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A Appendix: Data

A.1 Capacity utilization at the plant level

This appendix discusses background information on the Quarterly Survey of Plant Capacity

Utilization (QSPC) and basic facts on plants’ capacity utilization using public use data.

Background The survey is conducted by the US Census Bureau and funded jointly by the

Federal Reserve Board and the Department of Defense. The sample is drawn from all US man-

ufacturing and publishing plants with 5 or more production employees. Among other things,

establishments are asked about the market value of their actual production and the estimated

market value of their full production capacity. Respondents are asked to construct the full ca-

pacity estimate under the following assumptions: 1) only the current functional machinery and

equipment is available, 2) normal downtime, 3) labor, materials, and other non-capital inputs are

fully available, 4) a realistic and sustainable shift and work schedule, and 5) that the establish-

ment produces the same product mix as its current production. Figure A1 shows the question on

the survey form. The current survey form of the Quarterly Survey of Plant Capacity Utilization

is available at https://www2.census.gov/programs-surveys/qpc/technical-documentation/

questionnaires/form-mq-c2-worksheet-final-after-omb-approval.pdf. Capacity utilization

rates are then obtained by dividing the market value of actual production by the estimate of full

capacity production.

Why do plants produce below capacity? The survey also contains questions on why estab-

lishments produce at levels below their capacity. As Figure A1 shows, respondents of the QSPC

are asked: “If this plant’s actual production in the current quarter was less than full production ca-

pacity, mark (X) the primary reasons.” Possible answers include “Insufficient supply of materials”,

“Insufficient orders”, “Insufficient supply of local labor force/skills”, and others. Multiple answers

are permitted. It turns out that the vast majority of plants produce below capacity because they

are not able to sell their products. For the time period from 2013q1 to 2018q4, 78 percent of plant

managers cite insufficient orders as the main reason for producing below capacity. The second most

cited option is chosen by 12 percent of respondents (insufficient supply of local labor force/skills).

These responses are summarized in Figure A2. This evidence is consistent with our model, in which

plants produce below capacity in equilibrium because they cannot sell more of their product at the

desired price. For information on the data, see US Census Bureau (2013-2018) and US Census

Bureau (2006, p. A-3).

A.2 Data for industry-level analysis

Sample Our baseline sample is annual and includes all 21 3-digit NAICS manufacturing indus-

tries. It ranges from 1972 to 2011.

Industrial production, capacity, and capacity utilization The series for industrial produc-

tion, capacity, and capacity utilization are obtained from the Federal Reserve Board and available

at https://www.federalreserve.gov/releases/g17/ipdisk/alltables.txt (see also Federal

Reserve Board, 1972-2011). Table A1 provides summary statistics of the utilization rate by NAICS
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A. Report market value of actual production for the quarter.

Yes

Building capital expenditures

VALUE OF PRODUCTION

Machinery capital expenditures – Include new,
replaced, or enhanced machinery

Building retirements

Mil. Thou.

ACTUAL PRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B. Estimate the market value of production of this plant as if it had
been operating at full production capability for the quarter.
Assume:

only machinery and equipment in place and ready to 
operate. 
normal downtime. 
labor, materials, utilities, etc. ARE FULLY AVAILABLE.
the number of shifts, hours of operation and overtime pay 
that can be sustained under normal conditions and a 
realistic work schedule in the long run.
the same product mix as the actual production.

•

•
•
•

•

FULL PRODUCTION CAPABILITY. . . . . . . . . . . . . . . . . . . . . .

C. Divide your actual production estimate by your full
production estimate. Multiply this ratio by 100 to get 
a percentage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

%

Capacity Utilization

Is this a reasonable estimate of your utilization rate for this quarter? No — Review item 2A and 2B

Item 3 ACTUAL AND FULL PRODUCTION COMPARISONS

A. FULL PRODUCTION CAPABILITY: CURRENT QUARTER VS PREVIOUS QUARTER

If your estimate of current quarter full production capability has changed compared to the previous
quarter, mark (X) the primary reasons.

Machinery retirements

Price changed but product mix is the same

Revised estimation assumption with no change in
plant or operations

Change in method of operation

Change in product mix or product specifications

Change in material input

Other – Specify
▼

Not most profitable to operate
at full production capability

B. ACTUAL OPERATIONS VS FULL PRODUCTION CAPABILITY

If this plant’s actual production in the current quarter was less than full production capability, mark (X)
the primary reasons.

Lack of sufficient fuel or electric energy Strike or work stoppage

Seasonal operations

Environmental restrictions

Equipment limitations

Storage limitations

Logistics/transportation constraints

Sufficient inventory of finished goods
on hand

Insufficient supply of materials

Insufficient orders

Insufficient supply of local labor
force/skills

Other – Specify
▼

CONTINUE WITH ON PAGE 3.Item 4

Page 2

Item 2
$Bil.

Mil. Thou.$Bil.

Do not S
UBMIT

Figure A1: Page 2 of survey form of the Quarterly Survey of Plant Capacity

3-digit industry.

NBER-CES manufacturing industry database Data on prices, sales, production worker

wages, material costs, energy costs, inventories, and nonproduction worker salaries and wages
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Notes: The data are from public use data of the QSPC of the US Census Bureau and are averaged
from 2013q1 to 2018q4.

Figure A2: Why do plants produce below capacity?

are from the NBER-CES Manufacturing Industry Database. For a description of these data, see

Bartelsman and Gray (1996) and Becker et al. (2016). The database is available at http://www.

nber.org/nberces/ (see also NBER-CES, 1972-2011).

BEA Input-Output Accounts Cost shares, sales shares, changes in government purchases, and

changes in imports are constructed from the BEA’s Input-Output accounts. Data from 1997 to to-

day is available from the BEA website at https://www.bea.gov/industry/input-output-accounts-data

(see also Bureau of Economic Analysis, 1997-2016b). Historical data is available under the tab

Historical Make-Use Tables (see Bureau of Economic Analysis, 1947-1996).

BEA National Income and Product Accounts We use quantity and price indexes on personal

consumption expenditures, equipment investment, and nonresidential fixed investment from the

BEA’s National Income and Product Accounts. These data are available at https://www.bea.

gov/national/nipaweb/DownSS2.asp (see also Bureau of Economic Analysis, 1930-2017).

BEA Industry Accounts Data on quantity and price indexes of downstream industries’ ma-

terial use from the BEA’s Industry Accounts. Data from 1997 to today is available at https://

apps.bea.gov/iTable/iTable.cfm?reqid=56&step=2&isuri=1#reqid=56&step=2&isuri=1 (see

also Bureau of Economic Analysis, 1997-2016a). Historical data is available at https://www.

bea.gov/industry/historical-industry-accounts-data (see also Bureau of Economic Analy-

sis, 1947-1997). Note that since these downstream industries are not necessarily in the manufactur-
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ing sector, they are not necessarily covered by the NBER-CES manufacturing industry database.

UN Statistics Division Real GDP, the GDP deflator, both in local currency, and the nominal

exchange rate are from the United Nation’s Statistics Division. These data are available at https:

//unstats.un.org/unsd/snaama/Downloads (see also UN Statistics Division, 1972-2011a,-,-,-).

US export data The data on exports are from the US Census and are available on Peter Schott’s

website http://faculty.som.yale.edu/peterschott/sub_international.htm (see also US Cen-

sus Bureau and Peter Schott, 1972-2015) and used in Schott (2008). The data are available with

SIC industry codes between 1972 and 1997, and with NAICS industry codes thereafter. We use

the NBER-CES SIC4 to NAICS6 concordance based on sales weights to convert the SIC codes

into NAICS equivalents and then aggregate to the 3-digit NAICS level. To ensure high data qual-

ity, we limit ourselves to countries that joined the Organisation for Economic Co-operation and

Development (OECD) prior to year 2000 when constructing the sales shares to foreign countries

sj,i,t for j ∈ J F . These are Australia, Austria, Belgium, Canada, Czech Republic, Denmark,

Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, the Republic of Ko-

rea, Luxembourg, Mexico, Netherlands, New Zealand, Norway, Poland, Portugal, Spain, Sweden,

Switzerland, Turkey, the United Kingdom, and the United States (see also Organisation for Eco-

nomic Co-operation and Development, 2019).

Further data, identifiers, concordances and classifications Replication of the results fur-

ther requires

� A concordance of 1987 SIC codes to 1997 NAICS codes (see NBER-CES, 1997)

� Country identifiers and names (see US Census Bureau, 2021; Penn World Table version 10.0,

2021)

� A NAICS classification of durable goods producing industries (see Bureau of Labor Statistics,

n.d.)

We provide details on the data and how to obtain them in the replication package for the paper

Boehm and Pandalai-Nayar (2022).
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Industry NAICS p10 Median p90 Mean S.D. Skewness Kurtosis Durable

(utilization rates in percent)

Food 311 79.2 82.1 85.2 82.3 2.5 0.3 2.5 no
Beverage and Tobacco Products 312 69.4 79.2 82.9 77.3 5.3 -0.5 2.0 no
Textile Mills 313 68.2 82.0 89.5 79.8 8.6 -0.8 3.2 no
Textile Product Mills 314 71.7 81.9 90.4 81.0 8.0 -0.8 3.4 no
Apparel 315 72.1 80.7 85.0 79.7 4.7 -0.5 2.4 no
Leather and Allied Products 316 58.8 75.0 82.1 72.8 9.0 -1.2 3.7 no
Wood Products 321 63.6 79.3 85.3 77.0 8.5 -1.3 4.7 yes
Paper 322 80.8 87.7 91.3 87.0 4.2 -0.3 2.5 no
Printing and Related Support Activities 323 72.1 83.1 89.0 81.3 7.6 -1.0 4.0 no
Petroleum and Coal Products 324 77.3 86.9 92.7 85.7 5.9 -0.7 2.7 no
Chemicals 325 71.6 77.7 83.2 77.6 4.5 -0.4 2.4 no
Plastics and Rubber Products 326 70.0 83.8 89.5 82.1 7.5 -1.0 3.5 no
Nonmetallic Mineral Products 327 62.2 77.1 84.2 75.3 9.4 -1.7 5.5 yes
Primary Metals 331 68.7 80.4 89.6 79.6 9.4 -0.8 3.6 yes
Fabricated Metal Products 332 71.9 77.6 84.8 77.5 5.7 -0.1 3.1 yes
Machinery 333 67.7 79.2 87.0 77.9 7.8 -0.3 2.5 yes
Computer and Electronic Product 334 70.5 79.2 84.6 78.5 5.8 -1.1 4.3 yes
Electrical Equipment, Appliances, and Components 335 73.0 82.6 90.6 82.5 6.7 -0.2 2.6 yes
Transportation Equipment 336 66.5 75.7 81.3 74.5 6.1 -1.0 4.1 yes
Furniture and Related Products 337 68.1 78.1 84.1 77.0 7.4 -0.2 3.9 yes
Miscellaneous 339 72.9 77.1 79.7 76.3 3.1 -0.6 3.2 yes

All 69.9 79.9 88.6 79.2 7.6 -0.8 4.6

Notes: The data are from the Federal Reserve Board and the sample ranges from 1972-2011.

Table A1: Summary statistics of utilization rates by 3-digit NAICS manufacturing industries
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B Appendix: Model

In this appendix we provide details on the model in Section 2, including the proofs of all results.

To improve the readability of this appendix, we often restate equations from the main text.

As noted in the text we assume throughout that θ > 1, that α ∈ (0, 1), that Eω [ω] = 1, and that

Eω
[
ω2
]
< ∞. We will make use of these conditions below.

Further, for the proofs in this appendix, the following limits are useful. Using L’Hôspital’s rule,

we have

lim
ω̄t→0

∫ ω̄t

0 ωdG (ω)

(ω̄t)
θ−1
θ

= lim
ω̄t→0

ω̄tg (ω̄t)

θ−1
θ (ω̄t)

− 1
θ

=
θ

θ − 1
lim
ω̄t→0

ω̄
1+ 1

θ
t g (ω̄t) = 0, (B1)

lim
ω̄t→∞

(ω̄t)
θ−1
θ

∫ ∞

ω̄t

ω
1
θ dG (ω) = lim

ω̄t→∞

− (ω̄t)
1
θ g (ω̄t)

− θ−1
θ (ω̄t)

− θ−1
θ

−1
=

θ

θ − 1
lim
ω̄t→∞

(ω̄t)
2 g (ω̄t) = 0, (B2)

where g is the pdf of G.

B.1 Agreggating firm

A competitive aggregating firm uses a unit continuum of varieties, indexed ℓ, as inputs into a

constant elasticity of substitution aggregator with elasticity θ > 1. Taking prices as given, the

aggregating firm solves

max
{yℓt}

P Y
t Yt −

∫ 1

0
pyℓtyℓtdℓ,

where the maximization is subject to the production function

Yt =

(∫ 1

0
ω

1
θ
ℓty

θ−1
θ

ℓt dℓ

) θ
θ−1

.

Plugging the production function into the objective gives

max
{yℓt}

P Y
t

(∫ 1

0
ω

1
θ
ℓty

θ−1
θ

ℓt dℓ

) θ
θ−1

−
∫ 1

0
pyℓtyℓtdℓ,

and the first order necessary conditions for optimality are

yℓt = ωℓtYt

(
pyℓt
P Y
t

)−θ
,

for all ℓ, where the industry’s price index is

P Y
t =

(∫ 1

0
ωℓt
(
pyℓt
)1−θ

dℓ

) 1
1−θ

.

These two equations are the demand functions (2) and the price index (3) in the text, which are

restated here for convenience.
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B.2 Intermediate goods producers

Production and capacity Intermediate goods producers operate the production function

yℓt = qℓtmin {vℓt, 1} ,

where vℓt is a variable input bundle including, for instance, labor and materials. Further, qℓt is

capacity and takes the form

qℓt = ztk
α
ℓt,

where zt is productivity and kℓt the firm’s capital stock. We assume that α ∈ (0, 1) and that

productivity zt is common across plants.

Firm problem As noted in the text, we abstract for simplicity from uncertainty over the common

exogenous state variables zt, the price index of variable inputs pvt , and the price of investment goods

pxt , as well as the industry-level aggregates P Y
t and Yt. Hence, all these variables should be viewed

as known sequences that potentially vary over time. The idiosyncratic i.i.d. demand shock ωℓt is

observed at the beginning of each period, i.e. before any decisions are made, and we denote the

expectation over its distribution G by Eω [·]. Firms own their capital stock kℓt and discount future

profits at rate r. They compete monopolistically and maximize the present value of profits,

max
{pyℓt,yℓt,vℓt,xℓt,kℓt}

∞
t=0

∞∑
t=0

(
1

1 + r

)t
Eω
[
pyℓtyℓt − pvt vℓt − pxt xℓt

]
,

where the maximization is subject to

kℓt+1 = (1− δ) kℓt + xℓt,

yℓt = ωℓtYt

(
pyℓt
P Y
t

)−θ
,

yℓt = qℓtmin {vℓt, 1} ,

qℓt = ztk
α
ℓt.

It is convenient to solve this problem in three steps. We first solve the cost minimization problem

of the firm. In a second step we solve for the optimal price pyℓt. These first two steps are static

optimization problems and hold the predetermined capital stock kℓt fixed. We then plug the optimal

price back into the objective and solve for the optimal capital stock kℓt+1.

Step 1: Cost minimization For a given level of capital kℓt and hence qℓt, each firm ℓ minimizes

costs

min
vℓt

pvt vℓt

subject to the production function

yℓt = qℓtmin {vℓt, 1} .
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Notice that no solution exists for yℓt > qℓt. For yℓt ≤ qℓt optimality requires that yℓt = qℓtvℓt so

that short-run total costs are

C (pvt , yℓt, qℓt) = pvt
yℓt
qℓt

.

Short-run marginal costs for yℓt < qℓt are

mcℓt =
pvt

ztkαℓt
.

This equation delivers expression (9) in the text.

Notice that marginal costs (9) for yℓt = qt are not defined because the derivative (the limit

from above) does not exist at this point. We will often write total costs for both constrained

and unconstrained firms as C (pvt , yℓt, qℓt) = mcℓtyℓt below. Economically speaking, this definition

sets the marginal cost of constrained firms to the cost of producing the last unit of output before

becoming capacity constrained. Its main use below is that this simplifies the notation since we can

write mcℓt instead of
pvt
ztkαℓt

for all firms.

Step 2: Optimal price setting For firm ℓ with capital stock kℓt flow profits are πℓt = pyℓtyℓt −
pvt vℓt =

(
pyℓt −mcℓt

)
yℓt (see step 1). The firm solves the problem

max
pyℓt,yℓt

(
pyℓt −mcℓt

)
yℓt

where the maximization is subject to the constraints

yℓt = ωℓtYt

(
pyℓt
P Y
t

)−θ
,

yℓt ≤ qℓt.

The Lagrangian is

L =
(
pyℓt −mcℓt

)
ωℓtYt

[
pyℓt
P Y
t

]−θ
+ λℓt

(
qℓt − ωℓtYt

[
pyℓt
P Y
t

]−θ)
,

and optimality requires that

pyℓt =
θ

θ − 1
(mcℓt + λℓt) ,

where complementary slackness implies that the multiplier λℓt ≥ 0 satisfies

λℓt =

 0 if yℓt < qℓt

θ−1
θ P Y

t

(
ωℓtYt
qℓt

) 1
θ −mcℓt if yℓt = qℓt

. (B3)

These expressions deliver equation (8) in the text.
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Flow profits are then

πℓt =
(
pyℓt −mcℓt

)
yℓt

=

(
1

θ − 1
mcℓt +

θ

θ − 1
λℓt

)
ωℓtYt

[
pyℓt
P Y
t

]−θ
=

(
θ − 1

θ

)θ−1 1

θ
(mcℓt + θλℓt)ωℓtYt

[
mcℓt + λℓt

P Y
t

]−θ
.

Next we distinguish cases. If the capacity constraint for variety ℓ does not bind, then λℓt = 0, and

flow profits are

πℓt =
1

θ

[
θ

θ − 1
mcℓt

]1−θ
ωℓtYt

(
P Y
t

)θ
=

1

θ

[
θ

θ − 1
pvt

]1−θ
(ztk

α
ℓt)

θ−1 ωℓtYt
(
P Y
t

)θ
.

If the capacity constraint for variety ℓ does bind, then

πℓt =

(
P Y
t

(
ωℓtYt
qℓt

) 1
θ

−mcℓt

)
qℓt

= (ztk
α
ℓt)

1− 1
θ (ωℓtYt)

1
θ P Y

t − pvt .

In what follows, we denote the expectation over profits prior to the materialization of ωℓt by

Eω
[
π
(
pvt , P

Y
t , Yt, zt, kℓt, ωℓt

)]
.

Step 3: The user cost equation Next, return to the firm’s dynamic problem, which we can

now write as

max
{xℓt,kℓt}∞t=0

∞∑
t=0

(
1

1 + r

)t (
Eω
[
π
(
pvt , P

Y
t , Yt, zt, kℓt, ωℓt

)]
− pxt xℓt

)
and the maximization is subject to

kℓt+1 = (1− δ) kℓt + xℓt.

The current value Lagrangian is

L =

∞∑
t=0

(
1

1 + r

)t ((
Eω
[
π
(
pvt , P

Y
t , Yt, zt, kℓt, ωℓt

)]
− pxt xℓt

)
+ γℓt ((1− δ) kℓt + xℓt − kℓt+1)

)
and the first order necessary conditions are

γℓt =
1

1 + r

(
∂Eω

[
π
(
pvt+1, P

Y
t+1, Yt+1, zt+1, kℓt+1, ωℓt+1

)]
∂kℓt+1

+ (1− δ) γℓt+1

)
,

pxt = γℓt,
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as well as the transversality condition

lim
t→∞

(
1

1 + r

)t
γℓtkℓt = 0.

Together these equations imply that

pxt =
1

1 + r

(
∂Eω

[
π
(
pvt+1, P

Y
t+1, Yt+1, zt+1, kℓt+1, ωℓt+1

)]
∂kℓt+1

+ (1− δ) pxt+1

)
,

which is equation (7) in the text. Notice that flow profits are identical in expectation. Firms face

the same prices pvt+1 and P Y
t+1, they face the same level of industry output Yt+1, they have the

same productivity zt+1. Further, the demand shock ωℓt is i.i.d. over time and across firms, so that

its current materialization is not informative about idiosyncratic demand ωℓt+1 in the next period.

Hence, it is “integrated out”, that is, Eω
[
π
(
pvt+1, P

Y
t+1, Yt+1, zt+1, kℓt+1, ωℓt+1

)]
does not depend

on ωℓt. This implies that all firms will choose identical capital stocks kℓt+1 = kt+1 for all ℓ. As

noted in the text, this, in turn, implies that all firms have identical levels of capacity and identical

marginal costs, qℓt = qt and mcℓt = mct for all ℓ.

The threshold variety ω̄t Next, consider the threshold variety ω̄t at which an intermediate

goods producer becomes capacity constrained. From equation (B3) it follows that ω̄t satisfies

ω̄t =
qt
Yt

(
θ
θ−1mct

P Y
t

)θ
=

ztk
α
t

Yt

 θ
θ−1

pvt
ztkαt

P Y
t

θ

, (B4)

where we used the fact that kℓt, qℓt and mcℓt are identical across producers. For varieties ωℓt < ω̄t

the capacity constraint does not bind and for varieties ωℓt ≥ ω̄t the capacity constraint binds.

Expected firm profits and the optimal choice of kt+1 We next return to the expectation

over the profit function, which we denote for convenience by πet , and is given by

πet = Eω
[
π
(
pvt , P

Y
t , Yt, zt, kt, ωℓt

)]
=

∫ ∞

0
π
(
pvt , P

Y
t , Yt, zt, kt, ω

)
dG (ω)

=

∫ ω̄t

0

[
1

θ

[
θ

θ − 1
pvt

]1−θ
(ztk

α
t )
θ−1 ωYt

(
P Y
t

)θ]
dG (ω) +

∫ ∞

ω̄t

[
(ztk

α
t )

1− 1
θ (ωYt)

1
θ P Y

t − pvt

]
dG (ω)

=
1

θ

[
θ

θ − 1
pvt

]1−θ
(ztk

α
t )
θ−1 Yt

(
P Y
t

)θ ∫ ω̄t

0
ωdG (ω)

+ (ztk
α
t )

1− 1
θ (Yt)

1
θ P Y

t

∫ ∞

ω̄t

ω
1
θ dG (ω)− pvt (1−G (ω̄t)) . (B5)
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The partial derivative of πet with respect to kt is

∂πet
∂kt

= α (θ − 1)
1

θ

[
θ

θ − 1
pvt

]1−θ
zθ−1
t k

α(θ−1)−1
t Yt

(
P Y
t

)θ ∫ ω̄t

0
ωdG (ω)

+ α

(
1− 1

θ

)
z
1− 1

θ
t k

α(1− 1
θ )−1

t (Yt)
1
θ P Y

t

∫ ∞

ω̄t

ω
1
θ dG (ω)

+

(
1

θ

[
θ

θ − 1
pvt

]1−θ
zθ−1
t k

α(θ−1)
t Yt

(
P Y
t

)θ
ω̄t − z

1− 1
θ

t k
α(1− 1

θ )
t (Yt)

1
θ P Y

t ω̄
1
θ
t + pvt

)
g (ω̄t)

∂ω̄t
∂kt

.

Plugging in the threshold variety ω̄t (equation (B4)) leads to cancellation of the last term so that

∂πet
∂kt

= α (θ − 1)
1

θ

[
θ

θ − 1
pvt

]1−θ
zθ−1
t k

α(θ−1)−1
t Yt

(
P Y
t

)θ ∫ ω̄t

0
ωdG (ω) (B6)

+ α

(
1− 1

θ

)
z
1− 1

θ
t k

α(1− 1
θ )−1

t (Yt)
1
θ P Y

t

∫ ∞

ω̄t

ω
1
θ dG (ω) .

Since we assumed that θ > 1, expected profits are increasing in capital.

Next, return to the optimal choice of the capital stock. In particular, rewrite equation (7) as

pxt (1 + r)− (1− δ) pxt+1 =
∂πet+1

∂kt+1
. (B7)

The intuition is the same as the standard user cost equation, except that the marginal product of

capital is now replaced with the partial derivative of expected profits with respect to the capital

stock. This condition implicitly determines the capital stock, which we write, as in equation (10),

as

kt+1 = k
(
pxt , p

x
t+1, zt+1, P

Y
t+1, Yt+1, p

v
t+1

)
.

Appendix Proposition B1. Consider the optimal capital stock kt+1.

1. kt+1 is unique if α (θ − 1) < 1.

2. All else equal, kt+1 is increasing in pxt+1, zt+1, Yt+1, and P Y
t+1, and decreasing in pxt , p

v
t+1, as

well as interest rate r and depreciation rate δ.

Proof. As is clear from equation (B7), the optimal capital stock is unique if
∂πe

t+1

∂kt+1
is decreasing in

capital. Differentiating equation (B6), gives

∂2πet

(∂kt)
2 = (α (θ − 1)− 1)α (θ − 1)

1

θ

[
θ

θ − 1
pvt

]1−θ
zθ−1
t k

α(θ−1)−2
t Yt

(
P Y
t

)θ ∫ ω̄t

0
ωdG (ω)

+

(
α

(
1− 1

θ

)
− 1

)
α

(
1− 1

θ

)
z
1− 1

θ
t k

α(1− 1
θ )−2

t (Yt)
1
θ P Y

t

∫ ∞

ω̄t

ω
1
θ dG (ω)

+ α
θ − 1

θ

[[
θ

θ − 1
pvt

]1−θ
zθ−1
t k

α(θ−1)−1
t Yt

(
P Y
t

)θ
ω̄t − z

1− 1
θ

t k
α(1− 1

θ )−1

t (Yt)
1
θ P Y

t (ω̄t)
1
θ

]
g (ω̄t)

∂ω̄t
∂kt

12



Now plugging in the threshold variety ω̄t from equation (B4) again leads to cancellation of the last

term and hence gives

∂2πet

(∂kt)
2 = (α (θ − 1)− 1)α (θ − 1)

1

θ

[
θ

θ − 1
pvt

]1−θ
zθ−1
t k

α(θ−1)−2
t Yt

(
P Y
t

)θ ∫ ω̄t

0
ωdG (ω)

+

(
α

(
1− 1

θ

)
− 1

)
α

(
1− 1

θ

)
z
1− 1

θ
t k

α(1− 1
θ )−2

t (Yt)
1
θ P Y

t

∫ ∞

ω̄t

ω
1
θ dG (ω) .

The second term is always negative since α ∈ (0, 1) and θ > 1 imply that α
(
1− 1

θ

)
−1 < 0. Hence,

a sufficient condition for
∂2πe

t

(∂kt)
2 to be negative is that α (θ − 1) < 1. This completes the proof of

part 1. Note that this parametric restriction is not necessary. In what follows, we will assume that
∂2πe

t

(∂kt)
2 < 0. This allows us to interpret the optimal capital stock in equation (10) as a function

(rather than a correspondence).

For part 2, note first that
∂πe

t
∂kt

is a function of pvt , P
Y
t , Yt, zt, kt as well as ω̄t, which is itself a

function of these variables (see equation (B4)). Using the implicit function theorem on equation

(B7) implies that

∂kt+1

∂pxt+1

= − 1− δ
∂2πe

t+1

(∂kt+1)
2

,
∂kt+1

∂zt+1
= −

∂2πe
t+1

∂kt+1∂zt+1

∂2πe
t+1

(∂kt+1)
2

,
∂kt+1

∂Yt+1
= −

∂2πe
t+1

∂kt+1∂Yt+1

∂2πe
t+1

(∂kt+1)
2

,
∂kt+1

∂P Y
t+1

= −

∂2πe
t+1

∂kt+1∂PY
t+1

∂2πe
t+1

(∂kt+1)
2

, (B8)

and

∂kt+1

∂pxt
=

1 + r
∂2πe

t+1

(∂kt+1)
2

,
∂kt+1

∂pvt+1

= −
∂2πe

t+1

∂kt+1∂pvt+1

∂2πe
t+1

(∂kt+1)
2

,
∂kt+1

∂r
=

pxt
∂2πe

t+1

(∂kt+1)
2

,
∂kt+1

∂δ
=

pxt+1

∂2πe
t+1

(∂kt+1)
2

. (B9)

Since
∂2πe

t

(∂kt)
2 < 0, we immediately have that ∂kt+1

∂pxt+1
> 0, ∂kt+1

∂pxt
< 0, ∂kt+1

∂r < 0, and ∂kt+1

∂δ < 0. To

determine the signs for the remaining partial derivatives of kt+1, we take the derivatives of equation

(B6) with respect to zt, Yt, P
Y
t , and pvt . These are

∂2πet
∂kt∂zt

= α (θ − 1)2
1

θ

[
θ

θ − 1
pvt

]1−θ
zθ−2
t k

α(θ−1)−1
t Yt

(
P Y
t

)θ ∫ ω̄t

0
ωdG (ω)

+ α

(
1− 1

θ

)2

z
− 1

θ
t k

α(1− 1
θ )−1

t (Yt)
1
θ P Y

t

∫ ∞

ω̄t

ω
1
θ dG (ω) > 0,

∂2πet
∂kt∂Yt

= α (θ − 1)
1

θ

[
θ

θ − 1
pvt

]1−θ
zθ−1
t k

α(θ−1)−1
t

(
P Y
t

)θ ∫ ω̄t

0
ωdG (ω)

+ α
1

θ

(
1− 1

θ

)
z
1− 1

θ
t k

α(1− 1
θ )−1

t (Yt)
1
θ
−1 P Y

t

∫ ∞

ω̄t

ω
1
θ dG (ω) > 0,

∂2πet
∂kt∂P Y

t

= α (θ − 1)

[
θ

θ − 1
pvt

]1−θ
zθ−1
t k

α(θ−1)−1
t Yt

(
P Y
t

)θ−1
∫ ω̄t

0
ωdG (ω)

13



+ α

(
1− 1

θ

)
z
1− 1

θ
t k

α(1− 1
θ )−1

t (Yt)
1
θ

∫ ∞

ω̄t

ω
1
θ dG (ω) > 0,

∂2πet
∂kt∂pvt

= −αθ

(
θ

θ − 1

)−1−θ
(pvt )

−θ zθ−1
t k

α(θ−1)−1
t Yt

(
P Y
t

)θ ∫ ω̄t

0
ωdG (ω) < 0.

The claim follows from plugging these partial derivatives into the expressions in (B8) and (B9).

B.3 Industry capacity and utilization

We next turn to the aggregation to the industry level. For constrained varieties the level of

output yℓt is equal to capacity qt. For unconstrained varieties with yℓt < qt, we have

yℓt
qt

=
ωℓtYt

(
pyℓt
PY
t

)−θ
qt

=

ωℓtYt

(
θ

θ−1
mct

PY
t

)−θ

qt
=

ωℓt
ω̄t

. (B10)

The first equality uses the demand function (2). The second equality uses the price setting equation

(8) for unconstrained varieties. Lastly, the third equality uses the expression of the threshold

variety (B4). In words, equation (B10) states that the level of output yℓt is proportional to their

idiosyncratic demand shock ωℓt within the cross-section of unconstrained firms in a given period.

Using this property, we can write the industry’s output as

Yt =

(∫ 1

0
ω

1
θ
ℓt (yℓt)

θ−1
θ dℓ

) θ
θ−1

=

(∫ ω̄t

0
ω

1
θ (yt (ω))

θ−1
θ dG (ω) +

∫ ∞

ω̄t

ω
1
θ (qt)

θ−1
θ dG (ω)

) θ
θ−1

=

(∫ ω̄t

0
ω

1
θ

(
ω

ω̄t
qt

) θ−1
θ

dG (ω) +

∫ ∞

ω̄t

ω
1
θ (qt)

θ−1
θ dG (ω)

) θ
θ−1

= qt

(
(ω̄t)

− θ−1
θ

∫ ω̄t

0
ωdG (ω) +

∫ ∞

ω̄t

ω
1
θ dG (ω)

) θ
θ−1

.

This is equation (11) in the text.

We define capacity at the industry level as

Q (qt) := lim
ω̄t→0

Y (qt, ω̄t)

and the utilization rate as

ut :=
Y (qt, ω̄t)

Q (qt)
.

Lemma 1. The utilization rate as defined in (12) has the following properties:

1. ut ∈ [0, 1] is only a function of ω̄t: ut = u (ω̄t)

2. limω̄→0 u (ω̄) = 1, limω̄→∞ u (ω̄) = 0

14



3. u′ < 0

Proof. Using the definition of capacity and limit (B1), we can write

Q (qt) = lim
ω̄t→0

Y (qt, ω̄t)

= qt

(
lim
ω̄t→0

1

(ω̄t)
θ−1
θ

∫ ω̄t

0
ωdG (ω) +

∫ ∞

0
ω

1
θ dG (ω)

) θ
θ−1

= qtΘ,

where

Θ =

(∫ ∞

0
ω

1
θ dG (ω)

) θ
θ−1

.

Then equation (12) implies that

u (ω̄t) =
1

Θ

((
1

ω̄t

) θ−1
θ
∫ ω̄t

0
ωdG (ω) +

∫ ∞

ω̄t

ω
1
θ dG (ω)

) θ
θ−1

. (B11)

Hence, ut is only a function of ω̄t and ut ≥ 0.

Regarding part 2, limω̄t→0 u (ω̄t) = 1 follows directly from the definition of capacity and utiliza-

tion. Further,

lim
ω̄t→∞

u (ω̄t) = lim
ω̄t→∞

1

Θ

((
1

ω̄t

) θ−1
θ
∫ ω̄t

0
ωdG (ω) +

∫ ∞

ω̄t

ω
1
θ dG (ω)

) θ
θ−1

=
1

Θ

(
lim
ω̄t→∞

∫ ω̄t

0 ωdG (ω)

(ω̄t)
θ−1
θ

) θ
θ−1

= 0

For part 3, take the derivative of equation (B11) to obtain

∂ut
∂ω̄t

= − 1

Θ (ω̄t)
2

(∫ ω̄t

0
ωdG (ω) + (ω̄t)

θ−1
θ

∫ ∞

ω̄t

ω
1
θ dG (ω)

) 1
θ−1
∫ ω̄t

0
ωdG (ω) , (B12)

which is strictly negative for 0 < ω̄t < ∞. It then follows that ut ≤ 1, completing the proof of part

1 of the lemma.

Industry capacity We can now write an industry’s capacity as

Qt = Θqt

= Θztk
α
t

= Θzt
(
k
(
pxt−1, p

x
t , zt, P

Y
t , Yt, p

v
t

))α
.

15



This expression makes clear that demand shocks that raise Yt will also raise industry capacity Qt,

because kt is increasing in Yt (see Appendix Proposition B1). As discussed in Section 2.5, this

suggests that capacity should be used as a control variable when estimating supply curves—even

when using demand shift instruments.

B.4 The supply curve

Combining the price index (3) with the price setting rule (8) and equations (B4) and (B3) gives

P Y
t =

(∫ 1

0
ωℓt

[
θ

θ − 1
(mct + λℓt)

]1−θ
dℓ

) 1
1−θ

=
θ

θ − 1
mct

(∫ ω̄t

0
ωdG (ω) + (ω̄t)

θ−1
θ

∫ ∞

ω̄t

ω
1
θ dG (ω)

) 1
1−θ

.

Taking logs gives the supply curve (13), which is restated here for convenience,

lnP Y
t = M (lnut) + ln (mct) ,

where the log average markup as a function of ω̄t is given by

M̃ (ω̄t) := ln
θ

θ − 1
− 1

θ − 1
ln

(∫ ω̄t

0
ωdG (ω) + (ω̄t)

θ−1
θ

∫ ∞

ω̄t

ω
1
θ dG (ω)

)
,

and, using Lemma 1, the log average markup as a function of lnut is M (lnut) = M̃ (ω̄ (lnut)).

Proposition 1. M has the following properties:

1. M′ ≥ 0

2. limu→0M (lnu) = ln θ
θ−1 , limu→1M (lnu) = ∞

3. limu→0M′ (lnu) = 0, limu→1M′ (lnu) = ∞

4. Without further restrictions on G, the sign of M′′ is generally ambiguous.

Proof. For part 1, note that

M̃′ (ω̄t) = −1

θ

(ω̄t)
− 1

θ
∫∞
ω̄t

ω
1
θ dG (ω)∫ ω̄t

0 ωdG (ω) + (ω̄t)
θ−1
θ
∫∞
ω̄t

ω
1
θ dG (ω)

. (B13)

Further note that

M′ (lnut) = M̃′ (ω̄t) ·
∂ω̄ (ut)

∂ut
· ut

= M̃′ (ω̄t) ·
(
∂ut
∂ω̄t

)−1

· ut (B14)
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Now plugging in equations (B13), (B12), and (B11) gives, after several cancellations,

M′ (lnut) =
1

θ

(ω̄t)
θ−1
θ
∫∞
ω̄t

ω
1
θ dG (ω)∫ ω̄t

0 ωdG (ω)
, (B15)

which is greater than or equal to zero.

For part 2 note that

lim
ut→0

M (lnut) = lim
ω̄t→∞

M̃ (ω̄t)

= ln
θ

θ − 1
− 1

θ − 1
ln

(∫ ∞

0
ωdG (ω) + lim

ω̄t→∞
(ω̄t)

θ−1
θ

∫ ∞

ω̄t

ω
1
θ dG (ω)

)
= ln

θ

θ − 1
− 1

θ − 1
ln

(
1 + lim

ω̄t→∞
(ω̄t)

θ−1
θ

∫ ∞

ω̄t

ω
1
θ dG (ω)

)
= ln

θ

θ − 1

where we used the limit (B2). Further,

lim
ut→1

M (lnut) = lim
ω̄t→0

M̃ (ω̄t) = ln
θ

θ − 1
− 1

θ − 1
ln

(
lim
ω̄t→0

(ω̄t)
θ−1
θ

∫ ∞

ω̄t

ω
1
θ dG (ω)

)
= ∞.

For part 3, and using the limits (B1) and (B2), we obtain

lim
ut→0

M′ (lnut) = lim
ω̄t→∞

1

θ

(ω̄t)
θ−1
θ
∫∞
ω̄t

ω
1
θ dG (ω)∫ ω̄t

0 ωdG (ω)
= lim

ω̄t→∞

1

θ
(ω̄t)

θ−1
θ

∫ ∞

ω̄t

ω
1
θ dG (ω) = 0

and

lim
ut→1

M′ (lnut) = lim
ω̄t→0

1

θ

(ω̄t)
θ−1
θ
∫∞
ω̄t

ω
1
θ dG (ω)∫ ω̄t

0 ωdG (ω)
= lim

ω̄t→0

1

θ

∫ ∞

0
ω

1
θ dG (ω)

(ω̄t)
θ−1
θ∫ ω̄t

0 ωdG (ω)
= ∞.

For part 4, define the auxiliary function

κ (ω̄t) =
1

θ

(ω̄t)
θ−1
θ
∫∞
ω̄t

ω
1
θ dG (ω)∫ ω̄t

0 ωdG (ω)
(B16)

and note that M′ (lnut) = κ (ω̄ (ut)). Taking the derivative with respect to lnut gives

M′′ (lnut) = κ′ (ω̄t) ·
∂ω̄t
∂ut

· ut

= κ′ (ω̄t) ·
(
∂ut
∂ω̄t

)−1

· ut. (B17)
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Since ut > 0 and ∂ut
∂ω̄t

< 0, the sign of M′′ (lnut) is the negative of the sign of κ′ (ω̄t). Now

κ′ (ω̄t)=

[
θ−1
θ (ω̄t)

− 1
θ
∫∞
ω̄t

ω
1
θ dG (ω)− ω̄tg (ω̄t)

] ∫ ω̄t

0 ωdG (ω)− ω̄tg (ω̄t) (ω̄t)
θ−1
θ
∫∞
ω̄t

ω
1
θ dG (ω)

θ
(∫ ω̄t

0 ωdG (ω)
)2

(B18)

=

θ−1
θ (ω̄t)

− 1
θ
∫∞
ω̄t

ω
1
θ dG (ω)

∫ ω̄t

0 ωdG (ω)− ω̄tg (ω̄t)
[∫ ω̄t

0 ωdG (ω) + (ω̄t)
θ−1
θ
∫∞
ω̄t

ω
1
θ dG (ω)

]
θ
(∫ ω̄t

0 ωdG (ω)
)2 .

It is clear that this expression can be positive or negative, depending on the value of g (ω̄t). If

g (ω̄t) is sufficiently small, the derivative on the left hand side is positive and M′′ negative. For

sufficiently large g (ω̄t), the opposite is the case. Most conventional distributions result in M′′ > 0.

This completes the proof.

Figure B1 provides three additional examples of supply curves. In panel A the distribution G of

demand shocks is log-normal with unit mean and variance 0.75. In panel B the distribution of G

is uniform on the interval from 0 to 2. In Panel C the distribution of G is piecewise uniform from

0 to 0.8 and from 1.2 to 2. For panels A and B the supply curve is convex everywhere. For panel

C, the supply curve is locally non-convex. This non-convexity is a result of the density of demand

shocks, g (ω̄t) in equation B18, being equal to zero in the relevant range. We view this example as

likely not economically relevant.

B.5 Estimating equation

Letting ∆ denote the first difference operator and adding industry subscripts i, linearization of

the supply curve (13) around its t− 1 values yields

∆ lnP Y
i,t = M′ (lnui,t−1) (lnui,t − lnui,t−1) + ∆ ln (mci,t)

= M′ (lnui,t−1) (∆ lnYi,t −∆ lnQi,t) + ∆ ln (mci,t) .

We next parameterize M′ (lnui,t−1) with the linear approximation around the industry-specific

mean ln ūi so that

M′ (lnui,t−1) = M′ (ln ūi) +M′′ (ln ūi) (lnui,t−1 − ln ūi)

= M′ (ln ūi) +
M′′ (ln ūi)

ūi
(ui,t−1 − ūi) .

Combining these two equations gives

∆ lnP Y
i,t = M′ (ln ūi) (∆ lnYi,t −∆ lnQi,t)

+
M′′ (ln ūi)

ūi
(ui,t−1 − ūi) (∆ lnYi,t −∆ lnQi,t) (B19)
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Notes: The figure provides examples of supply curve (13). The parameterizations are chosen as
follows. For all figures θ = 4 and marginal costs mc are set to 1. In panel A, G is log-normal with
unit mean and variance 0.75. In panel B, G is uniform from 0 to 2. In panel C, G is piecewise
uniform from 0 to 0.8 and 1.2 to 2.

Figure B1: Examples of supply curves

+ ∆ ln (mci,t) .
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Now, adding a constant α, an error term εi,t, and a main effect for the lagged utilization rate

(ui,t−1 − ūi) gives our estimating equation (16),

∆ lnP Y
i,t = α+ βY u∆ lnYi,t · (ui,t−1 − ūi) + βY∆ lnYi,t + βu (ui,t−1 − ūi)

+ βQ∆ lnQi,t + βQu∆ lnQi,t · (ui,t−1 − ūi) + βmc∆ ln (mci,t) + εi,t,

where

βY u =
M′′ (ln ūi)

ūi
, βY = M′ (ln ūi) , βQ = −M′ (ln ūi) , βQu = −M′′ (ln ūi)

ūi
, βmc = 1.

Comparison to second order approximation We next compare our estimation equation,

which is based on a first order Taylor approximation around t−1 values, to a second order approx-

imation around the steady state. The second order approximation of supply curve (13) is

lnP Y
i,t − lnP Y

i = M′ (ln ūi) (lnui,t − ln ūi) +
1

2
M′′ (ln ūi) (lnui,t − ln ūi)

2

+ ln (mci,t)− ln (mci) .

Lagging this expression once and subtracting it from the above expression gives

∆ lnP Y
i,t = M′ (lnui) (lnui,t − lnui,t−1)

+
1

2
M′′ (lnui)

[
(lnui,t − lnui)

2 − (lnui,t−1 − lnui)
2
]

(B20)

+ ∆ ln (mci,t) .

Next note that

(lnui,t − lnui)
2 − (lnui,t−1 − lnui)

2 = (lnui,t − lnui)
2 − (lnui,t−1 − lnui,t + lnui,t − lnui)

2

= (lnui,t − lnui)
2 − (lnui,t−1 − lnui,t)

2

− 2 (lnui,t−1 − lnui,t) (lnui,t − lnui)− (lnui,t − lnui)
2

= [lnui,t−1 − lnui,t + 2 lnui,t − 2 lnui] (lnui,t − lnui,t−1)

= [lnui,t − lnui + lnui,t−1 − lnui] (lnui,t − lnui,t−1)

=

[
ui,t − ui

ui
+

ui,t−1 − ui
ui

]
(lnui,t − lnui,t−1) ,

where we note that the last equality holds only up to a second order.

Substituting the expression back into equation (B20) and using the definition of the utilization

rate gives

∆ lnP Y
i,t = M′ (lnui) (∆ lnYi,t −∆ lnQi,t)

+
M′′ (lnui)

ui

(
ui,t − ui

2
+

ui,t−1 − ui
2

)
(∆ lnYi,t −∆ lnQi,t)
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+∆ ln (mci,t) .

As noted in footnote (14), the only difference relative to equation (B19) is that the lagged utilization

rate ui,t−1 − ui is replaced with the average
ui,t−ui

2 +
ui,t−1−ui

2 . Since the current utilization rate

ui,t depends on output Yi,t and is simultaneously determined with price P Y
i,t, we prefer to use the

lagged utilization rate ui,t alone.

B.6 Measurement of marginal costs

The estimation is complicated by the fact that marginal costs are not observed. Subsuming

marginal costs into the error term has two undesirable implications. First, it can lead to an

omitted variable bias if the instrument is correlated with marginal costs. Second, doing so raises

the variance of the estimates. It is therefore common to proxy for marginal costs with unit variable

costs, which are observed. Unfortunately, this approach can also lead to biases.

In our framework industry’s marginal costs differ from the industry’s unit variable cost. This

feature follows from the non-linear aggregation across varieties with aggregator (1). Further, the

wedge between unit variable cost and marginal cost is a function of the utilization rate, that is,

lnmci,t = lnUVCi,t + Ω(lnui,t), for some function Ω, where UVCi,t =
(∫ 1

0 pvitviℓtdℓ
)
/Yi,t are unit

variable costs. Substituting for marginal costs in equation (13) yields

lnP Y
i,t = M (lnui,t) + Ω (lnui,t) + lnUVCi,t.

This expression makes clear that if unit variable costs are held constant instead of marginal costs,

exogenous variation in lnui,t does not identify M′, but M′+Ω′, thus leading to a biased estimate.

An analogous argument applies to M′′. The following proposition signs these biases.

Appendix Proposition B2. Ω′ ≤ 0 and Ω′′ ≤ 0.

Hence, when marginal costs are proxied for with unit variable costs, estimates of the slope

and curvature both exhibit a downward bias. Our estimates should therefore be interpreted as

conservative. We provide a rough assessment of the magnitude of this bias below.

Regarding the intuition of Proposition B2, note that in the baseline model the industry’s marginal

costs do not depend on the utilization rate and that Ω’s dependence on the utilization rate arises

from the dependence of unit variable costs on the utilization rate. The sum of variable costs

across plants in industry i,
∫ 1
0 pvitviℓtdℓ, depends on the industry’s utilization rate, and so does

the aggregation of plant-level output into industry-level output, see equation (11). The proof

of Appendix Proposition B2 below provides details. Unit variable costs are defined as the sum

of plants’ variable costs per unit of industry output, consistent with the empirical analogue in

Section 3. They do not reflect the aggregating firm’s average costs, which include the markups of

monopolistic competitors.

Proof of Appendix Proposition B2. Throughout this proof we drop the industry subscript i. Unit
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variable costs are ∫ 1
0 pvt vℓtdℓ

Yt
=

pvt
qt

∫ 1
0 yℓtdℓ

Yt
= mct

∫ 1
0 yℓtdℓ

Yt
,

where we used the production function yℓt = qtvℓt for vℓt ≤ 1 and equation (9). Now, using equation

(B4), we obtain

∫ 1

0
yℓtdℓ =

∫ ω̄t

0
ωYt

[
pyt (ω)

P Y
t

]−θ
dG (ω) +

∫ ∞

ω̄t

qtdG (ω)

= Yt

[
θ
θ−1mct

P Y
t

]−θ ∫ ω̄t

0
ωdG (ω) +

∫ ∞

ω̄t

qtdG (ω)

= qt

(
1

ω̄t

∫ ω̄t

0
ωdG (ω) +

∫ ∞

ω̄t

dG (ω)

)
.

Next, using equation (11), we can write∫ 1
0 pvt vℓtdℓ

Yt
= mct

∫ ω̄t

0 ωdG (ω) + ω̄t
∫∞
ω̄t

dG (ω)(∫ ω̄t

0 ωdG (ω) + (ω̄t)
θ−1
θ
∫∞
ω̄t

ω
1
θ dG (ω)

) θ
θ−1

. (B21)

Defining Ω (lnut) = Ω̃ (ω̄ (ut)), where

Ω̃ (ω̄ (ut)) = − ln


∫ ω̄t

0 ωdG (ω) + ω̄t
∫∞
ω̄t

dG (ω)(∫ ω̄t

0 ωdG (ω) + (ω̄t)
θ−1
θ
∫∞
ω̄t

ω
1
θ dG (ω)

) θ
θ−1

 , (B22)

it follows that

lnmct = ln

∫ 1
0 pvt vℓtdℓ

Yt
+ Ω̃ (ω̄t)

and hence

lnP Y
t = M (lnut) + Ω (lnut) + lnUV Ct,

where UV Ct =
(∫ 1

0 pvt vℓtdℓ
)
/Yt.

We are interested in estimating M′ (lnut) and M′′ (lnut), but exogenous variation in lnut traces

out the composite term

Ξ (lnut) = M (lnut) + Ω (lnut) . (B23)

We will next show that Ω′ (lnut) < 0 and Ω′′ (lnut) < 0 in the model. This implies that we estimate

a lower bound for both the slope and the curvature

M′ (lnui) = Ξ′ (lnui)− Ω′ (lnui) ≥ Ξ′ (lnui) ,

M′′ (lnui)

ui
=

Ξ′′ (lnui)

ui
− Ω′′ (lnui)

ui
≥ Ξ′′ (lnui)

ui
.
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Start with Ω (lnut) = Ω̃ (ω̄ (ut)) and differentiate both sides with respect to lnut. This gives

Ω′ (lnut) = Ω̃′ (ω̄ (ut)) ·
∂ω̄t
∂ut

· ut

= Ω̃′ (ω̄t) ·
(
∂ut
∂ω̄t

)−1

· ut (B24)

Now taking the derivative of equation (B22) gives

Ω̃′ (ω̄t) =
(ω̄t)

− 1
θ

[∫∞
ω̄t

(
ω

1
θ − (ω̄t)

1
θ

)
dG (ω)

] ∫ ω̄t

0 ωdG (ω)(∫ ω̄t

0 ωdG (ω) + (ω̄t)
θ−1
θ
∫∞
ω̄t

ω
1
θ dG (ω)

)(∫ ω̄t

0 ωdG (ω) + ω̄t
∫∞
ω̄t

dG (ω)
) , (B25)

which is positive.

Plugging this derivative together with equation (B12) and (B11) into equation (B24) gives

Ω′ (lnut) = −
(ω̄t)

− 1
θ

[∫∞
ω̄t

(
ω

1
θ − (ω̄t)

1
θ

)
dG (ω)

] ∫ ω̄t

0 ωdG (ω)(∫ ω̄t

0 ωdG (ω) + (ω̄t)
θ−1
θ
∫∞
ω̄t

ω
1
θ dG (ω)

)(∫ ω̄t

0 ωdG (ω) + ω̄t
∫∞
ω̄t

dG (ω)
)

·

((
1
ω̄t

) θ−1
θ ∫ ω̄t

0 ωdG (ω) +
∫∞
ω̄t

ω
1
θ dG (ω)

)
(ω̄t)

1−2θ
θ
∫ ω̄t

0 ωdG (ω)

= −
(ω̄t)

− 1
θ
−1
[∫∞
ω̄t

(
ω

1
θ − (ω̄t)

1
θ

)
dG (ω)

]
∫ ω̄t

0 ωdG (ω) + ω̄t
∫∞
ω̄t

dG (ω)
< 0.

This completes the first part of the proof.

Next define the auxiliary function

ϑ (ω̄t) = −
(ω̄t)

− 1
θ
−1
[∫∞
ω̄t

(
ω

1
θ − (ω̄t)

1
θ

)
dG (ω)

]
∫ ω̄t

0 ωdG (ω) + ω̄t
∫∞
ω̄t

dG (ω)
(B26)

and note that Ω′ (lnut) = ϑ (ω̄ (ut)). Then

Ω′′ (lnut) = ϑ′ (ω̄t) ·
∂ω̄t
∂ut

· ut

= ϑ′ (ω̄t) ·
(
∂ut
∂ω̄t

)−1

· ut. (B27)

Since u′ (ω̄t) < 0 and ut > 0, the sign of Ω′′ (lnut) is fully determined by the sign of ϑ′ (ω̄t). Taking

the derivative of equation (B26) gives

ϑ′ (ω̄t) =

1
θ (ω̄t)

− 1
θ
−1 ∫∞

ω̄t
ω

1
θ dG (ω)

(
ω̄t
∫ ω̄t

0 ωdG (ω) + (ω̄t)
2 ∫∞

ω̄t
dG (ω)

)
(
ω̄t
∫ ω̄t

0 ωdG (ω) + (ω̄t)
2 ∫∞

ω̄t
dG (ω)

)2

23



+

(∫∞
ω̄t

[
ω

1
θ − (ω̄t)

1
θ

]
dG (ω)

)(∫ ω̄t

0 ωdG (ω) + 2 (ω̄t)
∫∞
ω̄t

dG (ω)
)

(ω̄t)
1
θ

(
ω̄t
∫ ω̄t

0 ωdG (ω) + (ω̄t)
2 ∫∞

ω̄t
dG (ω)

)2 , (B28)

which is greater than zero. Hence, Ω′′ (lnut) < 0. This completes the proof.

Magnitude of the bias To roughly assess the magnitude of the biases of the slope and curvature

estimates we proceed as follows. Recall that when we control for lnUVCi,t rather than lnmci,t,

exogenous variation in lnui,t traces out the compound term Ξ (lnui,t) as defined in equation (B23)

and not the object of interest M (lnui,t). This implies that the estimated parameters in equation

(16) correspond to the slope and curvature of Ξ (lnui,t), that is,

βY = Ξ′ (lnu) and βY u =
Ξ′′ (lnu)

u
,

where we again dropped industry subscripts i. Using equation (B23), the true slope and curvature

can then be constructed as

M′ (lnu) =
Ξ′ (lnu)

1 + Ω′(lnu)
M′(lnu)

=
βY

1 + Ω′(lnu)
M′(lnu)

, (B29)

M′′ (lnu)

u
=

Ξ′′(lnu)
u

1 + Ω′′(lnu)
M′′(lnu)

=
βY u

1 + Ω′′(lnu)
M′′(lnu)

, (B30)

where the two terms Ω′(lnu)
M′(lnu) and Ω′′(lnu)

M′′(lnu) are the biases relative to the true slope and curvature,

respectively.

These biases can be computed as follows. First note that equations (B24), (B14), (B27), and

(B17) imply that

Ω′ (lnu)

M′ (lnu)
=

Ω̃′ (ω̄) ·
(
∂u
∂ω̄

)−1 · u

M̃′ (ω̄) ·
(
∂u
∂ω̄

)−1 · u
=

Ω̃′ (ω̄)

M̃′ (ω̄)
,

Ω′′ (lnu)

M′′ (lnu)
=

ϑ′ (ω̄) ·
(
∂u
∂ω̄

)−1 · u

κ′ (ω̄) ·
(
∂u
∂ω̄

)−1 · u
=

ϑ′ (ω̄)

κ′ (ω̄)
.

Expressions for Ω̃′ (ω̄), M̃′ (ω̄), ϑ′ (ω̄), and κ′ (ω̄) are then given by equations (B25), (B13), (B28),

and (B18). In our baseline version of the model, these four objects depend on the parameter θ,

the distribution G of idiosyncratic demand shocks ω, as well as the equilibrium threshold variety

ω̄ that maps to the average utilization rate.

To assess the magnitude of the biases, the model therefore needs to be calibrated. We assume that

ω is log-normally distributed with mean 1 and variance V . We further set the average utilization

rate to u = 0.792 (see Appendix Table A1). We then choose the threshold variety ω̄, the variance

V , and elasticity θ so as to minimize the sum of squared distances between the model-implied and
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estimated slope and curvature, that is:

min
ω̄,θ,V

(
Ξ′ (lnu (ω̄))− β̂Y

)2
+

(
Ξ′′ (lnu (ω̄))

u (ω̄)
− β̂Y u

)2

where the minimization is subject to

u (ω̄) = 0.792.

We target our baseline estimates (from column (6) of Table 2) and set β̂Y = 0.27 and β̂Y u = 1.17.

Further, we evaluate Ξ′ (lnu (ω̄)) and Ξ′′(lnu(ω̄))
u(ω̄) using the relationships

Ξ′ (lnu) = M′ (lnu) + Ω′ (lnu) =
(
M̃′ (ω̄) + Ω̃′ (ω̄)

)
·
(
∂u

∂ω̄

)−1

· u,

Ξ′′ (lnu)

u
=

M′′ (lnu) + Ω′′ (lnu)

u
=

(κ′ (ω̄) + ϑ′ (ω̄)) ·
(
∂u
∂ω̄

)−1 · u
u

,

which follow from equations (B24), (B14), (B27), and (B17). The solution requires that V =

0.60 and θ = 3.95. With these parameter values the model exactly matches our slope and curvature

estimates.

For this calibration, the biases are Ω′(lnu)
M′(lnu) = −0.221 for the slope and Ω′′(lnu)

M′′(lnu) = −0.459 for the

curvature. Hence, if this model is true and correctly calibrated, these values imply that our slope

estimate is 22.1 percent smaller than the true slope and our curvature estimate is 45.9 percent

smaller than the true curvature.

In principle, the formulas (B29) and (B30) above can be used to calculate bias-corrected estimates

and we do so in Online Appendix E. Since our model is simple and stylized, however, and not

developed for quantitative statements, we do not emphasize this bias correction in the text. We

instead prefer to interpret our estimates for both the slope and curvature as conservative.

C Appendix: Notes on Shea’s instrument

In this appendix we provide additional notes on our version of John Shea’s instrument as described

in Section 3.2. In particular, we specify a condition that guarantees that criteria (1), (2), and (3)

as described in the text hold. When constructing this instrument based on equation (19), note

that we consider all possible downstream industries j, and not only the manufacturing industries

included in our sample.

As noted in Shea (1993b), measuring direct linkages between two industries is generally not

sufficient for satisfying criteria (1), (2), and (3). Nor are ultimate cost or sales shares sufficient.

Following Shea, we therefore use information from both direct and ultimate cost and sales shares.

We next describe our definitions of these shares.

C.1 Demand shares

Let pi denote the price and yi the quantity produced by industry i. Let further xj,i denote

industry j′s usage of i’s output. Lastly, let di denote the value of final demand for the good
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produced by industry i.

C.1.1 Direct demand share

We define the direct demand share of industry j for industry i’s good as

ddsj,i =
pixj,i∑
j pixj,i

.

While alternative definitions are sensible, we choose the denominator such that
∑

j ddsj,i = 1.

C.1.2 Ultimate demand share

Market clearing implies that

piyi =
∑
j

pixji + di =
∑
j

µcj,ipjyj + di,

where µcj,i =
pixj,i
pjyj

is the cost share of i in j’s output. We can then stack the system in matrix form.

Using the notation

py =


p1y1
...

pIyI

 , d =


d1
...

dI

 , Γc =


µc1,1 · · · µc1,I
...

. . .
...

µcI,1 · · · µcI,I

 ,

we can write

py = d+ (Γc)′ py,

or

py =
(
I − (Γc)′

)−1
d.

Based on this relationship, we define the ultimate demand share of industry j for the output of

industry i as

udsj,i =
1

piyi
·
(
I − (Γc)′

)−1

i,j
· dj ,

where
(
I − (Γc)′

)−1

i,j
is the (i, j)th element of matrix

(
I − (Γc)′

)−1
. By construction,

∑
j udsj,i = 1.

C.2 Cost shares

C.2.1 Direct cost share

We define industry i’s direct cost share for industry j’s good as

dcsi,j =
pjxi,j∑
j pjxi,j

.

Notice that
∑

j dcsi,j = 1.
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C.2.2 Indirect cost share

Let vai denote industry i’s value added, then

piyi = vai +
∑
j

pjxi,j = vai +
∑
j

µsi,jpjyj ,

where µsi,j =
pjxi,j
pjyj

is industry j’s sales share to industry i. Using the notation

py =


p1y1
...

pIyI

 , va =


va1
...

vaI

 , Γs =


µs1,1 · · · µs1,I
...

. . .
...

µsI,1 · · · µsI,I

 ,

we can then stack the system in matrix form and write

py = va+ Γspy,

or

py = (I − Γs)−1 va.

The ultimate cost share of industry j for industry i is then defined as

ucsi,j =
1

piyi
· (I − Γs)−1

i,j · vaj ,

where (I − Γs)−1
i,j denotes the (i, j)th element of matrix (I − Γs)−1. Notice that

∑
j ucsi,j = 1.

C.3 Our version of Shea’s instrument

We define our version of Shea’s instrument as in equation (19), where

J Shea
i,t =

{
j :

min {ddsj,i,t, udsj,i,t}
max {dcsj,i,t,ucsj,i,t,dcsi,j,t,ucsi,j,t}

> 3

}
. (C1)

Conditions (1), (2), and (3) as defined in Section 3.2 are satisfied because for all j ∈ J Shea
i,t (1) j’s

demand share from i is large relative to j’s cost share from i (2) and i’s cost share from j (3).

Table C1 reports the share of qualifying partner and year observations by industry (the average

of an indicator function constructed from equation (C1) and taken over all years and partners). As

in Shea (1993a,b), for some industries no partner satisfies the criteria in any year. These are Food

Manufacturing, Beverage and Tobacco Product Manufacturing, Chemical Manufacturing, Primary

Metal Manufacturing, Fabricated Metal Product Manufacturing, and Transportation Equipment

Manufacturing, a total of 6 out of 21.
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Industry NAICS Share
(percent)

Food Manufacturing 311 0.0
Beverage and Tobacco Product Manufacturing 312 0.0
Textile Mills 313 4.4
Textile Product Mills 314 4.4
Apparel Manufacturing 315 4.2
Leather and Allied Product Manufacturing 316 4.2
Wood Product Manufacturing 321 2.7
Paper Manufacturing 322 0.9
Printing and Related Support Activities 323 2.0
Petroleum and Coal Products Manufacturing 324 0.5
Chemical Manufacturing 325 0.0
Plastics and Rubber Products Manufacturing 326 2.1
Nonmetallic Mineral Product Manufacturing 327 4.6
Primary Metal Manufacturing 331 0.0
Fabricated Metal Product Manufacturing 332 0.0
Machinery Manufacturing 333 0.2
Computer and Electronic Product Manufacturing 334 0.2
Electrical Equipment, Appliance, and Component Manufacturing 335 3.7
Transportation Equipment Manufacturing 336 0.0
Furniture and Related Product Manufacturing 337 5.0
Miscellaneous Manufacturing 339 2.5

Table C1: Share of qualifying partner-year observations

D Appendix: Robustness and extensions

D.1 Estimates of the first stage

This appendix reports the estimates of the first stage of the 2SLS estimates reported in Section

3.3. Table D1 reports the first stage estimates for the 2SLS estimates reported in column (5) of

Table 1. Table D2 reports the first stage estimates for the 2SLS estimates reported in columns

(2)-(6) of Table 2.

The partial R-squared of all instruments indicate that the instruments explain a sizable fraction

of the variation that is not explained by the other regressors in the first stage. For instance, for our

baseline specification (column (6) in Table 2), the partial R-squared for the change in output is 9.3

percent and the partial R-squared for the change in output interacted with the lagged utilization

rate is 33.5 percent. Both of these shares are sizable and suggest that our instruments are strong.
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Table 1 column (5)

First stage dependent variable ∆ lnYi,t

instWID
i,t 6.34

(6.63)

instSheai,t 1.01
(0.15)

∆ei,t 1.51
(1.28)

∆ lnQi,t 0.71
(0.09)

∆ lnUVCi,t -0.13
(0.03)

R-squared 0.742

Partial R-squared 0.058

Fixed Effects yes

Observations 819

Notes: This table shows the estimates of the first stage of the 2SLS estimates of Table 1. Driscoll-
Kraay standard errors are reported in parentheses. Fixed effects include industry fixed effects,
time fixed effects, and time fixed effects interacted with industries’ lagged foreign sales share
(
∑

j∈JF sj,i,t−1). Partial R-squared refers to the partial R-squared of all instruments.

Table D1: First stage estimates for Table 1
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Table 2 column (2) (3) (3) (5) (6)

First stage
∆ lnYi,t

∆lnYi,t· ∆lnYi,t
∆lnYi,t· ∆lnYi,t

∆lnYi,t· ∆lnYi,t
∆lnYi,t· ∆lnYi,t

∆lnYi,t·
dependent variable (ui,t−1 − ūi) (ui,t−1 − ūi) (ui,t−1 − ūi) (ui,t−1 − ūi) (ui,t−1 − ūi)

instWID
i,t 6.12 0.02 6.87 -0.28 5.18 0.22 5.41 0.11 7.41 -0.21

(7.67) (1.08) (7.24) (0.56) (7.27) (0.75) (7.48) (1.06) (7.51) (1.09)

instSheai,t 1.01 -0.04 0.98 -0.02 1.02 -0.04 0.99 -0.03 0.99 -0.03
(0.16) (0.04) (0.13) (0.02) (0.18) (0.04) (0.13) (0.02) (0.13) (0.02)

∆ei,t 1.30 -0.20 1.34 -0.22 1.44 -0.26 1.29 -0.19
(1.33) (0.14) (1.36) (0.15) (1.25) (0.16) (1.27) (0.13)

instWID
i,t · (ui,t−1 − ūi) -79.60 30.93 -58.28 25.59 -75.56 28.82

(17.50) (6.20) (21.78) (5.33) (19.09) (6.01)

instSheai,t · (ui,t−1 − ūi) -3.71 1.68 -2.35 1.16 -2.39 1.17
(2.41) (0.49) (2.29) (0.44) (2.36) (0.45)

∆ei,t · (ui,t−1 − ūi) -24.95 7.13 -15.39 2.89
(6.59) (4.08) (7.70) (1.69)

ui,t−1 − ūi -0.33 0.01 -0.32 0.00 -0.33 0.01 -0.34 0.01 -0.34 0.01
(0.05) (0.01) (0.06) (0.01) (0.06) (0.02) (0.05) (0.01) (0.05) (0.01)

∆ lnQi,t 0.95 0.01 0.94 0.01 0.93 0.02 0.95 0.01 0.96 0.01
(0.11) (0.01) (0.13) (0.01) (0.12) (0.01) (0.11) (0.01) (0.11) (0.01)

∆ lnQi,t · (ui,t−1 − ūi) 1.39 0.38 1.21 0.45 0.65 0.63 1.11 0.42 1.40 0.36
(0.78) (0.15) (0.83) (0.18) (0.65) (0.14) (0.78) (0.16) (0.79) (0.16)

∆ lnUVCi,t -0.07 0.01 -0.06 0.00 -0.06 0.00 -0.07 0.00 -0.07 0.01
(0.04) (0.00) (0.04) (0.00) (0.04) (0.00) (0.04) (0.00) (0.04) (0.00)

R-squared 0.775 0.576 0.770 0.456 0.773 0.470 0.777 0.609 0.775 0.599

Partial R-squared 0.092 0.297 0.071 0.099 0.084 0.122 0.100 0.352 0.093 0.335

Fixed Effects yes yes yes yes yes yes yes yes yes yes

Observations 819 819 819 819 819 819 819 819 819 819

Notes: This table shows the estimates of the first stage of the 2SLS estimates of Table 2. Driscoll-Kraay standard errors are reported in parentheses.
Fixed effects include industry fixed effects, time fixed effects, and time fixed effects interacted with industries’ lagged foreign sales share (

∑
j∈JF sj,i,t−1).

Partial R-squared refers to the partial R-squared of all instruments.

Table D2: First stage estimates for Table 2
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D.2 Robustness

D.2.1 Sensitivity to adding and dropping controls and alternative measures

The unit cost control As discussed in Online Appendix B.6, proxying marginal costs with

unit variable costs may lead to downward-biased estimates of the slope and curvature in our model.

Consistent with this prediction and as shown in Table D3 column (1), the estimates of both increase,

when we instead subsume marginal cost changes into the error term. While these estimates likely

exhibit less bias, the error bands also increase substantially. We therefore prefer to include unit

variable costs as a control and to interpret our estimates as conservative.

The capacity control and anticipation effects In columns (2) and (3) of Table D3 we examine

the implications of dropping the change in capacity and its interaction with the utilization rate from

the regression. Consistent with the model’s prediction that changes in capacity shift the supply

curve, the estimates of the slope and curvature fall (relative to column (6) of Table 2). Hence,

the change in capacity is a useful control variable—even when the supply curve is estimated with

instrumental variables.

If the model is correctly specified anticipation effects do not pose a problem for identification,

because the observed change in capacity captures all relevant information about future shocks. To

the extent that the model is incorrectly specified, anticipation effects could still pose a problem for

identification. We address this concern below by estimating the effect of exchange rate changes on

output. Since the size of this effect decreases with the initial utilization rate (equation (S3.7)), and

changes in the exchange rate are not predictable, anticipation effects do not appear to drive the

estimated curvature of the supply curve.

Sticky prices Column (4) of Table D3 adds the percent change of the industry’s price from t to

t + 1. Extensions of the model to include sticky prices suggest that this variable should capture

the firm’s expectations about changes in future marginal costs (see Supplementary Appendix S1.5).

Adding this control has virtually no effect on the estimates of slope and curvature. Further, the

coefficient on future price changes is close to zero and tightly estimated, suggesting that producer

prices are flexible over a year-long horizon.1

1A second diagnostic that suggests that producer prices are quite flexible when differenced over one year is the
high pass-through of unit variable costs changes into price changes. In models with sticky prices, this pass-through
is substantially less than one. Our estimates suggest that it is close to 0.9.
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Dependent variable: ∆ lnPY
i,t

(1) (2) (3) (4) (5) (6) (7) (8) (9)

∆ lnYi,t · (ui,t−1 − ūi) 1.83 1.06 0.87 1.17 1.05 1.19 1.56 1.41 0.87
(0.88) (0.29) (0.26) (0.30) (0.27) (0.29) (0.38) (0.33) (0.25)

∆ lnYi,t 0.76 0.27 0.23 0.27 0.27 0.28 0.31 0.33 0.18
(0.25) (0.08) (0.06) (0.07) (0.07) (0.08) (0.08) (0.08) (0.04)

ui,t−1 − ūi 0.43 0.04 -0.01 0.02 0.00 0.03 0.06 0.03 -0.02
(0.13) (0.04) (0.02) (0.04) (0.02) (0.04) (0.04) (0.02) (0.02)

∆ lnQi,t -0.84 -0.22 -0.22 -0.19 -0.20 -0.27 -0.21 -0.09
(0.29) (0.10) (0.09) (0.07) (0.09) (0.09) (0.07) (0.05)

∆ lnQi,t · (ui,t−1 − ūi) -1.93 -1.10 -1.01 -1.12 -2.50 -2.30 -0.84
(1.17) (0.42) (0.39) (0.42) (0.56) (0.50) (0.42)

∆ lnUVCi,t 0.89 0.89 0.89 0.87 0.89 0.90 0.88 0.84
(0.03) (0.03) (0.03) (0.02) (0.03) (0.03) (0.02) (0.05)

∆ lnPY
i,t+1 0.00 0.01

(0.02) (0.03)
∆ lnUNPWi,t 0.08 0.10

(0.07) (0.07)

∆ lnNplants
i,t -0.12 -0.13

(0.06) (0.06)

(ui,t−1 − ūi)
2 1.09 1.00

(0.26) (0.21)

R-squared 0.443 0.900 0.900 0.900 0.903 0.900 0.899 0.903 0.876

First stage and instrument diagnostics

F Main effect 24.05 24.64 23.39 24.39 33.37 30.08 26.23 34.90 25.55

F Interaction 41.93 45.63 50.29 44.37 44.16 43.09 19.23 19.75 24.51

Cragg-Donald Wald F 9.04 9.29 10.21 9.16 13.44 9.14 8.31 11.57 8.70

SW F Main effect 43.28 45.60 27.06 42.37 38.37 56.55 35.48 35.27 25.24

SW F Interaction 49.07 60.76 36.16 49.53 45.82 58.94 39.71 39.02 16.79

Hansen J (p-value) 0.733 0.799 0.584 0.748 0.697 0.755 0.243 0.290 0.895

Notes: The 2SLS estimates are based on equation (16) using the WID and Shea’s instrument as well as interactions of both with ui,t−1 − ūi.
∆ lnUNPWi,t denotes the percent change in nonproduction worker salaries and wages per unit of output. ∆ lnNplants

i,t is the percent change in the
number of plants within industry i. Driscoll-Kraay standard errors are reported in parentheses. All specifications include industry fixed effects,
time fixed effects, and time fixed effects interacted with industries’ lagged foreign sales share (

∑
j∈JF sj,i,t−1). F is the standard F-statistic. For

details on the Cragg-Donald statistic, see Cragg and Donald (1993) and Stock and Yogo (2005). SW F is the Sanderson and Windmeijer (2016)
conditional F-statistic.

Table D3: Robustness of the non-linear model
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Nonproduction worker salaries and wages Column (5) adds to the baseline specification the

percent change in nonproduction worker salaries and wages per unit of output (∆ lnUNPWi,t) as

an additional control. Nonproduction worker salaries and wages are not included in our preferred

measure of unit variable costs, which sum production worker wages, costs of materials, and expen-

ditures on energy and then divide by real gross output. To the extent that nonproduction workers

have a positive marginal product this omission may be a concern. As the estimates in column (5)

of Table D3 show, however, the slope and curvature estimates change little (relative to column (6)

of Table 2).

The number of plants The baseline model in Section 2 assumes a fixed number of firms for

tractability. In Supplementary Appendix S1.3 we present a version of the model with firm entry.

In this model extension, the estimating equation has an additional supply shifter on the right-hand

side because the number of varieties offered by firms affects the industries’ price through a love-

of-variety mechanism. Further, as we discuss in the appendix, the number of varieties could be

correlated with the instruments, and hence bias the estimation.

In column (6) we therefore add the percent change in the number of plants in an industry as

a control. This control has a significant coefficient, but the slope and curvature estimates barely

change. In unreported results, we have also added the percent change in the number of firms as a

control, but again the slope and curvature estimates hardly change.

Data on the number of plants and firms for this robustness check are from the Business Dynam-

ics Statistics (see US Census Bureau, 1978-2019). Since these data are only available from 1978

onwards, we replaced changes in the number of plants and firms with their respective unconditional

mean prior to 1978 for these robustness checks.

Higher order terms Our estimating equation (14) is a first order approximation around t − 1

values. Relative to an approximation around the steady state, the approximation around t−1 values

allows us to estimate the curvature of the supply curve with an interaction term (see discussion in

Section 2.5 and Figure 3). It is natural to ask whether our results are robust to the inclusion of

other higher order terms as controls.

Column (7) includes the square of the lagged utilization rate as a control and therefore better

controls for industries’ “initial position” on their supply curve. Doing so raises both the slope

and the curvature estimates. In additional specifications not reported here, we have added an

interaction term of the change in unit variable costs with the utilization rate, the square of the

change in capacity, and the square of the change in unit variable costs. Neither of these controls

has a meaningful impact on the slope and curvature estimates.

All controls Column (8) includes all controls simultaneously. In this specification the main effect

on output is 0.33 and the coefficient on the interaction term is 1.41.

Alternative price and quantity measures One potential concern with the estimates is that

there is a purely mechanical correlation between the price change on the left hand side and the

change in unit variable costs on the right hand side. In all specifications this far, the price index

has been constructed as an implicit deflator by dividing the market value of production by the
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index of industrial production, and the unit variable cost measure on the right hand side was

constructed by dividing variable costs by the index of industrial production. The common division

by industrial production could therefore induce a purely mechanical correlation. As column (1) in

Table D3 showed, the slope and curvature estimates are not driven by this correlation and increase

when unit variable costs are dropped from the regression. As an additional check, we use the price

index from the NBER-CES manufacturing industry database instead of our preferred implicit price

measure on the left hand side. We also replace our preferred quantity measure industrial production

with the production measure from the NBER-CES database. The estimates, reported in column

(9) of Table D3, both fall relative to the baseline estimates in column (6) of Table 2, but they

remain highly significant because their standard errors fall as well.

D.2.2 Nonparametric estimates

To ensure that our estimates are not driven by the assumption that the inverse supply elasticity

is linear in the utilization rate (see equation (15)), we next report nonparametric estimates. For

these nonparametric estimates, we group observations into four bins, defined by U1 = (−∞, pu15),

U2 = [pu15, p
u
50), U3 = [pu50, p

u
85), and U4 = [pu85,∞), where pu15, p

u
50, and pu85 denote the 15th, the 50th,

and the 85th percentile of ui,t−1 − ūi, respectively, and their values are pu15 = −0.065, pu50 = 0.009,

and pu85 = 0.061. We then estimate the specification

∆ lnP Y
i,t =

4∑
b=1

1 {ui,t−1 − ūi ∈ Ub} (βY,b∆ lnYi,t + βQ,b∆ lnQi,t + βu,b)

+ βUVC∆ lnUVCi,t + fixed effects + εi,t. (D1)

The coefficients of main interest are βY,b for b = 1, 2, 3, 4. These coefficients measure the respective

local inverse supply elasticity, that is, the elasticity of price P Y
i,t with respect to output Yi,t of

observations in bin b. The indicator function 1 {ui,t−1 − ūi ∈ Ub} is equal to one if an observation

ui,t−1 − ūi belongs to bin b and zero otherwise.

Table D4 shows the results. The inverse supply elasticity is 0.57 and highly significant in the

fourth utilization bin U4 and 0.12 and statistically insignificant in the lowest bin U1. Hence, for

a demand-induced increase in the quantity by one percent industry-year observations above the

85th percentile raise prices by approximately five times as much as observations below the 15th

percentile (0.573/0.116 = 4.95). Two other results in this table are noteworthy. First, the inverse

supply elasticity is monotonically increasing over the utilization bins, implying that the linearity

assumption we maintain for most of the paper is a reasonably good approximation. Second, and

consistent with the model, the estimated coefficients βQ,b are decreasing in the initial utilization

rate and broadly align with the estimated inverse supply elasticities in absolute value.

D.2.3 Inventories

Inventory holdings could pose two types of concerns for our empirical analysis. First, by holding

sufficient inventories, firms may decouple production from sales and thereby reduce the degree to

which capacity constraints affect pricing decisions. To the extent that this is the case, our esti-
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Dependent variable: ∆ lnPY
i,t

Bin U1 U2 U3 U4

ui,t−1−ūi<pu15 pu15≤ui,t−1−ūi<pu50 pu50≤ui,t−1−ūi<pu85 pu85≤ui,t−1−ūi

βY,b 0.12 0.28 0.31 0.57
(0.08) (0.10) (0.09) (0.14)

βQ,b -0.05 -0.20 -0.38 -0.56
(0.10) (0.10) (0.10) (0.17)

βu,b (omitted) 0.00 0.00 0.01
(0.00) (0.00) (0.01)

βUVC 0.89
(0.03)

R-squared 0.897

Notes: The 2SLS estimates are based on equation (D1) using the interactions of the WID and Shea’s instrument
with indicators of the utilization bins as instruments. The specification includes industry fixed effects, time fixed
effects, and time fixed effects interacted with industries’ lagged foreign sales share (

∑
j∈JF sj,i,t−1). p

u
15, p

u
50, and pu85

denote the 15th, the 50th, and the 85th percentile of ui,t−1 − ūi, respectively, and pu15 = −0.065, pu50 = 0.009, and
pu85 = 0.061. Driscoll-Kraay standard errors are reported in parentheses.

Table D4: Nonparametric estimates

mates this far indicate that capacity constraints generate convex supply curves despite the possible

presence of inventories. Second, and as discussed in Section 3.2, it is possible that industries’

inventory holdings are correlated with their capacity utilization. This could imply that our cur-

vature estimates are instead driven by inventory holdings and that we would incorrectly attribute

the estimated curvature to capacity utilization. We next explore the role of inventories in greater

detail.

Figure D1 shows a histogram of industry’s inventory holdings relative to annual production. The

histogram is based on the same sample as the estimation. For most industry-year observations,

inventories cover between one and two months worth of production. They rarely exceed three

months worth of production. Under the assumption that the goods held in stock match those

in higher demand, the figure suggests that industries may temporarily satisfy higher demand by

running down their inventories.

Table D5 shows correlations of the level and changes of inventory holdings with the utilization

rate. With a correlation coefficient of 0.01 the utilization rate and the level of inventory holdings

are essentially uncorrelated. This low correlation implies that our curvature estimates cannot be

driven by inventory holdings. The correlation of the utilization rate at time t with the change in

inventories from t− 1 to t is 0.43. Further, the correlation with the change in inventories from t to

t+1 is 0.12. These positive correlations indicate that industries tend to increase their inventories—

rather than running them down—when the utilization rate is high.2 It is therefore not clear whether

firms in practice use inventories to escape capacity constraints.

2That inventory investment is procyclical is well documented. Bils and Kahn (2000) offer an explanation based
on the assumption that inventories facilitate sales.
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Figure D1: Inventory holdings

Correlations

ui,t
Y inv
i,t

Yi,t

∆Y inv
i,t

Yi,t−1

∆Y inv
i,t+1

Yi,t

ui,t 1.00

Y inv
i,t

Yi,t
0.01 1.00

∆Y inv
i,t

Yi,t−1
0.43 0.07 1.00

∆Y inv
i,t+1

Yi,t
0.12 -0.06 0.10 1.00

Note: ui,t and
Y inv
i,t

Yi,t
are industry-demeaned.

Table D5: Utilization rates and inventories

We next turn to a number of robustness checks of our regression analysis. The starting point

for these checks is column (6) of Table 2, which estimates the slope and curvature of the supply

curve using the WID instrument, Shea’s instrument, and their interactions with the utilization

rate. In column (1) of Table D6, we include the industry-demeaned lag of inventory holdings

(Y inv
i,t−1/Yi,t−1 − Y inv

i /Yi) as a control. In column (2) we additionally include an interaction term

with the change in output. When doing so, we add interactions of the WID instrument and

Shea’s instrument with Y inv
i,t−1/Yi,t−1 − Y inv

i /Yi to the set of instruments. The objective of both

specifications is to trace out the slope and curvature of the supply curve, holding the initial level

of inventories constant. In both cases the estimates remain essentially unchanged. In column (3)

we further include the contemporaneous and lagged change in inventories as controls. Again, the

estimates are barely effected.

In column (4) of Table D6 we drop from the sample observations for which the initial level of

inventories exceeds two months worth of production. In this “low-inventory” sample, the slope and

curvature estimates are higher than in the full sample (column (6) of Table 2). While this finding is

qualitatively consistent with the view that inventories allow firms to reduce the frequency of hitting

their capacity constraints, the effect on the estimates is quantitatively small. Further, when we

instead drop observations with less than one month worth of inventories in column (5), the slope

and curvature also rise relative to the baseline (though less than in the low-inventory sample).3

3When we split the sample in the middle, the instruments are weak in both subsamples.
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Dependent variable: ∆ lnPY
i,t

(1) (2) (3) (4) (5)

Sample full full full Y inv
i,t−1/Yi,t−1 Y inv

i,t−1/Yi,t−1

≤ 2/12 ≥ 1/12

∆ lnYi,t · (ui,t−1 − ūi) 1.15 1.18 1.21 1.45 1.28

(0.29) (0.28) (0.27) (0.37) (0.28)

∆ lnYi,t 0.27 0.28 0.29 0.28 0.32

(0.07) (0.06) (0.06) (0.08) (0.07)

ui,t−1 − ūi 0.02 0.02 0.05 0.00 0.05

(0.04) (0.04) (0.04) (0.05) (0.05)

∆ lnQi,t -0.22 -0.23 -0.22 -0.22 -0.30

(0.09) (0.07) (0.07) (0.10) (0.09)

∆ lnQi,t · (ui,t−1 − ūi) -1.08 -1.08 -1.15 -1.09 -1.15

(0.42) (0.50) (0.48) (0.61) (0.46)

∆ lnUVCi,t 0.89 0.89 0.90 0.90 0.83

(0.03) (0.03) (0.03) (0.03) (0.05)

Y inv
i,t−1/Yi,t−1 − Y inv

i /Yi -0.03 -0.03 0.03

(0.08) (0.08) (0.08)

∆ lnYi,t ·
(
Y inv
i,t−1/Yi,t−1 − Y inv

i /Yi

)
-0.28 -0.36

(1.15) (1.17)

∆Y inv
i,t /Yi,t−1 0.14

(0.14)

∆Y inv
i,t−1/Yi,t−2 -0.43

(0.16)

R-squared 0.900 0.899 0.902 0.903 0.870

Fixed Effects yes yes yes yes yes

Observations 819 819 819 673 719

First stage and instrument diagnostics

F Main effect 24.52 21.16 21.35 13.87 24.69

F Interaction w/ ui,t−1 − ūi 43.25 27.71 24.88 26.01 38.19

F Interaction w/ Y inv
i,t−1/Yi,t−1 − Y inv

i /Yi 27.10 28.83

Cragg-Donald Wald F 9.29 6.61 7.59 8.53 7.72

SW F Main effect 43.60 37.40 27.85 21.56 53.42

SW F Interaction w/ ui,t−1 − ūi 49.93 33.99 50.36 48.18 55.28

SW F Interaction w/ Y inv
i,t−1/Yi,t−1 − Y inv

i /Yi 62.52 60.97

Hansen J (p-value) 0.768 0.812 0.924 0.544 0.839

Notes: The estimates are based on equation (16) using 2SLS with the WID and Shea’s instrument as well as

interactions of both with ui,t−1− ūi. The set of instruments for columns (2) and (3) further includes interactions

of the WID and Shea’s instrument with Y inv
i,t−1/Yi,t−1 − Y inv

i /Yi. Driscoll-Kraay standard errors are reported

in parentheses. Fixed effects include industry fixed effects, time fixed effects, and time fixed effects interacted

with industries’ lagged foreign sales share (
∑

j∈JF sj,i,t−1). F is the standard F-statistic. For details on the

Cragg-Donald statistic, see Cragg and Donald (1993) and Stock and Yogo (2005). SW F is the Sanderson and

Windmeijer (2016) conditional F-statistic.

Table D6: The role of inventories
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Dependent variable: ∆ lnPY
i,t

(1)

∆ lnY ship
i,t · (ui,t−1 − ūi) 1.12

(0.26)

∆ lnY ship
i,t 0.27

(0.07)

ui,t−1 − ūi 0.01
(0.04)

∆ lnQi,t -0.21
(0.07)

∆ lnQi,t · (ui,t−1 − ūi) -1.04
(0.44)

∆ lnUVCi,t 0.78
(0.04)

R-squared 0.904

Fixed Effects yes

Observations 819

First stage and instrument diagnostics

F Main effect 9.19

F Interaction 30.56

Cragg-Donald Wald F 4.53

SW F Main effect 8.41

SW F Interaction 7.74

Hansen J (p-value) 0.705

Notes: The estimates are based on equation (16) with ∆ lnY ship
i,t in place of ∆ lnYi,t, using 2SLS with the

WID and Shea’s instrument as well as interactions of both with ui,t−1 − ūi. Driscoll-Kraay standard errors are
reported in parentheses. Fixed effects include industry fixed effects, time fixed effects, and time fixed effects
interacted with industries’ lagged foreign sales share (

∑
j∈JF sj,i,t−1). F is the standard F-statistic. For details

on the Cragg-Donald statistic, see Cragg and Donald (1993) and Stock and Yogo (2005). SW F is the Sanderson
and Windmeijer (2016) conditional F-statistic.

Table D7: Shipments in place of production

Lastly, Table D7 reports estimates after replacing the change in production on the right-hand

side (∆ lnYi,t) with the change in shipments, denoted by ∆ lnY ship
i,t . Since the difference between

shipments and production is the change in inventories, that is, Yi,t + Y inv
i,t−1 = Y ship

i,t + Y inv
i,t , one

might expect the curvature estimates to be smaller in this case. While the curvature estimate indeed

drops, the decline relative to the baseline in column (6) of Table 2 is very small. In summary, neither

of these checks indicates that the presence of inventories affects our results or their interpretation

to a substantial degree.

D.2.4 The share of constrained capacity

We construct as an alternative utilization measure industry i’s capacity-weighted share of con-

strained plants,

usci,t =
∑
j∈Ji,t

ωqi,jt · 1 {ujt ≥ 0.95} , (D2)
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where j indexes plants, Ji,t is the set of plants in industry i, ujt is the plant-level capacity utilization

rate, and ωqi,jt is the sampling weight ωsjt multiplied by plant i’s capacity, qjt, divided by total

capacity in industry i, that is,

ωqi,jt =
ωsjtqjt∑

j∈Ji,t ω
s
jtqjt

.

For simplicity we also refer to usci,t as the industry’s share of constrained capacity.

All data come from the SPC or QSPC (see US Census Bureau, 1974-2006, 2007-2018). The

indicator function counts plants as capacity constrained if their capacity utilization exceeds 95

percent. This threshold is chosen below one for the following reasons. First, it aims to make

the utilization measure robust to measurement error in the plant-level utilization rate. Second, it

accommodates the possibility that firms begin raising their markup when approaching capacity and

not only when hitting the constraint. Third, this lower threshold increases the fraction of capacity

constrained plants, which, in turn, raises the precision of the estimates and helps with complying

with the disclosure rules of the US Census.

While this measure may better capture the model mechanism that the share of constrained

capacity in an industry drives the convexity of the supply curve, we note several limitations and

caveats with this measure. Because of these caveats we prefer to use the publicly available measures

of capacity and utilization for our baseline analysis.

First, data are missing or miscoded for some years (1972, 1973, 1974, 1975, 1998). Our census

project has no data for 1972 and 1973. While data for years the 1974 and 1975 is principally

available, it is not used, because the Longitudinal Business Database (LBD)—needed to match and

clean the data (see below)—is only available from 1976 onwards. The data for year 1998 appears

to be miscoded and is therefore not used (see also Gorodnichenko and Shapiro, 2011). Therefore,

while our baseline sample uses data from 1972 to 2011, our sample for this alternative utilization

measure ranges from 1976 to 2011 with the exception of year 1998. For some analyses below we

impute the missing values for usci,t − ūsci from ui,t − ūi using the regression equation

(
usci,t − ūsci

)
= α+ β (ui,t − ūi) + εi,t. (D3)

Second, in some cases the data from the QSPC and the SPC, that we have access to, appear to

be miscoded, for instance, because a variable might not be reported in thousands but in millions

of US dollars. To identify observations that are miscoded, we merge the utilization data with

the LBD (see US Census Bureau, 1976-2016), the Annual Survey of Manufacturers (ASM) (see

US Census Bureau, 1973-2016), and the Census of Manufacturers (CM) (see US Census Bureau,

1972-2012). We then compare the data on the market value of actual and full capacity production

from the QSPC and the SPC with the market value of production from the ASM and the CM and

to payroll from the LBD. We make adjustments if the reported data in the QSPC and SPC are

implausible. Since we cannot identify all cases of miscoding, plant capacity qjt is winsorized at the

10th and 90th percentile when constructing the weights ωqi,jt. The upper bound prevents individual

observations from exerting too much influence on the industry-level estimate and thus contains the
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role of measurement error. The lower bound ensures that information from small plants and plants

with capacity that is incorrectly reported too low is also used to a significant extent.

Third, the SPC, which is the source for constructing usci,t up to and including 2006, surveys plants

only in the fourth quarter of each year. Hence, we only use information from the fourth quarter

to measure the share of constrained capacity within an industry prior to year 2006. Data from the

QSPC is available in all quarters.

Fourth, both the SPC and QSPC are relatively small surveys. Recent vintages of the QSPC

sample approximately 7500 establishments, not all of which are in manufacturing industries. In

part due to non-response, sample sizes for estimating usci,t at the 3-digit NAICS level can therefore

be relatively small. (We use the longitudinally consistent NAICS codes from Fort and Klimek

(2018) to assign establishments to industries.)

Note that all of these points are less problematic for the publicly available data, because the

utilization rates are based on additional data sources. For instance, the utilization rates from the

FRB are based on industrial production data and to a lesser extent rely on the reported market

value of actual production from the SPC. Further, capacity is projected on a measure of the capital

stock, which removes measurement error, before constructing the utilization rates (for details, see

e.g., Gilbert et al. (2000) and https://www.federalreserve.gov/releases/g17/About.htm).4

Lastly, we note that when using the share of constrained capacity (equation (D2)) instead of our

baseline utilization measure, the relationship between the utilization rate, output, and capacity

(equation (12)) no longer holds.

With these caveats in mind, Figure D2 shows the time series of the share of constrained capacity

for all of manufacturing together with the publicly available utilization rate from the FRB (also the

manufacturing-wide aggregate, see Federal Reserve Board (1972-2020)). The share of constrained

capacity averages approximately 16 percent. The series is highly volatile, dropping below 10 per-

cent during the Volcker disinflation and exceeding 25 percent in the mid-90s. With a correlation

coefficient of 0.78 it correlates highly with our baseline utilization series from the FRB. When we

instead correlate the utilization rates from the FRB with the share of constrained capacity at the

3-digit NAICS level, the correlation coefficient is 0.56. We interpret this reduced correlation as

reflecting at least in part the increase in measurement error at the 3-digit industry level—due to

the smaller sample sizes.

Table D8 shows the estimates of the supply curve when we use the share of constrained capacity

instead of our baseline utilization measures from the FRB. We re-scale the share of constrained

capacity in these regressions so that this alternative utilization series has the same standard devi-

ation as our baseline utilization measure from the FRB and the reported coefficient estimates on

the interaction term of interest are comparable in magnitude. Column (1) shows the estimates for

our baseline set of controls on the sample from 1977-2011, excluding year 1998. Relative to our

baseline estimate from column (6) in Table 2, the coefficient on the interaction term increases to

1.75. The coefficient estimate remains similar at 1.67 when we additionally include the controls

from column (8) of Table D3. In columns (3) and (4) of Table D8 we repeat the estimation on the

4As discussed in Morin and Stevens (2004), the uncorrected survey data exhibit a “cyclical bias”.
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Notes: The figure plots the baseline utilization rate for all manufacturing industries (seasonally
adjusted) from the Federal Reserve Board together with our series of constrained capacity as con-
structed in equation (D2), but for the entire manufacturing sector. The share of constrained ca-
pacity is reported only for the fourth quarter (see text for details). Shaded areas represent NBER
recessions.

Figure D2: Comparison of utilization measures

full sample, imputing the missing data on the share of constrained capacity using equation (D3).

The estimates of interest rise slightly to 1.83 and 1.71. Taken together, these estimates based

on the share of constrained capacity are greater than the estimates obtained using the baseline

utilization measure. This may indicate that the curvature of industries’ supply curve is driven by

the share of constrained capacity rather than variation in the utilization rates of unconstrained

plants—consistent with our model in Section 2.

D.3 Ad-hoc estimation of the supply curve

In this appendix, we show the results from an ad-hoc estimation of the supply curve, which does

not use the guidance of the model in Section 2. To do so, we estimate the specification

∆ lnP Y
i,t = β0 + β1∆ lnYi,t + β2 (∆ lnYi,t)

2 + controls + εi,t, (D4)

using the WID and Shea’s instrument as well as their squares to address simultaneity.

The results are shown in Table D9. The key problem with using this ad-hoc specification is that

the first stage for the squared term is uniformly weak across all three specifications (F < 2). With

our instruments, it is therefore not possible to estimate the curvature of the supply curve reliably

without the structure of the model.
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Dependent variable: ∆ lnPY
i,t

Sample 1977-2011 except 1998 Full sample (1973-2011)†

(1) (2) (3) (4)

∆ lnYi,t ·
(
usc
i,t−1 − ūsc

i

)
1.75 1.67 1.83 1.71
(0.58) (0.54) (0.54) (0.49)

∆ lnYi,t 0.24 0.24 0.27 0.28
(0.07) (0.08) (0.07) (0.08)

usc
i,t−1 − ūsc

i 0.01 0.02 0.02 0.02
(0.02) (0.02) (0.02) (0.02)

∆ lnQi,t -0.15 -0.13 -0.18 -0.15
(0.07) (0.06) (0.07) (0.06)

∆ lnQi,t ·
(
usc
i,t−1 − ūsc

i

)
-1.77 -1.65 -1.74 -1.58
(0.85) (0.80) (0.82) (0.78)

∆ lnUVCi,t 0.87 0.86 0.89 0.87
(0.03) (0.03) (0.03) (0.02)

∆ lnPY
i,t+1 0.01 0.00

(0.03) (0.03)
∆ lnUNPWi,t 0.04 0.09

(0.07) (0.07)

∆ lnNplants
i,t -0.09 -0.10

(0.06) (0.06)

(ui,t−1 − ūi)
2 -0.10 -0.05

(0.20) (0.21)

R-squared 0.885 0.887 0.895 0.899

Observations (rounded) 700 700 800 800

First stage and instrument diagnostics

F Main effect 19.24 15.67 24.90 23.05

F Interaction 8.29 9.14 9.19 9.49

Cragg-Donald Wald F 8.44 10.91 9.66 13.41

SW F Main effect 23.22 25.52 32.69 36.27

SW F Interaction 8.87 10.90 11.34 12.46

Hansen J (p-value) 0.377 0.422 0.697 0.623

Notes: The 2SLS estimates are based on equation (16) using the WID and Shea’s instrument
as well as interactions of both with usc

i,t−1 − ūsc
i . ∆ lnUNPWi,t denotes the percent change in

nonproduction worker salaries and wages per unit of output. ∆ lnNplants
i,t is the percent change in

the number of plants within industry i. To ensure that the estimates in this table are comparable
in magnitude to our baseline estimates, we re-scale the share of constrained capacity so as to have
the same standard deviation as the demeaned utilization measure from the FRB. Driscoll-Kraay
standard errors are reported in parentheses. The number of observations is rounded to the closest
one hundred to comply with the disclosure rules of the US Census. All specifications include
industry fixed effects, time fixed effects, and time fixed effects interacted with industries’ lagged
foreign sales share (

∑
j∈JF sj,i,t−1). F is the standard F-statistic. For details on the Cragg-Donald

statistic, see Cragg and Donald (1993) and Stock and Yogo (2005). SW F is the Sanderson and
Windmeijer (2016) conditional F-statistic.
†: Missing utilization rates usc

i,t−1 − ūsc
i are imputed based on equation (D3).

Table D8: Robustness with alternative utilization measure

D.4 Testing the model’s coefficient restrictions

Our derived estimating equation (14) implies a number of coefficient restrictions, which we test in

this appendix. The tests are based on the specification reported at the top of Table D10, estimated
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Dependent variable: ∆ lnPY
i,t

Estimator 2SLS 2SLS 2SLS

Instrument(s):

Main effect WID, Shea

Squared term WID, Shea

(1) (2) (3)

∆ lnYi,t 0.63 0.18 0.21
(0.34) (0.09) (0.09)

(∆ lnYi,t)
2

0.12 -0.14 -0.12
(1.83) (0.69) (0.73)

∆ lnQi,t -0.14
(0.07)

∆ lnUVCi,t 0.89 0.89
(0.03) (0.03)

R-squared 0.419 0.908 0.909

Fixed Effects yes yes yes

First stage and instrument diagnostics

F Main effect 10.54 13.73 13.18

F Squared term 1.58 1.55 1.62

Cragg-Donald Wald F 2.53 2.53 2.49

SW F Main effect 2.56 2.49 2.31

SW F Squared term 1.52 1.52 1.55

Hansen J (p-value) 0.751 0.425 0.503

Notes: The 2SLS estimates are based on equation (D4) using the WID and Shea’s instrument as well as their squares
as instruments. Fixed effects include industry fixed effects, time fixed effects, and time fixed effects interacted with
industries’ lagged foreign sales share (

∑
j∈JF sj,i,t−1). Driscoll-Kraay standard errors are reported in parentheses.

F is the standard F-statistic. For details on the Cragg-Donald statistic, see Cragg and Donald (1993) and Stock
and Yogo (2005). SW F is the Sanderson and Windmeijer (2016) conditional F-statistic.

Table D9: Ad-hoc estimation

with 2SLS using the WID and Shea’s instrument as well as interactions of both with ui,t−1 − ūi

as instruments. The specification also includes industry fixed effects, time fixed effects, and time

fixed effects interacted with industries’ lagged foreign sales share. The associated point estimates

are reported in column (6) of Table 2.

The model’s restrictions are listed and tested individually in Panel A of Table D10. The model

predicts that the coefficients on output and capacity sum to zero—both for the main effect and for

the interaction with utilization. We cannot reject either null hypothesis. The model further predicts

that the coefficient on the utilization rate is zero. Again, we cannot reject the null hypothesis.

Lastly, the model predicts that the coefficient on the unit variable cost control is unity. This

null hypothesis is strongly rejected. When we test these restrictions jointly in Panel B, the null
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hypothesis is also rejected (joint test 1). We next drop the restriction that the coefficient on unit

variable costs is unity. In this case we cannot reject the null hypothesis (joint test 2).

The overall conclusion from these tests is that the model does well, except that the coefficient

on the unit variable cost control is too low. However, we do not view this as a major failing of

the model. A likely reason for this low coefficient is that we use unit variable cost as a proxy for

marginal cost. If doing so introduces classical measurement error, the coefficient is biased towards

zero.

Specification

∆ lnPY
i,t = α+ βY ∆ lnYi,t + βY u∆ lnYi,t · (ui,t−1 − ui) + βu (ui,t−1 − ui)

+βQ∆ lnQi,t + βQu∆ lnQi,t · (ui,t−1 − ui) + βUVC∆ lnUVCi,t + εi,t

Panel A: Individual tests

H0 : p-value

βY + βQ = 0 0.196

βY u + βQu = 0 0.858

βu = 0 0.628

βUVC = 1 0.000

Panel B: Joint tests

H0 : p-value

Joint test 1 0.000

βY + βQ = 0

βY u + βQu = 0

βu = 0
βUVC = 1

Joint test 2 0.272

βY + βQ = 0

βY u + βQu = 0

βu = 0

Note: As in column (6) of Table 2 the estimates are obtained via 2SLS with the WID and Shea’s
instrument as well as interactions of both with ui,t−1 − ūi as instruments, and include industry fixed
effects, time fixed effects, and time fixed effects interacted with industries’ lagged foreign sales share
(
∑

j∈JF sj,i,t−1). The reported tests are Wald tests and based on Driscoll-Kraay standard errors.

Table D10: Testing the model’s coefficient restrictions
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D.5 Heterogeneity

In this appendix we explore cross-industry heterogeneity in the slope and curvature of the supply

curve. We do so by assigning each industry to one of two groups and then estimate equation

(16) while allowing the two groups of industries to have different coefficients for all right-hand-side

variables except the fixed effects. The instruments are the WID and Shea’s instrument as well as

interactions of both with ui,t−1 − ūi. The coefficients on each instrument differ by industry group

in the first stage.

Column (1) in Table D11 shows a split by durability, where durability is defined as in the North

American Industry Classification System (NAICS), see Table A1. The differences in curvature be-

tween durable and nondurable goods producing industries are small and not statistically significant

(p = 0.525). In column (2) we split industries by average utilization rate. Again, there are no

significant differences in curvature between these two groups (p = 0.617). Supply curves slope up

and are convex in all groupings.

E Supply curve estimates as calibration targets

Using the notation from estimating equation (16), our baseline estimates are β̂Y = 0.27 and

β̂Y u = 1.17 (from column (6) of Table 2). Further, the average utilization rate in our sample is

ūi = 0.792. Equation (16) then implies that

M̂′ (ln ūi) = β̂Y = 0.27, (E1)

̂M′′ (ln ūi) = β̂Y u · ūi = 1.17 · 0.792 = 0.93. (E2)

Table E1 summarizes these and other selected estimates, including the baseline estimates with

bias correction (see Online Appendix B.6). The estimates in this table can be used as calibration

targets.

Our model In our model, these estimates can be plugged into the second order approximation

of supply curve (13) around the industry-specific steady state,

lnP Y
i,t − lnP Y

i = M′ (ln ūi) (lnui,t − ln ūi) +
1

2
M′′ (ln ūi) (lnui,t − ln ūi)

2 (E3)

+ ln (mci,t)− ln (mci) .

The inverse supply elasticity is

∂ lnP Y
i,t

∂ lnYi,t
= M′ (ln ūi) +M′′ (ln ūi) (lnui,t − ln ūi)

≈ M′ (ln ūi) +
M′′ (ln ūi)

ūi
(ui,t − ūi) .

Models without capacity In models without capacity, our estimates can still be used to inform

the slope and curvature of supply curves. Using the definition of the utilization rate (12), equation
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Dependent variable: ∆ lnPY
i,t

(1) (2)

By durability By average utilization rate

nondurable durable low high

∆ lnYi,t · (ui,t−1 − ūi) 1.10 0.78 1.16 0.87
(0.32) (0.40) (0.35) (0.46)

∆ lnYi,t 0.15 0.21 0.26 0.22
(0.07) (0.06) (0.09) (0.11)

ui,t−1 − ūi 0.05 -0.04 0.07 -0.01
(0.03) (0.04) (0.03) (0.06)

∆ lnQi,t -0.10 -0.13 -0.31 -0.11
(0.08) (0.08) (0.10) (0.15)

∆ lnQi,t · (ui,t−1 − ūi) -0.15 -1.15 -1.38 0.25
(0.76) (0.46) (0.53) (0.54)

∆ lnUVCi,t 0.86 0.94 0.80 0.92
(0.03) (0.03) (0.05) (0.02)

R-squared 0.907 0.906

Fixed Effects yes yes

First stage and instrument diagnostics

F Main effect 24.26 119.47 43.19 30.77

F Interaction 46.23 21.57 97.71 16.99

Cragg-Donald Wald F 7.61 4.57

SW F Main effect 58.38 80.80 57.22 20.90

SW F Interaction 113.50 25.15 67.82 20.73

Hansen J (p-value) 0.429 0.312

Notes: The 2SLS estimates are based on equation (16), but allow the two groups of industries to have different
coefficients for all right-hand-side variables except the fixed effects. The instruments are the WID and Shea’s in-
strument as well as interactions of both with ui,t−1 − ūi and an indicator for the category (nondurable/durable,
low/high average utilization). Durability is defined at the 3-digit NAICS level. Industries in the low/high utilization
groups are separated at the mean. Driscoll-Kraay standard errors are reported in parentheses. Fixed effects include
industry fixed effects, time fixed effects, and time fixed effects interacted with industries’ lagged foreign sales share
(
∑

j∈JF sj,i,t−1). F is the standard F-statistic. For details on the Cragg-Donald statistic, see Cragg and Donald
(1993) and Stock and Yogo (2005). SW F is the Sanderson and Windmeijer (2016) conditional F-statistic.

Table D11: Heterogeneity

(E3) can be rewritten as

lnP Y
i,t − lnP Y

i = M′ (ln ūi) (lnYi,t − lnYi) +
1

2
M′′ (ln ūi) (lnYi,t − lnYi)

2

−M′′ (ln ūi) (lnYi,t − lnYi) (lnQi,t − lnQi)

−M′ (ln ūi) (lnQi,t − lnQi) +
1

2
M′′ (ln ūi) (lnQi,t − lnQi)

2
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Estimate M̂′ (ln ūi) ̂M′′ (ln ūi)

Baseline (from column (6) of Table 2) 0.27 0.93

With additional controls (from column (8) of Table D3) 0.33 1.12

Baseline with bias correction (using equations (B29) and (B30)) 0.35 1.71

Table E1: Calibration targets

+ ln (mci,t)− ln (mci) .

In the short run, a reasonable assumption is to hold industries’ capacity fixed at the steady state

level so that lnQi,t = lnQi. Then the above expression simplifies to

lnP Y
i,t − lnP Y

i = M′ (ln ūi) (lnYi,t − lnYi) +
1

2
M′′ (ln ūi) (lnYi,t − lnYi)

2 (E4)

+ ln (mci,t)− ln (mci) .

Alternatively, it may be convenient to directly target the inverse supply elasticity as a function of

output,
∂ lnP Y

i,t

∂ lnYi,t
= M′ (ln ūi) +M′′ (ln ūi) (lnYi,t − lnYi) . (E5)

The analogues of equations (E4) and (E5) in models without capacity depend on whether the

model in question features capital accumulation. In models without endogenous capital accumula-

tion, these two equations are simply the supply curve and the inverse supply elasticity. In models

with capital accumulation, the assumption of holding capacity fixed corresponds to an assumption

of holding capital fixed. Hence, in models with capital accumulation equation (E4) corresponds the

short-run supply curve for a fixed capital stock. Further, equation (E5) corresponds to the inverse

supply elasticity, holding the capital stock fixed.

Our baseline estimates (E1) and (E2) then imply that the inverse supply elasticity is 0.27 when

output is at its steady state level. Further, a one percent increase in output raises the inverse

supply elasticity by approximately 0.0093. These numbers imply that the inverse supply elasticity

is approximately 0.177 when output is 10 percent below its steady state and approximately 0.363

when output is 10 percent above its steady state. For the other two estimates in Table E1 the

inverse supply elasticity varies more with the level of output. Figure E1 depicts the inverse supply

elasticity and the second order approximation of the supply curve as functions of output.
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