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Abstract

This appendix is organized as follows. Section A presents general results on single-

player counterfactuals and contains additional examples based on the Roy model of

Section 4, including informationally-robust rankings as described in Section 7. Section

B provides a more formal and complete analysis of the entry game of Section 4.2.

Section C studies counterfactual predictions in two-player zero-sum games. Section D

studies counterfactuals in a first-price auction with reserve price. Section E discusses

how various nominal assumptions in the model of Section 2 are in fact normalizations

and are without loss of generality.
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A Single Player Example: Further Analysis

In Section 4.1, we explained how in single-player games, minimum counterfactual welfare is

obtained with the minimally informative information structure, in which a player’s signal is

their observed action. We now give a general statement of this result:

Proposition 1 (Minimum single-player counterfactual welfare).

Suppose N = 1, and fix an observed decision problem G = (A, u) and moment restriction

M = {φ}. Define an information structure I = (S, π) by S = A and such that π (a, θ) =

φ (a, θ) for all a and θ. Then the obedient strategies are an equilibrium of (G, I), and (I, σ)

induce the observed outcome. Moreover, for every counterfactual decision problem Ĝ =(
Â, û

)
, the minimum expected counterfactual welfare across all counterfactual predictions is

attained when the information structure is I, and minimum counterfactual welfare is

∑
a∈A

max
â∈Â

∑
θ∈Θ

φ (a, θ) û (â, θ) .

The proof is elementary, and follows the argument given in the text.

We next give a general statement of the result that with binary states, there is a max-

imally informative information structure which attains maximum counterfactual welfare.

When Θ = {θ1, θ2}, we can represent the player’s belief conditional on their signal as the

probability that the state is θ1. For each observed action a ∈ A, there is an interval of beliefs

for which that action is optimal, which we can denote by [xL (a) , xH (a)]. Conditional on

taking the action a, every realized belief must be in this interval. The Blackwell-most infor-

mative belief distribution consistent with the data must have all of the mass concentrated on

the end points of this interval. Any information structure that generates this distribution of

beliefs will maximize the player’s welfare in all counterfactual decision problems. One such

information structure is as follows: Let I = (S, π) where S = A × {L,H}, and define the
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conditional probabilities π (a,H, θ) and π (a, L, θ) to solve the following system of equations:

π (a,H, θ1) + π (a, L, θ1) = φ (a, θ1) ;

π (a,H, θ2) + π (a, L, θ2) = φ (a, θ2) ;

π (a,H, θ1)

π (a,H, θ1) + π (a,H, θ2)
= xH (a) ;

π (a, L, θ1)

π (a, L, θ1) + π (a, L, θ2)
= xL (a) .

When xL (a) < xH (a), there is a unique solution:

π (a,H, θ2) =
1− xH (a)

xH (a)

φ (a, θ1)− xL(a)
1−xL(a)

φ (a, θ2)

1− xL(a)
1−xL(a)

1−xH(a)
xH(a)

;

π (a,H, θ1) =
φ (a, θ1)− xL(a)

1−xL(a)
φ (a, θ2)

1− xL(a)
1−xL(a)

1−xH(a)
xH(a)

,

and π (a, L, θ) =φ (a, θ)−π (a,H, θ). Otherwise, if xL (a) = xH (a) (so that there is a unique

belief at which a is a best response, which must be the belief conditional on being rec-

ommended a) then there is a continuum of solutions to this system, where π (a,H, θ1) =

π (a,H, θ2). Thus, we can just take π (a,H, θ1) = φ (a, θ1) and π (a,H, θ2) = φ (a,H, θ2).

With this information structure, the player has an optimal strategy to choose a after the sig-

nals (a,H) and (a, L). Moreover, I is Blackwell-more informative than any other information

structure that rationalizes the data. We have proven the following proposition:

Proposition 2.

Suppose that N = 1 and Θ = {θ1, θ2}, and fix an observed game G = (A, u) and moment

restriction M = {φ}. Let the information structure I be as constructed in the preceding

paragraph. Then the obedient strategies are an equilibrium of (G, I). Moreover, for every

counterfactual decision problem Ĝ =
(
Â, û

)
, the maximum expected counterfactual welfare

across all counterfactual predictions is attained when the information structure is I, and
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maximum counterfactual welfare is

∑
(a,k)∈A×{L,H}

max
â∈Â

∑
θ∈Θ

û (â, θ) π (a, k, θ) .

At a high level, this result depends on the fact that the set of distributions over beliefs

partially ordered by mean-preserving spreads is a lattice when |Θ| = 2. When |Θ| > 2,

this partially ordered set is no longer a lattice, and in particular, there need not be a most

informative distribution of beliefs that rationalizes the data.

Finally, we argue that there is always a unique local counterfactual in single-player games:

Proposition 3.

Suppose that N = 1 and M = {φ}. If the counterfactual game Ĝ is equal to G, then there is

a unique counterfactual welfare in all counterfactual predictions, which is welfare under φ:

∑
a∈A

∑
θ∈Θ

u (a, θ)φ (a, θ) .

The argument is that given in the text: Fix an information structure I and observed and

counterfactual equilibrium strategies σ and σ̂ (that is, σ and σ̂ are optimal decision rules).

Since the two games are the same, the payoffs in the games are respectively

U =
∑
θ∈Θ

∫
s∈S

∑
a∈A

u (a, θ)σ (a|s)π (ds, θ) and Û =
∑
θ∈Θ

∫
s∈S

∑
a∈A

u (a, θ) σ̂ (a|s) π (ds, θ) .

But σ̂ is a feasible strategy in the observed game, so the fact that σ is an equilibrium must

be U ≥ Û . By an analogous argument, Û ≥ U , so in fact they are equal. Finally, by the

definition of a counterfactual prediction, we must have that σ and I induce φ, so that U is

equal to welfare under φ.

Ranking two counterfactuals We will next use the Roy model to illustrate the method-

ology for ranking games discussed in Section 7. Specifically, we ask for which pairs of coun-
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terfactual parameters z1 and z2 does the agent always attain higher welfare under z1 than

under z2, when we restrict attention to those information structures which are consistent

with the observed outcome. Figure 1 plots the set of pairs
(
Û1, Û2

)
of agent welfare obtained

for the pairs (z1, z2) = (0.5, 0.75) when the observed outcome corresponds to α = 0.375, both

under the assumption of fully-observable outcomes (the blue set) and partially-observable

outcomes (the red set).

The picture clearly shows that agent is unambiguously better off under z2. This can be

seen from the fact that all of the sets lie above the 45 degree line. Indeed, this conclusion

is theoretically trivial: the counterfactual with z2 has payoffs that are pointwise higher, so

that the agent could achieve a higher payoff with z2 than with z1 simply by using whatever

strategy was optimal for z1. Note that while this conclusion is theoretically obvious, it is

not apparent in Figure 1: For many pairs z2 > z1, the set of possible welfare outcomes for

the agent overlap. It is only by plotting agent welfare resulting from joint counterfactual

predictions that we can see that higher values of z dominate.

Nonetheless, this example illustrates the power of fixing information when computing

informationally-robust rankings: Without holding information fixed, there would be no dom-

inance ranking between z1 and z2, whenever the two are sufficiently close together.

Welfare versus behavior In Section 4.1, we primarily focused on the player’s welfare.

This is not the only counterfactual outcome of interest. More broadly, we may ask how the

player’s behavior could change in the counterfactual, i.e., the probability of opting in for each

state. While we do not analyze this question in detail, we can say that there are generally

much weaker restrictions on behavior than on welfare. This is illustrated in Figure 2, which

depicts the total probability that the player opts in as we vary z, for the cases considered

above.

The left panel describes the counterfactual probability of opting in when we observe the

entire outcome, including the state distribution when the player opts out. When the observed
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Figure 1: Ranking counterfactuals in the Roy model.

outcome is consistent with either either no information (the green curve) or full information

(the blue curve), there is generically a point prediction for counterfactual behavior. However,

for no information and z = 0, there are counterfactual predictions consistent with any opt-in

probability between zero and one. This is true even though there is a point prediction for

counterfactual welfare, simply because when z = 0, the player is indifferent between actions.

For the intermediate case of partial information, there is always a fat set of counterfactual

opt-in probabilities. Again, this is true even when z = 0, when there is a point prediction

for welfare.

The counterfactual prediction for behavior when we do not observe the state after opting

out is depicted in the right panel of Figure 2. The prediction is even more permissive in this

case: For every z > 0, any opt-in probability between 1/2 and 1 is consistent with all three

cases considered. For, in each of these examples, the player must always opt in when the

state is good, and there is a state distribution that rationalizes the player’s observed decision

to opt out when z = 0 but such that they would strictly prefer to enter if z > 0.
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Figure 2: Counterfactual probability p of choosing the action a = 1.

B Entry Game: Further Analysis

Linear program The linear program for maximum counterfactual producer surplus is

max
φ≥0

∑
(a,â,c)

(
φ (a, (E,N) , c) (3− c1) + φ (a, (N,E) , c) (3− c2) + φ (a, (E,E) , c) (2− c1 − c2)

)

s.t.
∑
â

φ (a, â, c) =


1
4

if (ai, ci) ∈ {(E, 0) , (N, 2)} ∀i;

0 otherwise;∑
(â2,c2)

[
φ (N,E, â1, â2, c1, c2) (3− c1) + φ (N,N, â1, â2, c1, c2) (1− c1)

]
≤ 0 ∀ (â1, c1) ;

∑
(â2,c2)

[
φ (E,E, â1, â2, c1, c2) (3− c1) + φ (E,N, â1, â2, c1, c2) (1− c1)

]
≥ 0 ∀ (â1, c1) ;

∑
(â1,c1)

[
φ (E,N, â1, â2, c1, c2) (3− c2) + φ (N,N, â1, â2, c1, c2) (1− c2)

]
≤ 0 ∀ (â2, c2) ;

∑
(â1,c1)

[
φ (E,E, â1, â2, c1, c2) (3− c2) + φ (N,E, â1, â2, c1, c2) (1− c2)

]
≥ 0 ∀ (â2, c2) ;

∑
(a2,c2)

[
φ (a1, a2, N,E, c1, c2) (3 + z − c1) + φ (a1, a2, N,N, c1, c2) (1 + z − c1)

]
≤ 0 ∀ (a1, c1) ;

∑
(a2,c2)

[
φ (a1, a2, E, E, c1, c2) (3 + z − c1) + φ (a1, a2, E,N, c1, c2) (1 + z − c1)

]
≥ 0 ∀ (a1, c1) ;

∑
(a1,c1)

[
φ (a1, a2, N,E, c1, c2) (3 + z − c2) + φ (a1, a2, N,N, c1, c2) (1 + z − c2)

]
≤ 0 ∀ (a2, c2) ;

∑
(a1,c1)

[
φ (a1, a2, E, E, c1, c2) (3 + z − c2) + φ (a1, a2, N,E, c1, c2) (1 + z − c2)

]
≥ 0 ∀ (a2, c2) .7



The program for minimizing counterfactual producer surplus is the same, except that we

change the maximization to minimization.

Detailed calculations for entry counterfactuals We analytically construct the equi-

libria that attain the boundaries of the numerically computed counterfactual prediction in

Figure 2. We do not give a proof that these bounds are optimal.

Both firms always entering is an equilibrium if z ≥ 1, and the resulting payoff is 2 (1 + z)−

2 = 2 (3 + z) − 6. This is the unique counterfactual prediction when z > 1, when entering

becomes strictly dominant.

When z < 1, always entering is not an equilibrium. As long as z ≥ 0, there is a mixed

strategy equilibrium in which low-cost firms always enter and a firm with high cost enters

with probability α, to make the other firm indifferent between entering and not entering:

3 + z − (1 + α)/2− 2 = 0 ⇐⇒ α = z.

Thus, these strategies are an equilibrium for z ∈ [0, 1]. Since this equilibrium makes high-

cost firms indifferent between entering and not entering, the payoff of the high-cost firm is

zero, and the payoff when the cost is low is just the high cost, which is 2, so that the overall

payoff in this equilibrium is 2.

We now construct equilibria for z ∈ [0, 1] that attain the upper and lower bounds of

the counterfactual welfare. Firms observe the outcome of a correlation device that produces

signals (s1, s2) that are independent of the firms’ costs and has the following probabilities:

s1/s2 0 1

0 1− β − 2γ γ

1 γ β

where γ ∈ [0, 1/2] and β ∈ [0, (1− γ)/2]. In the equilibria we now construct, low-cost firms

ignore this signal and always enter, but a high-cost firm i enters if and only if si = 1.
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The obedience constraints are as follows: Conditional on si = 1, the likelihood of the other

firm entering is (γ + 2β)/(2γ + 2β). The reason is that the other firm will enter regardless

of their signal if their cost is low, but will only enter if they get the high signal when their

cost is high. Conditional on this signal, the payoff from entering must be non-negative:

1 + z − 2
γ + 2β

2(γ + β)
≥ 0.

Similarly, conditional on being told to not enter and having a high cost, the payoff from

entering must be non-positive:

1 + z − 2
1− β − 2γ + 2γ

2(1− β − γ)
≤ 0.

The equilibrium payoffs are

1

2

(
3 + z − 2

1 + γ + β

2

)
+

1

2

[
(γ + β) (1 + z)− 2

γ + 2β

2

]
.

To obtain minimum counterfactual welfare, we set β = 1 − 2γ and make the obedience

constraint for entering hold as an equality. Intuitively, we are pushing down welfare by

having firms enter with high probability. Solving for β, we obtain

β = 1− 2γ =
z

2− z
.

It is straightforward to verify that the obedience constraint for entering is always satisfied

with these values for β and γ and z ∈ [0, 1]. The resulting aggregate payoff is

2 + z − 1

2− z
.

which coincides with the simulated minimum counterfactual welfare.
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For maximum counterfactual welfare, we set β = 0 and make the obedience constraint

for not entering hold as an equality. Intuitively, we increase welfare by having firms enter

less often, so as to avoid the low-payoff from duopoly. Solving for γ, we obtain

γ = 1− 1

1 + z
=

z

1 + z
.

So γ goes from 0 to 1/2 as z goes from 0 to 1. Note that when β = 0, the obedience constraint

for entering is unambiguously satisfied, since the left-hand side reduces to 1/2, and the right

hand side is always at least 1/2. The resulting payoff is

2 (3 + z)− 4− 2
z

1− z
,

which coincides with the simulation.

We next consider the equilibrium to enter if and only if ci = 0. The payoff from entering

with a low cost is clearly positive. The payoff from entering with the high cost is just z, and

the payoff from entering with a low cost is 2 + z, so this is an equilibrium if z ∈ [−2, 0]. The

resulting ex ante sum of payoffs is

3 + z

2
+

1 + z

2
= 1 + z.

This is the unique counterfactual prediction when z ∈ (−1, 0), and it is the lower boundary

of the counterfactual prediction when z ∈ [−2,−1).

If z ∈ [−3,−2], there is an equilibrium in which low-cost firms mix over whether they

enter, which results in a payoff of zero. This attains the lower boundary of the counterfactual

prediction for z ∈ [−3,−2].

Next we construct the producer surplus maximizing BCE when z ∈ [−3,−1]. Using a

correlation device as we did above for z ∈ [0, 1], we can coordinate the low firms’ behavior

so that firms enter only if they have low cost, a firm enters with probability one if they are

10



the only low-cost firm, and when both firms have low-cost, and exactly one firm enters when

both firms have low cost. This is obviously an equilibrium: Entering is strictly dominated

for high signals, and if a firm with low cost does not enter in equilibrium, then the other low-

cost firm must be entering, so the payoff from deviating would be 1 + z ≤ 0. The resulting

aggregate payoff would be 3 (3 + z) /4 (that is, 3/4 of the time exactly one firm enters, and

it is a firm with low cost). This coincides with the upper boundary of the simulation.

Finally, we construct an equilibrium that attains the low payoff at z = −1. First, there

is a correlation device as above when γ = 1/2. In addition, we assume that low-cost firms

can observe the cost of the other firm. Consider the following strategies: A high-cost firm

enters if and only if si = 1. A low cost firm enters with probability 1 if the other firm’s cost

is low or if the other firm’s cost is high and si = 1. Otherwise, when the other firm’s cost

is high and si = 0, the low-cost firm does not enter. The high-cost firm gets zero surplus

from entering. Relative to the equilibrium where firms enter if and only if the cost is low,

producer surplus has dropped by 1/2, since 1/4 of the time it is a high cost firm entering as

a monopolist rather than a low-cost firm. This equilibrium is knife edge: First, it depends

on the fact that the loss from duopoly is the same as the high entry cost, so that the low-cost

firm is indifferent to entering as a duopolist, and the high-cost firm is indifferent to entering

as a monopolist. Second, if z is a little bigger than 1, low-cost firms would strictly prefer to

enter when the high-cost firm enters, and if z is a little smaller than 1, the high-cost firm

would be unwilling to enter.

Informationally-Robust Rankings in the Entry Game In this appendix, we conduct

version of the joint counterfactual prediction analysis described in Section 7. In this case,

we ask whether higher z are necessarily associated with higher payoffs for the firms. We

conducted six versions of this counterfactual, which are depicted in Figure 3.
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We computed joint predictions for counterfactual producer surplus for two different coun-

terfactual games: z = −0.6 and z = −0.4. Three versions of this computation under different

informational assumptions are depicted in Figure 3.

First, we computed a counterfactual prediction when we restrict attention to information

structures that can rationalize the data used in Section 4.2, namely that when z = 0, firms

enter if and only if their cost is low. Thus, in this example, we are actually computing joint

predictions for three games, where z ∈ {−0.6,−0.4, 0}, and we impose a data restriction on

the z = 0 game and plot the set of pairs of counterfactual producer surplus for the games

with z = −0.6 and z = −0.4. In fact, for this case, the set of joint counterfactual predictions

can immediately be read from Figure 2: For z ∈ (−1, 0), there is a unique counterfactual

prediction for aggregate payoffs under fixed information, and this prediction is increasing in

z. Indeed, we see in Figure 3 that the joint counterfactual prediction when we have the data

restriction is the single blue point. This point is above the 45 degree, meaning that the firms

are unambiguously better off in the aggregate when z = −0.4 than they are when z = −0.6.

Second, for these same parameters, we computed a joint prediction when we impose that

the same information structure is used for both values of z, but we allow all private-cost

information structures (depicted in red). In this case, the joint prediction spans both sides

of the 45 degree line, so that z = −0.4 does not dominate z = −0.6 with fixed information,

when we do not have a restriction from the data. A fortiori, z = −0.4 does not dominate

z = −0.6 under unrestricted information, even when we restrict to private-cost information

structures.

Third, we computed the joint prediction when we allow all information structures. This

most permissive joint prediction for producer surplus is in green. Again, it is clear that

neither game dominates the other.

This example illustrates the potential benefit of combining methodologies: When we use

only joint predictions for informationally-robust rankings, without a data-based restriction,
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Figure 3: Joint counterfactuals in the entry game.

it is not possible to rank z = −0.6 and z = −0.4. But when we use data to further refine

the joint counterfactual prediction, we do obtain an unambiguous ranking.

C Two-Player Zero-Sum Game

We now consider a setting with two players, binary actions, and binary states. The observed

game is the following:

θ = 0

a1/a2 0 1

0 (2,−2) (−1, 1)

1 (−1, 1) (0, 0)

θ = 1

a1/a2 0 1

0 (0, 0) (−1, 1)

1 (−1, 1) (2,−2)

In each state, the game has the form of an asymmetric matching pennies. Both states are

equally likely, so that in expectation the game is symmetric. Thus, if the players have no
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information about the state, there is a unique equilibrium in which they both randomize

with equal probabilities, and both players’ payoffs are zero. If they have full information

about the state, then there is again a unique (and symmetric) equilibrium in which they

play a = 0 with probability 1/4 in state θ = 0, and they play a = 0 with probability 3/4 in

state θ = 1. In both states, player 1’s payoff is −1/4.

We assume that we have observed φ exactly, and φ (a, θ) = 1/8 for all (a, θ). This

is the joint distribution of states and actions that arises under no information. In the

counterfactual, we multiply all of the payoffs by a factor 2 − z in state 0 and by z in state

1, for some z ∈ [0, 2]. This is equivalent to varying the relative likelihoods of the two states.

The observed game corresponds to z = 1. The counterfactual outcome of interest is player

1’s payoff.

We numerically computed maximum and minimum payoffs for player 1 for a fine grid

of z values. The range of counterfactual outcomes under variable and fixed information are

depicted in Figure 4 as a function of z. When information is variable, then again, the only

thing we learn from the data is that both states are equally likely. The gray lines represent

upper and lower bounds on welfare. The range of possible outcomes is largest at z = 1,

when the counterfactual game is a copy of the observed game. In this case, any payoff in

[−1/2, 1/2] can be attained with some information structure. The highest payoff of 1/2

can be achieved by letting player 1 observe the state and player 2 receiving no information.

Under that information, there is an equilibrium where â1 = θ and player 2 mixes with equal

probabilities. Similarly, the payoff of −1/2 can be achieved by giving no information to

player 1 and full information to player 2. In fact, it is a result of Peski (2008) that these are

the information structures that achieve extreme welfare outcomes in any two-player zero-sum

game, and it is not particular to our example.1

1Here is a sketch of the proof. Player 1’s payoff in (G, I) is at least their maxmin payoff, where the max
and min are taken over player 1 and player 2’s strategies, respectively. Player 2 has the option to use a
strategy that does not depend on their private information t2, so player 1’s maxmin payoff would increase
if we restricted player 2 to use only those constant strategies. This is what happens if player 2 has no
information. Next, if we look at information structures where only player 1 gets information, then it must
be that player 1’s payoff is maximized by having as much information is possible. For, any strategy under
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Figure 4: Counterfactual payoffs for player 1 in the zero-sum game.

Note that when z = 0 or z = 1, then payoffs are zero in one state, so that it is effectively a

game with a single state, and thus the value of the game is uniquely pinned down independent

of the information.

When we fix information, the range of counterfactual outcomes is tighter. Indeed, when

z = 1, there is a unique counterfactual prediction when the counterfactual game coincides

with the observed game. Once again, this is a general insight that is not particular to

our example. In any two-player zero-sum game, if there is an information structure I and

equilibrium σ that rationalizes the observed actions and in which player 1’s payoff is u1, then

it must be that the zero-sum game (G, I) has a value which is u1, and hence all equilibria

have the same payoffs. This observation completes an analogue of Proposition 3 for zero-sum

games:

Proposition 4 (Two-Player Zero-Sum Counterfactuals).

Consider a two-player zero-sum game in which players’ observed payoffs are (u1,−u1). If

the counterfactual and observed games are the same, then under fixed information, there is

point identification of the players counterfactual payoffs, which must be (u1,−u1). Under

partial information can be replicated under full information simply by “simulating” the noisy signal, so the
effective strategy space is largest under full information. Finally, in the extreme case of full information/no
information, the game is finite so the minimax theorem holds, and the maxmin payoff is player 1’s equilibrium
payoff.
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unrestricted information, then a tight upper bound on player 1’s payoff is given by what is

attained when player 1 has full information and player 2 has no information, and a tight

lower bound is what is attained when player 1 has no information and player 2 has full

information.

Thus, it is a general phenomenon that there are point predictions for local counterfactuals

in two-player zero-sum games under fixed information, although there is generally a fat set

of counterfactual predictions under unrestricted information.

Returning now to the particular example, as z moves away from 1, the range of counter-

factual payoffs expands, before contracting again as we approach the complete information

extremes. Thus, the predictive power of fixed information is large when the counterfactual

is close to the observed game, and it degrades as the counterfactual environment diverges

from that which generated the data.

The broad economic conclusion is that player 1 prefers moderate z, while player 2 prefers

extreme values. Specifically, when information is fixed and |z − 1| > 0.58, then we can

unambiguously say that player 1 is worse off and player 2 is better off in the counterfactual

than in the observed game. When |z − 1| ≤ 0.58, then the change in welfare is ambiguous:

player 1 may be better off or worse off, depending on the true information structure. A

similar statement applies when information is variable, but the conditions for player 1 to

be better off are more stringent, and we can unambiguously sign the change in welfare only

when |z − 1| > 2/3.

D First-Price Auction

Our final example is a private-values first-price auction (cf. Section 5). This setting is

similar to the one initially studied by Syrgkanis et al. (2021), except that we consider coun-

terfactuals with fixed information, whereas they allow unrestricted information that there

are two bidders with values in V = {0, 1/9, . . . , 8/9, 1}. We also restrict bids to be in the
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value grid, and we also assume that bidders do not bid more than their values. There is no

reserve price in the auction. Bidders learn at least their own value, but may learn more.

We assume that the values are iid uniform, and the econometrician observes either the BCE

that minimizes the auction’s revenue or the BCE that maximizes revenue (both of which

are computed numerically). The counterfactual of interest is revenue as we vary the reserve

price. In particular, does there exist a reserve price under which revenue unambiguously

increases, relative to the observed game without a reserve price?

Let us first consider the case where the observed outcome was the revenue minimizing

BCE. Figure 5 shows how the counterfactual prediction for revenue varies with the reserve

price. In particular, the solid red curves represent maximum and minimum counterfactual

revenue. There are two features to notice: First, even if the reserve price stays at zero, there

is a fat set of counterfactual revenue levels. This indicates that there exist information struc-

tures that could induce the revenue minimizing BCE for which there are multiple equilibria,

and that revenue varies across these equilibria. So, even if the reserve price does not change,

revenue could in principle increase if the bidders coordinated on a different equilibrium. This

multiplicity persists at higher reserve prices. However, for moderate reserve prices, the lower

bound on revenue increases above the observed level. This lower bound is maximized at

5/9. At this reserve price, we can unambiguously say that regardless of the information

and equilibrium, revenue would necessarily be higher than in the observed outcome. Note

that since the lowest value is zero, it is necessarily the case that minimum revenue increases

when the reserve price changes from 0 to 1/9, although it is not obvious that revenue should

continue to increase in the reserve price beyond this point.

Figure 5 also shows how the counterfactual prediction if we allowed information vary, but

held fixed the value distribution. For the lower bound, the predictions are not substantively

different, although the upper bound on revenue is considerably more permissive. This is not

surprising: The simulated data came from the revenue-minimizing information structure, so
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Figure 5: Counterfactual when observed outcome is the revenue minimizing BCE.

the fact that the lower red and blue curves nearly coincide is a reflection of the fact that the

revenue-minimizing information does not vary significantly with the reserve price.

We next consider the case where the observed outcome is the revenue maximizing BCE.

The corresponding counterfactual prediction is depicted in Figure 6. In this case, adding

a reserve price cannot lead to a significant increase in revenue, and will necessarily cause

revenue to decrease if it the reserve price is sufficiently high. Again, this prediction is

substantively the same as what we would obtain with unrestricted information, although

in this case it is the lower bound on revenue that is more permissive with unrestricted

information. In fact, we can give an analytical justification for both the fact that maximum

revenue is (nearly) decreasing in the reserve price, and also the fact that the fixed- and

unrestricted-information bounds coincide. As discussed in Bergemann, Brooks, and Morris

(2017, Section 5.4), under the hypothesis that bidders do not bid more than their values,

there is an elementary lower bound on bidder surplus, which is the maximum payoff a bidder

could obtain if others were bidding their values. With two bidders whose values are exactly
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uniformly distributed on [0, 1], and when the reserve price is r, the lower bound for a bidder

with value v ≥ r is the maximum of

max
b∈[r,v]

(v − b) b =


v2

4
if v ≥ 2r;

(v − r) r if r ≤ v < 2r.

(If v < r, the lower bound on bidder surplus is zero.) The lower bound on ex ante bidder

surplus when r ≤ 1/2 is therefore

2

[∫ 2r

v=r

(v − r) rdv +

∫ 1

v=2r

v2

4
dv

]
=

1

6
− r3

3
,

and when 1/2 ≤ r ≤ 1, the lower bound is

2

∫ 1

v=r

(v − r) rdv =
(
v2 − 2rv

)
r
]1
v=r

= r − 2r2 + r3.

At the same time, total surplus when the reserve price is r is at most the expected highest

value times an indicator for the highest value being above r, which is

∫ 1

v=r

vd
(
v2
)

=
2

3

(
1− r3

)
.

Thus, an upper bound on revenue with a reserve price r is

R (r) =
2

3

(
1− r3

)
+


r3

3
− 1

6
if r < 1

2
;

2r2 − r − r3 if 1
2
≤ r ≤ 1.

We have plotted R in green in Figure 6. It is straightforward to verify that this function is

decreasing. Moreover, Bergemann, Brooks, and Morris (2017) show that the bound is tight

when r = 0, meaning that there exists an information structure and equilibrium in which

revenue is R (0), so that in the limit when the value and bid grids fill in all of [0, 1], maximum
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Figure 6: Counterfactual when observed outcome is the revenue-maximizing BCE.

revenue must be decreasing in the reserve price. We conjecture that this construction can

be generalized to r > 0, so that in fact R (r) is maximum revenue across all BCE.

As a final note, this counterfactual exercise extracts as much from the data as possible

about players’ information, as it pertains to this particular counterfactual prediction. We

may contrast this approach with one suggested by us in our analysis of BCE of interde-

pendent value first-price auctions (Bergemann, Brooks, and Morris, 2017). In that paper,

we identified a tight lower bound on the winning bid distribution across all BCE consistent

with a given ex post value distribution. We suggested using that bound to partially identify

the value distributions that can rationalize observed winning bids. This partially identified

set could then be used to generate counterfactual predictions. Such an exercise would al-

low information to vary between the observed and counterfactual auctions. In contrast, the

methodology in the present paper holds information fixed between observation and counter-

factual. Our focus is also less on the identification of values than on the identification of

information, although we could have also treated the value distribution as a latent variable
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to be identified from the BCE, in which case we would have been using the entire observed

bid distribution to implicitly restrict the value distribution, rather than just the distribution

of the winning bid.

E Innocuous Assumptions

Our model imposes a great deal of structure on the environment. In particular, we have

assumed that information is described by a single information structure, utilities are known,

the prior over the state is held fixed, and there is a single equilibrium that is played in the

observed game and a single equilibrium in the counterfactual. At first glance, this structure

seems restrictive for empirical applications in which the data is generated by many different

instances from the observed game, and where conditions may vary from one instance to

another. But, as we will now explain, these assumptions are without loss of generality and

could be relaxed at the expense of a richer model.

1. All players receive signals from the same information structure. In practice, players

with different characteristics, in different locations, or different points in time may

receive qualitatively different forms of information. We may, however, consider these

to be special cases of global description of players’ information, where the heterogeneity

in information is encoded as an extra dimension of signal. For example, suppose that for

each k = 1, . . . , K, a fraction βk ∈ [0, 1] of the data is generated when the players have

common knowledge that the information structure is Ik =
{
Sk1 , . . . , S

k
n, π

k
}
. We could

equivalently represent this economy with a new information structure in which Si =

tKk=1 {k} × Ski , i.e., each player’s set of signals is a disjoint union of the k information

structures, and

π (X, θ) =


βkπ

k (Y, θ) if X = {k} × Y for some k;

0 otherwise.
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In words, with probability one, all players get signals in the same Sk, and each k

has probability βk. Our counterfactual prediction implicitly allows for information

structures of this form.

2. The utility functions ui (a, θ) are known to the analyst. Uncertainty about preferences

can be incorporated by expanding the state space. For example, suppose we start

with a state space Θ, a moment restriction M = {φ (a, θ)}, and two possible utility

functions u1 and u2. Then we can expand the state space to Θ̃ = {1, 2} × Θ, utility

function u (a, (k, θ)) = uk (a, θ), and the moment restriction is

M =

{
φ̃ ∈ ∆

(
A× Θ̃

) ∣∣∣∣∣∑
k=1,2

φ̃ (a, (k, θ)) = φ (a, θ)

}
.

Thus, the prevalence of u1 and u2 in the population is a free variable, and is partially

identified from the data.

3. The distribution over states µ is held fixed in the counterfactual. In fact, we can allow

a different distribution µ̂ in the counterfactual, as long as it is absolutely continuous

with respect to µ, meaning that it can be written as µ̂ (θ) = η (θ)µ (θ) for some

η : Θ → R+, and the conditional distribution of signals remains the same, meaning

that the joint distribution of signals and states in the counterfactual is π̂ (ds, θ) =

η (θ)π (ds, θ). In particular, when we are only interested in varying the prior and the

absolute continuity hypothesis is satisfied, then we can set the counterfactual utility

to ûi (a, θ) = η (θ)ui (a, θ), in which case equilibrium utility is simply

∑
θ∈Θ

∫
s∈S

∑
a∈A

ûi (a, θ)σ (a|s) π (ds, θ) =
∑
θ∈Θ

∫
s∈S

∑
a∈A

η (θ)ui (a, θ)σ (a|s)π (ds, θ)

=
∑
θ∈Θ

∫
s∈S

∑
a∈A

ui (a, θ)σ (a|s) π̂ (ds, θ) ,
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and the represented payoffs are equivalent to those that would obtain with the different

prior. This is merely a reflection of the well-known indeterminacy of probabilities versus

utilities in the subjective expected utility model, when utilities are state dependent

(Savage, 1954; Anscombe and Aumann, 1963). Indeed, this transformation was being

used in the single-player analysis of Section 4.1, which can be reinterpreted as variations

of the prior.

4. All players play the same equilibria of the observed and counterfactual games. This

is also without loss of generality. Suppose that the information structure is I, and a

share βk of the data is generated from players who play strategies σk for k = 1, . . . , K.

The same outcome can be induced with a single information structure Ĩ, in which

S̃i = {1, . . . , K} × Si, π̃ ({k} ×X, θ) = βkπ (X, θ), and strategies are σ̃i (a| (k, t)) =

σki (a|s). In effect, the first coordinate of the new signal s̃i is a public randomization

device which is equal to k with probability βk. Strategies on the larger space say to

play σk when X = k.

23



References

Anscombe, F. and R. Aumann (1963): “A Definition of Subjective Probability,” Annals

of Mathematical Statistics, 34, 199–205.

Bergemann, D., B. Brooks, and S. Morris (2017): “First Price Auctions with General

Information Structures: Implications for Bidding and Revenue,” Econometrica, 85, 107–

143.

Peski, M. (2008): “Comparison of Information Structures in Zero-Sum Games,” Games and

Economic Behavior, 62, 732–735.

Savage, L. (1954): The Foundations of Statistics, New York: Wiley, 1st ed.

Syrgkanis, V., E. Tamer, and J. Ziani (2021): “Inference on Auctions with Weak

Assumptions on Information,” Tech. rep.

24


