result, and given that () is strictly higher,

59The proof slightly differs here if () is such that the correct policy is chosen with a probability greater

than 05 in only one state. Assume without loss of generality that  ≥ 05 and that according to (),

policy  is chosen with a probability strictly lower than 05 in state . In that case, we look for  ∈ [ ̄)
such that

R 

(1− ) =

R ̄

()(1− ) . It can be checked that such  must satisfy  ≤ ̄. Similarly,

we look for ̄ such that
R ̄
̄
 =

R ̄

() . It can be checked that ̄

 must satisfy ̄ ≥ . Thus, ()

and () remain identical, whereas () increases and () decreases in our construction. Then, the

analogues of Lemma 4 and Lemma 5 with similar proofs suffice to obtain the desired result.
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()

()+()
strictly increases. Moreover, as discussed above, () and ()+() weakly

increase by construction. To complete the proof, we need Lemma 4 and Lemma 5.

Lemma 4 Let () be such that

() =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

X
= +1

2

¡




¢
(1− )− if  is odd

X
= 

2
+1

¡




¢
(1− )− + 1

2

¡


2

¢


2 (1− )


2 if  is even

where  ∈ (12 1). Then, () is monotonic in . In particular, () = +1() 

+2() for every odd   0. Moreover, 1() = 2() =  and thus ()   for every

  2.

Proof. First, we show that () = +1() if  is odd. Let Pr( ≤ ;  ) denote the

cumulative Binomial distribution function with  trials,  successes and success probability

; i.e.,

Pr( ≤ ;  ) = (− )

µ




¶
1−R
0

−−1(1− )

Using this formula and that Pr( = +1
2
; +1 ) = Pr( ≤ +1

2
; +1 )−Pr( ≤ −1

2
; +1 ),

it can be checked that Pr( ≤ +1
2
;  + 1 ) − 1

2
Pr( = +1

2
;  + 1 ) = Pr( ≤ −1

2
;  )

must hold. Thus, () =+1() for  odd.

Next, we show that()  +2() if  is odd. First, we prove that()  +2()

for  ≥ ∗  1
2
, where ∗ is given by ∗(1− ∗) = 1

4
+1
+2
. Then, for   0 odd, +2()−()

equals

+ 1

2

µ


−1
2

¶
1−R
0


−1
2 (1− )

−1
2 − + 3

2

µ
+ 2
+1
2

¶
1−R
0


+1
2 (1− )

+1
2 

which equals

1−R
0


−1
2 (1− )

−1
2

µ
+ 1

2

µ


−1
2

¶
− + 3

2

µ
+ 2
+1
2

¶
(1− )

¶


It can be checked that this term is strictly greater than 0 for all  ∈ [∗ 1), where ∗  1
2
and

satisfies ∗(1−∗) = 1
4
+1
+2
. We now show that(

1
2
) =+2(

1
2
) and that 


(+2()−()) 

0 for every  ∈ [1
2
 ∗), which will imply that +2()  () for every  ∈ (1

2
 ∗)

and complete the proof. It can be checked that 

(+2()−()) is equal to 

−1
2 (1 −

)
−1
2

³
+3
2

¡
+2
+1
2

¢
(1− )− +1

2

¡


−1
2

¢´
, which is strictly positive for all  ∈ [1

2
 ∗). Moreover,
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(
1
2
) = +2(

1
2
) because

X
= +1

2

¡




¢ ¡
1
2

¢
=

+2X
= +3

2

¡
+2



¢ ¡
1
2

¢+2
using the fact that

X
=0

¡




¢
=

2

X
= +1

2

¡




¢
= 2.

Lemma 5 If  and  increase to 0 ≥  and 0 ≥  respectively (with at least one strict

inequality), then

X
=0

µ




¶
(1− )−() 

X
=0

µ




¶
(0)(1− 0)−(

0)

Proof. First, we prove that () is strictly increasing in  for  ≥ 1. To see why, first
assume that  is odd, and note that (

0)−() equals

(− )

µ




¶
1−R
1−0

−−1(1− )

which is strictly positive if 0  . Next, assume that  ≥ 2 is even. By Lemma 4, −1() =

(), and it follows that (
0)−() =−1(0)−−1()  0 for 0  . To complete

the proof, it is enough to show that

X
=0

µ




¶
(1− )−(

0) 
X
=0

µ




¶
(0)(1− 0)−(

0)

for   0. But this is true because an increase in  results in a new  distribution that

first order stochastically dominates the original, and by Lemma 4, (
0) is monotonically

increasing in  such that (
0) ≤+1(

0).

Since our strategy construction in the proof of Lemma 3 weakly increases  and 

(in the notation of Lemmas 4 and 5) in both states of the world and strictly in at least one

state, our construction is strictly better than the non-cutoff strategy (). Thus, Lemma 3

is proved.

We can now prove Proposition 1. By what McLennan (1998) has shown, the optimal

symmetric strategy, if it exists, must be an equilibrium strategy. In Lemma 3, we have shown

the existence of an optimal strategy and that it must consist of cutoffs. Next, consider the

outcome of the optimal equilibrium in a biased electorate. If the outcome is not consistent

with a cutoff strategy (i.e., a positive measure of individuals with identical  and  behave

in different ways due to perception biases), the outcome is inconsistent with the optimal
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strategy and thus worse than the optimal unbiased equilibrium outcome. Second, assume

that the outcome with biased voting is consistent with a cutoff strategy outcome due to

the particular form of overconfidence and underconfidence biases. If the outcome exhibits

no interior cutoff, then this is suboptimal under the conditions stated in Lemma 2. If the

outcome is consistent with an interior cutoff strategy and happens to coincide with another

optimal unbiased equilibrium outcome, this is a nongeneric case because a small perturbation

in, e.g.,  or () would rule it out. Thus, voter behavior with biased perceptions is

generically inconsistent with the optimal unbiased equilibrium and thus suboptimal under

the conditions stated in Lemma 2.

As mentioned in the main text in Footnote 6, the results are robust to allowing

for different levels of overconfidence and underconfidence. Assume that for fixed , there

are finitely many overconfidence functions () ∈ ( ̄] and respective probabilities ()
where   ()  +1 () for every  and  ∈ {1   − 1}. Similarly, assume that there
are finitely many underconfidence functions () ∈ [ ) and respective probabilities ()
where +1 ()  ()   for every  and  ∈ {1   − 1}. None of the proofs above are
affected by this extension.

Corollary 1 Under conditions stated in Lemma 2, a responsive equilibrium always exists

and has at least one interior cutoff.

Proof. Given Lemma 3, an optimal symmetric strategy always exists, and it constitutes

the optimal symmetric equilibrium. Under the conditions stated in Lemma 2, the optimal

symmetric equilibrium involves an interior cutoff by construction. Hence, there is indeed a

responsive equilibrium under the conditions stated in Lemma 2.

A.2 Results in Section IA under Awareness of Others’ Perception

Biases

Awareness of others’ perception biases implies the following: every  knows that for every

 and , () takes one of three possible values: (), (), and  with respective

probabilities (), (), and 1 − () − (). Under this assumption, the equilibrium

characterization stated in Lemma 1 naturally holds. Also, the proof for showing that  =

Pr( = |) and  = Pr( = |) if the correct policy is chosen with a probability
(weakly) greater than 0.5 in either state is unaffected. However, it may no longer be true

that  =  if  =  = 05, or that  = Pr( = |) if  = 05. Awareness of others’
perception biases does not affect Lemma 2 since Lemma 2 concerns unbiased equilibria.
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Moreover, the steps used in the proof of Proposition 1 still apply, and the main results are

robust to awareness regarding others’ overconfidence and underconfidence biases.

A.3 Proof of Proposition 2

Before proving Proposition 2, we will state it formally.

Proposition 2 Assume that  is bounded away from 0 and 1, and that 1 −   ̄ ≤ 1.
If media veracity is low enough so that

R ̄

  05 holds, and the electorate is sufficiently

overconfident, then the probability that the wrong policy is chosen goes to one in at least one

state as  goes to infinity, whereas the correct policy is chosen with a probability that goes

to one in both states in the optimal unbiased equilibrium.

Proof. We first construct a strategy that fully aggregates information in unbiased elec-

torates. The strategy is such that  votes for the policy that matches  if  ≥ ∗ and

abstains otherwise, where ∗ satisfies
R ̄
∗ 

R ̄
∗(1 − ) (such ∗ surely exists since

̄  05). This implies that the relative turnout share for the correct policy is strictly greater

than 0.5 in both states (also in the limit), ensuring that the correct policy is chosen in both

states with a probability that goes to one as  → ∞. By what we have shown above, the
optimal symmetric strategy exists and is the optimal symmetric equilibrium in an unbiased

electorate. Thus, optimal unbiased equilibria will generate the same outcome; i.e., the se-

quence of optimal unbiased equilibria will select the correct policy in both states with a

probability that goes to one as  goes to infinity.

We will now prove the inefficiency of overconfidence assuming awareness regarding

others’ overconfidence since the proof naturally extends to the case with unawareness. Let

 and 

 denote the equilibrium cutoff pair given electorate size  . We consider only those

equilibria in which the correct policy is chosen with a probability that goes to one in both

states. We assume without loss of generality that ()  ̄ for   ̄, and thus, −1 ()→ ̄

as  → ̄.60

First, we consider the case in which ̄  1. Assume towards a contradiction that

lim sup→∞  ≥ ̄. lim sup→∞  ≥ ̄ and the assumption that 1 −   ̄ imply that

lim sup→∞  ≥ ̄ because otherwise the same policy (policy ) will be chosen with a

probability that goes to one in both states. More generally, lim sup→∞  ≥ ̄ if and only

if lim sup→∞  ≥ ̄ focusing on those equilibria in which the correct policy is chosen in

both states with a probability that goes to one as  →∞. Also, a strict inequality cannot
60If we allow for () = ̄ for   ̄, then it is straightforward to construct overconfidence functions that

prevent the aggregation of information in at least one state.
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hold as that would mean that the probability of winning goes to either 0.5 or 0 for the

correct policy in at least one state as  → ∞. Hence, (with an abuse of notation) there
exists a sequence of equilibrium cutoff pairs (  


) such that 


 → ̄ and  → ̄ with

lim→∞
(1−)Pr(|)
Pr(|) = ̄

1−̄ and lim→∞
(1−) Pr(|)
Pr(|) = 1−̄

̄
due to Lemma 1. Note

that Pr(|) and Pr(|) have a common term (representing the tie events) and
the other term differs by only a multiplicative term. That is, Pr(|) and Pr(|)
can be written as Pr(|) =  +  , and Pr(|) =  +  , where

 =

R ̄



(1− ) +
R 
−1 (


)
()(1− )R ̄




 +
R 
−1 (


)
()



and  and  represent the respective probabilities of a tie event and the case in which

policy  is behind by one vote in state . Similarly, Pr(|) and Pr(|) have a
common term, and the other term differs by a multiplicative term. Thus, Pr(|) and
Pr(|) can be written as Pr(|) =  +  , and Pr(|) =  +  ,

where

 =

R ̄



 +
R 
−1 (


)
()R ̄




(1− ) +
R 
−1 (


)
()(1− )



and  and  represent the respective probabilities of a tie event and the case in which

policy  is behind by one vote in state .61 Thus, we can write lim→∞
(1−)(+ )
(+ )

= ̄

1−̄
and lim→∞

(1−)(+ )

(+ )
= 1−̄

̄
. Note that   1   must hold as we focus on

equilibria in which the correct policy is chosen in both states with a probability that goes to

one as  →∞. Moreover, the term  is bounded above by a finite number because

 =

R ̄



(1− ) +
R 



−1 (

)
()(1− )R ̄




 +
R 
−1 (


)
()

=
1− ̃
̃

1−  () +
R 



−1 (

)
()

1−  () +
R 
−1 (


)
()



and

 =

R ̄



 +
R 
−1 (


)
()R ̄




(1− ) +
R 
−1 (


)
()(1− )

=
̃

1− ̃

1−  () +
R 
−1 (


)
()

1−  () +
R 
−1 (


)
()



where ̃ ∈ (−1 () ̄) and ̃ ∈ (−1 () ̄) are conditional expectations. It follows that
61By hypothesis,  and  are very close to ̄ for large  . Therefore, 1 −  and 1 −  cutoffs are

irrelevant by the assumption that ̄  1− , and voting against signal will not take place.
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 
̃
1−̃



̃
1−̃



³

̄

1−̄

´2
given that   1. Therefore, lim sup→∞   ∞. Moreover,

lim inf→∞   0 because from   1 it follows that  
1−̃
̃


1−̃
̃



³
1−̄
̄

´2
. We

now prove that the limits lim→∞
(1−)(+ )
(+ )

= ̄

1−̄ and lim→∞
(1−)(+ )

(+ )
= 1−̄

̄
as

 → ̄ and  → ̄ result in a contradiction. We can write (taking convergent subsequences

of  and  if necessary)

lim
→∞

(1− )( + )

( + )
= lim

→∞
(1− )( + 1)

( + 1)
lim
→∞




=
(1− )(+ 1)

(+ 1)
lim
→∞






where, abusing notation,  = lim→∞


∈ (0∞) and  = lim→∞



∈ (0∞) by Claim

2 below in the proof of Proposition 4. Thus, lim→∞  exists, and lim→∞  ∈
(0∞) since  =

³
(1−)(+ )
(+ )

´

³
(1−)(+1)

(+1)

´
, lim→∞

(1−)(+1)

(+1)
=

(1−)(+1)
(+1)

∈
(0∞) and lim→∞

(1−)(+ )
(+ )

= ̄

1−̄ ∈ (0∞). As a result, we have that

̄

1− ̄
=
(1− )(+ 1)

(+ 1)
lim
→∞






and from lim→∞
(1−)(+ )

(+ )
= 1−̄

̄
, we have that

1− ̄

̄
=
(1− )(+ lim→∞ )

(+ lim→∞ )
lim
→∞






From these inequalities, it follows thatµ
̄

1− ̄

¶2
=
(+ lim→∞ )(+ 1)

(+ lim→∞ )(+ 1)


where lim→∞  ∈ [1∞) and lim→∞  ∈ (0 1] (because   1   , lim sup→∞  

∞, and lim inf→∞   0 as shown above). However,
(+lim→∞  )(+1)

(+lim→∞  )(+1)


lim→∞ 
lim→∞ 

because lim→∞


=
³

̄

1−̄

´2
=

lim→∞ 
lim→∞ 

,  = (0∞) and  = (0∞) by Claim 2. Thus,

we have a contradiction. As a result, either lim sup→∞   ̄ or lim sup→∞   ̄

must hold. More generally, repeating the steps above, it can be shown that either  or 



must be uniformly bounded above by ̃  ̄ for fixed  and  [ ̄] regardless of the form

of overconfidence in the population if the sequence of equilibrium cutoff pairs (  

) are

such that the correct policy is chosen in both states with a probability that goes to one as

 →∞. This is because the method of proof in Claim 2 is general and extends to the case
where  ,  ,  ,  ,  and  are functions of () and () with ()  ̄ for
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  ̄. To analyze the case in which ̄ = 1, we need the following assumption for tractability.

Assumption 1 If ̄ = 1, a fraction 
2
 0 of the electorate votes for , and a fraction


2
 0 votes for  (i.e., they are partisans), where  is possibly very small.

Note that this assumption would not affect the result with ̄  1. Assumption 1 also

eliminates unresponsive equilibria. Fix small   0, and let (  

) be a sequence of equilib-

rium cutoff pairs such that the correct policy is chosen in both states with a probability that

goes to one as →∞. If  → 1 and  → 1, we have that lim→∞
+

+

+
+

=∞.
Note that

lim
→∞

 + 

 + 

 + 

 + 
≤ lim sup

→∞






since   1   and Assumption 1 holds. However, lim sup→∞



∞ again due to As-

sumption 1, resulting in a contradiction. Thus, either lim sup→∞   1 or lim sup→∞  

1 must hold. In particular, either  or 

 must be uniformly bounded above by ̃  1 for

fixed  and  [ ̄] regardless of the form of overconfidence in the population if the sequence

of equilibrium cutoff pairs (  

) are such that the correct policy is chosen in both states

with a probability that goes to one as  →∞.
Finally, we show that a sufficiently high level of overconfidence will prevent informa-

tion aggregation in at least one state and result in the wrong policy being chosen with a

probability that goes to one. To show this, consider overconfidence functions () and ()

such that

R ̄
̃
(1− ) +

R ̃
−1 (̃)

()(1− ) +
R −1 (1−̃)


 +
R 1−̃
−1 (1−̃)(1− ())

is strictly higher than

R ̄
̃
 +

R ̃
−1 (̃)

() +
R −1 (1−̃)


(1− ) +
R 1−̃
−1 (1−̃)(1− ())(1− )

To see why such overconfidence functions exist, first note that a high level of Dunning-Kruger

effect reduces −1 (1 − ̃) and makes the cutoff 1 − ̃ trivial. Moreover, high levels of the

Dunning-Kruger effect makes −1 (̃) closer and closer to , and () higher and higher for

 ∈ ( ̃). This coupled with E()  05 implies that there exist overconfidence functions

() and () that make the former term strictly higher than the latter. Assume without

loss of generality that lim sup→∞  ≤ lim sup→∞  with such an overconfidence level.

If lim sup→∞   ̃, then by what we have shown above, this is an inefficient equilibrium

sequence that prevents information aggregation in at least one state. Therefore, assume
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that lim sup→∞  ≤ ̃. Again by what we have shown above, the sufficiently high levels

of overconfidence we characterized above result in a vote share for the wrong policy that is

strictly larger than the vote share for the correct policy in at least one state as  goes to

infinity.

A.4 Proofs of Results in Section IC

We will invoke the following Lemma later.

Lemma 6 In a symmetric equilibrium of every model discussed in the main text with

independent signals,  = Pr( = |) and  = Pr( = |) must hold if the correct
policy is chosen with a probability (weakly) greater than 05 in both states.

Proof. None of the steps in the proof of Lemma 1 depends on the distribution of signal

precisions being identical or the absence of partisans. In particular, the difference in the

distributions of signal precisions across states or the presence of partisan voters are accounted

for in the probabilities of  and  events. Thus, the proof presented in Lemma 1 applies

to the two extension models with partisan voters and asymmetric media veracity.

A.4.1 Model with Partisan voters

Proposition 3 Assume that  is bounded away from 0 and 1, and  ≤   05. Then,

an unbiased electorate makes the correct decision with a probability that goes to one in both

states as  goes to infinity. Next, let media veracity be such that

   + (1−  − )
³R ̄


 − R ̄


(1− )

´


If ̄ = 1, then a highly overconfident electorate will choose policy  with a probability that

goes to one in both states. If ̄  1, the same result obtains if in addition ̄ ≥ 1−  and the

media veracity is such that  + (1−  − )
R ̄
05
(1− )  .

Proof. First, we show that the sequence of optimal unbiased equilibria is such that the

correct policy is chosen with a probability that goes to one as  → ∞. To show this,

first note that the proof in Lemma 3 applies to show the existence of an optimal symmetric

strategy and its cutoff form. Therefore, it is enough to show that there exists a symmetric

strategy that results in the correct policy being chosen with a probability that goes to 1 as

 → ∞ in both states. To show the existence of such a strategy, we assume without loss

of generality that the first inequality condition in the Proposition statement holds. Then,
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there exists a ∗ ∈ ( ̄) such that every nonpartisan with  =  or with  =  and

  ∗ votes for , and every nonpartisan with  =  and   ∗ votes for  satisfying

the following:  + (1−  − )
³R ̄


 +

R ∗

(1− )

´
  + (1−  − )

R ̄
∗(1− ) ,

and  + (1−  − )
³R ̄


(1− ) +

R ∗



´
  + (1−  − )

R ̄
∗ . The existence

of this ∗ follows from the fact that there exists a ̂ ∈ ( ̄) such that  + (1 −  −
)
³R ̄


 +

R ̂

(1− )

´
=  + (1 −  − )

R ̄
̂
(1 − ) . Such ̂ ∈ ( ̄) implies that

 + (1 −  − )
³R ̄


(1− ) +

R ̂



´
  + (1 −  − )

R ̄
̂
 because

R ̄

  05,

as implied by the first inequality condition assumed in the proposition, and thus,
R ̄
̂
 R ̄

̂
(1 − ) . As a result, the desired inequalities both hold if we set ∗ = ̂ + , where

is   0 arbitrarily small. Given this cutoff strategy described above with ∗, the relative

turnout share for the correct policy is strictly greater than 0.5 in both states (and also in

the limit) ensuring that the correct policy is chosen with a probability that goes to one in

both states.

Next, we characterize the equilibria in which the correct policy is chosen with a

probability that goes to one as  → ∞ in both states. We assume away perception biases

for ease of notation, which is without loss of generality for the equilibrium characterization

under unawareness. The case with overconfidence and awareness is analyzed in the final part

of the proof. Let  and  denote the respective equilibrium cutoffs for electorate size  .

We need the following claim.

Claim 1 Assume that ̄ ≥ 1−  and consider those equilibria in which the correct policy is

chosen with a probability that goes to one in both states. Then, lim sup→∞   ̄.

Proof. First, consider the case in which ̄  1 and assume towards a contradiction that

lim sup→∞  ≥ ̄. By Lemma 6, this implies that lim sup→∞
Pr(|)

(1−) Pr(|) ≥
̄

1−̄ .

Then, (with an abuse of notation) there exists an electorate size  and equilibrium sequence

(  

) such that

(1−)Pr(|)
Pr(|) goes to a number weakly smaller than 1−̄

̄
. Moreover,

(1−)Pr(|)
Pr(|) → 

1− , where b = lim→∞  ≥ 0 (taking a convergent subsequence of the
subsequence if necessary). Note that b  ̄ as otherwise policy  would win in both states

with a probability that goes to one as  → ∞, which is suboptimal. Pr(|) and
Pr(|) have a common term (representing the tie events) and the other term differs by
only a multiplicative term. That is, Pr(|) can be written as Pr(|) = + ,

and thus, Pr(|) is equal to  +  , where  and  represent the respective

probabilities of a tie event and the case in which policy  is behind by one vote in state ,
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and

 =
 + (1−  − )

³R ̄



(1− ) +
R 1−






´
 + (1−  − )

³R ̄



 +
R 1−




(1− )

´ 
We assume without loss of generality that 1−    and   ̄ for large  (the proof is

virtually unaffected if 1− ≤  or  ≥ ̄). However, since  → ̄ and ̄  1−, 1−  

must hold for all large  . Pr(|) and Pr(|) also have a common term, and
the other term differs by a multiplicative term. Thus, Pr(|) and Pr(|) can
be written as Pr(|) =  +  , and Pr(|) =  +  , where  and 

represent the respective probabilities of a tie event and the case in which policy  is behind

by one vote in state , and

 =
 + (1−  − )

³R ̄



 +
R 1−


(1− )
´

 + (1−  − )
³R ̄




(1− ) +
R 1−






´ 
As the correct policy must be chosen with a probability that goes to one in both states,

  1 and   1 must hold. Moreover, if ̄  1, then   05 for all large  because

otherwise policy  is chosen in both states with a probability that goes to one since  → ̄

and +(1−−)
R ̄
05
(1−)   as assumed in Proposition 3. Thus, b = lim→∞  ∈

(05 ̄). As a result,

̄

1− ̄

b
1− b ≤ lim

→∞

1−


+
+

1−


+
+

= lim
→∞

 + 

 + 

 + 

 + 

≤ lim sup
→∞




=
 + (1−  − )

³R ̄  + R 1−
(1− )

´
 + (1−  − )

³R ̄(1− ) +
R 1−



´ 

(1 − b is relevant as a cutoff if   05 and 1 − b  .) However, the final term above

is strictly smaller than

 ̄ + 1−
(1−) ̄(1−)+ 1−


, which in turn is strictly smaller than ̄

1−̄ , re-

sulting in a contradiction. Thus, lim sup→∞   ̄  1. We now analyze the case in

which ̄ = 1. Assume towards a contradiction that lim sup→∞  ≥ 1. This implies that
lim sup→∞

Pr(|)
(1−)Pr(|) =∞. Abusing notation, we have that

Pr(|)
Pr(|) → 0. However,

if
Pr(|)
Pr(|) → 0, then

Pr(|)
Pr(|) → 0 must also hold. This is because lim inf→∞   0

and lim sup→∞   ∞, and Pr(|)
Pr(|) =

+
+

≥ 


+
+

=



Pr(|)
Pr(|) . In turn,

 → 0. As a result, almost everyone but -partisans votes for policy  in large elections,
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and  is chosen in both states with a probability that goes to one, a contradiction.

Analysis without awareness: By what we have shown above, lim sup→∞   ̄. Therefore,

in large elections a sufficiently high level of the Dunning-Kruger effect implies that

+(1−−)
³R ̄


 +

R 
−1 ()

() +
R −1 (1−)


(1− ) +
R 1−
−1 (1−)(1− ())(1− )

´
is strictly lower than

+(1−−)
³R ̄


(1− ) +

R 
−1 ()

()(1− ) +
R −1 (1−)


 +
R 1−
−1 (1−)(1− ())

´


To see why, note that if 1 −  is relevant as a cutoff (because   05 and 1 −   

for  ∈ { }), then a sufficiently high Dunning-Kruger effect makes it trivial. Moreover,
a sufficiently high Dunning-Kruger effect makes −1 (

) closer and closer to  substantially

increasing turnout from individuals with low , and as a result, the condition in the statement

of the Proposition ensures that policy  is chosen in both states with a probability that goes

to one as  → ∞ (i.e., if () is sufficiently close to or greater than lim sup→∞  , and

() is sufficiently high at every  ∈ ( lim sup→∞ ), then policy  is chosen in both

states with a probability that goes to one).

Analysis with awareness: Equilibrium analysis is cumbersome if individuals are aware of

others’ overconfidence. Therefore, we consider a finite type space with {1 2  } where
 = 1. Obviously    = 1 for every  in any responsive equilibrium. As a result, a

sufficiently high level of the Dunning-Kruger effect in the population will prevent information

aggregation despite awareness: if for example (1) =  , then the sufficient condition

ensures that there exist high enough {()}∈{12−1} such that

 − 

1−  − 
≥

X
=1

 + (1− ())(1− ) Pr()−
X
=1

()(1− ) Pr()

(i.e., even if we assume every unbiased  with    votes against  regardless of signal)

and thus, the expected turnout for  exceeds the expected turnout for  in state .

A.4.2 Model with Asymmetry in Media Veracity across States

The signal precision of each individual is a function of media veracity  in state  ∈
{} and individual competence , which is an i.i.d. draw from distribution  [ ̄]. The

respective signal precision for individual  in state  and state  is given by ( ) = 
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and ( ) = (), where () is increasing in . We assume that () ≤  for every

 and ()   for some  representing the media influence of a third party that strictly

prefers policy . The function () is common knowledge. While individual  knows the

realization of  (or rather perceives it as ()),  does not know with certainty whether the

true precision is  or () as it depends on the state of the world. Consider as an example

the case where () =  and   1. As  increases, the average signal precision drastically

falls in state , and eventually
R ̄

()  05 holds. Note that

R ̄

()  05 can hold

even if  + (1− )() ≥ 05 (that is, on average across the two states every individual is
more likely to be correctly informed than misinformed). This represents the generalization

of the simple setting in Example 1 in the main text.

Proposition 4 Assume that  is bounded away from 0 and that (̄)  1−(). If media
veracity in state  is sufficiently low so that

R ̄

()  05 

R ̄

 , and the electorate

is sufficiently overconfident, then the probability that policy  is chosen goes to one in both

states as  goes to infinity, whereas in an unbiased electorate the correct policy is chosen

with a probability that goes to one in both states.

Proof. Equilibrium characterization in this setting closely resembles that in Lemma 1. Let

 and  be as defined in (2) and (3) respectively. In characterizing equilibria, we assume

away perception biases (i.e., we assume that () = ) for brevity in notation, which is

without loss of generality. Extending the steps in Lemma 1 (i.e., the case where () = ),

it follows that in every Bayesian Nash equilibrium, individual  votes for  if either ’s signal

is  and 
+1−() ≥  or ’s signal is  and

()

()+1− ≤ 1− . In a similar vein,  votes

for  if either ’s signal is  and
()

()+1− ≥  or ’s signal is  and 
+1−() ≤ 1 − .

As 

+1−() and
()

()+1− are monotone increasing in , equilibrium voting behavior is once

again characterized by cutoffs. One issue is proving the existence of an optimal strategy,

for which the proof of Lemma 3 does not suffice. We will either assume that one exists

or assume that there is a finite set of types, in which case an optimal symmetric strategy

always exists and must coincide with the optimal symmetric equilibrium. The equilibrium

characterization and arguments below are virtually unaffected if there is a finite set of 

types.62

We now construct a strategy that fully aggregates information in the limit in the

absence of perception biases, under the conditions stated in the Proposition. The strategy

62To be more precise, if there is a type  (or rather ()) that exactly equals one of the equilibrium cutoffs,

that type may be randomizing in equilibrium. For example, if ’s signal is  and it turns out that  = ,

then  may randomize in equilibrium. However, such randomization will be accounted for in the pivotality

calculus, and the formal equilibrium characterization is unaffected.
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is such that  votes for the policy that matches  if  ≥ ∗ and abstains otherwise, where

∗ satisfies
R ̄
∗() 

R ̄
∗(1−()) (such ∗ exists because (̄)  05 must hold by

hypothesis) and
R ̄
∗ 

R ̄
∗(1− ) . Given this strategy, the relative turnout share for

the correct policy is strictly greater than 0.5 in both states (and in the limit) ensuring that

the correct policy is chosen in both states with a probability that goes to one as  → ∞.
Thus, the optimal equilibrium will result in the same outcome in the limit.

Below, we assume away perception biases for ease of notation, which is without loss of

generality for the equilibrium characterization under unawareness. The case with overconfi-

dence and awareness is analyzed in the final part of the proof. Let  and 

 denote the equi-

librium cutoff pair given electorate size  . We analyze those equilibria in which the correct

policy is chosen with a probability that goes to one in both states. First, we consider the case

in which ̄  1. By the assumption that (̄)  1−(), we have that
(̄)

(̄)+1−̄ 
1−()

+1−()
and that ̄  1 − . Furthermore, ̄  1 −  and (̄)  1 −() imply that ̄

̄+1−(̄) 
1−

()+1− . We now show that lim sup→∞   ̄

̄+1−(̄) and lim sup→∞  
(̄)

(̄)+1−̄ must

hold. Assume towards a contradiction that lim sup→∞  ≥ (̄)

(̄)+1−̄ . By what we have

shown above,
(̄)

(̄)+1−̄ 
1−()

+1−() , and thus, the turnout rate for policy  goes to zero as

 → ∞. This implies that lim sup→∞  ≥ ̄

̄+1−(̄) must hold because, otherwise, the

relative turnout rate for policy  (hence, the probability that  is chosen) goes to zero in

state , which contradicts our initial hypothesis. More generally, lim sup→∞  ≥ (̄)

(̄)+1−̄
if and only if lim sup→∞  ≥ ̄

̄+1−(̄) . A strict inequality (or strict inequalities) can

however not hold, as that would mean at least one policy receives zero votes in both states

as  → ∞, contradicting our initial hypothesis that the correct policy is chosen in both
states with a probability that goes to one. Hence, lim sup→∞

(1−)Pr(|)
Pr(|) = ̄

1−(̄) and

lim sup→∞
(1−)Pr(|)
Pr(|) = 1−̄

(̄)
. Thus, (with an abuse of notation) there exists an elec-

torate size  and equilibrium sequence {  } such that (1−) Pr(|)
Pr(|) → ̄

1−(̄) and
(1−)Pr(|)
Pr(|) → 1−̄

(̄)
 0.

We will now show that these limits result in a contradiction. To see why, first note

that Pr(|) and Pr(|) have a common term (representing the tie events)

and the other term differs by only a multiplicative term. That is, Pr(|) can be
written as Pr(|) =  +  , and thus, Pr(|) is equal to  +  where

 =

R ̄
̂


(1−())R ̄
̂


()
, ̂ and ̂ are the respective values that solve for 


 =

̂
̂

+1−(̂


)
and

 =
(̂ )

(̂

)+1−̂



, and  and  represent the respective probabilities of a tie event and the
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case in which policy  is behind by one vote in state .63 In a similar vein, Pr(|)
and Pr(|) have a common term, and the other term differs by a multiplicative term.
Thus, Pr(|) can be written as Pr(|) =  +  , and Pr(|) is equal

to  +  , where  =

R ̄
̂


R ̄
̂


(1−)
, and  and  represent the respective probabilities

of a tie event and the case in which policy  is behind by one vote in state .

Note that   1 and   1 must hold as we focus on equilibria in which the

correct policy is chosen in both states with a probability that goes to one as  → ∞.
Moreover, the term  is bounded above by a finite number because  ≤ ̄

1−̄
1− (̂ )
1− (̂


)

and 1   ≥ 1−(̄)
(̄)

1− (̂ )
1− (̂


)
imply that  ≤ ̄

1−̄
(̄)

1−(̄)  ∞ as ̄  1. Therefore,

lim sup→∞   ∞. Moreover, lim inf→∞  =
1−(̄)
(̄)

lim inf→∞
1− (̂ )
1− (̂


)
 0 because

1− (̂ )
1− (̂


)
 1−̄

̄
 0 from   1 and ̄  1. Since

(1−) Pr(|)
Pr(|) → ̄

1−(̄) by hypothesis,

lim→∞
(1−)(+ )
(+ )

= ̄

1−(̄) . We now need the following claim.

Claim 2 Assume that ̄  1 and consider a sequence of  such that   1   with an

equilibrium abstention rate bounded away from 0 (i.e., it is not necessary that ̂ → ̄ and

̂ → ̄ hold). Under these conditions, lim inf→∞   0 and lim sup→∞  ∞.
Similarly, lim inf→∞  0 and lim sup→∞ ∞ must hold.

Proof. It is enough to prove that lim inf→∞   0 and lim sup→∞   ∞ as

the proof of the other statement is analogous. First, we prove that lim inf→∞   0.

Suppose towards a contradiction that there exists a sequence, which we again denote by  ,

such that  goes to 0. Thus,  goes to 0 as well because lim inf→∞   0

as we showed above. Let Pr( |) denote the probability that there are  votes for
policy  and  votes for policy  in state  with electorate size  . It can be checked

that Pr( + 1 |) = Pr( |)−2
+1

()

1−(()+()) , where () denotes the

expected turnout rate for policy  ∈ { } in state  ∈ {} with electorate size  (thus,

 =
()

()
). If () goes to a finite number as  → ∞, then obviously 

cannot go to 0 because it is greater than
1−(()+())

()
, which is bounded below by

a number strictly larger than zero for any  because by hypothesis   1 and thus,

()  (). Next, assume that () goes to infinity as  →∞. Note that
Pr( |) = Pr( − 1|)−2+1



()

1−(()+()) , and that since () goes to

infinity as  → ∞, there must exist ∗()  0 such that
−2∗()+1

∗()
()

1−(()+()) 

63By hypothesis, ̂ and ̂

 are very close to

̄
̄+1−(̄) and

(̄)

(̄)+1−̄ , respectively, for large  . Therefore,

1 − ̂ and 1 − ̂ cutoffs are irrelevant, and voting against signal will not take place because 1 − ̂ 
()

()+1− .and 1− ̂ 


+1−() hold by the inequalities we have shown above.
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1 ≥ −2∗()−1
∗()+1

()

1−(()+()) . In particular, for every  ≥ ∗(), −2
+1

()

1−(()+())
is bounded above by 1 + 1

∗()+1
()

1−(()+()) , which is also bounded above by a finite

number because abstention rate is bounded away from 0 by hypothesis. Recalling that Pr(+

1 |) = Pr( |)−2
+1

()

1−(()+()) ,  cannot go to 0, a contradiction.

We now show that lim sup→∞   ∞. Suppose towards a contradiction that
there exists a sequence which we again denote by  such that  goes to 0. Note

that Pr(  + 1|) = Pr( |)−2
+1

()

1−(()+()) , and Pr( + 1  + 1|) =
Pr( +1|)−2−1

+1

()

1−(()+()) . If () goes to a finite number as  →∞,
then  cannot go to 0 because 


 1

2
min{1−(()+())

(−1)() 
()

1−(()+())},
which converges to a number strictly larger than zero.64 Next, assume that ()

goes to infinity as  → ∞. Then, for large  there must exist ∗() ≥ 1 such that
−2∗()
∗()+1

()

1−(()+())  1 and −2
+1

()

1−(()+()) ≤ 1 for   ∗(). Thus,

−2−1
+1

()

1−(()+())  1 for   ∗(). This proves that  cannot go to 0, a

contradiction. Hence, Claim 2 is proved.

We now prove that the limits
(1−)Pr(|)
Pr(|) → ̄

1−(̄) and
(1−) Pr(|)
Pr(|) → 1−̄

(̄)

result in a contradiction. Taking a convergent subsequence of  ( and a convergent

subsubsequence  if necessary), we can write

lim
→∞

(1− )( + )

( + )
= lim

→∞
(1− )( + 1)

( + 1)
lim
→∞




=
(1− )(+ 1)

(+ 1)
lim
→∞






where, abusing notation,  = lim→∞


∈ (0∞) and  = lim→∞



∈ (0∞) by Claim

2. Thus, lim→∞  exists, and lim→∞  ∈ (0∞) since lim→∞
(1−)(+1)

(+1)
=

(1−)(+1)
(+1)

∈ (0∞) and lim→∞
(1−)(+ )
(+ )

= ̄

1−(̄) ∈ (0∞). Thus, we have that

̄

1−(̄)
=
(1− )(+ 1)

(+ 1)
lim
→∞






and from lim→∞
(1−)(+ )

(+ )
= 1−̄

(̄)
, we have that

1− ̄

(̄)
=
(1− )(+ lim→∞ )

(+ lim→∞ )
lim
→∞






64By initial hypothesis, () cannot go to 0 as  →∞ because ()→ 0 would in the limit

result in a strictly positive probability that policy  is chosen in state .
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From these inequalities, it follows that

̄

1−(̄)

(̄)

1− ̄

+ 1

+ 1
=

+ lim→∞ 
+ lim→∞ 



However, lim→∞



= ̄

1−̄
(̄)

1−(̄) =
lim→∞ 
lim→∞ 

with lim→∞  ≤ 1 ≤ lim→∞  ,  =

(0∞), and  = (0∞). Thus, the equality above cannot hold. As a result, there must exist
a ̂  ̄ such that ̂ and ̂ are smaller than ̂ for all  . Hence, ̂ and ̂ are bounded

above away from ̄ for ̄  1 for any equilibrium sequence such that the correct policy is

chosen with a probability that goes to one as  →∞ in both states.

To analyze the case in which ̄ = 1, we impose Assumption 1 presented above: a small

fraction 
2
 0 of the electorate always votes for , and a fraction 

2
 0 always votes for .

Note that such an assumption does not affect our results with ̄  1. Assume towards a con-

tradiction that lim sup→∞  ≥ (̄)

(̄)+1−̄ = 1. As in the case with ̄  1, lim sup→∞  ≥ 1
if and only if lim sup→∞  ≥ ̄

̄+1−(̄) . In particular, lim sup→∞  = ̄

̄+1−(̄) and

lim sup→∞  = 1 as strict inequalities cannot hold in a sequence of optimal equilibria.

These imply that lim sup→∞
(1−) Pr(|)
Pr(|) = 1

1−(̄) and lim sup→∞
(1−) Pr(|)
Pr(|) = 0.

Thus, (with an abuse of notation) there exists an equilibrium sequence  and 

 giving rise

to
(1−)Pr(|)
Pr(|) → 1

1−(̄) and
(1−) Pr(|)
Pr(|) → 0 with ̂ → 1 and ̂ → 1. Using the

previous notation introduced above, these limits translate to lim→∞
(1−)(+ )
(+ )

= 1
1−(̄)

and lim→∞
(1−)(+ )

(+ )
= 0. Thus, lim→∞

+
+

+
+

=∞. However, this is im-
possible because lim→∞

+
+

+
+

≤ lim→∞


= 1. The equality lim→∞



= 1

holds since ̂ → 1 and ̂ → 1,

 =
2 + (1− )

R 1
̂


(1−())

2 + (1− )
R 1
̂


()


and

 =
2 + (1− )

R 1
̂




2 + (1− )
R 1
̂


(1− )


Analysis without awareness: We have shown above that ̂ is bounded above away from ̄ for

̄ ≤ 1 for any equilibrium sequence such that the correct policy is chosen with a probability
that goes to one as  → ∞ in both states. Given the bound on the equilibrium cutoff

̂ , we can construct an overconfidence function (as we did in the proof of Proposition 2

or Proposition 3) such that the probability that policy  is chosen in state  goes to zero

because too many people follow their  signal (i.e., vote for policy ) due to the fact that
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R ̄

()  05.

Analysis with awareness: Equilibrium analysis is cumbersome if individuals are aware of

others’ overconfidence. Therefore, we consider a finite type space with {1 2  } where
 = 1 = ( ). Obviously, 


   = 1 for every  in any responsive equilibrium. As a

result, a sufficiently high level of the Dunning-Kruger effect in the population will prevent

information aggregation despite awareness: if for example (1) =  , then the sufficient

condition ensures that there exist high enough {()}∈{12−1} such that

X
=1

() + (1− ())(1−()) Pr() 

X
=1

()(1−()) Pr()

(i.e., even if we assume every unbiased  with    votes against  regardless of ) and

thus, the expected turnout for  exceeds the expected turnout for  in state .

A.4.3 Model with Correlated News Signals

Proposition 5 Assume that  ∈ (1 −   ) is bounded away from  and 1 − , and

that  and  are odd numbers. (i) If  = 1 and E()  05, an unbiased electorate makes

the correct decision with a probability that goes to one in both states as  goes to infinity,

whereas in a sufficiently overconfident electorate the limiting probability is strictly lower than

one. (ii) If   1, an unbiased electorate makes the correct decision with a probability that

goes to
P

=+1
2

¡




¢
(1−)− in both states as  goes to infinity, whereas in a sufficiently

overconfident electorate the limiting probability is strictly lower if ̄  
+1

and E()  
+1

hold.

Proof. We first show that every responsive equilibrium consists of cutoffs , ̄,  and ̄

and derive Lemma 7 below. We start by assuming that the signal of individual  is . In

that case,  prefers voting for  over abstention if and only if

Pr( ∩  = | = )− Pr( ∩  = | = ) ≥ 0

as in the independent signal case. Different from the independent signal case, we must

differentiate between the case where  comes from a high quality source and the case where

it comes from a low quality source. Let  =  ( = ) denote the case where  comes

from a high quality (low quality) source. It can be checked that Pr( ∩  = | = )

equals

Pr( ∩  = | ( =  ∩ = ) ∪ ( =  ∩ = ))
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and thus, Pr( ∩  = | = ) equals

Pr( ∩  =  ∩  =  ∩ = ) + Pr( ∩  =  ∩  =  ∩ = )

Pr( = )


where, for example, Pr(∩ = ∩ = ∩ = ) = Pr(∩ = | = ∩ =

) Thus, we have that  weakly prefers voting for  over abstention with  =  if and only

if

() ≥ 

+ 


where

 = (1− ) Pr( ∩  = | =  ∩ = )− Pr( ∩  = | =  ∩ = )

 = Pr( ∩  = | =  ∩ = )− (1− ) Pr( ∩  = | =  ∩ = )

Next, we consider the (weak) preference of  with  =  for voting for  over voting for .

This will be the case if and only if () ≥ +
+++

, where  and  are as defined above,

and

 = (1− ) Pr( ∩  = | =  ∩ = )− Pr( ∩  = | =  ∩ = )

 = Pr( ∩  = | =  ∩ = )− (1− ) Pr( ∩  = | =  ∩ = )

Hence, we derive the cutoff ̄ for voting for policy  conditional on  = : ̄ = max{ 
+

 +
+++

}.
In a similar vein, it can be shown that  with  =  prefers voting for  over abstention and

voting for  if and only if () ≤ min{ 
+

 +
+++

}. Hence, we derive the cutoff  for

voting for  conditional on  = :  = min{ 
+

 +
+++

}. The derivation of  and ̄ are
analogous and therefore omitted. Thus, we obtain Lemma 7.

Lemma 7 In the correlated signal model, every responsive and symmetric Bayesian Nash

equilibrium consists of four cutoffs , ̄,  and ̄ such that (1) an individual votes for 

if and only if either ’s signal is  and () ≥ ̄ or ’s signal is  and () ≤ ; and

(2) an individual votes for  if and only if either ’s signal is  and () ≥ ̄ or ’s signal

is  and () ≤ .

In order to characterize equilibria with   1 further, let  denote the realized

number of high quality news outlets (out of a total of ) such that  = . In a similar

vein, let  denote the realized number of low quality news outlets (out of a total of ) such

that  = . One thing to note is that given the realized  and  values, the conditional

29



turnout rate is exactly the same in the two states. Moreover, the conditional relative turnout

rates are exactly the same. To see why, let 

 and 


 denote the respective turnout

rate for policy  ∈ { } conditional on  and  realizations in state  and state . Given

equilibrium cutoffs , ̄,  and ̄,  
 equals





R ̄
̄
 +





R ̄
̄
(1− ) +

− 



R 

 +

− 



R 

(1− )

whereas  
 equals

− 



R ̄
̄
 +

− 



R ̄
̄
(1− ) +





R 

 +





R 

(1− )

It can be checked that  
 is exactly the same as 


; i.e., 


 =  

. This is true

also with perception biases (with and without awareness). Therefore, hereafter  
 denotes

the turnout rate for policy  conditional on  and  realizations in either state. In a similar

vein, it can be checked that  
 =  

. Thus, hereafter 

 denotes the turnout rate for

policy  conditional on  and  realizations in either state. Finally let  denote the total

turnout rate conditional on  and  realizations in either state; that is,  =  
 +  

.

Thus, the expected probability of selecting the correct policy equals

X
=0

X
=0

X
=0

µ




¶
 
(1− )

− (( ) (|   ) + (1− )( ) (|   ))

where ( ) denotes the probability of ( ) realizations in state  ∈ {}, and
 (|   ) denotes the probability that policy  ∈ { } wins given  and  realizations

and realized turnout being equal to  . For example, for  odd  (|   ) is equal toP

=+1
2

¡




¢ ³




´ ³
 




´−
.

We can now prove the result below for unbiased electorates. Note that from here

onward, we will either assume that an optimal strategy exists or that there is a finite set

of types, in which case optimal symmetric strategy exists and coincides with the optimal

symmetric equilibrium. The equilibrium characterization and our arguments are virtually

unchanged if there is a finite set of  types.65

Lemma 8 Let  be bounded above away from  and below away from 1 − . In large

elections with   1, optimal equilibria are such that the realization of  determines whether

65To be more precise, if there is a type  (or rather type ()) that exactly equals one of the equilibrium cut-

offs, this type may be randomizing in equilibrium. However, this does not affect the formal characterization

of equilibrium cutoffs above.
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



 1

2
or





 1

2
. More precisely, in every sufficiently large election, if  ≥ +1

2
, then





 1

2
, and if   +1

2
, then





 1

2
(regardless of ). As a result, the probability of

selecting the correct policy converges to
P

=+1
2

¡




¢
(1 − )

− as  → ∞. If  = 1,

the probability converges to 1 as  →∞.
Proof. We start with the case where  = 1. It is enough to note that there always

exists ̂ ∈ ( ̄) such that R ̄
̂
 

R ̄
̂
(1 − ) since ̄  05. Thus, the voting strategy

with  =  =  and ̄ = ̄ = ̂ ensures that the relative turnout share for the correct

policy is strictly greater than 0.5 in either state, which results in the correct policy being

chosen in both states with a probability that goes to one as  → ∞. Therefore, the

optimal equilibrium strategy will generate the same result in the limit. Next, assume that

  1. We first construct the following strategy. There exists a ̂ ∈ ( ̄) such that
1


R ̄
̂
 

R ̄
̂
(1 − ) since ̄  

+1
. Thus, the voting strategy with  =  =  and

̄ = ̄ = ̂ ensures that whenever a majority of the high quality sources provide an 

signal, the relative turnout rate for policy  is strictly greater than 05. As a result, the

probability of selecting the correct policy goes to
P

=+1
2

¡




¢
(1 − )

− in both states

as  goes to infinity, and thus, the optimal equilibrium strategy can only improve it. The

probability of selecting the correct policy which we denote by  equals

X
=0

X
=0

X
=0

µ




¶
 
(1−)

− (( ) (|   )+(1−)( )(1− (|   ))

by what we have shown above. Note that  is maximized if  (|   ) = 1 for ( ) 

(1 − )( ) and  (|   ) = 0 for ( )  (1 − )( ). Given that  is

bounded away from  and 1−  , we have that ( )  (1−)( ) if and only if

 ≥ +1
2
, and ( )  (1− )( ) if and only if   +1

2
(recall than  is odd). As

a result,  is bounded above by
P

=+1
2

¡




¢
(1 − )

−. However, since the probability

of selecting the correct policy converges to
P

=+1
2

¡




¢
(1− )

− as  goes to infinity in

the strategy that we constructed above, it must also converge to
P

=+1
2

¡




¢
(1 − )

−

in the optimal equilibrium. We can now finish the proof of the lemma. Suppose towards

a contradiction that there exists an electorate size sequence for which the claim does not

hold in the optimal equilibrium; e.g., there exists some  ≥ +1
2
such that





≤ 1

2
for every

element in that sequence. Then, it can be checked that the limit probability of selecting

the correct policy is bounded above away from
P

=+1
2

¡




¢
(1− )

− in that sequence, a

contradiction. Hence, the lemma is proved.

To make the analysis of the effect of overconfidence tractable, we will assume a finite
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type space with {1 2  } where 1 =  and  = ̄ ≤ 1. Note that none of the results
we proved above rely on a continuum type space. We first assume that   1. Assume

that lim sup→∞ ̄ ≥ ̄ and that lim sup→∞ ̄ ≥ ̄ focusing on optimal equilibria. It

follows that lim sup→∞ ̄ = lim sup→∞ ̄ = ̄. For example, lim sup→∞ ̄  ̄ would

violate Lemma 8 if  =  and  = . Let (̄ ) denote the probability that individual

 with precision  = ̄ and signal  votes for the policy that matches  with electorate

size  . Also, let ( ) denote the probability that an individual with  =  and signal

 votes against . Assume without loss of generality that (̄ ) ≥ (̄ ) for those

equilibria in which ̄ = ̄ = ̄. Note that lim inf→∞ (̄ )  0 must hold. Suppose

not. Then, (taking a convergent subsequence if necessary) we have not only (̄ ) → 0

but also (̄ ) ≥ (̄ ) → 0. These require 

≤  and 


≤  to hold for large

 . To see why, note for example that
 



 1

2
fails to hold and Lemma 8 is violated if



 ,  = 0, and  = 0. In fact, by the same argument, ( ) → 0 and ( ) → 0

must hold if 

=  and 


= . However, (̄ ) → 0 and ( ) → 0 give rise to

a contradiction. To see why, note that if both (̄ ) and ( ) are doubled for both

 =  and  = , this doubles  for every  and  realization (strictly for some  and

) without changing
 



and

 



. This strictly increases the expected payoff by Lemma 5,

a contradiction. Thus, lim inf→∞ (̄ )  0. In fact, using the same argument we can

show that (̄ ) ≥ min{1 ()(̄)
} must hold in the optimal equilibrium if ̄ = ̄ = ̄.

Assume without loss of generality that (̄ )  1. Then, if 
−1
 (̄) =  and {()}≥ is

sufficiently high,

(̄ )

⎛⎝− 1
2

⎛⎝X
≤̄

()() + ̄(̄)

⎞⎠+ X
≤̄

()(1− )() + (1− ̄)(̄)

⎞⎠+
( )(1− ())()

+ 1

2

is greater than

(̄ )
+ 1

2

⎛⎝X
≤̄

()() + ̄(̄))

⎞⎠+ ( )

µ
1−  + 

− 1
2

¶
(1− ())()

if the sufficient condition E()  
+1

holds.66 This implies that if  = −1
2
, and  = , then

 



 1

2
fails to hold, violating Lemma 8. The proof for the case with awareness is similar

66The proof is unaffected if 

  or 


 .
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but more tedious. The proof for the case where lim sup→∞ ̄

  ̄ for  ∈ { } or  = 1

is also similar.

A.5 An Alternative Interpretation and Model

In a slightly different formulation of the model with   05, we can interpret  [ ̄] as

the distribution of the accuracy of individual opinions. Then, the case where   05

is associated with not only widespread misinformation but also overconfidence such that

() ≥ 05 because an individual cannot rationally hold on to a belief or opinion that they
objectively know is more likely to be false than correct. In this model, not only does ()

differ from  for biased individuals, but also the distribution of  differs between the biased

electorate and its unbiased version. In this alternative model,  cannot fall below 05 in an

electorate that consists of only unbiased individuals. As a result, this model involves two

different  distributions. However, our equilibrium characterization and other main results

also hold in this alternative model under mild assumptions. For example, one possible and

intuitive assumption is that the distribution of  is identical in the biased electorate and its

unbiased version except that for every  such that   05 in the biased electorate,  = 05

in the unbiased case.

B Additional Experimental Analysis

B.1 Pooling Baseline Sessions

We first consider the twelve Baseline sessions with  = 24: six sessions of Baseline Initial

(BL Initial) without feedback and six sessions of Baseline Feedback with aggregated feedback

(BL Feedback). We test for differences at the session level using Mann-Whitney tests unless

otherwise stated. BL Initial and BL Feedback show no or limited statistical variation in

four key dimensions: efficiency, turnout, mean elicited belief, and quiz score. In particular,

they do not statistically differ in mean elicited beliefs, quiz scores, or efficiency. The idea

behind BL Feedback is to manipulate the confidence levels of subjects during the course of

the experiment. Aggregated feedback resulted in lower turnout in BL Feedback as can be

seen in Figure 4. However, the decrease in turnout is limited (about 13 percentage points).

In particular, turnout did not sufficiently decline from those in the bottom 2/3. Thus,

giving aggregated feedback was not successful as a debiasing mechanism and did not affect

efficiency. Therefore, we pool the data from these twelve sessions with  = 24 and call them
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Table 4: Features of Baseline Variations

BL Initial BL Feedback BL EQ1 BL 15 EQ2

 24 24 15 15

Aggregated Feedback no yes no no

Quiz difficulty very easy (EQ1 ) very easy (EQ1 ) very easy (EQ1 ) easy (EQ2 )

# Sessions 6 6 6 2

Notes: This table shows the design features of our baseline variations.

Figure 4: Efficiency, Beliefs, and Turnout by Baseline Variation and Pooling

Notes: BL 15 EQ1 refers to six sessions with  = 15 and the original very easy quiz (“EQ1”)

and BL 15 EQ2 refers to two sessions with the slightly more difficult quiz (“EQ2”).

Baseline 24 (BL 24 ).

Next, we consider the eight Baseline sessions with  = 15. Six of those exactly

replicate BL Initial except that  = 15. In addition, two sessions have an easy quiz that

is slightly more difficult than the original quiz to check the robustness of our inefficiency

results to a modest increase in the quiz difficulty (see also Online Appendix B.4). This quiz

variation is denoted by “EQ2” in Figure 4 (“EQ1” denotes the original “very easy” quiz).

EQ2 reduced the average quiz score (by less than 20%) and resulted in a lower mean ()

(see the quiz score distributions in Online Appendix B.4). However, the difference in mean

() is limited at less than 12 percentage points, which is only weakly significant.
67 As a

67We can use a t-test since 90 subjects took EQ1 and 30 subjects took EQ2 in sessions with  = 15
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Table 5: Pairwise Comparisons of Efficiency, Turnout, Beliefs, and Quiz Scores

BL Initial BL Feedback BL 24 BL EQ1 BL 15

BL Initial - ns, ∗∗∗, ns, ns - ∗, ns, ns, ns ∗, ∗, ns, ns
BL Feedback - - - ns, ns, ns, ns ns, ∗, ns, ns
BL 24 - - - ns, ns, ns, ns ns, ns, ns, ns

BL EQ1 - - - - -

BL 15 - - - - -

Notes: This table reports the test results for pairwise comparisons of the baseline variations. We

use two-sided Mann-Whitney tests at the session level. BL 24 is the merged BL Initial (6 sessions)

and BL Feedback (6 sessions). BL 15 is the merged BL 15 EQ1 (6 sessions) and BL 15 EQ2 (2

sessions). Test results are shown in the form , , ,  indicating the respective significance level for

the pairwise comparisons of efficiency, turnout level, mean elicited belief, and quiz scores. ∗∗∗ and
∗ indicate significance at the 1% and 10% level, respectively.  indicates no significance. Some

cells are empty since, e.g., BL 24 involves BL Initial, and thus, they cannot be compared.

result, the quiz variation had no discernible impact on turnout or efficiency as can be seen

in Figure 4. Therefore, we pool the data from eight sessions with  = 15 and denote them

by BL 15 as mentioned in the main text.

Table 4 shows the features in which the baseline variations differ. Comparing BL 24

and BL 15, we report that there is no statistically significant difference in any of the four key

dimensions, namely efficiency, turnout, elicited beliefs, and quiz scores. Table 5 presents the

test results for pairwise comparisons of the baseline variations in terms of efficiency, turnout,

elicited beliefs, and quiz scores.

B.2 OBJ Analysis

As mentioned in the main text, the OBJ condition in the pre- and post-pandemic sessions

differs in the number of rounds and  . However, this difference is inconsequential for the

main variables of interest in OBJ, namely efficiency and the level of turnout. We test for

differences at the session level using Mann-Whitney tests. In those sessions in which the

total number of rounds is eight and  is either 15 or 16, the share of correct group decisions

in OBJ is 935% with an average turnout rate of 449%. In sessions with 15 rounds and

 = 24, the share of correct group decisions is 95%, and the average turnout rate is 465%.

These differences are very small and statistically insignificant (the respective -values for

efficiency and turnout comparisons are 0535 and 0187).

Next, we analyze turnout behavior in OBJ. To that aim, we estimate a random

( = 0073).
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Table 6: Explaining Individual Turnout Decision in OBJ

 ( = 1) Round#

Coefficient 0.968 (0.005) 0.129 (0.021) -0.003 (0.001)

Notes: Coefficients show the average marginal effects in a random effects panel probit regression.

The dependent variable is the subject’s binary choice between voting (= 1) and abstaining/voting

against  (= 0). Standard errors clustered by session are in parentheses.

effects panel probit model with the individual voting decision as the dependent variable.

The independent variables are (i) the precision of subject ’s signal (“”); (ii) the elicited

belief regarding other group members’ likelihood of voting (“( = 1)”); and (iii) a time

trend. We cluster errors at the session level. Table 6 presents the average marginal effects

in this regression. As predicted,  is economically large and statistically strongly significant

(  0001).

B.3 Omitted Wilcoxon Signed-rank Test Results

As mentioned in the main text, we use both the sign test and the Wilcoxon signed-rank test

in paired-data and one-sample tests, and we report only the sign test -value unless the two

tests disagree. Below, we provide the Wilcoxon signed-rank test results that are not reported

in the main text. Recall that tests are one sided in Section IIIA and two sided in Section

IIIB.

Result 1 in Section IIIA Comparing efficiency in BL and BL 15 against 50%:   0001

and  = 0005 respectively.

Result 2 in Section IIIA Comparing efficiency in HQ against 50%:  = 0124.

Result 3 in Section IIIA Comparing efficiency in SV against 66%:  = 0013.

Table 2 in Section IIIB Comparing the belief gap among voters against 0:   0001 in

BL and  = 0028 in HQ, SV, and TH.

Paragraph 3 in Section IIIB Comparing beliefs of subjects in the top 13 to beliefs of

subjects in the bottom 23 in BL, HQ, and SV :   0001.

Paragraph 3 in Section IIIB Comparing beliefs of subjects in the top half to beliefs of

subjects in the bottom half TH :  = 0028.

Paragraph 4 in Section IIIB Comparing mean (| = 1) to the share of voters

in the top 13 in the last round in treatments with  = 3 and no aggregated feedback:

  0001.
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Figure 5: Quiz Score Distribution: HQ vs Easy Quiz EQ1

Notes: The graph shows the frequency distributions of Harder Quiz scores (90 subjects)

and EQ1 scores (564 subjects). See Figure 6 for EQ2 scores (30 subjects).

Footnote 38 in Section IIIB Gender difference in belief gap among voters:  = 0067 in

BL,  = 0345 in HQ,  = 173 in SV, and  = 0249 in TH.

B.4 Quiz Scores

This section presents the frequency distributions of quiz scores. As discussed in the main

text, HQ significantly increases quiz difficulty. We use EQ1 (i.e., the original Baseline quiz)

in SV and TH. As mentioned in Online Appendix B.1, EQ1 is very easy, and two BL 15

sessions have a slightly more difficult quiz, EQ2, as a robustness check. As a result, a total

of 564 subjects took EQ1, 30 subjects took EQ2, and 90 subjects took the harder quiz in

HQ.

Figure 5 presents jointly the frequency distribution of the quiz scores in HQ and

EQ1. We observe a very striking contrast in the score distributions. In particular, there is

a substantial share of very low scorers in HQ and a substantial share of very high scorers in

EQ1.

Figure 6 also exhibits a prominent shift in the quiz score distribution across HQ and

EQ2. This is particularly transparent at the lower and upper tails of the distributions.
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Figure 6: Quiz Score Distribution: HQ vs Easy Quiz EQ2

Note: The graph shows the frequency distributions of Harder Quiz scores (90 subjects) and

EQ2 scores (30 subjects).

Almost 46% of subjects in HQ have 10 or fewer correct answers, but this is the case for only

10% of subjects who took EQ2. One third of the subjects who took EQ2 have 16 or more

correct answers, whereas the same holds for 12.2% of subjects in HQ.

Finally, we note that even in the harder quiz of HQ, every subject has at least 5

correct answers. This is not surprising given that every quiz has a multiple-choice format,

which results in five correct answers in expectation if all answers are random choices. See

Online Appendix C for the quiz format.

B.5 Regression Analysis: Overconfidence and Efficiency in TH

and SV

As mentioned in the main text in Section IIIA, there is substantial variation in the proportion

of correct group decisions across sessions of HQ, and this variation is nicely explained by

the sizable differences in overconfidence at the session level. We run two ordered probit

regressions in which the dependent variable is the group decision in a round in HQ. This

variable takes one of three values, representing a wrong decision, a tie, and a correct decision,

respectively. The main explanatory variable is overconfidence, which we proxy by mean ()
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Table 7: Increase in overconfidence reduces efficiency in HQ and SV

HQ SV

(1) (2) (3) (4) (5) (6)

Wrong Tie Correct Wrong Tie Correct

mean () in

bottom 2/3

1.631

(0.348)

-0.200

(0.181)

-1.431

(0.461)

3.943

(1.872)

-1.096

(0.687)

-2.847

(1.411)

Round#
0.006

(0.027)

-0.001

(0.003)

-0.005

(0.023)

-0.003

(0.014)

0.001

(0.004)

0.002

(0.010)

belief gap

among voters

2.119

(0.330)

-0.361

(0.189)

-1.758

(0.474)

3.783

(0.685)

-1.221

(0.429)

-2.562

(0.484)

Round#
0.022

(0.020)

-0.004

(0.005)

-0.018

(0.016)

-0.021

(0.018)

0.007

(0.006)

0.014

(0.012)

Observations 36 36 36 36 36 36

Notes: Coefficients show the average marginal effects in ordered probit regressions. The dependent

variable is the group decision in a round and takes one of three values, representing a wrong decision,

a tie, and a correct decision. Standard errors clustered by session are in parentheses.

in the bottom 2/3 in one regression and by the belief gap among voters in the other (see

Section IIIB for the definition and discussion of the belief gap among voters). We also

include a time trend. Errors are clustered at the session level. Table 7 presents the average

marginal effects. The table shows that an increase in overconfidence is associated with a

decrease in the probability of making the correct decision and an increase in the probability

of making the wrong decision. For example, column (1) shows that a one-percent increase in

mean () among the bottom 23 increases the probability of making the wrong decision

by 1.6%, and a one-percent increase in the belief gap among voters increases the probability

of making the wrong decision by 21%

In columns (4)-(6) of Table 7, we repeat the two regressions described above using

SV data. When the belief gap among voters is the independent variable that proxies over-

confidence, we rule out subjects who vote against  in the computation of the belief gap

consistent with the analysis in the main text. Columns (4)-(6) show that an increase in over-

confidence is associated with a decrease in the probability of making the correct decision and

an increase in the probability of making the wrong decision. For example, column (4) shows

that a one-percent increase in mean () among the bottom 2/3 increases the probability

of making the wrong decision by 39%, and a one-percent increase in the belief gap among
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Figure 7: Binscatter of Elicited Beliefs and Treatment Turnout Rate with a Discontinuity

at 0.5

(a) Subjects below the top 1 (b) All Data

Note: The panels illustrate the relationship between elicited beliefs and turnout rate with a

discontinuity at 50%.

voters increases the probability of making the wrong decision by 38%.

B.6 Relationship between Elicited Beliefs and Turnout Rate with

Discontinuity at 50%

The two panels in Figure 7 present binscatters of the relationship between elicited beliefs

and turnout in the treatments with a discontinuity at 50% (i.e., () = 05). The left

panel plots the relationship using the data of only subjects below the top 1, whereas the

right panel uses all data. As mentioned in the main text, these plots suggest that 50%

is empirically relevant for voting and abstention choices as a heuristic cutoff. They also

replicate the monotone pattern observed in Figure 3.

B.7 Regression Analysis: Behavior of Low-confidence Subjects

We estimate a random effects panel probit model in which the dependent variable is the

voting decision of subjects with ()  05 in the treatments. One of the independent

variables is the mistake rate in OBJ ; i.e., turnout rate conditional on   05 (“mistake

rate” in Table 8). The remaining independent variables are the same as in Table 3 in the

main text: (i) placement in the top 1 (“top 1”); (ii) the elicited belief regarding own

placement in the top 1 (“()”); (iii) the elicited belief regarding other group members’
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Table 8: Explaining Individual Turnout Decision when ()  05

(1) (2) (3) (4)

All Rounds All Rounds Final round Final round

mistake rate 0.560 (0.144) 0.684 (0.096) 0.870 (0.168) 1.179 (0.161)

() 0.343 (0.137) 0.291 (0.129) 0.243 (0.207) 0.130 (0.206)

() 0.261 (0.082) 0.291 (0.088) 0.469 (0.144) 0.339 (0.147)

 1 0.148 (0.097) 0.162 (0.090) 0.145 (0.175) 0.157 (0.158)

(|= 1) - - 0.146 (0.139) 0.073 (0.133)

Round# 0.002 (0.008) 0.002 (0.008) - -

Controls No Yes No Yes

Observations 492 492 82 82

Notes: Coefficients show the average marginal effects in random effects panel probit regressions

described in the text. The dependent variable is the subject’s binary choice between voting (=

1) and abstaining/voting against  in SV (= 0). Standard errors clustered by session are in

parentheses.

likelihood of voting (“( = 1)”); and (iv) a time trend. We cluster errors at the session

level.

Table 8 presents the average marginal effects. Comparing specifications (1) and (2),

we see that including dummy variables for treatment variations as regressors makes no dif-

ference regarding the effect of “mistake rate”: in either case, its effect is economically large

and statistically strongly significant (  0001). We also run probit regressions using the

turnout data of the final round with the variable “(| = 1)” as an additional regres-
sor. Once again, the effect of the mistake rate in OBJ is economically large and statistically

strongly significant with and without treatment controls.

B.8 Multiple Testing

The core elements of our experimental analysis are six pairwise treatment comparisons, i.e.,

the efficiency comparison of BL with HQ, SV, and TH as well as the comparison of BL and

HQ in terms of quiz scores, mean (), and turnout. Table 9 presents the original (one-

sided) -values, reported in the main text, as well as their adjusted values using Bonferroni,

Holm, and Benjamini and Hochberg methods. Our main conclusions remain unchanged in

each method.
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Table 9: Adjusted -values in Pairwise Treatment Comparisons

(1) (2) (3) (4)

-value Bonferroni Holm
Benjamini &

Hochberg

 vs : efficiency 0.001 0.001 0.001 0.001

 vs  : efficiency 0.133 0.798 0.133 0.133

 vs : efficiency 0.004 0.022 0.011 0.006

 vs : quiz score 0.001 0.001 0.001 0.001

 vs : mean () 0.001 0.002 0.002 0.001

 vs : turnout 0.008 0.049 0.016 0.010

Notes: The Bonferroni method multiplies the values in (1) by 6. The Holm method and The

Benjamini and Hochberg method order the values in (1) from lowest to highest. The Holm method

multiplies the th lowest value with 7− . The Benjamini and Hochberg multiplies the th lowest

value with 6

. The Bonferroni and Holm methods control the family-wise error rate, whereas the

Benjamini and Hochberg method controls the false discovery rate.

B.9 Efficiency Benchmark in Treatment SV

Consider the heuristic strategy described for SV in the main text: every  votes for  if

() ≥ 05 and against  otherwise. We will show that the probability that an unbiased
subject who uses this strategy casts a correct vote is higher than 066 with every  distribution

 [ ̄] that satisfies E() = 13. We assume that the distribution of  is continuous, which

is without loss of generality. If there is an atom at  = 05, this is inconsequential for the

steps below. First assume that ̄ ≥ 05. The probability that an unbiased subject who uses
the above described strategy casts a correct vote is given by

R 05

(1− ) +

R ̄
05


Since
R 05

(1 − ) +

R ̄
05
 ≥ R 05


(1 − ) +

R ̄
05
(1 − ) = 1 − E() = 23, the

desired result follows. Next, assume that ̄  05. In that case, the probability that an

unbiased subject who uses the above described strategy casts a correct vote is given byR ̄

(1− ) = 1− E() = 23.
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C Instructions

Instructions consist of five parts: four of them are paper based, and one part is computer

based. Paper-based instructions are identical in BL, BL 15 and HQ except the group size

 . Paper-based instructions in SV are almost identical to those in BL, BL 15, and HQ

except that (i) it is explained to subjects that they can vote for red or blue (regardless of

their signal); and (ii) they are asked about the probability that a randomly selected (other)

voter votes correctly.

We present the instructions used in BL with  = 24 below. After the first-paper

based part, subjects receive computer-based instructions for the quiz and the subsequent

belief elicitation task regarding their quiz performance. We transcribe these computerized

instructions and present the screenshots of the quiz (EQ1 ). We reduce the original font size

and spacing to conserve space. The final page shows the screenshots of the harder quiz in

HQ.
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PART 1 

Welcome to the experiment! Please turn off your cell phones and do not communicate with other 
subjects during the experiment. You will be paid for your participation in this experiment. The amount 
of money you earn depends on your decisions and decisions of other participants. Your decisions will 
be treated anonymously. The money you earn will be paid to you in cash at the end of the experiment.  

This experiment consists of several parts. We explain the details of Part 1 now, the details of other 
parts will be explained in a short time.  

Part 1 involves a “Guessing Task”. In this task, you will be presented with various statements. Consider 
for example the statement “it snowed in Amsterdam in April 1991”. We know whether or not this 
statement is true but you may not know it for certain. We will ask you to report your “best guess” 
about the chances that such a statement is true.  

You will report your guess by choosing a percentage between 0 and 100. The percentage that you 
choose indicates your “best guess”.  The higher the accuracy of your best guess, the higher the payoff 
you get. In order to maximize your payoff: 

• If you are certain a statement is true then you should choose a percentage of 100, and if you are 
certain a statement is false you should choose 0. 

• In many cases you do not know for certain whether a statement is true or not. If you think the 
statement is equally likely to be true or false, you should choose a percentage of 50.  

• More generally, the more confident you are a statement is “true” the higher the percentage you 
should assign. If for example you are very confident a statement is true, you should choose a 
percentage close to 100. 

• Conversely, the more confident you are a statement is “false” the lower the percentage you 
should assign. If for example you are very confident a statement is false, you should choose a 
percentage close to 0. 

You will make guesses regarding 6 statements in total, and 2 statements will be randomly selected in 
order to determine your payoff in this part. You will earn an amount from €0 to €1 in each selected 
statement depending on the accuracy of your guess. 

You will earn the most if you “honestly report your best guess” about the chances that a statement 
is true because your payoff increases in the accuracy of your guess. (Your exact payoff for each 
selected statement is calculated as follows. Suppose you assign a percentage of P to the statement 
being true. If the statement is true your payoff equals 1-(1-P%)2, and your payoff equals 1-(P%)2 if the 
statement is false.) 

If you have any questions or need assistance of any kind please raise your hand and an experimenter 
will come to you. Please click OK on your screen when you are ready to start the experiment. 

[Part 1 was followed by the quiz and the subsequent belief elicitation task regarding quiz performance. 
The instructions for this part were only computerized. We transcribe the instruction screens below and 
present the screenshots of the quiz. 

Screen before the beginning of the quiz] In this part of the experiment, you will be taking a QUIZ on 
math and logic puzzles taken from various tests. The quiz involves 20 questions. You will have 10 
minutes to correctly answer as many questions as you can. You will be paid 30 cents for each correct 
answer. Your quiz score will also be relevant for later parts of the experiment. We will explain soon 
how exactly it will be relevant. Please click OK to continue. 

[Following screen before the beginning of the quiz] You will next see the first page of the quiz. Please 
click the appropriate button to record your answer to a quiz question. When you want to see the 
second page of the quiz, click NEXT to continue. By clicking BACK on the second page you can go back 



to the first page of the quiz. You can go back and forth between the two pages as you wish within the 
time limit of 10 minutes. Answers that you have given will always remain saved when you move 
between the two pages. Please click START when you are ready to start the quiz. 

[Screenshots of the quiz: First screen] 

[Second quiz screen] 

[Belief elicitation screen after the quiz ends] 

PLEASE READ CAREFULLY 

We have now obtained the quiz scores of the 24 participants in this room, and ranked the participant 
scores from highest to lowest. 



IMPORTANT: The quiz refers to the 20 math and logic puzzles that you have just answered, NOT the 
guessing tasks at the beginning of the experiment! 

Your quiz score ranks in the TOP 1/3 if at most 7 participants scored better than you in the quiz. 
Exactly 8 out of 24 participants are in the top 1/3. For example, if you and another participant have the 
same quiz score and tie for the 8th place, then the tie is broken fairly and each of you is selected to be 
in the top 1/3 with equal chance. 

We will now ask you to indicate your best guess about a statement regarding your score ranking. You 
will earn an amount from €0 to €3 depending on the accuracy of your guess. As before, you will indicate 
your guess choosing a percentage between 0 and 100, and as before, the higher the accuracy of your 
guess the higher the payoff you get; so you earn the most when you honestly report your best guess. 

Please indicate your best guess about the statement below. What are the chances that it is true? 

“My quiz score ranks in the top 1/3.” 

Please enter a percentage from 0 to 100 to indicate your best guess. 

PART 2 

Part 2 and the following parts are on group decision making. From now on, you will be making choices 
in a group. In each round, the computer will randomly pick RED or BLUE as “your group color.” You will 
not learn the color until the end of the round. Your task as a group is to try to guess your group color 
correctly―based on information group members may receive.  

Here is a detailed description of Part 2:  

In each round, you will make choices in a group of 24 (including you). 

In each round, the computer will randomly pick either RED or BLUE as “your group color.” There is a 
50% chance RED will be picked and a 50% chance BLUE will be picked. In other words, RED and BLUE
are equally likely to be your group color.  

You will not learn your group color until the end of the round. Your task as a group is to try to guess 
the group color correctly. The group decision will be made by voting.  

Before voting, each member of your group will be shown a “card”, which may give information 
regarding your group color.  

You will see only “Your own Card”. Similarly, each group member sees only his/her own card. 

Each card is either red or blue. After you are shown Your Card, you will choose between voting for the 
color of Your Card and abstaining. In other words: 

• If you are shown a red card then you choose between voting for red and abstaining. 
• If you are shown a blue card then you choose between voting for blue and abstaining.

Cards are of two types: informative and misleading. A card is “informative” if its color is the same as 
your group color and it is “misleading” if it has the opposite color. In each round, Your Card is either 
informative or misleading. 

Since an “informative card” has the same color as your group, voting for the color of an informative 
card will result in a CORRECT VOTE. Since a “misleading card” has the opposite color, voting for the 
color of a misleading card will result in an INCORRECT VOTE.   

To repeat, Your Card is either informative or misleading. However, you will NOT know for certain 
whether Your Card is informative or misleading. This will be determined by CHANCE in each round. To 
be more precise, in each round, Your Card is  



• an informative card with X% chance and a misleading card with (100-X)% chance.  
• You will learn your X value before making your voting decision. 
• At the beginning of every round, you will have a new X value that is randomly drawn from 

{1,2,3,…,99,100} by the computer. All possible values of X are equally likely.

Notice that:  

• The closer X is to 100, the higher the chances that you have an informative card and observe 
your group’s true color.  

• The closer X is to 0, the higher the chances that you have a misleading card and observe the 
opposite color. 

Here is an example: If your X value is exactly 50, then you are equally likely to get an informative card 
as a misleading card.  

Another example: If your X value is 25, then you are three times more likely to get a misleading card 
than an informative card, and conversely, you are three times more likely to get an informative card 
than a misleading card if your X value is 75. 

What about other members of your group? The rules for other members of your group are exactly 
the same as for you. Every member has his/her own X value that is randomly drawn from 
{1,2,3,…,99,100} by the computer. Every member observes his/her own Card, which is informative or 
misleading depending on the member’s own X value. Note that you will NOT learn the X value or the 
card color of any other group member. 

To summarize so far: After you learn your X value and the color of Your Card, you will choose between 
voting for the color of Your Card and abstaining. The same is true for every member of your group. 

The color that receives a majority of the votes is the “group decision” and ties are broken fairly.1 The 
group decision is “correct” if it is the same as your group color. You will earn €4 if the group decision 
is correct and €0 otherwise.  

Reminder: When you observe Your Card’s color, you will NOT know for certain whether or not Your 
Card is an informative card. However, you will know your X value, representing the chance with which 
Your Card is informative. Therefore, in your decision whether or not to vote, it is important to weigh 
potential gains against potential losses GIVEN YOUR X VALUE.

i. The more likely you are to have an informative card, the more likely you are to cast a correct vote 
and therefore the group decision is more likely to be correct if you vote. Hence, the higher the X 
value, the higher the potential gains from voting. 

ii. Conversely, the more likely you are to have a misleading card, the more likely you are to cast a 
wrong vote and thus the group decision is more likely to be wrong if you vote. Hence, the lower 
the X value, the higher the potential losses from voting. 

Therefore, if your X value is not sufficiently high, then the potential loss due to your voting is higher
than the potential gain from your vote. 

However, exactly which values of X allow your vote to generate higher potential gains than losses will 
depend on the behavior of other group members. 

Because the precise value of X where the potential gains from your vote start dominating the potential 
losses depends on the voting behavior of other group members, we will also ask you to report your 

1 If Red and Blue receive the same number of votes then we will pick Red with 50% chance and Blue with 50% 
chance to determine the “group decision”. 



best guess about the chances that a randomly selected group member (other than you) chose to vote 
in each round. 

As in the previous part, you will indicate your guess choosing a percentage between 0 and 100. As 
before, you earn the most if you honestly report your best guess. You will earn an amount from €0 to 
€1 for a guessing task depending on the accuracy of your guess.  

You will play a total of 15 rounds in this part and 2 rounds will be randomly selected for payment.  The 
amount you earn from the group decision and the guessing task in each of the selected rounds will be 
added to determine your payoff in this part. Since these 2 rounds will be randomly selected, you 
should treat each round as a round you could be paid for. 

SUMMARY 

In each round, you will make choices in a group of 24.  

The computer will randomly pick RED or BLUE as your group color. Your task as a group is to try to 
guess your group color correctly. The group decision will be made by voting. 

Each member of your group will be privately shown a “card”. Each card is either red or blue.  

You will only see the color of “Your own Card”. 

Cards are of two types: informative and misleading. An “informative” card has the same color as your 
group, a “misleading” card has the opposite color. 

You will NOT know for certain whether Your Card is informative or misleading. However, you will know 
your X value, representing the chance with which Your Card is informative.  

After you observe the color of Your Card, you will choose between voting for the color of Your Card 
and abstaining. 

The rules for other members of your group are exactly the same as for you.

The color that receives a majority of the votes is the “group decision.” The group decision is “correct” 
if it is the same as your group color.  

You will play a total of 15 rounds. 2 rounds will be randomly selected and the amount you earn from 
the group decision and the guessing task in the selected rounds will be added to determine your payoff 
in this part. Thus, you should treat each round as a round you could be paid for. 

*** 

Please raise your hand if you have any questions. Please click OK when you are ready to start this part. 

PART 3 

This part is similar to Part 2. In Part 2, you did NOT know whether Your Card is informative or misleading 
with certainty as it was determined by chance. In this part, Your Card will be determined by your quiz 
score from Part 1, instead of being determined by chance.  

You completed a quiz on math and logic puzzles in Part 1. As explained before, we ranked the quiz 
scores of the 24 participants in this room from highest to lowest. We know whether or not your quiz 
score is in the top 1/3 but you do NOT know it for certain.2 In this part, Your Card will depend on your 
score as follows: 

(1) If your quiz score is in the top 1/3 then Your Card is an informative card

2Recall that exactly 8 out of 24 participants are in the top 1/3. If you and another participant tie for the 8th 
place, then each of you is selected to be in top 1/3 with equal chance. 



(2) If your quiz score is below the top 1/3 then Your Card is a misleading card3

After you took the quiz, we asked you to report your “best guess” about the chances that your quiz 
score ranks in the top 1/3―we will soon remind you of your guess. However, note that Your Card 
depends only on your true ranking, not on your guess.

What about other members of your group?

The rules for other members of your group are exactly the same as for you.  

To repeat, whether Your Card is informative or misleading depends on your quiz score. Thus, your belief 
regarding the chances that your quiz score ranks in the top 1/3 is analogous to your X value in Part 2.  

The group-decision making is the same as before. After you observe the color of Your Card, you will 
choose between voting for the color of Your Card and abstaining. The same is true for every member 
of your group. The color that receives a majority of the votes is the “group decision” and ties are broken 
randomly. The group decision is “correct” if it is the same as your group color. You will earn €5 if the 
group decision is correct and €0 otherwise. 

Additionally, you will earn money in a Guessing Task just as in Part 2. In each round, you will report 
your best guess about the chances that a randomly selected member of your group (other than you) 
voted in that round. As before, you will indicate your guess choosing a percentage between 0 and 100. 
You can earn an amount from €0 to €1 in a guessing task depending on the accuracy of your guess.

You will play a total of 5 rounds in this part. 1 round will be randomly selected and the amount you 
earn from the group decision and the guessing task in that round will determine your payoff in this 
part.  

Please raise your hand if you have any questions. Please click OK when you are ready to start this part. 

PART 4 

This is the final part of the experiment. This part is exactly the same as Part 3 except that you will now 
also make a guess regarding the “competence of the average VOTER” in the room (other than you). 
You will see the following information on your computer screen. 

We have now randomly picked one member (other than you) that chose to VOTE in this round. Please 
indicate your best guess about the statement below: What are the chances it is true?

“The quiz score of this randomly selected VOTER is in the top 1/3.” 

You will indicate your guess choosing a percentage between 0 and 100, as before. As before, you will 
also make a guess about the chances that a randomly selected member of your group (other than you) 
voted. As before, you will earn an amount from €0 to €1 in each guessing task depending on the 
accuracy of your guess.

You will play 1 round in this part. You will earn €5 if the group decision is correct and €0 otherwise. 
Please raise your hand if you have any questions. Please click OK to start. 

3 Recall that an informative card has the same color as your group, and a misleading card has the opposite 
color. 
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