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A Proofs of Main Results

In the appendix, Q denotes the distribution of ((Yi(1), Yi(0), Xi))
′. I denote the observed quantities

by Wi = (Yi, X
′
i, Di)

′ and the pilot data by W̃ (m) = ((Ỹj , X̃
′
j , D̃j)

′ : 1 ≤ j ≤ m). dim(Xi) denotes
the dimension of Xi and supp(Xi) denotes the support of Xi. I use a ≲ b to denote there exists
c ≥ 0 such that a ≤ cb.

A.1 Proof of Lemma II.2

Let λ = (λ1, . . . , λS) be a stratification and recall ns = |λs|. Let (d1, . . . , d2n) be a vector of values
that (D1, . . . , D2n) may take under λ, and for every s let (ds1, . . . , dsns

) denote treatment status of the
units in stratum s. For every s, there are (ns/2)!matched-pair designs in stratum s that could lead to
(ds1, . . . , d

s
ns
). For each of such designs, (ds1, . . . , dsns

) is realized with probability 2−ns/2. Accordingly,
if instead of implementing λ, I implement a matched-pair design in each stratum, uniformly across
all matched-pair designs within each stratum, and independently across strata, the probability that
(d1, . . . , d2n) is realized is

∏
1≤s≤S

1(
ns

ns/2

)
(ns/2)!/2ns/2

(ns/2)!
1

2ns
=

∏
1≤s≤S

1(
ns

ns/2

) ,

which is the probability that (d1, . . . , d2n) is realized under λ. To see the number of matched-pair
designs in a stratum with ns units is (

ns

ns/2

)
(ns/2)!/2

ns/2 ,

consider the following thought experiment: First, choose ns/2 units and fix their positions; next,
permute the rest ns/2 units and match them to the fixed positions, and note each permutation
leads to a matched-pair design; finally, note I have counted each matched-pair design repeatedly,
and precisely 2ns/2 times, because I could flip the positions of the two units within each pair.

A.2 Proof of Theorem IV.1

Follows immediately from Lemma B.3 with τ = 1
2 . Note condition (c) on h in Theorem C.2 is

satisfied because of Lemma B.5.

A.3 Proof of Theorem IV.2

To begin with, note µ̂n(d)
P→ E[Yi(d)] and σ̂2

n(d)
P→ Var[Yi(d)] for d ∈ {0, 1}, by Lemma 6.5 in Bai,

Romano and Shaikh (2021). Next, I show

E[ρ̂n|h(n)]
P→ E[(E[Yi(1) + Yi(0)|h(Xi)])

2] . (S.1)
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For convenience, I define µd(hi) = E[Yi(d)|h(Xi) = hi] for d ∈ {0, 1} and gh(hi) = µ1(hi) + µ0(hi).
To see this, note

E[(Yπh(4j−3) + Yπh(4j−2))(Yπh(4j−1) + Yπh(4j))|h(n)]

=
1

4
(µ1(hπh(4j−3)) + µ0(hπh(4j−2)))(µ1(hπh(4j−1)) + µ0(hπh(4j)))

+
1

4
(µ1(hπh(4j−3)) + µ0(hπh(4j−2)))(µ1(hπh(4j)) + µ0(hπh(4j−1)))

+
1

4
(µ1(hπh(4j−2)) + µ0(hπh(4j−3)))(µ1(hπh(4j−1)) + µ0(hπh(4j)))

+
1

4
(µ1(hπh(4j−2)) + µ0(hπh(4j−3)))(µ1(hπh(4j)) + µ0(hπh(4j−1)))

=
1

4
(gh(hπh(4j−3)) + gh(hπh(4j−2)))(gh(hπh(4j−1)) + gh(hπh(4j)))

=
1

4

∑
k∈{2,3},l∈{0,1}

g2h(hπh(4j−k)) + g2h(hπh(4j−l))− (gh(hπh(4j−k))− gh(hπh(4j−l)))
2 .

As a result,

E[ρ̂n|h(n)] =
∑

1≤j≤⌊n
2 ⌋

E[(Yπh(4j−3) + Yπh(4j−2))(Yπh(4j−1) + Yπh(4j))|h(n)]

=
1

2n

∑
1≤i≤2n

g2h(h(Xi))−
1

4n

∑
1≤j≤⌊n

2 ⌋

∑
k∈{2,3},l∈{0,1}

(gh(hπh(4j−k))− gh(hπh(4j−l)))
2 .

By the assumption that E[h2(Xi)] < ∞, (S.15) holds. (S.1) then follows from the assumption that
E[Y r

i (d)|h(Xi) = z] is Lipschitz in z for r = 1, 2 and d = 0, 1, (S.15), the fact that

E[g2h(h(Xi))] ≲ E[E[Yi(1)|h(Xi)]
2] + E[E[Yi(0)|h(Xi)]

2]

≤ E[E[Y 2
i (1)|h(Xi)]] + E[E[Y 2

i (0)|h(Xi)]] = E[Y 2
i (1) + Y 2

i (0)] < ∞

because of Assumption IV.1, and the weak law of large numbers.

It remains to show ρ̂n − E[ρ̂n|h(n)]
P→ 0. I will prove

2

n

∑
1≤j≤⌊n

2 ⌋

(Yπh(4j−2)Yπh(4j) − E[Yπh(4j−2)Yπh(4j)|h(n)])
P→ 0 ,

and the others follow similarly. I will repeatedly use the following elementary inequalities for any
a, b ∈ R and λ > 0:

|a+ b|I{|a+ b| > λ} ≤ 2|a|I{|a| > λ/2}+ 2|b|I{|b| > λ/2}

|ab|I{|ab| > λ} ≤ |a|2I{|a| >
√
λ}+ |b|2I{|b| >

√
λ} .

To begin with,

E[Yπh(4j−2)Yπh(4j)|h(n)] =
1

2
µ1(hπh(4j−2))µ0(hπh(4j)) +

1

2
µ1(hπh(4j))µ0(hπh(4j−2))
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Next, note

2

n

∑
1≤j≤⌊n

2 ⌋

E[|Yπh(4j−2)Yπh(4j) − E[Yπh(4j−2)Yπh(4j)|h(n)]|

I{|Yπh(4j−2)Yπh(4j) − E[Yπh(4j−2)Yπh(4j)|h(n)]| > λ}|h(n)]

≲ 2

n

∑
1≤j≤⌊n

2 ⌋

E[|Yπh(4j−2)Yπh(4j)|I{|Yπh(4j−2)Yπh(4j)| >
√

λ/2}|h(n)]

+ E[|E[Yπh(4j−2)Yπh(4j)|h(n)]|I{|E[Yπh(4j−2)Yπh(4j)|h(n)]| >
√

λ/2}|h(n)]

≲ 2

n

∑
1≤j≤⌊n

2 ⌋

E[Y 2
πh(4j−2)I{|Yπh(4j−2)| >

√
λ/2}|h(n)] + E[Y 2

πh(4j)I{|Yπh(4j)| >
√

λ/2}|h(n)]

+ |µ1(hπh(4j−2))µ0(hπh(4j))|I{µ1(hπh(4j−2))µ0(hπh(4j)) > λ/2}

+ |µ1(hπh(4j))µ0(hπh(4j−2))|I{µ1(hπh(4j))µ0(hπh(4j−2)) > λ/2}

≲ 2

n

∑
1≤j≤⌊n

2 ⌋

E[Y 2
πh(4j−2)(1)I{|Yπh(4j−2)(1)| >

√
λ/2}|h(n)]

+ E[Y 2
πh(4j−2)(0)I{|Yπh(4j−2)(0)| >

√
λ/2}|h(n)]

+ E[Y 2
πh(4j)(1)I{|Yπh(4j)(1)| >

√
λ/2}|h(n)] + E[Y 2

πh(4j)(0)I{|Yπh(4j)(0)| >
√
λ/2}|h(n)]

+ µ2
1(hπh(4j−2))I{|µ1(hπh(4j−2))| >

√
λ/2}+ µ2

0(hπh(4j))I{|µ0(hπh(4j))| >
√
λ/2}

+ µ2
1(hπh(4j))I{|µ1(hπh(4j))| >

√
λ/2}+ µ2

0(hπh(4j−2))I{|µ0(hπh(4j−2))| >
√
λ/2}

≲ 1

2n

∑
1≤i≤2n

E[Y 2
i (1)I{|Yi(1) >

√
λ/2|}|h(Xi)] + E[Y 2

i (0)I{|Yi(1) >
√
λ/2|}|h(Xi)]

+ E[Y 2
i (1)|h(Xi)]I{E[Y 2

i (1)|h(Xi)] >
√

λ/2}+ E[Y 2
i (0)|h(Xi)]I{E[Y 2

i (0)|h(Xi)] >
√
λ/2}

P→ E[Y 2
i (1)I{|Yi(1) >

√
λ/2|}] + E[Y 2

i (0)I{|Yi(1) >
√

λ/2|}]

+ E[E[Y 2
i (1)|h(Xi)]I{E[Y 2

i (1)|h(Xi)] >
√

λ/2}]

+ E[E[Y 2
i (0)|h(Xi)]I{E[Y 2

i (0)|h(Xi)] >
√

λ/2}] , (S.2)

where the last line follows from WLLN and the law of iterated expectation. Since by Assumption
IV.1 I have E[Y 2

i (d)] < ∞ and hence E[E[Yi(d)|h(Xi)]
2] < E[Y 2

i (d)] by Jensen’s inequality, the
limit as λ → ∞ of the last line is 0, by the dominated convergence theorem. I finish the proof by
arguing by contradiction. Suppose

ρ̂n − E[ρ̂n|h(n)]

does not converge in probability to 0. There must then exist ϵ > 0 and δ > 0 and a subsequence,
which for simplicity I again denote by {n}, such that

P{|ρ̂n − E[ρ̂n|h(n)]| > ϵ} → δ (S.3)

along this subsequence. But because of (S.2), there exists a further subsequence along which the
condition in Lemma 6.3 of Bai, Romano and Shaikh (2021) holds with probability one for h(n), but
then along this subsequence ρ̂n − E[ρ̂n|h(n)]

P→ 0 conditional on h(n) with probability one for h(n),
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i.e., for any ϵ > 0, with probability one for h(n),

P{|ρ̂n − E[ρ̂n|h(n)]| > ϵ|h(n)} → 0 .

Since probabilities are bounded and hence uniformly integrable,

P{|ρ̂n − E[ρ̂n|h(n)]| > ϵ} → 0

along the chosen subsequence, which implies a contradiction to (S.3).

A.4 Proof of Theorem IV.3

By repeating the arguments in the proof of Lemma B.3, I write

√
n(θ̂n − θ(Q)) = An −Bn + Cn −Dn ,

where

An =
1√
n

∑
1≤i≤2n

(Yi(1)Di − E[Yi(1)Di|h(n), D(n)])

Bn =
1√
n

∑
1≤i≤2n

(Yi(0)(1−Di)− E[Yi(0)(1−Di)|h(n), D(n)])

Cn =
1√
n

∑
1≤i≤2n

(E[(Yi(1) + Yi(0))Di|h(n), D(n)]−DiE[Yi(1) + Yi(0)])

Dn =
1√
n

∑
1≤i≤2n

(E[Yi(0)|h(n), D(n)]− E[Yi(0)]) .

Note by the assumption that E[h2(Xi)] < ∞, Assumption IV.3, and Lemma B.6, (S.16) holds.
Since 0 < E[Var[Yi(d)|h(Xi)]] for d ∈ {0, 1}, E[Y r

i (d)|h(Xi) = z] is Lipschitz in z for r = 1, 2 and
d = 0, 1, and (S.16) holds, by repeating the arguments in the proof of Lemma B.3 with τ = 1

2 ,
the desired convergence in distribution holds. In fact, instead of requiring E[Yi(d)|h(Xi) = z] and
E[Y 2

i (d)|h(Xi) = z] to both be Lipschitz continuous, it suffices to require Var[Yi(d)|h(Xi) = z] to
be Lipschitz continuous.

Next, I show ς̂2g̃m,n
P→ ς2g as m,n → ∞. Similar arguments as those used in Theorem IV.2 go

through if (S.16) and (S.17) hold. Since (S.17) follows from Assumptions IV.3 by Lemma B.6, the
conclusion follows.
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B Auxiliary Lemmas

B.1 Auxiliary Lemmas for Main Results

Lemma B.1. Suppose m ≥ 2, and x1, . . . , x2m are real number such that x1 ≤ · · · ≤ x2m. Then,
for any π ∈ Πn,

m∑
k=1

xπ(2k−1)xπ(2k) ≤
m∑

k=1

x2k−1x2k .

Proof of Lemma B.1. I start by considering π which only permutes the indices {k1, k2, k3, k4} and
leaves the other entries intact. I need only consider the case where there exists k1 < k2 < k3 < k4

such that at least one of π(k1), π(k2) is greater than at least one of π(k3), π(k4) because the lemma
trivially holds otherwise. Suppose without loss of generality that π(k2) < π(k3) < π(k4) < π(k1),
then it is easy to verify

xπ(k1)xπ(k2) + xπ(k3)xπ(k4) ≤ xπ(k2)xπ(k3) + xπ(k1)xπ(k4)

so that by interchanging two indices I decrease the sum weakly. To conclude the proof, note a finite
number of those interchanges maps π back to the identity operator, and the conclusion follows.

Lemma B.2. Let Xn, Yn, Zn be random variables. Suppose Yn = g(Zn)
d→ Y as n → ∞, where

g : R → R is measurable and Xn
d→ X conditional on Zn, with probability one for Zn. Furthermore,

suppose the distributions of both X and Y are continuous everywhere. Then

(Xn, Yn)
d→ (X,Y ) ,

where X ⊥⊥ Y .

Proof of Lemma B.2. Since X and Y both have continuous distribution functions and they are
independent, I need only show for any x, y ∈ R,

P{Xn ≤ x, Yn ≤ y} → P{X ≤ x}P{Y ≤ y} .

To this end, note

P{Xn ≤ x, Yn ≤ y} − P{X ≤ x}P{Y ≤ y}

= E[E[I{Xn ≤ x}I{Yn ≤ y}|Zn]]− P{X ≤ x}P{Y ≤ y}

= E[E[I{Xn ≤ x}|Zn]I{Yn ≤ y}]− P{X ≤ x}P{Y ≤ y}

= E[(E[I{Xn ≤ x}|Zn]− P{X ≤ x})I{Yn ≤ y}] + E[P{X ≤ x}(I{Yn ≤ y} − P{Y ≤ y})]

= E[(P{Xn ≤ x|Zn} − P{X ≤ x})I{Yn ≤ y}] + (P{Yn ≤ y} − P{Y ≤ y})P{X ≤ x} .
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Since
P{Xn ≤ x|Zn} − P{X ≤ x} → 0

with probability one for Zn, and hence the product inside the expectation converges to 0 with
probability one as well, which in turn implies the expectation converges to 0 by the dominated
convergence theorem because probabilities are bounded. The second term converges to 0 because
of the definition of convergence in distribution and the fact that the distribution function of Y is
continuous everywhere.

Lemma B.3. Suppose the sample size is kn for k ∈ Z and the treatment assignment scheme satisfies
τs ≡ τ = l

k , where l ∈ Z, 0 < l < k, and they are mutually prime. Suppose Q satisfies Assumption
IV.1 and h satisfies the assumptions in Theorem C.2. Then, under λτ,h(X(n)) defined in (S.34), as
n → ∞,

√
kn(θ̂n − θ(Q))

d→ N(0, ς2τ,h) ,

where

ς2τ,h =
Var[Yi(1)]

τ
+

Var[Yi(0)]

1− τ
− τ(1− τ)E

[(
E
[Yi(1)

τ
+

Yi(0)

1− τ

∣∣∣h(Xi)
]
−
(E[Yi(1)]

τ
+

E[Yi(0)]

1− τ

))2]
.

(S.4)

Proof of Lemma B.3. To begin with, note

√
kn(θ̂n − θ(Q)) = An −Bn + Cn −Dn ,

where

An =
1√
kn

∑
1≤i≤kn

(Yi(1)Di

τ
− E

[Yi(1)Di

τ

∣∣∣h(n), D(n)
])

Bn =
1√
kn

∑
1≤i≤kn

(Yi(0)(1−Di)

1− τ
− E

[Yi(0)(1−Di)

1− τ

∣∣∣h(n), D(n)
])

Cn =
1√
kn

∑
1≤i≤kn

(
E
[Yi(1)Di

τ

∣∣∣h(n), D(n)
]
− E[Yi(1)]

)
Dn =

1√
kn

∑
1≤i≤kn

(
E
[Yi(0)(1−Di)

1− τ

∣∣∣h(n), D(n)
]
− E[Yi(0)]

)
.

Note conditional on h(n) and D(n), An and Bn are independent and Cn and Dn are constant.

I first study the limiting behavior of An. Conditional on h(n) and D(n), the terms in the sum are
independent but not identically distributed. Therefore, I proceed to verify the Lindeberg condition
holds in probability conditional on h(n) and D(n). To that end, define

s2n = s2n(h
(n), D(n)) =

∑
1≤i≤kn

Var
[Yi(1)Di

τ

∣∣∣h(n), D(n)
]
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and note

s2n =
∑

1≤i≤kn

Var
[Yi(1)Di

τ

∣∣∣h(n), D(n)
]

=
1

τ2

∑
1≤i≤kn

Di Var[Yi(1)|h(n)]

=
1

τ2

∑
1≤i≤kn:Di=1

Var[Yi(1)|h(Xi)] ,

where the second equality follows from (1) and the third follows from the fact that units are i.i.d.
It follows that

τ
s2n
kn

=
1

kn

∑
1≤i≤kn

Var[Yi(1)|h(Xi)] +
(1− τ

τkn

∑
1≤i≤kn:Di=1

Var[Yi(1)|h(Xi)]

− 1

kn

∑
1≤i≤kn:Di=0

Var[Yi(1)|h(Xi)]
)
. (S.5)

By Assumption IV.1,

1

kn

∑
1≤i≤kn

Var[Yi(1)|h(Xi)]
P→ E[Var[Yi(1)|h(Xi)]] < E[Yi(1)] < ∞ . (S.6)

Meanwhile, ∣∣∣1− τ

τkn

∑
1≤i≤kn:Di=1

Var[Yi(1)|h(Xi)]−
1

kn

∑
1≤i≤kn:Di=0

Var[Yi(1)|h(Xi)]
∣∣∣

≲
∣∣∣1− τ

τkn

∑
1≤i≤kn:Di=1

hi −
1

kn

∑
1≤i≤kn:Di=0

hi

∣∣∣
=

1

τkn

∣∣∣ ∑
1≤s≤n

∑
(s−1)k+1≤j≤sk:D

πτ,h(j)
=1

(hπτ,h(j) − h̄τ
s )
∣∣∣

≤ 1

τkn

∑
1≤s≤n

∑
(s−1)k+1≤j≤sk:D

πτ,h(j)
=1

|hπτ,h(j) − h̄τ
s |

≲ 1

n

∑
1≤s≤n

∑
(s−1)k+1≤j≤sk

|hπτ,h(j) − h̄τ
s |

≤ k1/2
( 1

n

∑
1≤s≤n

∑
(s−1)k+1≤j≤sk

|hπτ,h(j) − h̄τ
s |2

)1/2 P→ 0 , (S.7)

where the first inequality holds because E[Y r
i (d)|h(Xi) = z] is Lipschitz for r = 1, 2 and d = 0, 1,

the second holds by assumption, the third holds by inspection, the second to last holds by the
Cauchy-Schwarz inequality, the last holds by condition (c) in Theorem C.2, and the equality holds
by inspection. Combining (S.5), (S.6), and (S.7), I have

s2n
kn

P→ E[Var[Yi(1)|h(Xi)]]

τ
> 0 , (S.8)
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where the inequality holds by assumption.

I now argue the Lindeberg condition holds in probability conditional on h(n) and D(n), i.e., for
any ϵ > 0,

En =
1

s2nτ
2

∑
1≤i≤kn

E[|Yi(1)Di − E[Yi(1)Di|h(n), D(n)]|2

I{|Yi(1)Di − E[Yi(1)Di|h(n), D(n)]| > ϵτsn}|h(n), D(n)]
P→ 0 . (S.9)

To this end, first note for any M > 0,

P{ϵτsn > M} → 1 (S.10)

because of (S.8). Next, note

E[Yi(1)Di|h(n), D(n)] = E[Yi(1)|h(Xi)]Di

because of (1). As a result, for any M > 0

En =
1

s2nτ
2

∑
1≤i≤kn:Di=1

E[|Yi(1)− E[Yi(1)|h(n), D(n)]|2I{|Yi(1)− E[Yi(1|h(n), D(n)]| > ϵτsn}|h(n), D(n)]

≤ 1

s2nτ
2

∑
1≤i≤kn

E[|Yi(1)− E[Yi(1)|h(n), D(n)]|2I{|Yi(1)− E[Yi(1)|h(n), D(n)]| > ϵτsn}|h(n), D(n)]

≤ 1

s2nτ
2

∑
1≤i≤kn

E[|Yi(1)− E[Yi(1)|h(Xi)]|2I{|Yi(1)− E[Yi(1)|h(Xi)] > M}|h(n), D(n)] + op(1)

=
kn

s2nτ
2

1

kn

∑
1≤i≤kn

E[|Yi(1)− E[Yi(1)|h(Xi)]|2I{|Yi(1)− E[Yi(1)|h(Xi)]| > M}|h(n), D(n)] + op(1)

(S.11)
P→ (E[Var[Yi(1)|h(Xi)]])

−1E[|Yi(1)− E[Yi(1)|h(Xi)]|2I{|Yi(1)− E[Yi(1)|h(Xi)]| > M}] ,
(S.12)

where the first inequality holds by inspection, the second holds because of (S.10) and the equality
follows because (1) and Qn = Qkn, and the convergence in probability follows from (S.8) and the
fact that Assumption IV.1 implies

E[|Yi(1)− E[Yi(1)|h(Xi)]|2I{|Yi(1)− E[Yi(1)|h(Xi)]| > M}]

≤ E[|Yi(1)− E[Yi(1)|h(Xi)]|2] = E[Var[Yi(1)|h(Xi)]] ≤ E[Y 2
i (1)] < ∞ .

In addition, by the dominated convergence theorem,

lim
M→∞

E[|Yi(1)− E[Yi(1)|h(Xi)]|2I{|Yi(1)− E[Yi(1)|h(Xi)]| > M}] = 0 .
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To show En
P→ 0, fix any subsequence {n(j)}, and I argue there is a further subsequence {n(j(k(l)))}

along which En(j(k(l))) converges to 0 almost surely. Indeed, for the subsequence {n(j)}, for
any fixed M , En(j) is bounded by (S.11), which I define as Un(j)(M). I know from above that
Un(j)(M)

P→ U(M), where U(M) is defined as (S.12). Hence, there exists a further subsequence
{n(j(k))} along which Un(j(k))(M) → U(M) almost surely. I then choose a sequence {Mn(j(k))}n≥1

such that Mn(j(k)) → ∞. By the dominated convergence theorem, limn→∞ U(Mn(j(k))) = 0.
By a diagonalization argument, I could construct a further subsequence {n(j(k(l)))} along which
Un(j(k(l)))(Mn(j(k(l)))) → 0. Along this subsequence, because En ≤ Un(Mn) for each n, the almost
sure limit of En must be zero because it is non-negative.

I now argue

sup
t∈R

|P{An ≤ t|h(n), D(n)} − Φ(t/
√
E[Var[Yi(1)|h(Xi)]]/τ)|

P→ 0 .

Fix any subsequence. Since En
P→ 0, there exists a further subsequence along which En → 0 with

probability one for h(n), D(n). Because of the Lindeberg condition and (S.8), it follows that with
probability one for h(n), D(n), An

d→ N(0, E[Var[Yi(1)|h(Xi)]]/τ) conditional on h(n), D(n). But then
the left-hand side of the preceding display must converge almost surely to 0 by Pólya’s theorem.
Since for any subsequence there exists a further subsequence along which it converges to 0 almost
surely, it must converge to 0 in probability.

A similar argument establishes

sup
t∈R

|P{Bn ≤ t|h(n), D(n)} − Φ(t/
√

E[Var[Yi(0)|h(Xi)]]/(1− τ))| P→ 0 .

Since An and Bn are independent conditional on h(n) and D(n), it follows by a similar subsequencing
argument that

sup
t∈R

|P{An−Bn ≤ t|h(n), D(n)}−Φ(t/
√

E[Var[Yi(1)|h(Xi)]/τ + E[Var[Yi(0)|h(Xi)]]/(1− τ))| P→ 0 .

(S.13)

To study Cn, note by (1),

Cn =
1√
kn

∑
1≤i≤kn

(
E
[Yi(1)

τ

∣∣∣h(Xi)
]
Di − E[Yi(1)]

)
.

So I have
E[Cn|h(n)] =

1√
kn

∑
1≤i≤kn

(E[Yi(1)|h(Xi)]− E[Yi(1)]) .

Furthermore, by the assumptions that E[Y r
i (d)|h(Xi) = z] is Lipschitz for r = 1, 2 and d = 0, 1 and
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1

n

∑
1≤s≤n

∑
(s−1)k+1≤j≤sk

|hπτ,h(j) − h̄τ
s |2

P→ 0, I have

Var[Cn|h(n)] ∝ 1

kn

∑
1≤s≤n

(hπτ,h(i) − h̄s
τ )

2 P→ 0 ,

where the first relation can be established by repeating the arguments used in the last step of
establishing Theorem C.1. It therefore follows by Chebyshev’s inequality that for any ϵ > 0,

P{|Cn − E[Cn|h(n)]| > ϵ|h(n)} P→ 0 ,

and because probabilities are bounded and hence uniformly integrable,

P{|Cn − E[Cn|h(n)]| > ϵ} P→ 0 ,

and hence
Cn =

1√
kn

∑
1≤i≤kn

(E[Yi(1)|h(Xi)]− E[Yi(1)]) + op(1) .

A similar proof shows

Dn =
1√
kn

∑
1≤i≤kn

(E[Yi(0)|h(Xi)]− E[Yi(0)]) + op(1) .

and therefore

Cn −Dn =
1√
kn

∑
1≤i≤kn

(E[Yi(1)|h(Xi)]− E[Yi(1)]− (E[Yi(0)|h(Xi)]− E[Yi(0)])) + op(1)

d→ N
(
0, E

[
(E[Yi(1)|h(Xi)]− E[Yi(1)]− (E[Yi(0)|h(Xi)]− E[Yi(0)]))

2
])

.

I now show by contradiction that

sup
t∈R

|P{
√
n(θ̂n − θ(Q)) ≤ t} − Φ(t/ςh)| → 0 .

Suppose not, then there must exist a subsequence along which the left-hand side of the above display
converges to some δ > 0. Along this subsequence, I could find a further subsequence along which
the left-hand side of (S.13) converges to 0 with probability one for h(n) and D(n), i.e.,

An −Bn
d→ N

(
0,

E[Var[Yi(1)|h(Xi)]

τ
+

E[Var[Yi(0)|h(Xi)]]

1− τ

)
with probability one for h(n) and D(n). Since Cn −Dn is constant for each h(n) and D(n), Lemma
B.2 establishes

An −Bn + Cn −Dn
d→ N

(
0,

E[Var[Yi(1)|h(Xi)]

τ
+

E[Var[Yi(0)|h(Xi)]]

1− τ
+

11



E
[
(E[Yi(1)|h(Xi)]− E[Yi(1)]− (E[Yi(0)|h(Xi)]− E[Yi(0)]))

2
])

,

which, by Pólya’s Theorem, implies a contradiction.

Finally, note

E[Var[Yi(1)|h(Xi)]

τ
+

E[Var[Yi(0)|h(Xi)]]

1− τ

+ E
[
(E[Yi(1)|h(Xi)]− E[Yi(1)]− (E[Yi(0)|h(Xi)]− E[Yi(0)]))

2
]

=
Var[Yi(1)]

τ
+

Var[Yi(0)]

1− τ
− Var[E[Yi(1)|h(Xi)]]

τ
− Var[E[Yi(0)|h(Xi)]]

1− τ
+

E
[
(E[Yi(1)|h(Xi)]− E[Yi(1)]− (E[Yi(0)|h(Xi)]− E[Yi(0)]))

2
]

=
Var[Yi(1)]

τ
+

Var[Yi(0)]

1− τ
− 1− τ

τ
E[(E[Yi(1)|h(Xi)]− E[Yi(1)])

2]

− τ

1− τ
E[(E[Yi(0)|h(Xi)]− E[Yi(0)])

2]

− 2E
[
(E[Yi(1)|h(Xi)]− E[Yi(1)])(E[Yi(0)|h(Xi)]− E[Yi(0)])

]
=

Var[Yi(1)]

τ
+

Var[Yi(0)]

1− τ
− τ(1− τ)E

[(
E
[Yi(1)

τ
+

Yi(0)

1− τ

∣∣∣h(Xi)
]
−
(E[Yi(1)]

τ
+

E[Yi(0)]

1− τ

))2]
,

and the result follows.

Lemma B.4. Suppose Ui, 1 ≤ i ≤ n are i.i.d. random variables where E|Ui|r < ∞. Then

n−1/r max
1≤i≤n

|Ui|
P→ 0 .

Proof of Lemma B.4. Note for all ϵ > 0,

P
{
n−1/r max

1≤i≤n
|Ui| > ϵ

}
= P

{
max
1≤i≤n

|Ui|r > nϵr
}

≤ nP{|Ui|r > nϵr} ≤ n

nϵr
E[|Ui|rI{|Ui|r > nϵr}] = 1

ϵr
E[|Ui|rI{|Ui|r > nϵr}] → 0 ,

where the convergence follows because of the dominated convergence theorem and that E|Ui|r < ∞.

Lemma B.5. Suppose E[h2(Xi)] < ∞. Then, as n → ∞,

1

n

∑
1≤s≤n

|hπh(2s−1) − hπh(2s)|2
P→ 0 , (S.14)

and
1

n

∑
1≤j≤⌊n

2 ⌋

|hπh(4j−k) − hπh(4j−l)|2
P→ 0 for k ∈ {2, 3} and l ∈ {0, 1} . (S.15)
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Proof of Lemma B.5. Note

∑
1≤s≤n

|hπh(2s−1) − hπh(2s)|2 ≤ |hπh(2n) − hπh(1)|2 ≤ 4 max
1≤i≤2n

h2(Xi) ,

where the first inequality follows from the definition of πh and the second inequality follows by
inspection, and therefore it follows from Lemma B.4 that

1

n

∑
1≤s≤n

|hπh(2s−1) − hπh(2s)|2 ≤ 4

n
max

1≤i≤2n
h2(Xi)

P→ 0 .

(S.14) thus holds. To see Assumption S.15 holds, note

1

n

∑
1≤j≤⌊n

2 ⌋

|hπh(4j−k) − hπh(4j−l)|2 ≲ 1

n
|hπh(2n) − hπh(1)|2 ,

and the result follows similarly.

Lemma B.6. Suppose E[h2(Xi)] < ∞ and h̃m satisfies Assumption IV.3. Then, as m,n → ∞,

1

n

∑
1≤s≤n

|hπh̃m (2s−1) − hπh̃m (2s)|
2 P→ 0 , (S.16)

and
1

n

∑
1≤j≤⌊n

2 ⌋

|hπh̃m (4j−k) − hπh̃m (4j−l)|
2 P→ 0 for k ∈ {2, 3} and l ∈ {0, 1} . (S.17)

Proof of Lemma B.6. I only prove the first conclusion as the second can be shown by similar
arguments. I first show Assumption IV.3 implies

1

n

∑
1≤i≤2n

|h̃i − hi|2
P→ 0 . (S.18)

Suppose Assumption IV.3 holds. For any ϵ > 0, δ > 0, there exists M > 0 such that for m > M ,

P
{∫

supp(Xi)

|h̃m(x)− h(x)|2 QX(dx) >
ϵδ

2

}
≤ δ

2
. (S.19)

By Chebyshev’s inequality again, if∫
supp(Xi)

|h̃m(x)− h(x)|2 QX(dx) ≤ ϵδ

2
,

then by the independence of W̃ (m) and W (n),

P
{ 1

2n

∑
1≤i≤2n

|h̃i − hi|2 > ϵ
∣∣∣W̃ (m)

}
≤ 1

ϵ
E
[ 1

2n

∑
1≤i≤2n

|g̃i − gi|2
∣∣∣W̃ (m)

]
=

1

ϵ

∫
supp(Xi)

|h̃m(x)− h(x)|2 QX(dx) ≤ δ

2
. (S.20)
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Then,

P
{ 1

2n

∑
1≤i≤2n

|h̃i − hi|2 > ϵ
}
≤ P

{ 1

2n

∑
1≤i≤2n

|h̃i − hi|2 > ϵ
∣∣∣W̃ (m)

}
× P

{∫
supp(Xi)

|h̃m(x)− h(x)|2 QX(dx) ≤ ϵδ

2

}
+ P

{∫
supp(Xi)

|h̃m(x)− h(x)|2 QX(dx) >
ϵδ

2

}
≤ δ

2

(
1− δ

2

)
+

δ

2
≤ δ ,

where the first inequality follows by definition, and the second inequality follows from (S.19) and
(S.20).

Next, note because |a+ b|2 ≤ 2(a2 + b2) for any a, b ∈ R,

1

n

∑
1≤s≤n

|hπh̃m (2s−1) − hπh̃m (2s)|
2 ≲ 1

n

∑
1≤s≤n

|h̃πh̃m (2s−1) − h̃πh̃m (2s)|
2 +

1

n

∑
1≤i≤2n

|h̃i − hi|2 . (S.21)

Next, note

1

n

∑
1≤s≤n

|h̃πh̃m (2s−1) − h̃πh̃m (2s)|
2 ≲ 1

n
max

1≤i≤2n
|h̃i|2

≲ 1

n
max

1≤i≤2n
|hi|2 +

1

n
max

1≤i≤2n
|h̃i − hi|2 ≲ 1

n
max

1≤i≤2n
|hi|2 +

1

n

∑
1≤i≤2n

|h̃i − hi|2 . (S.22)

The conclusion then follows from (S.18), (S.21), (S.22), the assumption that E[h2(Xi)] < ∞ and an
application of Lemma B.4.

B.2 Sufficient Conditions for Lipschitz Continuity

Let f denote the density function of X. Recall C(r) is the class of functions which are rth continu-
ously differentiable. I impose the following assumption on h and f .

Assumption B.1. The function h and density function f satisfy the following conditions.

(a) h ∈ C(2).

(b) ∂h(x)
∂xp

6= 0 Lebesgue a.e.

(c) f ∈ C(2).

Lemma B.7 (Theorem 24.4 of Munkres (1991)). Let O be open in Rp and f : O → R be of class
C(r) for r ≥ 1. Let M be the set of points x for which f(x) = 0 and N be the set of points x for
which f(x) ≥ 0. Suppose M is non-empty and Df(x) has rank 1 at each point of M . Then N is a
p-manifold in Rp and ∂N = M .

14



Lemma B.8. Suppose Assumption B.1(a)–(b) hold. Then M = {x : h(x) = z} is a (p−1)-manifold
in Rp.

Proof of Lemma B.8. For each x ∈ M , I aim at providing a coordinate patch on M about x.
Indeed, by Assumption B.1(a)–(b) and Theorem 9.2 (implicit function theorem) of Munkres (1991),
there exists an open set U containing u = (x1, . . . , xp−1), an open ball B(z) containing z and an open
set O in R containing xp, and a function k : U×B(z) → Rp of class C(2) such that h(u, k(u, z′)) = z′

for all u ∈ U , z′ ∈ B(z) and x ∈ O. Moreover, k(U × B(z)) = O. Define the coordinate patch
α(u; z) = (u, k(u, z)). The conclusion follows by Theorem 5-2 of Spivak (1965).

Note M = {x : h(x) = z} is a (p − 1)-manifold by Lemmas B.7 and B.8. In what follows, I
will need the definition of the integral of a function g over the manifold M . In order to do so, note
there exists a coordinate patch as {αj : Uj ⊆ Rp−1 → Vj ⊆ M, j ∈ J }, where αj(u) = αj(u, z), and
each αj(u) = (u, kj(u)) for some function kj : U → R which is of class C2, as shown in the proof of
Lemma B.8, and αj(Uj) = Vj . Next, there exists a partition of unity {ϕi : i ∈ I} dominated by the
{Vj : j ∈ J }. Moreover, both I and J can be chosen to be countable, according to Section 25 of
Munkres (1991). The integral of a scalar function g over the manifold is written as∫

M

g dV =
∑
j∈J

∑
i∈I

∫
Uj

[(gϕi) ◦ αj ]V (Dαj) ,

where V (A) =
√
det(A′A) is the volume. I have

Dαj =
[
Ip−1

∂kj(u, z)

∂u

]
,

so that

V (Dαj) =

√
1 +

∂kj(u, z)

∂u′
∂kj(u, z)

∂u
=

‖∇h(u, kj(u, z))‖
|Dph(u, kj(u, z))|

,

where Dp = ∂
∂xp

, by the implicit function theorem and matrix determinant lemma. Note on one
hand, for each j ∈ J , only a finite number of ϕi is positive, and on the other hand, {ϕi : i ∈ I}
is dominated by the coordinate patch, which means each ϕi is supported on a compact set inside a
single Vj . As a result, the order of the above double sum can be interchanged.

By p.345 of Bogachev (2007), the conditional expectation of a function g on the manifold M is
defined as

E[g(X)|M ] = lim
t→0

E[g(X)I{z ≤ h(X) ≤ z + t}]
P{z ≤ h(X) ≤ z + t}

.

Lemma B.9. Suppose Assumption B.1(a)–(c) hold. Then

E[g(X)|M ] =

∫
M

fg

‖∇h‖
dV∫

M

f

‖∇h‖
dV

. (S.23)
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For a continuously differentiable function h : Rp → R, x ∈ Rp is a critical point of h if∇h(x) = 0,
where ∇h(x) is the gradient of h at x; otherwise x is a regular point of h. A value z is a critical
value of h if the set {x : h(x) = z} contains at least one critical point; otherwise z is a regular value
of h.

Proof of Lemma B.9. By L’Hospital’s rule,

E[g(X)|M ] =
lim
t→0

E[g(X)I{z ≤ h(X) ≤ z + t}]
t

lim
t→0

P{z ≤ h(X) ≤ z + t}
t

,

and the lemma follows from Lemma A.1 of Chernozhukov, Fernández‐Val and Luo (2018). In
particular, the denominator equals the one in (S.23) directly by the same lemma, while for the
numerator I merely need to redefine the ‘density’ function as fg and the same proof goes through.

Lemma B.10. Suppose Assumption B.1(a)–(b) hold. Let M = {x : h(x) = z}, where z is a regular
value of h on Rp. Then for any g ∈ C(2),

∂

∂z

∫
M

g dV =

∫
M

Dpg

Dph
dV +

∫
M

g
1

‖∇h‖2
∑

1≤i≤p

DihDiph

Dph
dV −

∫
M

g
Dpph

D2
ph

dV . (S.24)

Proof of Lemma B.10. To begin with, note

∂

∂z

∫
Uj

[(gϕi) ◦ αj ]V (Dαj)

=

∫
Uj

Dp(gϕi)
∂kj(u, z)

∂z

‖∇h‖
|Dph|

+

∫
Uj

gϕi
|Dph|
‖∇h‖

∂kj(u, z)

∂z

1

D4
ph

(
D2

ph
∑

1≤i≤p

DihDiph−DphDpph
∑

1≤i≤p

D2
i h

)
, (S.25)

where Dijh = ∂i∂jh for any function h ∈ C(2). I have suppressed the arguments of h, being
(u, kj(u, z)). Note it is legitimate to pass differentiation inside the integral by the dominated con-
vergence theorem. By the Implicit Function Theorem again,

∂kj(u, z)

∂z
=

1

Dph(u, kj(u, z))
. (S.26)

By Theorem 7.17 of Rudin (1976), I know ∂
∂z

∫
M

g(x) dV is the sum over i ∈ I, j ∈ J of the two
terms in (S.25). Using (S.26), the sum of the first term is

∑
j∈J

∑
i∈I

∫
Uj

(ϕiDpg + gDpϕi)
1

Dph

‖∇h‖
|Dph|

=
∑
j

∫
Uj

Dpg

Dph
V (Dαj)
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=

∫
M

Dpg

Dph
dV , (S.27)

because
∑

i∈I ϕi = 1 and hence
∑

i∈I Dpϕi = Dp

∑
i∈I ϕi = 0. Again, the interchange of differenti-

ation and sum is allowed because the sum is actually over a finite number of terms, by definition of
a partition of unity. The sum of the second term is

∑
j∈J

∑
i∈I

∫
Uj

gϕi
|Dph|
‖∇h‖

1

D4
ph

∑
1≤i≤p

(DihDphDiph−D2
i hDpph)

=
∑
j∈J

∫
Uj

g
D2

ph

‖∇h‖2
1

D4
ph

∑
1≤i<p

(DihDphDiph−D2
i hDpph)V (Dα)

=

∫
M

g
1

‖∇h‖2D2
ph

∑
1≤i≤p

(DihDphDiph−D2
i hDpph) dV

=

∫
M

g
1

‖∇h‖2
∑

1≤i≤p

DihDiph

Dph
dV −

∫
M

g
Dpph

D2
ph

dV . (S.28)

(S.24) now follows from (S.27) and (S.28).

Theorem B.1. Suppose Assumption B.1 holds. If z is a regular value of h, then

∂

∂z
E[g(X)|M ] =

∫
M

Dp(fg/Dph)

‖∇h‖
dV

∫
M

f

‖∇h‖
dV −

∫
M

Dp(f/Dph)

‖∇h‖
dV

∫
M

fg

‖∇h‖
dV[ ∫

M

f

‖∇h‖
dV

]2 . (S.29)

Proof of Theorem B.1. To begin with, replace g in Lemma B.10 with f
∥∇h∥ . I then have

∂

∂z

∫
M

f

‖∇h‖
dV

=

∫
M

‖∇h‖Dpf −
f
∑

1≤i≤p DihDiph

‖∇h‖
‖∇h‖2Dph

dV

+

∫
M

f

‖∇h‖3
∑

1≤i≤p

DihDiph

Dph
dV −

∫
M

fDpph

‖∇h‖D2
ph

dV

=

∫
M

DpfDph− fDpph

‖∇h‖D2
ph

dV

=

∫
M

Dp(f/Dph)

‖∇h‖
dV . (S.30)

By the same arguments,

∂

∂z

∫
M

fg

‖∇h‖
dV =

∫
M

Dp(fg/Dph)

‖∇h‖
dV . (S.31)

(S.29) now follows from (S.30) and (S.31) together with the quotient rule.
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In general, by the Law of Iterated Expectation

E[Y r
i (d)|h(X) = z] = E[E[Y r

i (d)|X]|h(X) = z] .

Suppose h and the density function of X, f(X) satisfy the smoothness conditions in Assumption
B.1, the derivative

∂

∂z
E[g(X)|h(X) = z]

is given in Theorem B.1, where g(x) = E[Y r
i (d)|X = x] for r = 1, 2 and d = 0, 1. In particular, it is

equal to

E
[Dpg

Dph
+

gDpf

fDph
− gDpph

D2
ph

∣∣∣h(X) = z
]
− E

[ Dpf

fDph
− Dpph

D2
ph

∣∣∣h(X) = z
]
E
[
g
∣∣∣h(X) = z

]
= E

[Dpg

Dph

∣∣∣h(X) = z
]
+Cov

[ Dpf

fDph
− Dpph

D2
ph

, g
∣∣∣h(X) = z

]
. (S.32)

Lemma B.11. Each of the following conditions imply the boundedness of (S.32).

1. h is linear, ‖Dpg‖∞ < ∞, ‖g‖∞ < ∞ and ‖Dp(ln f)‖∞ < ∞.

2. h is linear, supz∈R |E[Dpg|h(X) = z]| < ∞, supz∈R |E[g2|h(X) = z]| < ∞ and supz∈R |E[D2
p(ln f)|h(X) =

z]| < ∞.

3. h includes linear and interaction terms,
∥∥∥Dpg
Dph

∥∥∥
∞

< ∞, ‖g‖∞ < ∞ and
∥∥∥Dp(ln f)

Dph

∥∥∥
∞

< ∞.

Proof of Lemma B.11. Follows from inspection.

C Supplementary Theoretical Results

C.1 Optimal Stratification for General Treated Fractions

The next theorem shows the infeasible optimal stratification has a similar structure to (6) when
τ 6= 1

2 .

Theorem C.1. Assume τ = l
k where l, k ∈ N, 0 < l < k, and that the sample size is kn. Let πτ,gτ

be a permutation of {1, . . . , kn} such that gτ
πτ,gτ (1)

≤ · · · ≤ gτ
πτ,gτ (kn)

for gτ defined in (7). Then,
(3) is solved by

λτ,g(X(n)) = {{πτ,gτ

((s− 1)k + 1), . . . πτ,gτ

(sk)} : 1 ≤ s ≤ n} . (S.33)

Proof of Theorem C.1. First, note

θ̂n =
1

kn

∑
1≤i≤kn

(1
τ
Yi(1)Di −

1

1− τ
Yi(0)(1−Di)

)
.
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Next,
MSE(λ|X(n)) = Varλ[θ̂n|X(n)] ,

so that I need only consider conditional variances of θ̂ given X(n) which can be decomposed as in
(5). By repeating the arguments in the proof of Lemma II.1, for any λ ∈ Λn, the first term of the
right-hand side of (5) equals

1

k2n2

∑
1≤i≤kn

(Var[Yi(1)|Xi]

τ
+

Var[Yi(0)|Xi]

1− τ

)
,

again identical across all λ ∈ Λn. Therefore, I need only consider

Varλ[E[θ̂n|X(n), D(n)]|X(n)] .

By repeating the arguments in the proof of Lemma II.2, a stratum of size kl where l > 1 is a
convex combination of stratifications with strata only of size k. In particular, let Λk

n denote the
set of all stratifications for which each stratum is of size k. Then, I have Λn ∈ co(Λk

n). I could
therefore focus on the case where each stratum is of size k. For any stratification of the form
λ = {{π((s− 1)k + 1, . . . π(sk)} : 1 ≤ s ≤ n},

Varλ[E[θ̂n|X(n), D(n)]|X(n)] ∝
∑

1≤s≤n

∑
(s−1)k+1≤j≤sk

(gτπ(j) − ḡτs )
2 ,

where gτi is defined in (7) and
ḡτs =

1

k

∑
(s−1)k+1≤j≤sk

gτπ(j) .

To see this, first note units are independent across strata, so that by repeating the arguments in the
proof of Lemma II.1,

Varλ[E[θ̂n|X(n), D(n)]|X(n)] ∝
∑

1≤s≤n

Varλ

[ ∑
(s−1)k+1≤j≤sk

gτπ(j)Dπ(j)

]
.

Next,

Varλ

[ ∑
(s−1)k+1≤j≤sk

gτπ(j)Dπ(j)

]
=

1(
k
l

) ∑
(s−1)k+1≤j1<···<jl≤sk

( ∑
1≤ι≤l

gτπ(jι) − lḡτs

)2

=
l

k

∑
(s−1)k+1≤j≤sk

(gτπ(j) − ḡτs )
2 +

1(
k
l

) ∑
(s−1)k+1≤j1<···<jl≤sk

∑
1≤ι1 ̸=ι2≤l

(gπ(jι1 ) − ḡτs )(gπ(jι2 ) − ḡτs )

=
l

k

∑
(s−1)k+1≤j≤sk

(gτπ(j) − ḡτs )
2 +

(
k−2
l−2

)(
k
l

) [( ∑
(s−1)k+1≤j≤sk

gτπ(j) − kḡτs

)2

−
∑

(s−1)k+1≤j≤sk

(gτπ(j) − ḡτs )
2
]

∝
∑

(s−1)k+1≤j≤sk

(gτπ(j) − ḡτs )
2 ,
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where the first equality holds by definition, the second holds by expanding the square, the third
holds by accounting for cross product terms, and the fourth holds because the first term inside the
square bracket on the fourth line is 0. The conclusion follows from similar arguments to those used
in the proof of Lemma B.1.

Remark C.1. Researchers are sometimes faced with the the situation where both l and k in Theorem
C.1 are large and they are mutually prime. For example, suppose there are 52 participants and 31
seats for treatment. In that case, because the treated fraction is close to 3/5, our recommendation
is to split the sample into 6 strata of size 10, 10, 10, 10, 10, 2, treat 6 of the 10 units in each of the
first five strata, and 1 of the 2 units in the last stratum.

The next theorem is the limiting counterpart to Theorem C.1. It shows the asymptotic variance
of θ̂n is minimized by choosing h = gτ defined in (7).

Theorem C.2. Suppose τ ∈ (0, 1). Let h : supp(Xi) → R be a measurable function, and πτ,h be a
permutation of {1, . . . , kn} such that hπτ,h(1) ≤ · · · ≤ hπτ,h(kn). Define

λτ,h(X(n)) = {{πτ,h((s− 1)k + 1), . . . πτ,h(sk)} : 1 ≤ s ≤ n} . (S.34)

Further define h̄τ
s = 1

k

∑
(s−1)k+1≤j≤sk hπτ,h(j). Suppose h satisfies

(a) 0 < E[Var[Yi(d)|h(Xi)]] for d ∈ {0, 1}.

(b) E[Y r
i (d)|h(Xi) = z] is Lipschitz for r = 1, 2 and d = 0, 1.

(c) 1

n

∑
1≤s≤n

∑
(s−1)k+1≤j≤sk

|hπτ,h(j) − h̄τ
s |2

P→ 0.

Then,
ς2τ,gτ ≤ ς2τ,h ,

for ς2τ,gτ and ς2τ,h defined in (S.4) and gτ defined in (7). Moreover, the inequality is strict unless
E
[
Yi(1)
τ + Yi(0)

1−τ

∣∣∣h(Xi)
]
= gτ (Xi) with probability one under Q.

Proof of Theorem C.2. By the definition of ς2τ,h in (S.4), minimizing ς2τ,h with respect to h is
equivalent to maximizing

E
[(

E
[Yi(1)

τ
+

Yi(0)

1− τ

∣∣∣h(Xi)
]
−
(E[Yi(1)]

τ
+

E[Yi(0)]

1− τ

))2]
.

Next, note

E
[(

gτ (Xi)− E
[Yi(1)

τ
+

Yi(0)

1− τ

∣∣∣h(Xi)
])(

E
[Yi(1)

τ
+

Yi(0)

1− τ

∣∣∣h(Xi)
]
−

(E[Yi(1)]

τ
+

E[Yi(0)]

1− τ

))]
= E

[
E
[
gτ (Xi)− E

[Yi(1)

τ
+

Yi(0)

1− τ

∣∣∣h(Xi)
]∣∣∣h(Xi)

]
(
E
[Yi(1)

τ
+

Yi(0)

1− τ

∣∣∣h(Xi)
]
−
(E[Yi(1)]

τ
+

E[Yi(0)]

1− τ

))]
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= 0 , (S.35)

where the second equality holds because

E[gτ (Xi)|h(Xi)] = E
[Yi(1)

τ
+

Yi(0)

1− τ

∣∣∣h(Xi)
]

by the law of iterated expectation. Therefore,

E
[(

gτ (Xi)−
(E[Yi(1)]

τ
+

E[Yi(0)]

1− τ

))2]
= E

[(
gτ (Xi)− E

[Yi(1)

τ
+

Yi(0)

1− τ

∣∣∣h(Xi)
]
+ E

[Yi(1)

τ
+

Yi(0)

1− τ

∣∣∣h(Xi)
]
−
(E[Yi(1)]

τ
+

E[Yi(0)]

1− τ

))2]
= E

[(
gτ (Xi)− E

[Yi(1)

τ
+

Yi(0)

1− τ

∣∣∣h(Xi)
])2]

+ E
[(

E
[Yi(1)

τ
+

Yi(0)

1− τ

∣∣∣h(Xi)
]
−
(E[Yi(1)]

τ
+

E[Yi(0)]

1− τ

))2]
,

≥ E
[(

E
[Yi(1)

τ
+

Yi(0)

1− τ

∣∣∣h(Xi)
]
−
(E[Yi(1)]

τ
+

E[Yi(0)]

1− τ

))2]
.

where the second equality follows from (S.35) and the last inequality is strict except unless E
[
Yi(1)
τ +

Yi(0)
1−τ

∣∣∣h(Xi)
]
= gτ (Xi) with probability one under Q.

C.2 Unequal Treated Fractions Across Subpopulations

In this section, I consider settings in which treated fractions are allowed to vary across subpop-
ulations. Let 1 ≤ r ≤ R index the subpopulations, where R ≥ 1 is an integer. I assume the
subpopulations are determined by the covariates according to a function f : supp(Xi) → {1, . . . , R}.
I replace Assumption I.1 by

Assumption C.1. For 1 ≤ r ≤ R, exactly τr fraction of the units of each stratum in the rth
subpopulation are treated.

Moreover, I assume treatment status is assigned independently across subpopulations. Under
Assumption (C.1), θ̂n is generally inconsistent for θ. In such settings researchers often use the
estimator from the fully saturated regression in Bugni, Canay and Shaikh (2019). For 1 ≤ r ≤ R, let
nr denote the total number of observations in the rth subpopulation. For 1 ≤ r ≤ R and d ∈ {0, 1},
define

µ̂n,r(1) =
1

nrτr

∑
i:f(Xi)=r

YiDi

and
µ̂n,r(0) =

1

nr(1− τr)

∑
i:f(Xi)=r

Yi(1−Di) .
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The estimator for the ATE from the fully saturated regression is

θ̂satn =
∑

1≤r≤R

nr

n
(µ̂n,r(1)− µ̂n,r(0)) . (S.36)

Note θ̂satn and θ̂n coincide whenever τr ≡ τ ∈ (0, 1). See Bugni, Canay and Shaikh (2018), Tabord-
Meehan (2022), and Bugni, Canay and Shaikh (2019) for more details. By repeating the arguments
used in the proof of Theorem II.1 and Theorem C.1, I could find the stratification that minimizes
the conditional MSE of θ̂satn . The solution is as follows: I first calculate the stratification defined
in (S.33) with τ , g, and X(n) defined separately for each subpopulation, and then take the union
of those stratifications. Moreover, the next theorem enables us to derive feasible procedures when
treated fractions are allowed to vary across subpopulations. In particular, it reveals any plug-in
estimator that satisfies the regularity conditions in Theorem C.2 leads to a stratification under
which the asymptotic variance of θ̂satn is no greater than and typically strictly less than that under
procedures with each subpopulation as a stratum.

Theorem C.3. Suppose the sample size is n. Define Nr = {i : f(Xi) = r}, XNr = (Xi : i ∈ Nr),
nr = |Nr|, and p(r) = Q{f(Xi) = r}. Define λlarge =

⋃
1≤r≤R

Nr. For 1 ≤ r ≤ R, let τr be the

treated fraction in Nr. Define functions hr : supp(Xi) → R for 1 ≤ r ≤ R. Define λsmall =⋃
1≤r≤R

λτr,h
r

(XNr ), where λτr,h
r

(XNr ) is defined in (S.34). Suppose Q satisfies Assumption IV.1

and the treatment assignment scheme satisfies Assumption C.1. Then, under λlarge, for θ̂satn defined
in (S.36), as n → ∞,

√
n(θ̂satn − θ(Q))

d→ N(0, ς2large) ,

where

ς2large =
∑

1≤r≤R

p(r)
(Var[Yi(1)|f(Xi) = r]

τr
+

Var[Yi(0)|f(Xi) = r]

1− τr

)
+

∑
1≤r≤R

p(r)(E[Yi(1)− Yi(0)|f(Xi) = r]− E[Yi(1)− Yi(0)])
2 .

Suppose in addition that hr, 1 ≤ r ≤ R satisfy the assumption in Theorem C.2, under Q restricted
to {x ∈ supp(Xi) : f(x) = r}. Then, under λsmall, for θ̂satn defined in (S.36), as n → ∞,

√
n(θ̂satn − θ(Q))

d→ N(0, ς2small) ,

where

ς2small =
∑

1≤r≤R

p(r)
(Var[Yi(1)|f(Xi) = r]

τr
+

Var[Yi(0)|f(Xi) = r]

1− τr

− τr(1− τr)E
[(

E
[Yi(1)

τr
+

Yi(0)

1− τr

∣∣∣hr(Xi)
]
− E

[Yi(1)

τr
+

Yi(0)

1− τr

∣∣∣f(Xi) = r
])2∣∣∣f(Xi) = r

])
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+
∑

1≤r≤R

p(r)(E[Yi(1)− Yi(0)|f(Xi) = r]− E[Yi(1)− Yi(0)])
2 .

In addition, ς2small ≤ ς2large, where the inequality is strict unless for all 1 ≤ r ≤ R,

E
[Yi(1)

τr
+

Yi(0)

1− τr

∣∣∣hr(Xi)
]
= E

[Yi(1)

τr
+

Yi(0)

1− τr

∣∣∣f(Xi) = r
]

with probability one under
Qr(A) =

Q(A ∩ {f(Xi) = r})
Q{f(Xi) = r}

.

Moreover, among all choices of (hr : 1 ≤ r ≤ R), ς2small is minimized by setting hr = gτr , where gτr

is defined in (7).

Proof of Theorem C.3. The first convergence holds by Theorem 3.1 of Bugni, Canay and Shaikh
(2019). Define θr = E[Yi(1)− Yi(0)|f(Xi) = r]. For the second convergence, note

√
n(θ̂satn − θ(Q)) =

∑
1≤r≤R

((nr

n

)1/2√
nr(µ̂n,r(1)− µ̂n,r(0)− θr) +

√
n
(nr

n
− p(r)

)
θr

)
. (S.37)

Define

L1
n = (

√
nr(µ̂n,r(1)− µ̂n,r(0)− θr) : 1 ≤ r ≤ R)

L2
n =

(√
n
(nr

n
− p(r)

)
: 1 ≤ r ≤ R

)
.

It follows from the coupling argument in Lemma C.1 of Bugni, Canay and Shaikh (2019) that

(L1
n, L

2
n) = (L∗1

n , L2
n) + oP (1)

where L∗1
n ⊥⊥ L2

n and L∗1
n

d→ N(0,diag(ς2r,small : 1 ≤ r ≤ R)) with

ς2r,small =
E[(Yi(1)− E[Yi(1)|hr(Xi)])

2|f(Xi) = r]

τr
+

E[(Yi(0)− E[Yi(0)|hr(Xi)])
2|f(Xi) = r]

1− τr

+ E[(E[Yi(1)− Yi(0)|hr(Xi)]− θr)
2|f(Xi) = r] .

Meanwhile, the central limit theorem implies

L2
n

d→ N(0,diag(p(r) : 1 ≤ r ≤ R)− (p(r) : 1 ≤ r ≤ R)(p(r) : 1 ≤ r ≤ R)′) .

In addition, it follows from the weak law of large numbers that nr

n

P→ p(r) for 1 ≤ r ≤ R. By (S.37)
and Slutsky’s lemma, I have that

√
n(θ̂satn −θ(Q)) converges to a normal distribution with zero mean

and variance ∑
1≤r≤R

p(r)ς2r,small +
∑

1≤r≤R

p(r)(θr − θ(Q))2 ,
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where I use the fact that ∑
1≤r≤R

p(r)θr = θ(Q) .

The first result then follows from a similar calculation to that at the end of the proof of Lemma B.3.
The last two results can be shown by similar arguments to those used in the proof of Theorem C.2.

Remark C.2. Tabord-Meehan (2022) considers stratification trees, which leads to a small number
of large strata, with different treated fractions in each stratum. Using results from Theorem C.3, it is
straightforward to combine his procedure with procedures in this paper. The asymptotic variance of
θ̂satn under the combined procedure is no greater than and typically strictly less than that under his
procedure alone. The combined procedure is as follows: First, implement the procedure in Tabord-
Meehan (2022), which produces a finite number of strata with a target treated fraction for each
stratum. Second, I view each stratum as a subpopulation and calculate the stratification in (S.34)
either with a fixed function h or some plug-in estimate, with τ equal the target treated fraction.
Finally, I take the union of these stratifications. The desired properties mentioned above now follow
from Theorem C.3.

C.3 Formal Justification of Results with Attrition

Let Ai be a binary variable such that Ai = 1 if and only if the unit does not attrite. The difference-
in-means estimator for the non-attritors is

θ̂An =
1
n

∑
i:Di=1 AiYi(1)

1
n

∑
i:Di=1 Ai

−
1
n

∑
i:Di=0 AiYi(0)

1
n

∑
i:Di=0 Ai

.

By repeating the arguments in the proof of Theorem S.1.5 of Bai, Romano and Shaikh (2021), under
the assumption that ((Y (n)(0), Y (n)(1), A(n)) ⊥⊥ D(n)|X(n), I have

1

n

∑
i:Di=1

AiYi(1)
P→ E[AiYi(1)]

1

n

∑
i:Di=1

Ai
P→ E[Ai]

1

n

∑
i:Di=0

AiYi(0)
P→ E[AiYi(0)]

1

n

∑
i:Di=0

Ai
P→ E[Ai] .

As a result,
θ̂An

P→ E[Ai(Yi(1)− Yi(0))]

E[Ai]
.

If Ai ⊥⊥ (Yi(1)− Yi(0)), then the right hand side is θ(Q).
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C.4 Nonnegativity of the Variance Estimator

In this subsection, I show ς̂2h,n in (14) is nonnegative. For convenience of notation, I suppress h in
the subscripts. I have

ς̂2n = σ̂2
n(1) + σ̂2

n(0)−
1

2
ρ̂n +

1

2
(µ̂n(1) + µ̂n(0))

2

=
1

n

∑
1≤i≤2n:Di=1

Y 2
i − µ̂2

n(1) +
1

n

∑
1≤i≤2n:Di=0

Y 2
i − µ̂2

n(0)−
1

2
ρ̂n +

1

2
(µ̂n(1) + µ̂n(0))

2

=
1

n

∑
1≤i≤2n

Y 2
i − 1

2
ρ̂n − 1

2
(µ̂n(1)− µ̂n(0))

2

=
1

2n

∑
1≤i≤2n

Y 2
i − 1

n

∑
1≤s≤n

Yπ(2s−1)Yπ(2s) +
1

2n

∑
1≤s≤n

(Yπ(2s−1) + Yπ(2s))
2

− 1

n

∑
1≤j≤n/2

(Yπ(4j−3) + Yπ(4j−2))(Yπ(4j−1) + Yπ(4j))

− 1

2

( 1

n

∑
1≤s≤n

(Dπ(2s−1) −Dπ(2s))(Yπ(2s−1) − Yπ(2s))
)2

=
1

2

( 1

n

∑
1≤s≤n

((Dπ(2s−1) −Dπ(2s))(Yπ(2s−1) − Yπ(2s)))
2

−
( 1

n

∑
1≤s≤n

(Dπ(2s−1) −Dπ(2s))(Yπ(2s−1) − Yπ(2s))
)2)

+
1

2n

∑
1≤j≤n/2

(Yπ(4j−3) + Yπ(4j−2) − (Yπ(4j−1) + Yπ(4j)))
2 .

In the last expression, the second term is obviously nonnegative, while the first term is nonnegative
because it is one half the sample variance of {(Dπ(2s−1) −Dπ(2s))(Yπ(2s−1) − Yπ(2s)) : 1 ≤ s ≤ n}.

C.5 Details of the Penalized Procedure

In this section, I discuss the details of the penalized procedure. For d ∈ {0, 1}, let β̃m(d) denote the
least-square estimators of the linear regression coefficients among the treated or untreated units in
the pilot experiment:

β̃m(d) =
( ∑

1≤j≤m:D̃j=d

X̃jX̃
′
j

)−1 ∑
1≤j≤m:D̃j=d

X̃j Ỹj ,

and let Ω̃m(d) denote the variance estimators assuming homoskedasticity:

Ω̃m(d) = ν̃2m(d)
( ∑

1≤j≤m:D̃j=d

X̃jX̃
′
j

)−1

,

where

ν̃2m(d) =

∑
1≤j≤m(Ỹj − X̃ ′

j β̃m(d))2I{D̃j = d}∑
1≤j≤m I{D̃j = d}

.
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For dpen defined in (10), let πpen denote the solution to

min
π∈Π

∑
1≤s≤n

dpen(Xπ(2s−1), Xπ(2s)) . (S.38)

Units are then paired to solve (S.38), so the stratification is given by

λpen(X(n)) = {{πpen(2s− 1), πpen(2s)} : 1 ≤ s ≤ n} . (S.39)

I start with a further justification for (S.39) by discussing its optimality in a Bayesian framework, in
the sense that it minimizes the integrated risk in a Bayesian framework with a diffuse normal prior,
where the conditional expectations of potential outcomes are linear. With some abuse of notation,
denote the conditional MSE in (3) by MSE(λ|g,X(n)), where I make explicit the dependence on g.
Suppose I have a prior distribution of g, denoted by F (dg). Let Qn

X(dx(n)) denote the distribution of
X(n) and Qm

W̃
(dw̃(m)) denote the distribution of W̃ (m). Consider the solution to following problem of

minimizing the integrated risk across all measurable functions of the form u : (w̃(m), x(n)) 7→ λ ∈ Λn:

min
u

∫∫∫
MSE(u(w̃(m), x(n))|g, x(n))Qn

X(dx(n))Qm
W̃
(dw̃(m))F (dg) . (S.40)

I focus on the special case under which and Yi(d) ∼ N(X ′
iβ(d), σ

2) for d ∈ {0, 1}. Note the
potential outcomes are homoskedastic conditional on the covariates. Define β = β(1) + β(0), and
I have g(x) = x′β. As before, I suppose W̃ (m) = ((Ỹj , X̃

′
j , D̃j)

′ : 1 ≤ j ≤ m) is available from a
pilot experiment. Suppose the prior on β(d) is Gd

d
= N(η(d),Ω(d)) for d ∈ {0, 1}, being independent

across d ∈ {0, 1}. The prior distribution of β is then G(dβ)
d
= N(η(1) + η(0),Ω(1) + Ω(0)). I could

show the posterior distribution of β(d) conditional on W̃ (m) is

Ḡd(dβ|W̃ (m))
d
= N(η̄, Ω̄) ,

where for d ∈ {0, 1},

η̄(d) =
(
(σ2)−1

∑
j:D̃j=d

X̃jX̃
′
j +Ω−1(d)

)−1(
(σ2)−1

∑
j:D̃j=d

X̃j Ỹj +Ω−1(d)η(d)
)

Ω̄(d) =
(
(σ2)−1

∑
j:D̃j=d

X̃jX̃
′
j +Ω−1(d)

)−1

.

Define η̄ = η̄(1) + η̄(0) and Ω̄ = Ω̄(1) + Ω̄(0). The posterior distribution for β is

Ḡ(dβ|W̃ (m))
d
= (η̄, Ω̄) ,

because Gd(dβ)’s are independent across d ∈ {0, 1}.

The next lemma provides the solution to the Bayesian problem in (S.40), where the choice set is
over all measurable functions u : (w̃(m), x(n)) 7→ λ ∈ Λn.
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Lemma C.1. The solution to (S.40) maps each (w̃(m), x(n)) to λ = {{π(2s − 1), π(2s)} : 1 ≤ s ≤
n/2}, where π solves

min
π∈Πn

∑
1≤s≤n

d̄
(
xπ(2s−1), xπ(2s)

)
,

where
d̄(x1, x2) = (x′

1η̄ − x′
2η̄)

2 + (x1 − x2)
′Ω̄(x1 − x2) . (S.41)

Proof. First note by similar calculations to those leading to Lemma II.1, (S.40) is equivalent to

min
u

∫∫∫
L(u(w̃(m), x(n))|β, x(n))Qn

X(dx(n))Qm
W̃
(dw̃(m))G(dβ) , (S.42)

where
L(u|β, x(n)) = β′(x(n))′ Varλ[D

(n)|X(n)]x(n)β .

Next, note I could solve the problem pointwise for w̃(m) and x(n) because (S.42) is equivalent to

min
u

R̄(u|W̃ (m)) , (S.43)

where
R̄(u|W̃ (m)) =

∫
L(u(W̃ (m), x(n))|β, x(n))Ḡ(dβ|W̃ (m)) .

To solve (S.43), first note because R̄(u|W̃ (m)) is linear in u, by Lemma II.2, it is solved by a
matched-pair design. Next,

R̄(u|W̃ (m)) =
∑

1≤s≤n

((x′
π(2s−1)η̄ − x′

π(2s)η̄)
2 + (xπ(2s−1) − xπ(2s))

′Ω̄(xπ(2s−1) − xπ(2s))) .

As a result, minimizing it is equivalent to minimizing the sum of the distances defined in (S.41).

Lemma C.1 shows the solution to (S.40) is not to naïvely pair units according to the values of
X ′

i η̄, where η̄ is posterior mean of β. Instead, the solution to (S.40) depends not only on the posterior
mean of β, but also on the posterior variance of it. The posterior variance serves as a penalty to
matching naïvely on the posterior mean of β: the larger the variance, the more it penalizes matching
on the posterior mean.

Finally, I make the prior irrelevant. For this purpose, suppose Ω = cI where I is an identity
matrix. I let the constant c → ∞, so that the prior diverges to a diffuse (uninformative) one. Then,
η̄(d) converges to β̃m(d) and Ω̄(d) converges to Ω̃m(d). The metric then (S.41) converges to the
metric defined in (10).

In practice, (S.38) can be solved as follows. Define Rm as the result of the following Cholesky
decomposition:

R′
mRm = β̃mβ̃′

m + Ω̃m ,
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and define
Zi = RmXi .

To see (S.38) is equivalent to

min
π∈Πn

1

n

∑
1≤s≤n

‖Zπ(2s−1) − Zπ(2s)‖2 , (S.44)

note

dpen(x1, x2) = (x1 − x2)
′β̃mβ̃′

m(x1 − x2) + (x1 − x2)
′Ω̃m(x1 − x2) = (x1 − x2)

′R′
mRm(x1 − x2) .

The penalized stratification pairs units to minimize the sum of distances in terms of Zi within pairs.
When dim(Xi) is not too large, the problem can be solved quickly by the package nbpMatching in
R.

Because the penalized matched-pair design can be viewed as pairing to minimize the Euclidean
distances of Z as in (S.44), inference can be implemented by “pairing the pairs” as in Section 4 of
Bai, Romano and Shaikh (2021). I refer the readers to that paper for details.

The next theorem establishes the behavior of the difference-in-means estimator under the pe-
nalized procedure as the sample sizes of the pilot and the main experiment both increase. Not
surprisingly, as the sample size of the pilot experiment goes to infinity, the penalized procedure
behaves similarly to pairing units according to h, where h is a linear function. In particular, if the
selection on observable assumption holds in the pilot data, then the conclusion of the next theorem
holds with β = β(1) + β(0), where β(d) = E[XX ′]−1E[XY (d)] for d ∈ {0, 1}.

Theorem C.4. Suppose Q satisfies Assumption IV.1, h(x) = x′β satisfies Assumption IV.2 for
some β ∈ Rdim(Xi). Suppose E[XX ′] < ∞. Further suppose β̃m

P→ β and Ω̃m
P→ 0 as m → ∞.

Then, under λpen defined in (S.39), as m,n → ∞,
√
n(θ̂n − θ(Q))

d→ N(0, ς2h) for ς2h in (11).
Furthermore, (ς̂penn )2

P→ ς2h.

Proof. I only prove the convergence in distribution because the convergence of the standard error
follows from similar arguments to those used in the proof of Theorem 4.3 in Bai, Romano and Shaikh
(2021). Define h̃m(x) = x′β̃m. Let ‖Ω̃m‖op denote the operator norm of Ω̃m. Note

1

n

∑
1≤s≤n

((X ′
πpen(2s−1)β̃m −X ′

πpen(2s)β̃m)2 + (Xπpen(2s−1) −Xπpen(2s))
′Ω̃m(Xπpen(2s−1) −Xπpen(2s)))

≤ 1

n

∑
1≤s≤n

((X ′
πh̃m (2s−1)

β̃m −X ′
πh̃m (2s)

β̃m)2 + (Xπh̃m (2s−1) −Xπh̃m (2s))
′Ω̃m(Xπh̃m (2s−1) −Xπh̃m (2s)))

=
1

n

∑
1≤s≤n

((X ′
πh̃m (2s−1)

β̃m −X ′
πh̃m (2s)

β̃m)2 + ‖Ω̃m‖op|Xπh̃m (2s−1) −Xπh̃m (2s)|
2)

≤ 1

n

∑
1≤s≤n

(X ′
πh̃m (2s−1)

β̃m −X ′
πh̃m (2s)

β̃m)2 + ‖Ω̃m‖op
2

n

∑
1≤i≤2n

|Xi|2
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=
1

n

∑
1≤s≤n

(X ′
πh̃m (2s−1)

β̃m −X ′
πh̃m (2s)

β̃m)2 + oP (1) ,

where the first inequality follows because πpen solves (S.38), the first equality follows from the
definition of the operator norm, the second inequality follows from the fact that |a+b|2 ≤ 2(|a|2+|a|2)
for a, b ∈ Rdim(Xi), and the last equality follows from the assumptions that E[XX ′] < ∞ and Ω̃m

P→ 0

and the weak law of large numbers. Because I also know

1

n

∑
1≤s≤n

(X ′
πpen(2s−1)β̃m −X ′

πpen(2s−1)β̃m)2 ≥ 1

n

∑
1≤s≤n

(X ′
πh̃m (2s−1)

β̃m −X ′
πh̃m (2s−1)

β̃m)2 ,

I have

1

n

∑
1≤s≤n

(X ′
πpen(2s−1)β̃m −X ′

πpen(2s−1)β̃m)2 =
1

n

∑
1≤s≤n

(X ′
πh̃m (2s−1)

β̃m −X ′
πh̃m (2s−1)

β̃m)2 + oP (1) .

The rest of the proof follows from similar arguments to those used in the proof of Lemma B.6.

C.6 Inference with Pooled Data

So far I have disregarded data from the pilot experiment for inference except when computing g̃m.
I end this section by describing a test that combines data from the pilot and the main experiments.
Define

θ̃m = µ̃m(1)− µ̃m(0) ,

where

µ̃m(d) =

∑
1≤j≤m ỸjI{D̃j = d}∑
1≤j≤m I{D̃j = d}

for d ∈ {0, 1}. I define the new estimator for θ(Q) as

θ̂combined
n =

m

m+ 2n
θ̃m +

2n

m+ 2n
θ̂n .

Let ς̃2pilot,m denote the variance estimator of θ̃m in the pilot experiment. I define the test as

ϕcombined
n (W (n), W̃ (m)) = I{|T combined

n (W (n), W̃ (m))| > Φ−1(1− α

2
)} , (S.45)

where
T combined
n (W (n), W̃ (m)) =

√
m+ 2n(θ̂combined

n − θ0)√
m

m+2n ς̃
2
pilot,m + 2n

m+2n2ς̂
2
h̃m,n

,

and Φ−1(1− α
2 ) denotes the (1− α

2 )-th quantile of the standard normal distribution.

The following theorem shows the test defined in (S.45) is asymptotically exact as the sample sizes
of both the pilot and the main experiments increase. The main additional requirement is as m → ∞,
√
m(θ̃m − θ(Q)) converges in distribution to a normal distribution whose variance is consistently
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estimable. The assumption is satisfied by many treatment assignment schemes, including i.i.d. coin
flips and covariate-adaptive randomization. See Bugni, Canay and Shaikh (2018) and Bugni, Canay
and Shaikh (2019) for details.

Theorem C.5. Suppose the treatment assignment scheme satisfies Assumption I.1, Q satisfies
Assumptions IV.1, h satisfies Assumption IV.2, and h̃m satisfies Assumption IV.3. Suppose in
addition that as m → ∞,

√
m(θ̃m − θ(Q))

d→ N(0, ς2pilot), ς̃2pilot,m
P→ ς2pilot , and that as m,n → ∞,

m

m+ 2n
→ ν ∈ [0, 1] .

Then, under λg̃m(X(n)) for h = g̃m, as m,n → ∞,

√
m+ 2n(θ̂combined

n − θ(Q))√
m

m+2n ς̃
2
pilot,m + 2n

m+2n2ς̂
2
h̃m,n

d→ N(0, 1) .

Thus, for the problem of testing (12) at level α ∈ (0, 1), ϕcombined
n (W (n), W̃ (m)) in (S.45) satisfies

lim
m,n→∞

E[ϕcombined
n (W (n), W̃ (m))] = α ,

whenever Q additionally satisfies the null hypothesis, i.e. θ(Q) = θ0.

Proof. To begin with, note I need only establish as m,n → ∞,

√
m+ 2n(θ̂combined

n − θ(Q))
d→ N(0, νς2pilot + (1− ν)2ς2h) , (S.46)

and the rest follows from Slutsky’s lemma. I prove (S.46) by contradiction. Suppose (S.46) does
not hold. Then, there exists a subsequence still denoted by {m,n} for notational simplicity, along
which as m,n → ∞,

sup
t∈R

∣∣∣√m+ 2n(θ̂combined
n − θ(Q))− Φ(z/

√
νς2pilot + (1− ν)2ς2h)

∣∣∣ → c , (S.47)

where c > 0, and
m

m+ 2n
→ ν ∈ [0, 1] .

Now consider this subsequence. Since the two convergences in the Lemma B.6 hold in probability,
there exists a further subsequence along which they hold with probability one. By Theorem IV.1, I
could see along this subsequence, as m,n → ∞, with probability one for W̃ (m),

sup
t∈R

∣∣∣Q{
√
n(θ̂n − θ(Q)) ≤ t|W̃ (m)} − Φ(z/ςh)

∣∣∣ → 0 . (S.48)

Along the subsequence I construct, because m
m+2n → ν, by (S.48), Slutsky’s lemma, and Lemma

B.2,
√
m+ 2n(θ̂combined

n − θ(Q))
d→ N(0, νς2pilot + (1− ν)2ς2h) ,
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which is a contradiction to (S.47). The theorem therefore holds.

C.7 Adjusted Standard Error With Four Units

Still suppose the sample size is 2n, in order to be consistent with the notation in the main text.
Suppose units are matched into sets of four units according to a function h ∈ H. Let πh be such
that hπh(1) ≤ · · · ≤ hπh(2n). The stratification is given by

{{πh(4s− 3), πh(4s− 2), πh(4s− 1), πh(4s)} : 1 ≤ s ≤ n/2} . (S.49)

By Lemma B.3, I still have
√
n(θ̂n − θ(Q))

d→ N(0, ς2h), for ς2h in (11). The variance estimator is

(ς̂ fourh,n )2 = σ̂2
n(1) + σ̂2

n(0)−
1

2
ρ̂fourn +

1

2
(µ̂n(1) + µ̂n(0))

2 , (S.50)

where
ρ̂fourn =

2

n

∑
1≤s≤n/2

1

2

∑
i,j,k,l∈λs,i<j,k<l:Di=Dj=1,Dk=Dl=0

(Yi + Yk)(Yj + Yl) . (S.51)

To establish
ρ̂fourn

P→ E[E[g(Xi)|h(Xi)]
2] ,

note

E
[1
2

∑
i,j,k,l∈λs,i<j,k<l:Di=Dj=1,Dk=Dl=0

(Yi + Yk)(Yj + Yl)|h(n)
]

=
1

12

∑
i,j,k,l∈{0,1,2,3},i<j,k<l

(µ1(hπh(4s−i)) + µ0(hπh(4s−k)))(µ1(hπh(4s−j)) + µ0(hπh(4s−l)))

+ (µ1(hπh(4s−i)) + µ0(hπh(4s−l)))(µ1(hπh(4s−j)) + µ0(hπh(4s−k)))

=
1

12
(gh(hπh(4j−3)) + gh(hπh(4j−2)))(gh(hπh(4j−1)) + gh(hπh(4j)))

+
1

12
(gh(hπh(4j−3)) + gh(hπh(4j−1)))(gh(hπh(4j−2)) + gh(hπh(4j)))

+
1

12
(gh(hπh(4j−3)) + gh(hπh(4j)))(gh(hπh(4j−2)) + gh(hπh(4j−1))) ,

where the coefficient 1
12 = 1

2×
1
6 appears in the first equality because there are

(
4
2

)
= 6 ways to choose

2 units among 4 units to be treated. The consistency of (ς̂ fourh,n )2 in (S.50) then follows from similar
arguments to those used in the proof of Theorem IV.2. By repeating the arguments in Section C.4,
I can also show the variance estimator is nonnegative.

Finally, I discuss the variance estimator on p.100 of in Athey and Imbens (2017). Suppose
λs = {i(s), j(s), k(s), l(s)}, Di(s) = Dj(s) = 1, and Dk(s) = Dl(s) = 0. The variance estimator is
constructed as ∑

1≤s≤n/2

n
( 4

2n

)2(1
4
(Yi(s) − Yj(s))

2 +
1

4
(Yk(s) − Yl(s))

2
)
.
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It follows from similar arguments to those used above that the variance estimator converges in
probability to

E[Var[Yi(1)|h(Xi)]] + E[Var[Yi(1)|h(Xi)]] ,

which is less than the asymptotic variance of θ̂n, i.e., ς2h in (11), and strictly so unless (9) holds.
Therefore, unless (9) holds, the test in Athey and Imbens (2017) fails to control size. The failure
of size control for Athey and Imbens (2017) also arises in settings with a fixed number of strata, as
discussed in Section 5 of Bugni, Canay and Shaikh (2019).

D Additional Simulation Results

This section contains the tables with the raw numbers for the main text and some additional simu-
lation results.

Table S.1–S.2 contain the raw numbers for Table 2 in the main text.

Table S.3 contains the summary statistics for the following stratifications in addition to the ones
in the main text:

(i”) None-reg-int: No stratification with the estimator in Lin (2013), i.e., the OLS estimator of the
coefficient on D in the linear regression of Y on a constant, D, X−X̄n, and D(X−X̄n), where
X̄n is the sample average of Xi’s, together with White’s heteroskedasticity-robust standard
error.

(j) MS X2: Matched sets of four to minimize the sum of the Mahalanobis distances of X2, namely,
all covariates in the main regression specification except the baseline outcome.

(k) MS pilot: Matched sets of four according to g̃m from the pilot.

(l) MS pen: Matched sets of four to minimize the sum of the distances in (10) of all covariates.

Tables S.4–S.5 contain the raw numbers for stratifications (j)–(l).

Table S.6 includes the size of the test in Athey and Imbens (2017) for matched sets of four.
Athey and Imbens (2017) assume a finite-population setting, in which the potential outcomes and
the covariates are fixed, and the parameter of interest is the sample ATE, defined as the average
difference between the treated and untreated potential outcomes of all units in the sample. My
paper instead focuses on the ATE and assumes that units are drawn from a superpopulation, so
potential outcomes and covariates are random. I have shown in Section C.7 that because of the
differences in sampling frameworks, the test in Athey and Imbens (2017) does not control size in my
setting unless (9) holds, which only happens in Model 1. Therefore, in Model 1, the size of the test
is around the nominal level of 5%. In Models 2 and 3, the size of the test is larger than 5%.
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Table S.1: MSEs, size, and standard errors for stratifications (a)–(i) across papers 1–5
(a) (b) (c) (d) (e) (f) (g) (h) (i) (i’)

Paper Model θ MP X MS X MP base MS base MP X2 MP pilot MP pen Origin None None-reg

1

1 0

MSE 0.00048 0.00070 - - 0.00045 0.00066 0.00046 - 0.001 0.00099
size (adj/adj4) 1.4 5.9 - - 0.5 3.0 0.7 - 5.1 4.7
size (MPt) 5.1 - - - 4.7 5.5 5.4 - - -

s.e. (adj/adj4) 0.028 0.026 - - 0.028 0.029 0.028 - 0.032 0.031
s.e. (MPt) 0.021 - - - 0.021 0.025 0.021 - - -

2 0.033

MSE 0.00055 0.00073 - - 0.00052 0.00071 0.00054 - 0.00092 0.00092
size (adj/adj4) 2.5 5.1 - - 2.3 3.4 1.6 - 3.6 3.2
size (MPt) 2.7 - - - 2.2 3.7 1.5 - - -

s.e. (adj/adj4) 0.028 0.027 - - 0.028 0.029 0.028 - 0.032 0.031
s.e. (MPt) 0.028 - - - 0.028 0.029 0.028 - - -

2

1 0

MSE 0.038 0.053 0.070 0.07 0.063 0.053 0.033 - 0.087 0.079
size (adj/adj4) 1.2 4.8 4.4 4.6 3.9 2.6 0.60 - 5.7 5.3
size (MPt) 4.8 - 4.6 - 5.4 5.3 5.0 - - -

s.e. (adj/adj4) 0.25 0.23 0.27 0.27 0.26 0.26 0.25 - 0.29 0.28
s.e. (MPt) 0.19 - 0.27 - 0.24 0.22 0.19 - - -

2 0.18

MSE 0.047 0.053 0.073 0.070 0.062 0.057 0.049 - 0.081 0.073
size (adj/adj4) 1.7 3.6 4.9 4.4 3.9 3.3 2.0 - 4.9 5.2
size (MPt) 1.7 - 4.7 - 3.7 2.7 1.9 - - -

s.e. (adj/adj4) 0.25 0.24 0.27 0.27 0.26 0.26 0.25 - 0.29 0.28
s.e. (MPt) 0.26 - 0.28 - 0.27 0.27 0.26 - - -

3 0.012

MSE 0.060 0.069 0.058 0.062 0.076 0.070 0.058 - 0.091 0.090
size (adj/adj4) 2.5 5.2 4.6 4.8 4.7 3.4 2.5 - 4.9 4.8
size (MPt) 2.5 - 4.2 - 3.5 3.4 2.4 - - -

s.e. (adj/adj4) 0.28 0.27 0.25 0.25 0.29 0.28 0.28 - 0.3 0.3
s.e. (MPt) 0.28 - 0.25 - 0.29 0.29 0.28 - - -

3

1 0

MSE 0.079 0.13 0.15 0.17 0.15 0.11 0.075 0.22 0.22 0.17
size (adj/adj4) 0.3 5.2 4.8 4.9 2.9 2.7 0.4 5.2 4.4 4.5
size (MPt) 5.2 - 4.9 - 4.1 5.3 4.0 - - -

s.e. (adj/adj4) 0.38 0.35 0.41 0.41 0.42 0.38 0.38 0.47 0.47 0.41
s.e. (MPt) 0.28 - 0.40 - 0.39 0.33 0.28 - - -

2 0.41

MSE 0.11 0.15 0.16 0.16 0.16 0.13 0.11 0.20 0.21 0.16
size (adj/adj4) 2.6 6.6 4.9 5.4 4.1 4.2 2.50 4 4.2 4.8
size (MPt) 2.2 - 4.9 - 3.6 3.1 1.9 - - -

s.e. (adj/adj4) 0.38 0.36 0.40 0.40 0.43 0.39 0.38 0.46 0.46 0.41
s.e. (MPt) 0.39 - 0.40 - 0.44 0.40 0.39 - - -

3 0.60

MSE 0.084 0.10 0.098 0.10 0.11 0.092 0.078 0.13 0.13 0.11
size (adj/adj4) 3.0 6.2 4.7 4.6 4.8 5.1 2.7 5.3 5 4.7
size (MPt) 2.3 - 4.1 - 3.8 3.7 1.9 - - -

s.e. (adj/adj4) 0.32 0.30 0.31 0.31 0.34 0.31 0.31 0.36 0.36 0.33
s.e. (MPt) 0.33 - 0.32 - 0.35 0.33 0.33 - - -

4

1 0

MSE 0.045 0.069 0.089 0.084 0.086 0.058 0.042 0.14 0.15 0.14
size (adj/adj4) 0.9 4.7 5.9 4.7 2.0 2.2 1.0 3.7 4.5 4.7
size (MPt) 5.5 - 6 - 5.4 5.6 5.6 - - -

s.e. (adj/adj4) 0.28 0.26 0.29 0.29 0.35 0.27 0.26 0.37 0.39 0.38
s.e. (MPt) 0.21 - 0.29 - 0.29 0.23 0.20 - - -

2 -1.31

MSE 0.058 0.072 0.075 0.078 0.089 0.064 0.052 0.14 0.15 0.14
size (adj/adj4) 2.2 4.8 3.9 4.6 2.3 3.1 2.1 5.4 4.4 3.9
size (MPt) 2.2 - 3.6 - 3.0 2.7 1.5 - - -

s.e. (adj/adj4) 0.28 0.27 0.29 0.29 0.35 0.27 0.27 0.37 0.39 0.38
s.e. (MPt) 0.29 - 0.29 - 0.34 0.28 0.28 - - -

3 -1.78

MSE 0.075 0.086 0.070 0.070 0.13 0.072 0.062 0.18 0.17 0.17
size (adj/adj4) 2.2 4.3 5 5.9 2.7 4.8 2.7 5.7 4.3 3.6
size (MPt) 1.9 - 4.7 - 3.1 3.8 1.3 - - -

s.e. (adj/adj4) 0.32 0.30 0.27 0.27 0.40 0.28 0.27 0.41 0.43 0.42
s.e. (MPt) 0.32 - 0.27 - 0.39 0.30 0.30 - - -

5

1 0

MSE 0.55 0.82 0.84 1.02 1.03 0.79 0.59 - 1.24 1.25
size (adj/adj4) 1.4 5.2 3.4 6.1 6.0 2.9 1.8 - 6.9 5.4
size (MPt) 4.6 - 5.6 - 5.4 5.1 5.5 - - -

s.e. (adj/adj4) 0.99 0.92 1.04 1.01 1.01 1.03 1.01 - 1.09 1.13
s.e. (MPt) 0.75 - 0.90 - 1 0.88 0.74 - - -

2 -0.35

MSE 0.82 0.90 1.07 1.12 1.17 1.01 0.90 - 1.26 1.28
size (adj/adj4) 3.8 5.1 5.4 6.1 6.9 4.6 4.6 - 5.6 5.1
size (MPt) 2.8 - 3.9 - 6.3 4.5 3.3 - - -

s.e. (adj/adj4) 1.00 0.97 1.05 1.04 1.07 1.05 1.02 - 1.13 1.16
s.e. (MPt) 1.07 - 1.11 - 1.07 1.08 1.07 - - -

3 -0.54

MSE 0.92 1.01 0.94 1.08 1.11 1.03 0.94 - 1.20 1.21
size (adj/adj4) 3.5 5.3 3.2 5 4.8 4.2 3.80 - 5.5 4.6
size (MPt) 2.6 - 2.8 - 5.3 4.2 2.7 - - -

s.e. (adj/adj4) 1.05 1.01 1.04 1.02 1.06 1.05 1.04 - 1.09 1.13
s.e. (MPt) 1.11 - 1.10 - 1.06 1.09 1.11 - - -

For each stratification, I report (1) the MSE, (2) the size of testing (12) for θ0 = θ at the 5% level, in percentage,
and (3) the average standard error. The tests used in this table are as follows: for matched-pair designs, the
adjusted t-test with the variance estimator in (14) (adj) and the test in Imbens and Rubin (2015) (MPt); for
matched sets of four, the adjusted t-test with the variance estimator in (S.50) in the supplement (adj4); for the
original stratifications, the test in (23) of Bugni, Canay and Shaikh (2018); for no stratification, the two-sample t-
test; for the regression-adjusted estimator, the t-test with White’s heteroskedasticity-robust standard error. Rows
are labeled according to the papers, models, and metrics. Columns are labeled according to the stratifications.
The definitions of the stratifications can be found in the main text.
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Table S.2: MSEs, size, and standard errors for stratifications (a)–(i) across papers 6–10
(a) (b) (c) (d) (e) (f) (g) (h) (i) (i’)

Paper Model θ MP X MS X MP base MS base MP X2 MP pilot MP pen Origin None None-reg

6

1 0

MSE 0.000046 0.000072 - - 0.000045 0.000072 0.000044 0.00012 0.00012 0.00011
size (adj/adj4) 0.7 5.1 - - 0.6 3.0 0.8 5.5 4.4 4.2
size (MPt) 5.0 - - - 5.1 5.3 3.7 - - -

s.e. (adj/adj4) 0.0094 0.0086 - - 0.0094 0.0097 0.0094 0.011 0.011 0.011
s.e. (MPt) 0.0068 - - - 0.0068 0.0084 0.0068 - - -

2 0.01

MSE 0.000082 0.000098 - - 0.000081 0.000094 0.000081 0.00013 0.00013 0.00013
size (adj/adj4) 3.1 4.8 - - 2.2 3.5 2.8 5.3 6.1 6.7
size (MPt) 2.7 - - - 1.7 3.0 2.0 - - -

s.e. (adj/adj4) 0.010 0.0098 - - 0.010 0.010 0.010 0.011 0.011 0.011
s.e. (MPt) 0.011 - - - 0.011 0.011 0.011 - - -

7

1 0

MSE 0.014 0.024 - - 0.013 0.020 0.015 0.033 0.031 0.029
size (adj/adj4) 0.3 5.3 - - 0.5 2.6 0.7 4.6 4.2 3.8
size (MPt) 4.6 - - - 3.4 5.2 5.3 - - -

s.e. (adj/adj4) 0.17 0.15 - - 0.16 0.17 0.16 0.18 0.19 0.18
s.e. (MPt) 0.12 - - - 0.12 0.14 0.12 - - -

2 0.21

MSE 0.024 0.028 - - 0.022 0.028 0.025 0.033 0.036 0.033
size (adj/adj4) 2.6 4.9 - - 2.3 3.8 3.6 4.7 5 4.5
size (MPt) 1.7 - - - 1.3 3.7 3.0 - - -

s.e. (adj/adj4) 0.17 0.17 - - 0.17 0.18 0.17 0.19 0.19 0.19
s.e. (MPt) 0.18 - - - 0.18 0.18 0.18 - - -

8

1 0

MSE 0.19 0.28 0.41 0.41 0.20 0.27 0.18 - 0.46 0.47
size (adj/adj4) 0.5 4.5 5.7 4.8 0.9 2.1 1.5 - 5.4 5.9
size (MPt) 6.4 - 5.6 - 4.2 4.6 5.4 - - -

s.e. (adj/adj4) 0.59 0.54 0.63 0.63 0.60 0.59 0.58 - 0.67 0.67
s.e. (MPt) 0.42 - 0.63 - 0.45 0.51 0.42 - - -

2 0.041

MSE 0.24 0.32 0.43 0.38 0.26 0.32 0.25 - 0.45 0.45
size (adj/adj4) 1.9 5.5 5.4 4.7 2.3 3.1 2.0 - 4.6 4.9
size (MPt) 2.7 - 5.7 - 3.2 3.1 3.0 - - -

s.e. (adj/adj4) 0.59 0.56 0.63 0.63 0.61 0.61 0.59 - 0.67 0.66
s.e. (MPt) 0.56 - 0.63 - 0.58 0.60 0.57 - - -

3 1.07

MSE 0.42 0.47 0.40 0.41 0.42 0.52 0.41 - 0.59 0.59
size (adj/adj4) 3.5 4.9 5.7 5.3 3.0 5.5 3.6 - 5.6 5.0
size (MPt) 2.3 - 4.8 - 2.4 4.0 3.0 - - -

s.e. (adj/adj4) 0.71 0.69 0.63 0.63 0.72 0.72 0.71 - 0.75 0.76
s.e. (MPt) 0.76 - 0.64 - 0.76 0.76 0.75 - - -

9

1 0

MSE 0.0042 0.0065 0.0082 0.0090 0.0044 0.0057 0.0038 0.011 0.0095 0.0094
size (adj/adj4) 1.0 5.2 3.6 5.1 0.8 2.2 0.5 5.7 5.5 6.0
size (MPt) 5.0 - 3.9 - 5.5 4.8 4.8 - - -

s.e. (adj/adj4) 0.086 0.079 0.094 0.094 0.089 0.087 0.085 0.099 0.10 0.098
s.e. (MPt) 0.063 - 0.094 - 0.065 0.075 0.062 - - -

2 -0.10

MSE 0.0065 0.0077 0.0097 0.0089 0.0068 0.0075 0.0065 0.010 0.0094 0.0093
size (adj/adj4) 2.9 6.1 5.8 5.2 3.3 4.3 3.0 7.3 5.9 5.7
size (MPt) 2.2 - 6.2 - 2.6 3.6 2.9 - - -

s.e. (adj/adj4) 0.09 0.087 0.096 0.096 0.091 0.092 0.09 0.097 0.098 0.097
s.e. (MPt) 0.094 - 0.096 - 0.094 0.095 0.093 - - -

3 -0.012

MSE 0.0065 0.0073 0.0076 0.0077 0.0064 0.0068 0.0065 0.0080 0.0078 0.0079
size (adj/adj4) 4.8 6.4 5.6 6.2 4.3 5.4 4.8 6.4 5.2 5.7
size (MPt) 3.4 - 6 - 2.2 3.0 2.3 - - -

s.e. (adj/adj4) 0.083 0.081 0.085 0.085 0.083 0.083 0.083 0.085 0.086 0.087
s.e. (MPt) 0.094 - 0.086 - 0.094 0.091 0.094 - - -

10

1 0

MSE 38.26 44.42 44.68 51.34 48.29 37.41 35.58 - 56.29 52.54
size (adj/adj4) 2.9 5.2 4.2 5.5 3.8 2.6 2.3 - 5.7 5.0
size (MPt) 5.1 - 4.6 - 3.8 3.3 3.3 - - -

s.e. (adj/adj4) 6.73 6.56 6.91 6.86 7.1 6.65 6.63 - 7.44 7.25
s.e. (MPt) 6.16 - 6.72 - 6.99 6.32 6.1 - - -

2 5.61

MSE 53.10 57.04 78.45 86.84 76.40 57.85 53.09 - 91.23 84.21
size (adj/adj4) 4.4 4.9 4.9 6.2 4.4 5.1 4.0 - 5.3 5.0
size (MPt) 4.8 - 4.8 - 4.9 5.3 3.5 - - -

s.e. (adj/adj4) 7.67 7.58 8.9 8.87 8.79 7.65 7.59 - 9.5 9.23
s.e. (MPt) 7.61 - 8.92 - 8.79 7.65 7.57 - - -

3 1.91

MSE 49.23 55.22 46.99 52.37 71.83 51.18 50.39 - 83.09 79.53
size (adj/adj4) 3.4 4.2 4.2 6.3 4.2 3.9 3.4 - 5.5 5.4
size (MPt) 3.4 - 4.8 - 4.2 3.4 3.8 - - -

s.e. (adj/adj4) 7.76 7.59 7.21 7.16 8.5 7.69 7.68 - 8.69 8.63
s.e. (MPt) 7.68 - 7.14 - 8.55 7.7 7.66 - - -

For each stratification, I report (1) the MSE, (2) the size of testing (12) for θ0 = θ at the 5% level, in percentage,
and (3) the average standard error. The tests used in this table are as follows: for matched-pair designs, the
adjusted t-test with the variance estimator in (14) (adj) and the test in Imbens and Rubin (2015) (MPt); for
matched sets of four, the adjusted t-test with the variance estimator in (S.50) in the supplement (adj4); for the
original stratifications, the test in (23) of Bugni, Canay and Shaikh (2018); for no stratification, the two-sample t-
test; for the regression-adjusted estimator, the t-test with White’s heteroskedasticity-robust standard error. Rows
are labeled according to the papers, models, and metrics. Columns are labeled according to the stratifications.
The definitions of the stratifications can be found in the main text.
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Table S.3: Summary statistics for MSEs, size, and standard errors for additional methods not in the
main text across all papers and models

Stratification MSE (ratio vs. None) size (%) s.e. (ratio vs. None)
MS X2 0.798 5.207 0.890

[0.551, 0.938] [3.200, 6.300] [0.770, 0.975]
MS pilot 0.749 5.256 0.857

[0.444, 0.939] [3.900, 6.600] [0.644, 0.957]
MS pen 0.693 4.604 0.844

[0.402, 0.966] [3.100, 7.200] [0.690, 0.940]
None-reg-int 0.949 4.870 0.984

[0.782, 1.014] [3.300, 6.800] [0.890, 1.041]

For each stratification, I report summary statistics across all papers and models of (1) the ratio between the
MSE under the particular stratification and the MSE under no stratification, (2) the size of testing (12) for
θ0 = θ at the 5% level, in percentage, and (3) the ratio between the average standard error under the particular
stratification and the average standard error under no stratification. The tests used in this table are: for MS, the
adjusted t-test with the variance estimator in (S.50); for the regression-adjusted estimator, the t-test with White’s
heteroskedasticity-robust standard error. For each metric, I show the average and [min,max] across all papers
and models. Rows are labeled according to the stratifications. Columns are labeled according to the metrics. The
definitions of the stratifications can be found in the text.
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Table S.4: MSEs, size, and standard errors for stratifications (j)–(l) across papers 1–5
(j) (k) (l) (i”)

Paper Model θ MS X2 MS pilot MS pen None-reg-int

1

1 0
MSE 0.00070 0.00075 0.00067 0.00099

size (adj4) 6.3 6.1 3.1 4.7
s.e. (adj4) 0.026 0.028 0.027 0.032

2 0.033
MSE 0.00076 0.00081 0.00072 0.00092

size (adj4) 6.3 4.7 4.9 3.3
s.e. (adj4) 0.027 0.029 0.027 0.031

2

1 0
MSE 0.063 0.057 0.048 0.079

size (adj4) 4.3 4.6 3.2 5.3
s.e. (adj4) 0.26 0.25 0.25 0.28

2 0.18
MSE 0.067 0.067 0.052 0.073

size (adj4) 4.8 6.0 3.3 5.3
s.e. (adj4) 0.26 0.26 0.25 0.28

3 0.012
MSE 0.076 0.074 0.069 0.090

size (adj4) 4.3 3.9 4.4 4.7
s.e. (adj4) 0.28 0.28 0.28 0.30

3

1 0
MSE 0.17 0.14 0.13 0.17

size (adj4) 4.6 5.1 3.9 4.3
s.e. (adj4) 0.41 0.37 0.37 0.42

2 0.41
MSE 0.17 0.16 0.13 0.16

size (adj4) 4.7 6.2 4.3 4.6
s.e. (adj4) 0.42 0.38 0.37 0.41

3 0.60
MSE 0.12 0.099 0.090 0.11

size (adj4) 5.4 5.9 4.5 5.1
s.e. (adj4) 0.33 0.31 0.31 0.33

4

1 0
MSE 0.11 0.067 0.063 0.14

size (adj4) 5.2 4.6 3.3 4.7
s.e. (adj4) 0.33 0.26 0.27 0.38

2 -1.31
MSE 0.11 0.070 0.065 0.14

size (adj4) 5.5 3.9 3.4 3.9
s.e. (adj4) 0.34 0.27 0.27 0.38

2 -1.78
MSE 0.15 0.077 0.070 0.17

size (adj4) 4.8 5.0 3.2 3.6
s.e. (adj4) 0.38 0.28 0.30 0.42

5

1 0
MSE 1.01 0.93 0.99 1.25

size (adj4) 5.3 4.9 6.9 5.2
s.e. (adj4) 1.01 0.99 0.96 1.13

2 -0.35
MSE 1.11 1.08 1.00 1.28

size (adj4) 6.1 6.3 4.4 5.0
s.e. (adj4) 1.07 1.03 0.99 1.17

3 -0.54
MSE 1.07 1.03 1.12 1.21

size (adj4) 5.6 4.7 6.3 4.5
s.e. (adj4) 1.06 1.04 1.02 1.13

For each stratification, I report (1) the MSE, (2) the size of testing (12) for θ0 = θ at the 5% level, in percentage,
and (3) the average standard error. The tests used in this table are: for MS, the adjusted t-test with the
variance estimator in (S.50); for the regression-adjusted estimator, the t-test with White’s heteroskedasticity-
robust standard error. Rows are labeled according to the papers and models. Columns are labeled according to
the stratifications. The definitions of the stratifications can be found in the text.
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Table S.5: MSEs, size, and standard errors for stratifications (j)–(l) across papers 6–10
(j) (k) (l) (i”)

Paper Model θ MS X2 MS pilot MS pen None-reg-int

6

1 0
MSE 0.000068 0.000093 0.000079 0.00011

size (adj4) 3.2 5.7 4.7 4.2
s.e. (adj4) 0.0086 0.0093 0.00091 0.011

2 0.010
MSE 0.000096 0.00012 0.00010 0.00013

size (adj4) 5.4 6.6 5.4 6.8
s.e. (adj4) 0.0098 0.010 0.0099 0.011

7

1 0
MSE 0.025 0.026 0.023 0.029

size (adj4) 6.3 4.9 5.1 3.7
s.e. (adj4) 0.15 0.16 0.15 0.19

2 0.21
MSE 0.028 0.031 0.029 0.033

size (adj4) 5.0 5.2 5.1 4.6
s.e. (adj4) 0.17 0.17 0.17 0.19

8

1 0
MSE 0.31 0.34 0.28 0.47

size (adj4) 5.2 5.4 3.4 5.8
s.e. (adj4) 0.56 0.57 0.56 0.67

2 0.041
MSE 0.34 0.35 0.31 0.45

size (adj4) 5.6 4.8 3.6 4.8
s.e. (adj4) 0.59 0.59 0.58 0.67

3 1.07
MSE 0.46 0.52 0.48 0.59

size (adj4) 4.5 6.0 4.7 5.1
s.e. (adj4) 0.70 0.71 0.69 0.75

9

1 0
MSE 0.0067 0.0068 0.0065 0.0094

size (adj4) 4.8 4.8 5.2 6.0
s.e. (adj4) 0.082 0.083 0.082 0.010

2 -0.10
MSE 0.0080 0.0083 0.0085 0.0094

size (adj4) 5.4 6.0 6.2 5.6
s.e. (adj4) 0.088 0.090 0.088 0.097

3 -0.012
MSE 0.0068 0.0074 0.0076 0.0079

size (adj4) 5.8 6.5 7.2 5.6
s.e. (adj4) 0.082 0.082 0.081 0.088

10

1 0
MSE 52.82 39.16 40.30 52.49

size (adj4) 5.1 4.4 3.7 4.8
s.e. (adj4) 7.07 6.55 6.56 7.29

2 5.61
MSE 85.45 59.39 56.69 84.05

size (adj4) 6.3 4.4 6.1 5.0
s.e. (adj4) 8.78 7.62 7.55 9.26

3 1.91
MSE 71.99 56.51 54.92 79.53

size (adj4) 4.8 5.3 4.8 5.3
s.e. (adj4) 8.47 7.60 7.57 8.63

For each stratification, I report (1) the MSE, (2) the size of testing (12) for θ0 = θ at the 5% level, in percentage,
and (3) the average standard error. The tests used in this table are: for MS, the adjusted t-test with the
variance estimator in (S.50); for the regression-adjusted estimator, the t-test with White’s heteroskedasticity-
robust standard error. Rows are labeled according to the papers and models. Columns are labeled according to
the stratifications. The definitions of the stratifications can be found in the text.

37



Table S.6: The size of the test in Athey and Imbens (2017) for matched sets of four
(b) (d)

Paper Model MS X MS base

1 1 6.0 -
2 8.2 -

2
1 5.1 4.8
2 6.3 5.1
3 6.3 5.1

3
1 5.7 5.2
2 8.7 5.8
3 8.0 5.7

4
1 5.0 5.0
2 7.6 4.2
3 6.4 5.9

5
1 6.0 6.6
2 7.7 9.6
3 7.7 9.0

6 1 5.2 -
2 7.7 -

7 1 5.5 -
2 8.5 -

8
1 4.4 4.8
2 7.1 5.0
3 8.5 5.6

9
1 6.2 5.3
2 8.7 5.2
3 10.4 6.2

10
1 5.3 5.8
2 6.1 6.3
3 5.2 6.6

This table shows the size of the test in Athey and Imbens (2017) for testing (12) for θ0 = θ at the 5% level, in
percentage. Rows are labeled according to papers and models. Columns are labeled according to the stratifications.
The definitions of the stratifications can be found in the main text.
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Here are the details of all the data used in simulation:

1. Herskowitz (2021):

I re-implement the analysis on p.93 of the original paper and estimate the effect of lumpy
prime on demand. I use Wave 2 data from “Panel-Clean.dta”. There are 997 observations for
simulation. I fill in the missing values and choose the covariates following the ”OVERALL
SPECIFICATION COVARIATES” part in Analysis-3.do. 20% of the original data are sampled
with replacement and fixed throughout the replications to be used as the pilot data, which
contains 199 observations. I consider Model 1 and Model 2 for data imputation. When drawing
from the empirical distribution, 996 observations are sampled with replacement so the sample
size is a multiple of four.

dependent: lmp_matrix (an indicator for whether the maximum number of tickets was de-
manded.)

covariates: meaninc (mean income for duration of study), betmean_prop (mean amount spent
on betting / mean income during study), lmp_purchased, lumpy_incprop

treatment: lumpyprime (lumpy expenditure prime treatment group)

2. Lee et al. (2021):

I re-implement the analysis in (1) on p.49 of the original paper and estimate the effect of
treatment on total remittances sent from migrants. I rerun the 1–3 code files in folder “Migrant-
Survey” and get the migrants data “Endline-Data-Combined-Status-Merged-Ready-18-Active-
Acc.dta” for regression. There are 809 observations. 20% of the original data are sampled
with replacement and fixed throughout the replications to be used as the pilot data, which
contains 161 observations. I consider Models 1–3 for data imputation. When drawing from
the empirical distribution, 808 observations are sampled with replacement so the sample size
is a multiple of four.

dependent: log_total_remittances (missing values generated because of log transformation
and are filled using 0)

covariates: log_total_remittances_b (baseline outcome), household_size (missing values are
filled using baseline outcomes), hohh_age, hohh_female, and hohh_completed_primary

treatment: treatment

3. Abel, Burger and Piraino (2020):

I re-implement the analysis in (4) on p.56 of the original paper and estimated the effect of ref-
erence letters on employment. I used experiment 2 data from “experiment2_employment.dta”.
There are 1000 observations. 20% of the original data are sampled with replacement and fixed
throughout the replications to be used as the pilot data, which contains 200 observations. I
consider Models 1–3 for data imputation. When drawing from the empirical distribution, 1000
observations are sampled with replacement so the sample size is a multiple of four.
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dependent: f2_b3 (number of jobs applied in the last four months, 246 observations with
missing values are dropped. the treatment percentage did not change much, about 0.55)

covariates: bs_c3_jobs_applied (baseline outcome), age_yr, female_d, educ_yr (missing val-
ues are filled using the mean), married_d, lang_zulu_d, lang_xhosa_d, lang_venda_d (there
are 4 languages and here we used 3 dummy variables)

treatment: reference_d

original stratification: gender, total 2

4. Gerber et al. (2020):

I re-perform the OLS on p.303 of the original paper and estimat the effect of the close poll
treatment on vote margin predictions using data from 2010 RCT experiment and following lines
677–710 in code file “Main_e2010.do”. Because the observations in the control group do not
have any experiment records, I only consider the two treatment groups “close” and “not close.”
There are 6650 observations. 20% of the original data are sampled with replacement and fixed
throughout the replications to be used as the pilot data, which contains 1330 observations. I
consider Models 1–3 for data imputation. When drawing from the empirical distribution, 6648
observations are sampled with replacement so the sample size is a multiple of four.

dependent: votemarg_post (post-treat vote margin prediction)

covariates: int_gov_scale (interest in politics, 1-5 scale), pelosi (identify Nancy Pelosi as
speaker), vote_admin_past (share voted previous 5 elections), male, race (4 dummy variables),
schooling (schooling years), inc(1-5 scale), age (1-7 scale)

treatment: t_close

original stratification: ppstaten, in each replication, only consider states with more than 5
observations.

5. Deserranno, Stryjan and Sulaiman (2019):

I re-implement the group-level analysis on p.263 of the original paper, which is also shown
in Table A.15 of the online appendix, and estimate the effect of treatment on wealth score
inequality. I follow lines 1250–1289 in code file “AEJApp-2018-0248_Tables-and-Figures.do”
and transfer member-level panel data into group-level using IQR function. After discarding
observations with missing group indices, I finally get 92 groups. 20% of the original data are
sampled with replacement and fixed throughout the replications to be used as the pilot data,
which contains 18 observations. I consider Models 1–3 for data imputation. When drawing
from the empirical distribution, 92 observations are sampled with replacement so the sample
size is a multiple of four.

dependent: iqrwealth (endline group-level wealth scores, generated from wealth_endline)

covariates: branch (scale from 1 to 9, numeric)

treatment: vote
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6. Barrera-Osorio, Linden and Saavedra (2019):

I re-implement the analysis on p.268, table 3, column (1) of the original paper and estimate
the impacts of the basic treatment on on-time secondary enrollment outcomes. I follow lines
144–151 in code file “Final_Tables_Journal.do.” Observations with missing values on the
dependent variable are filtered out. Moreover, variables ending in “_missing” recorded the
missing status of correspondent variables ending in “_fill” and I impute “_fill” variables using
the median. Running one replication using full data takes 6 hours, so I randomly sample 7880
out of the 15759 observations to reduce the running time. 20% of the original data are sampled
with replacement and fixed throughout the replications to be used as the pilot data, which
contains 1576 observations. I consider Models 1–2 for data imputation. When drawing from
the empirical distribution, 7880 observations are sampled with replacement so the sample size
is a multiple of four.

dependent: on_time (binary, whether enrolled or not)

covariates: s_teneviv_fill (indicator of house ownership), s_utilities_fill (number of utilities
in the house), s_durables_fill (number of durable goods), s_infraest_hh_fill (infrastructure
in the household, scale 0-22) , s_age_sorteo_fill (age at the moment of lottery), s_sexo_fill
(gender of student), s_yrs_fill (years of education), grade_fill (grade at baseline), s_single_fill
(if the household is single headed), s_edadhead_fill (age of the head of the household),
s_yrshead_fill (years of education of the head), s_tpersona_fill (number of individuals in
the house, scale 0-22), s_num18_fill (number of people under 18 in the house), s_estrato_fill
(strata of the household, scale 0-2), s_puntaje_fill (SISBEN score), s_ingtotal_fill (income,
from 0-4000).

treatment: treatment

original stratification: grader(6-11), gender, total 12

7. Himmler, Jäckle and Weinschenk (2019):

I re-implement the analysis of table 2, column (9) on p.130 of the original paper and esti-
mate the effect of commitment treatment on the number of exams passed. I use data in
“soft_commitments_AEJ.dta” and followed lines 74–77 in code file “soft_commitments_AEJ.do.”
There are 392 observations, and 32.91% are assigned to the treatment group in the original
paper. Then, 20% of the original data are sampled with replacement and fixed throughout
the replications to be used as the pilot data, which contains 78 observations. There are no
baseline outcomes. Models 1–2 are considered for data imputation. When drawing from the
empirical distribution, 392 observations are sampled with replacement so the sample size is a
multiple of four.

dependent: pass_all (number of exams passed)

covariates: male, c_HSGPA (centered high school GPA), age (scale 1-21, generated from
original dummy variables dage1 - dage21), dschooltype1 , dschooltype2 (two binary school type
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variables), nongerman (foreign citizership), c_app_day (centered application day), freshdeg
(fresh HS degree).

treatment: commitment

original stratification: gpa, 4 strata

8. Abel et al. (2019):

I re-implement the analysis of table 3, column (2) on p.292 of the original paper and esti-
mate the effects of WorkshopPlus on search hours. I use data in file “final_data2.dta” and
follow lines 159–163 in code file “AP_final_AEJ.do.” I only consider the control group vs
the “workshopPlus” group and filter out observations originally assigned to the “workshop”
group. There are two outcomes in the experiment. In order to be consistent with the second
simulation regarding to the second outcome “application number,” I discard the observations
missing any “search hours” or “application numbers” values. I get 1479 observations, 45.57%
of which are assigned to the treatment group originally. 20% of the original data are sampled
with replacement and fixed throughout the replications to be used as pilot data, which contains
295 observations. Models 1-3 are considered for data imputation. Model 2 used baseline1 +
covariates. When drawing from the empirical distribution, 1476 observations are sampled with
replacement so the sample size is a multiple of four.

dependent: b2_t (search hours)

covariates: educ_yr (education years), age_yr (age in years), female_d, lang_ (three dummy
variables indicating spoken languages), location_f_ (two dummy variables indicating location),
round (follow-up 2)

baseline: nomiss_bs_c2 (variable miss_bs_c2 is an indicator for missing values, and we filled
in missing baseline outcomes using the median)

treatment: ws_plus_d

secondary outcome: b3_t (application numbers)

9. de Mel, McKenzie and Woodruff (2019):

I re-implement the analysis in table 5 panel A “Number of paid workers,” column “After subsidy
Year 3+” on p.220 of the original paper and estimated the effect of treatment on employment. I
follow lines 59–76 to define treatment status and lines 585–606 to perform regression in code file
“AEJreplicationfile_LaborDrops.do” using data in “Sri-Lanka-Panel-Experiment-Paper.dta”.
There are 12 rounds of experiments and the means of rounds 10-12 outcomes are treated as
endline (year 3+) outcomes. I filter out observations whose outcomes are missing in any of
these three rounds and impute the covariates with missing values using the median. I finally got
454 observations. 20% of the original data are sampled with replacement and fixed throughout
the replications to be used as the pilot data, which contains 90 observations. I consider Models
1–3 for data imputation. When drawing from the empirical distribution, 452 observations are
sampled with replacement so the sample size is a multiple of four.
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dependent: allpaid_trunc (number of all paid works, calculated using mean of round 10-12
grouped by the key variable sheno).

baseline: baseallpaid

covariates: basetotalscore, booster, raven, digitspan, baselK_noland, baseedn, baseprofits.
(Did not find descriptions. Variables baselowassets, basehighassets, baselowprofits, basehigh-
profits are dismissed because they make the matrix not invertible)

treatment: voucheronly

original stratification: there are 6 variables (strata1-strata6)

10. Lafortune, Riutort and Tessada (2018):

I re-implement the analysis of interactions in Panel A, Column “Income per capita,” Table 5
on p.242 of the original paper and estimate the effect of role models on income per capita. I
run the provided “.do” files to generate the dataset “Base_Analisis_SEG1.dta” according to
the “Read-me.pdf”. I then perform data processing and regression analysis on this dataset
following the codes in “Interacciones.do”. After removing observations with missing outcomes
and imputing missing gender and age values using the median, I finally get 979 observations.
20% of the original data are sampled with replacement and fixed throughout the replications
to be used as the pilot data, which contains 195 observations. I consider Models 1–3 for data
imputation. When drawing from the empirical distribution, 976 observations are sampled with
replacement so the sample size is a multiple of four.

dependent: IncomePC_seg1 (income per capita)

baseline: lb_IncomePC_seg1

covariates: Edad (age), mujer (gender), Ed2, Ed3 (education dummy variables, ignore Ed1),
NO_info_Educ (indicating missing values of these three education variables), NegocioB-
sico030_fi, NegocioIntermedio300M1M_fi (description written in foreign language, but are
dummy variables indicating different amount of money, ignore NegocioDesarrollado1MM_fi ),
NO_info_Size (indicating missing values of former three “Nego_” variables

treatment: asignado_role_Model

E Matched-Pair Designs in the AEA RCT Registry

The following experiments in the AEA RCT Registry use matched-pair designs: AEARCTR-0000086,
0000171, 0000293, 0000443, 0000481, 0000550, 0000578, 0000587, 0000644, 0000688, 0000721, 0000983,
0000986, 0001034, 0001097, 0001218, 0001370, 0001591, 0001607, 0001712, 0001714, 0001778, 0001992,
0001995, 0002010, 0002125, 0002132, 0002282, 0002585, 0002622, 0002664, 0002750, 0002776, 0003056,
0003076, 0003524, 0003581, 0003629, 0003648, 0003779, 0003814, 0003933, 0003994, 0004024, 0004042,
0004022, 0006706.
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