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A Rejection probabilities using the t-ratio

A.1 Notation for Appendix
This appendix collects proofs of the results claimed in the text. In the interest
of being self-contained, we recapitulate our general notation. For a representative
observation, the model is

Y = Xb +u
X = Zp + v

for an outcome Y , a single endogenous regressor X , and a single instrument Z.
While suppressed, the model above allows for constants and covariates, as long as
we interpret the triple (X ,Y,Z) as the residuals from a regression on any covariates
W and a constant.48

The IV estimator itself is bb = Z0Y/Z0X, where bold denotes a vector, the first-
stage estimator is bp = Z0X/Z0Z, and the reduced-form estimator is cpb = Z0Y/Z0Z.
Note that we write the reduced-form coefficient as cpb because the reduced-form
coefficient is numerically equal to the product of bp and bb . The IV fitted residual
is bu = Y �X bb , and we analogously write bv and be for the fitted residual from the
first-stage and reduced-form regressions; we denote population analogues by v and
e , respectively.

Throughout we will be examining HAC variance estimators. Consider, for ex-
ample, the first-stage estimated variance, given by

bVN(bp) = (Z0Z)�1bV (Zbv)(Z0Z)�1 =
bV (Zbv)
(Z0Z)2

In the display above, we are using the notation bVN(·) to convey the estimated vari-
ance for a parameter. In contrast, we write bV (Zbv) (without a subscript of N) as a uni-
fying notation for the “meat” of the sandwich variance estimator in order to cover
the multitude of approaches to variance estimation encountered in applications:
homoskedastic standard errors, heteroskedasticity-robust standard errors, clustered
standard errors, two-way clustered standard errors, time-series approaches such as

48Algebra and the partitioned inverse theorem shows that ignoring covariates and constants
leaves point estimates and fitted residuals (and thus variance estimators) the same, as long as we
reinterpret the trio (X ,Y,Z) as the residuals from a regression of each of them on W . This is a simple
extension of the same point made in the regression context by Theorem 4.1 of Lovell (1963) and is
an application of Theorem 6.1 of Newey and McFadden (1994).
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Newey-West (1987), or yet other HAC approaches.49 Moreover, and slightly less
standardly, we will use a similar notation for covariance.

Beginning with Lemma 6, below, we will invoke three high-level assumptions
that we now state.

Assumption 1 (Asymptotically Finite First-Stage). pN
p

Z0Z p�! pZZ.

Note that in the main text, we wrote the true first stage parameter as p , but here
we clarify that in a weak IV framework, the asymptotic sequence is one in which
the parameter p shrinks towards zero. In this appendix, we clarify this with notation
by writing pN , where the parameter sequence satisfies Assumption 1.

Assumption 2 (Asymptotic Normality). 1p
Z0Z

✓
Z0e
Z0v

◆
d�!N(0,S), with S⌘

✓
s2

e sev
sev s2

v

◆
.

Assumption 2 is sufficient to imply that the first-stage and reduced-form esti-
mators are consistent and asymptotically normal.

Assumption 3 (Consistent Variance and Covariance Estimators).

bV (Zbe)/N �V
⇣

Z0e/
p

N
⌘

p�! 0

bV (Zbv)/N �V
⇣

Z0v/
p

N
⌘

p�! 0

bC(Zbe,Zbv)/N �C
⇣

Z0e/
p

N,Z0v/
p

N
⌘

p�! 0

49For example, if the variance matrix of the errors is taken to be spherical, we would use

bV (Zbv) = bs2

 

Â
i

Z2
i

!

where bs2 = 1
N Âi bv2

i , and the sum is over the data. In contrast, if the errors were taken to be het-
eroskedastic, then we would use

bV (Zbv) = Â
i

Z2
i bv2

i

If a clustered approach is taken, with groups indexed by j and observations within group indexed by
i, we would instead use

bV (Zbv) = Â
j

Z jbv jbv0jZ0
j

where Z j is the stack of instruments for group j, bv j is the stack of estimated residuals for group
j, and the sum is over the clusters j. For two-way clustering (e.g., Cameron, Gelbach, and Miller
2011) or time-series approaches (e.g., Newey-West 1987), the results are mutatis mutandis.
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Assumption 3 simply states that the variance estimators being employed are
consistent.

A.2 Relationship between IV and reduced-form variance esti-
mators

Lemma 1 (Relationship Between IV and Reduced-Form Variance Estimators).

bVN(b̂ ) =
1
bp2

n
bVN(cpb )�2bb bCN(cpb , bp )+ bb 2bVN(bp)

o

PROOF: In the just-identified case with a single endogenous regressor, the stan-
dard formula for the estimated IV variance reduces so that

bVN(b̂ ) = (Z0X)�1bV (Zbu)(X0Z)�1 = bV (Zbu)
�
(Z0X)2

Similarly, the estimated variances and covariances for the reduced-form coefficient
cpb and the first-stage coefficient bp are given by

bVN(cpb ) = bV (Zbe)/(Z0Z)2

bVN(bp) = bV (Zbv)/(Z0Z)2

bCN(cpb , bp) = bC(Zbe,Zbv)/(Z0Z)2

where be ⌘ Y � Zcpb and bv ⌘ X � Zbp are the reduced-form and first-stage fitted
residuals, respectively. For a representative observation we have be = Y � X bb +

X bb � Zcpb = û+ v̂b̂ , and since bb does not vary by observation, we have bubu0 =
bebe 0 � 2bbbebv0 + bb 2bvbv0 which in turn implies that the middle factors of the various
sandwich variance estimates are all functionally related:

bV (Zbu) = bV (Zbe)�2bb bC(Zbe,Zbv)+ bb 2bV (Zbv)

Putting these results together, we see that

bp2bVN(bb ) =

✓
Z0X
Z0Z

◆2
bVN(bb ) =

bV (Zbu)
(Z0Z)2 =

bV (Zbe)
(Z0Z)2 �2bb

bC(Zbe,Zbv)
(Z0Z)2 + bb 2

bV (Zbv)
(Z0Z)2

= bVN(cpb )�2bb bCN(cpb , bp)+ bb 2bVN(bp)
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and the result follows after dividing both sides of the above by bp2. ⇥
Lemma 2 (t-test for IV).

t̂ ⌘ t̂(b0) =
bb �b0

ŝe(b̂ )
=

|bp|(bb �b0)q
V̂N(cpb )�2b̂ĈN(cpb , p̂)+ bb 2V̂N(p̂)

where ŝe(·) =
q
bVN(·) is notation for the estimated standard error of a parameter.

PROOF: The result follows immediately from Lemma 1. ⇥
Remark (Dependence on b0). Note that while we follow standard econometric
practice and write t̂ for the estimated t-statistic, it is, of course, true that the t-
statistic depends on the parameter value being tested (i.e., b0). For statistics other
than the t-statistic, we will emphasize dependence on b0 by writing them as func-
tions of b0. Note that in our notation, b0 is not necessarily the true parameter value
but could also be a hypothesized—but false—parameter value (i.e., there is no rea-
son to assume b = b0).

Remark (Form of the F statistic). In the just-identified context, we have

bF ⌘
bp2

bV (bp)
=

�
(Z0Z)�1Z0X

�2

(Z0Z)�1bV (Zbv)(Z0Z)�1
=

(Z0X)2

bV (Zbv)

and

bf =
bpq
bV (bp)

=
Z0Xq
bV (Zbv)

where bf is the signed t-test on the exclusion of the instrument in the first-stage
regression. Note that in this context bF is the same as the “effective F statistic”
described in Olea and Pflueger (2013).

A.3 t-ratio form of Anderson-Rubin statistic
Lemma 3 (Similarity of the AR-statistic and the t-statistic). The AR test statistic
can be written in a form that is similar to the formula for the t-statistic for the
structural parameter, but with a variance estimator that imposes the null:

t̂AR(b0) =
bp(bb �b0)

ŝe(bp(bb �b0))
=

bp(bb �b0)q
bVN(cpb )�2b0 bCN(cpb , bp)+b 2

0
bVN(bp)
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PROOF: This result is related to Proposition 2 of Van de Sijpe and Windmei-
jer (2021) and was noted previously in Theorem 5 of Feir, Lemieux and Marmer
(2016). For the former, the result is a special case; for the latter the proof is omitted.
In our context, the result follows straightforwardly because for any given approach
to variance estimation, the AR test of the null hypothesis b = b0 can be obtained
by: (1) forming the residual u0 = Y �Xb0, (2) regressing u0 on Z, and (3) using
an F test to test the null hypothesis that the coefficient on Z in that regression is
zero, where the F test adopts the desired approach to inference for the original IV
model.50

This gives rise to concepts of the AR coefficient and the AR standard error, by
which we mean simply the coefficient and standard error from the regression in that
third step, respectively. Consider each in turn. The AR coefficient is

Z0(Y�Xb0)

Z0Z
= cpb � bpb0 = bp(bb �b0)

where the last result follows since the reduced-form coefficient cpb is the product
of the first-stage coefficient bp and the estimated structural parameter bb . The AR
standard error can be thought of in two ways. First, and more standardly, let bu0
denote the fitted AR regression residual. Then the estimated AR standard error is
the square root of

(Z0Z)�1bV (Zbu0)(Z0Z)�1 =
bV (Zbu0)

(Z0Z)2

Second, since the AR coefficient is a linear combination of the reduced-form and
first-stage coefficients, as shown above, it is the square root of

bVN(cpb )�2b0 bCN(cpb , bp)+b 2
0 bVN(bp)

The lemma follows from the second result. We will use the first characterization of
the AR standard error in Lemma 4 below. ⇥

In light of Lemmas 2 and 3, it is not surprising that there is a numerical equiv-
alence allowing one to obtain t̂ from t̂AR(b0) and other quantities, the subject to
which we turn next.

50If covariates are part of the model, then the degrees of freedom for the F test should be adjusted
to reflect the dimension of the covariates W that were partialled out in the first step.
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A.4 From t̂AR(b0) to t̂

Lemma 4 (Dependence of t̂ on t̂AR(b0), br(b0) and bf ).

t̂2 =
t̂2
AR(b0)

1�2br(b0)
t̂AR(b0)

bf
+

t̂2
AR(b0)
bf 2

where

br(b0)⌘
bC(Zbu0,Zbv)q

bV (Zbu0)
q
bV (Zbv)

and as emphasized in the second remark after Lemma 1, bf is the t-ratio test on the
exclusion of the instrument in the first-stage regression, i.e., bF = bf 2.

PROOF: We first note that the IV or structural residual combines the AR regres-
sion residual û0 with the first-stage residual v̂. To see this, recall that the outcome
for the AR regression is u0 =Y �Xb0 and observe that the AR regression’s predicted
value is Zbp(bb �b0). But then

bu0 = Y �Xb0 �Zbp(bb �b0)

Then add and subtract Xb0 and Zbp(bb �b0) from the IV residual bu to obtain

bu = Y �X bb = Y �X bb +Xb0 �Xb0 +Zbp(bb �b0)�Zbp(bb �b0)

= bu0 �bv(bb �b0)

As in the proof of Lemma 1, and for the same reasons, we can use the result above
to re-write the meat of the IV variance estimate:

bV (Zbu) = bV (Zbu0)�2(bb �b0)bC(Zbu0,Zbv)+(bb �b0)
2bV (Zbu0)

Next, note that t̂2 and t̂2
AR(b0) differ only to the extent bV (Zbu) and bV (Zbu0) differ:

t̂2 =
(bb �b0)2

bV (Zbu)/(Z0X)2

t̂2
AR(b0) =

bp2(bb �b0)2

bV (Zbu0)/(Z0Z)2
=

(bb �b0)2

bV (Zbu0)/(Z0X)2
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Then, using the above result on bV (Zbu), we obtain

t̂2

t̂2
AR(b0)

=
bV (Zbu0)
bV (Zbu)

=
bV (Zbu0)

bV (Zbu0)�2(bb �b0)bC(Zbu0,Zbv)+(bb �b0)2bV (Zbv)

=
1

1�2br(b0)(bb �b0)

r
bV (Zbv)
bV (Zbu0)

+ (bb �b0)2 bV (Zbv)
bV (Zbu0)

Finally, note that

t̂AR(b0)
bf

=
bp(bb �b0)q
bV (Zbu0)

.
(Z0Z)

q
bV (Zbv)

.
(Z0Z)

bp = (bb �b0)

s
bV (Zbv)
bV (Zbu0)

and the result follows. ⇥

A.5 From t̂ to t̂2
AR

Lemma 5 (Dependence of t̂AR on t̂, ber , and bF).

t̂2
AR =

t̂2

1+2ber t̂p
bF
+ t̂2

bF

where

ber =
bC(Zbu,Zbv)q

bV (Zbu)
q
bV (Zbv)

PROOF: The proof is similar to that of Lemma 4, but with some subtle dif-
ferences. First, as in Lemma 4 we have bu0 = bu+ (bb � b0)bv, which allows us to
decompose bV (Zbu0), yielding

t̂2
AR(b0)

t̂2 =
bV (Zbu)
bV (Zbu0)

=
bV (Zbu)

bV (Zbu)+2(bb �b0)bC(Zbu,Zbv)+(bb �b0)2bV (Zbv)
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The result follows after dividing top and bottom by bV (Zbu) and recognizing that

t̂p
bF

=
⇣
bb �b0

⌘
s

bV (Zbv)
bV (Zbu)

Note that unlike Lemma 4, the dependence is 1) on bF as opposed to bf and 2) on
the (generalized) correlation between the IV residual and the first-stage residual, as
opposed to the (generalized) correlation between the AR residual and the first-stage
residual. ⇥

A.6 Rejection probabilities for tests based on t-ratio
We next derive an asymptotic version of Lemma 3.

Lemma 6 (Limiting Distribution of t̂2 Under Weak IV Asymptotics). Under As-
sumptions 1, 2, and 3, we have

t̂2 d�!
t2
AR(b0)

1�2r(b0)
tAR(b0)

f +
t2
AR(b0)

f 2

⌘ t2(b0)

where

r(b0) = limN!•
C
� 1

N Z0u0,
1
N Z0v

�
q

V
� 1

N Z0u0
�q

V
� 1

N Z0v
�

and tAR(b0) and f are distributed jointly normal with unit variances, correlation
r(b0), and means that are given below.

PROOF: We will show that regardless of whether b0 is the true parameter or not,
 

t̂AR(b0)
bf

!
d�!

 
tAR(b0)

f

!
⇠ N

 
f0

 D(b0)p
1+2r(b0)D(b0)+D2(b0)

1

!
,

 
1 r(b0)

r(b0) 1

!!

where

D(b0) = (b �b0)

p
s2

vp
s2

e �2bsev +b 2s2
v

f0 =
pZZp

s2
v

10



from which the result follows.
Since e = u+ vb , the AR outcome u0 = Y �Xb0 can be written as

u0 = Xb +u�Xb0 = (Zp + v)(b �b0)+u = Zp(b �b0)+ v(b �b0)+ e � vb
= Zp(b �b0)+ e � vb0

which means the AR coefficient is given by

(Z0Z)�1Z0u0 = (Z0Z)�1Z0 ⇥Z0pN(b �b0)+ e �vb0
⇤

= p(b �b0)+(Z0Z)�1Z0 (e �b0v)

The AR standard error is the square root of the estimated variance of the above, i.e.:

(Z0Z)�1bV
⇣
(Z0Z)�1/2Z0(e �b0v)

⌘
= (Z0Z)�1 �bs2

e �2b0bsev +b 2
0 bs2

v
�

and therefore from Assumption 1 the AR statistic is given by

t̂AR(b0) =
pN(b �b0)+(Z0Z)�1Z0 (e �b0v)q

(Z0Z)�1
�
bs2

e �2b0bsev +b 2
0 bs2

v
�

=
pZZ(b �b0)q

s2
e �2b0sev +b 2

0 s2
v

+
(Z0Z)�1/2Z0 (e �b0v)q
bs2

e �2b0bsev +b 2
0 bs2

v

+op(1)

Similarly,

bf =
(Z0Z)�1Z0Xq

(Z0Z)�1bV (Zbv)(Z0Z)�1
=

(Z0Z)�1Z0(Z0pN + v)q
(Z0Z)�1bV ((Z0Z)�1/2Zbv)

=
(Z0Z)�1/2Z0(Z0pN + v)p

bs2
v

Some algebra shows that

C
⇣

t̂AR(b0), bf
⌘

=
sev �b0s2

v
p

s2
v

q
s2

e �2b0sev +b 2
0 s2

v

+op(1)

and that the first term in the above is equal to r(b0).
Putting these results together, we have

 
t̂AR(b0)� f0

D(b0)
1+2r(b0)D(b0)+D2(b0)
bf � f0

!
=

0

B@
(Z0Z)�1/2Z0(e�b0v)p
bs2

e �2b0bsev+b 2
0 bs2

v
(Z0Z)�1/2Z0vp

bs2
v

1

CA+op(1)
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Figure A1: Combinations of E[F ], r for Pr[t2 > 2.5762] 0.01
�

��
∞

(>
)@

� �� �� �� �� �
ρ

5HMHFWLRQ�SUREDELOLW\�≤���� ρ� �������

Vertical axis scale uses the transformation E[F ]/10
1+E[F ]/10 . Shaded region represents all combinations of

E[F ],r such that the rejection probability is less than or equal to 0.01. Dashed line is the maximum
r such that the region to the left is shaded.

and joint asymptotic normality of (t̂AR(b0), bf ) of the stated form follows from As-
sumptions 1, 2, and 3 and the continuous mapping theorem. ⇥

A.7 Some numerical findings and other results derived from the
rejection probabilities

Result 1a. In addition to the IV model in (1), consider the restriction that E [F ]� F̄ .
The smallest value of F̄ such that Pr

⇥
t2 > 1.962⇤ 0.05 is 142.6 .

Result 1b. In addition to the IV model in (1), consider the restriction that |r|< r̄ .
The largest value of r̄ such that Pr

⇥
t2 > 1.962⇤ 0.05 is 0.565.

Result 1c. For the 1 percent level of significance, there exists no F̄ such that
Pr
⇥
t2 > 2.5762⇤ 0.01 for all E [F ]� F̄ , and the largest r̄ such that Pr

⇥
t2 > 2.5762⇤
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0.01 for all |r| r̄ is 0.43. The full set of values of |r| ,E [F ] for which Pr
⇥
t2 > 2.5762⇤

0.01 is illustrated in Figure A1.

Result 2a. Pr
⇥�

t2 > 1.962 \{F > 10}
⇤
 0.113 for all values of r,E [F ]. This

implies that confidence intervals are b̂IV ±1.96 · ˆSE
⇣

b̂IV

⌘
when F � 10 and (�•,•)

when F < 10, and should be interpreted as 88.7 percent confidence intervals.

Result 2b. Pr
⇥�

t2 > 1.962 \{F � 104.7}
⇤
 0.05 for all values of r,E [F ].

Result 2c. Pr
⇥�

t2 > 3.432 \{F > 10}
⇤
 0.05 for all values of r,E [F ].

Result 2d. Let AR be the statistic of There exists no finite threshold F̄ such that
Pr
⇥�

t2 > 1.962 \{F � F̄}
⇤
+Pr

⇥�
AR > 1.962 \{F < F̄}

⇤
 0.05 for all values

of r,E [F ].

Derivation of Results 1a-b-c, 2a-b-c-d:

Recall

t2( f , tAR) =
f 2t2

AR
f 2 �2r0 f tAR + t2

AR

Lemma 7. For r0 =±1, suppose f = f ⇤0 +r0tAR. Then, for q > 0,

{tAR : t2( f ⇤0 +r0tAR, tAR)� q}=

8
>><

>>:

(�•,
¯
f ⇤A][ [ f̄ ⇤A,•) if | f ⇤0 |< 4pq

(�•,
¯
f ⇤A][{�r0 f ⇤0

2 }[ [ f̄ ⇤A,•) if | f ⇤0 |= 4pq

(�•,
¯
f ⇤A][ [

¯
f ⇤B, f̄ ⇤B][ [ f̄ ⇤A,•) if | f ⇤0 |> 4pq

where

¯
f ⇤A =

�r0 f ⇤0 �
q

f ⇤2
0 +4| f ⇤0 |

pq

2
; f̄ ⇤A =

�r0 f ⇤0 +
q

f ⇤2
0 +4| f ⇤0 |

pq

2

¯
f ⇤B =

�r0 f ⇤0 �
q

f ⇤2
0 �4| f ⇤0 |

pq

2
; f̄ ⇤B =

�r0 f ⇤0 +
q

f ⇤2
0 �4| f ⇤0 |

pq

2

PROOF:
t2( f ⇤0 +r0tAR, tAR) =

1
f ⇤2
0

(r0 f ⇤0 + tAR)
2t2

AR

13



Let t = min{�r0 f ⇤0 ,0} and t̄ = max{�r0 f ⇤0 ,0}. Note t2( f ⇤0 +r0tAR, tAR) is a quar-
tic polynomial, monotonically decreasing on (�•,t) and (�r0 f ⇤0

2 , t̄) and monoton-
ically increasing on (t,� f0

2 ) and (t̄,•). So the solutions to t2( f ⇤0 +r0tAR, tAR) = q
are as follows:

{tAR : t2( f ⇤0 +r0tAR, tAR) = q} =

8
>><

>>:

{
¯
f ⇤A, f̄ ⇤A} if | f ⇤0 |< 4pq

{
¯
f ⇤A, f̄ ⇤A,�

r0 f ⇤0
2 } if | f ⇤0 |= 4pq

{
¯
f ⇤A, f̄ ⇤A, ¯

f ⇤B, f̄ ⇤B} if | f ⇤0 |> 4pq

The result follows. ⇥

Remarks:

1. This result characterizes the rejection region for Wald when r0 = ±1 under
the null and alternative.

2. Our asymptotic approximation is based on:
✓

tAR
f

◆
⇠N

✓✓
t1
f0

◆
,

✓
1 r0
r0 1

◆◆

When r0 = ±1, f = f0 �r0t1 +r0tAR. So, Lemma 7 can be used to charac-
terize the corresponding Wald rejection region with f ⇤0 = f0�r0t1. Note that
under the null, t1 = 0 and f ⇤0 = f0.

3. Under the null, f ⇤0 = f0, so define

¯
fA =

�r0 f0 �
q

f 2
0 +4| f0|

pq

2
; f̄A =

�r0 f0 +
q

f 2
0 +4| f0|

pq

2

¯
fB =

�r0 f0 �
q

f 2
0 �4| f0|

pq

2
; f̄B =

�r0 f0 +
q

f 2
0 �4| f0|

pq

2

Then,

Pr f0,r0=±1(t2 � q)=

(
F(

¯
fA)+1�F( f̄A) if | f0| 4pq

F(
¯
fA)+1�F( f̄A)+F( f̄B)�F(

¯
fB) if | f0|> 4pq

where F denotes the standard normal c.d.f.

4. This result can also be used to characterize {tAR : t2 � q, f 2 � F̄} by inter-
secting the set given with (�•,�

p
F̄ �r0 f ⇤0 ][ [

p
F̄ �r0 f ⇤0 ,•).
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Corollary 1. Under the null,

(a) Pr f0,r0=1(t2 � q, f 2 � F̄) = Pr� f0,r0=�1(t2 � q, f 2 � F̄) = Pr� f0,r0=1(t2 �
q, f 2 � F̄)

(b) lim f0#0 Pr f0,r0=1(t2 � q, f 2 � F̄) = 1� [F(
p

F̄)�F(�
p

F̄)]

(c) lim f0�!• Pr f0,r0=1(t2 � q, f 2 � F̄) = 1� [F(
pq)�F(�pq)]

PROOF:
(a) Subscripting t with r0 to denote its direct dependence on r0, note that t2

r0
( f ⇤0 +

r0tAR, tAR)= t2
�r0

(�( f ⇤0 +r0tAR), tAR)= t2
�r0

(� f ⇤0 +(�r0)tAR), tAR) and f 2 =( f ⇤0 +
r0tAR)2 = (� f ⇤0 +(�r0)tAR)2. The first equality follows.
Next, t2

r0
( f ⇤0 +r0tAR, tAR) = t2

r0
(� f ⇤0 +r0(�tAR),(�tAR)) and f 2 = ( f ⇤0 +r0tAR)2 =

(� f ⇤0 +r0(�tAR))2. Under the null, t1 = 0 and tAR ⇠ N(0,1) is symmetrically dis-
tributed about zero. The second equality follows.

(b) Note that
¯
fA, f̄A �! 0 as f0 �! 0. The result follows.

(c)

f̄A =
�r0 f0 +

q
f 2
0 +4| f0|

pq

2

0

@
r0 f0 +

q
f 2
0 +4| f0|

pq

r0 f0 +
q

f 2
0 +4| f0|

pq

1

A =
2pq

r0
f0
| f0| +

q
1+ 4pq

| f0|

Hence, limr0=1, f0�!• f̄A =
pq. Similarly, limr0=1, f0�!•

¯
fA =�•; limr0=1, f0�!• f̄B =

�pq; limr0=1, f0�!•
¯
fB = �•. When r0 = 1, as f0 �! •,

p
F̄ � f0 �! �•, so

that the rejection probability is determined by f̄A and f̄B asymptotically. Result (c)
follows. ⇥

Remarks:

1. Note that results on rejection probabilities for Wald follow setting F̄ = 0,
Pr f0,r0(t

2 � q) = Pr f0,r0(t
2 � q, f 2 � 0).

2. By part (a), under the null, to characterize Pr f0,r0=±1(t2 � q, f 2 � F̄), it suf-
fices to focus on the case where r0 = 1 and f0 � 0.

3. From (b), by choosing F̄ close to zero, the worst case rejection probability
for {t2 � q, f 2 � F̄} is arbitrarily close to one.

4. By parts (a) and (b), lim f0�!0 Pr f0,r0=±1(t2 � q) = 1
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Corollary 2. Under the null, there exists f̄0 > 0 large enough that for any f0 > f̄0,

(a) if q < 4, then
∂

∂ f0
Pr f0,r0=1(t2 � q, f 2 � F̄)> 0;

(b) if q > 4, then
∂

∂ f0
Pr f0,r0=1(t2 � q, f 2 � F̄)< 0.

PROOF:
Set r0 = 1. As f0 �! •, Pr f0,r0=1(t2 � q) = F(

¯
fA)+1�F( f̄A)+F( f̄B)�F(

¯
fB).

Define v = 1
f0

. So v # 0 as f0 �! •. From the Proof of Lemma 1, for f0 > 0, we

have f̄A =
2pq

1+
p

1+4vpq
. Similarly, f̄B =

�2pq
1+
p

1�4vpq
.

∂ f̄A

∂v
=

�4q
(1+

p
1+4vpq)2

p
1+4vpq

;
∂ f̄B

∂v
=

�4q
(1+

p
1�4vpq)2

p
1�4vpq

Let w = 4vpq.

∂
∂v

⇥
1�F( f̄A)+F( f̄B)

⇤
= f( f̄B)

∂ f̄B

∂v
�f( f̄A)

∂ f̄A

∂v

= f( f̄B)
∂ f̄B

∂v

"
1�

(1+
p

1�4vpq)2p1�4vpq
(1+

p
1+4vpq)2

p
1+4vpq

f( f̄A)

f( f̄B)

#

= �f( f̄B)

����
∂ f̄B

∂v

����


1� (1+

p
1�w)2p1�w

(1+
p

1+w)2
p

1+w
exp

✓
2q


�1
(1+

p
1+w)2

+
1

(1+
p

1�w)2

�◆�

Using a first-order expansion of the bracketed term in the final expression above,
we find that as w # 0,

∂
∂v

⇥
1�F( f̄A)+F( f̄B)

⇤
= �f( f̄B)

����
∂ f̄B

∂v

����
⇥
(4�q)2v

p
q + o(v)

⇤

=
⇥
(q�4)2v

p
q + o(v)

⇤
·f( f̄B)

����
∂ f̄B

∂v

����

Notice from the Proof of Lemma 1, limr0=1, f0�!•
¯
fA = limr0=1, f0�!•

¯
fB = �•.

Correspondingly, it is straightforward to show that the terms F(
¯
fA) and F(

¯
fB) do

not have a first-order effect on the derivative above (for cases r0 = 1 and f0 �! •,
or r0 =�1 and f0 �!�•).
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So, under the null, for q 6= 4, as f0 �! •,

∂
∂ f0

Pr f0,r0=1(t2 � q) =
∂

∂ f0

⇥
F(

¯
fA)+1�F( f̄A)+F( f̄B)�F(

¯
fB)

⇤

= � 1
f 2
0

∂
∂v

⇥
F(

¯
fA)+1�F( f̄A)+F( f̄B)�F(

¯
fB)

⇤

= �v2 ∂
∂v

⇥
F(

¯
fA)+1�F( f̄A)+F( f̄B)�F(

¯
fB)

⇤

= (4�q) ·


2
p

qf( f̄B)

����
∂ f̄B

∂v

����v
3

| {z }
>0

�
+o(v3)

This established the result for the Wald rejection region. The generalization to
{t2 � q, f 2 � F̄} is straightforward and follows the argument above, as F( f̄A) and
F( f̄B) are still the dominant terms in the derivative. ⇥

Remarks:

1. Putting Corollary 1(c) and Corollary 2 together, we see that the rejection
probability for Wald with r0 = 1 asymptotes to 1� [F(

pq)�F(�pq)] as
f0 �! •. When q < 4, the Wald rejection probability approaches its asymp-
tote from below. This means that for large enough f0, Pr f0,r0=1(t2 � q) <
1� [F(

pq)�F(�pq)]. Given Corollary 1(a) and continuity of the Wald
rejection probability, there exists a value f0 such that Pr f0,r0=±1(t2 � q) =
1� [F(

pq)�F(�pq)].

2. When q > 4, the rejection probability for Wald with r0 =±1 is decreasing as
it asymptotes to 1� [F(

pq)�F(�pq)]. Generally, there will not be a value
of f0 such that Pr f0,r0=±1(t2 � q) = 1� [F(

pq)�F(�pq)].

3. q = 4 corresponds to test size 4.55%. So, q < 4 corresponds to test size >
4.55%, and q > 4 corresponds to test size < 4.55%.

Derivation of Result 1a: We use numerical evidence to verify that for a given
f0 > 0, the largest null rejection probability occurs when r0 = 1. As discussed in
Remark 1 above, taking q = 1.962 < 4, Corollary 2(a) and Corollary 1(c) then
tell us that there exists f0 such that Pr f0,r0=1(t2 � q) < 1� [F(

pq)�F(�pq)] =
0.05. From Lemma 7, we have Pr f0,r0=1(t2 � q) = F(

¯
fA)+1�F( f̄A)+ [F( f̄B)�

F(
¯
fB)]1{| f0|> 4pq}. Given the formulas for

¯
fA, f̄A,

¯
fB, and f̄B above, it is straight-

forward to solve for the smallest f0 such that Pr f0,r0=1(t2 � q)= 0.05 and verify that
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∂
∂ f0

Pr f0,r0=1(t2 � q)> 0 for any larger f0 (so that Pr f0,r0=1(t2 � q) must be smaller
than its asymptotic value of 0.05 for all larger f0). The solution is f0 = 11.9. Hence
E(F) = E( f 2) =Var( f )+ [E( f )]2 = 1+(11.9)2 = 142.6. ⇥

Derivation of Results 1b and 1c: Taking q = 2.5762 > 4, Corollary 2(b) says
that for large enough f0, Pr f0,r0=1(t2 � q) > 0.01. We verify that the derivative

∂
∂ f0

Pr f0,r0=1(t2 � q)< 0 for large enough f0 and then verify the inequality numeri-
cally for any smaller values of f0. The findings in Results 1b and 1c for r0 < 1 are
obtained numerically. An analogous figure to Figure A1 for the 5 percent level is
given in Lee et al. (2020).

⇥

Define f⇤ = F̄p
F̄+

pq
, and f̄ =

8
<

:

4pq if F̄  4pq
F̄p

F̄�pq
if F̄ > 4q

Lemma 8. Under the null, for F̄ > 0,

if 0 < f0 < f⇤,
∂

∂ f0
Pr f0,r0=1(t2 � q, f 2 � F̄)> 0 ;

and if f⇤ < f0 < f̄ ,

∂
∂ f0

Pr f0,r0=1(t2 � q, f 2 � F̄)< 0.

PROOF: For 0 < f0 < f⇤, � f0 +
p

F̄ > f̄A( f0), and for f0 > f⇤, � f0 +
p

F̄ <

f̄A( f0). Let
¯
f =

(
F̄pq�
p

F̄
F̄ < q

• F̄ � q
. If 0 < f0 <

¯
f , then � f0 �

p
F̄ <

¯
fA( f0).

Moreover, ∂
∂ f0

[� f0 �
p

F̄ ] < 0 and ∂
∂ f0 ¯

fA( f0) < 0 for f0 > 0. For 0 < f0 < f̄ , we

can show that [
¯
fB( f0), f̄B( f0)]\

�
(�•,� f0 �

p
F̄ ][ [� f0 +

p
F̄ ,•)

�
= /0. Hence,

Pr f0,r0=1(t2 � q, f 2 � F̄)=

(
1�F(� f0 +

p
F̄)+F(� f0 �

p
F̄) if 0 < f0 < f⇤

1�F( f̄A( f0))+F(� f0 �
p

F̄) if f⇤ < f0 <
¯
f

.

For 0 < f0 < f⇤,

∂
∂ f0

Pr f0,r0=1(t2 � q, f 2 � F̄) = f(� f0 +
p

F̄)�f(� f0 �
p

F̄)> 0
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since |� f0 +
p

F̄ | < |� f0 �
p

F̄ |. And, for f⇤ < f0 < f̄ , ∂
∂ f0

[1�F( f̄A( f0)) +

F(� f0�
p

F̄)]< 0 and ∂
∂ f0

[1�F( f̄A( f0))+F(
¯
fA( f0))]< 0. The result follows. ⇥

Remarks:

1. Lemma 8 characterizes a local maximum in Pr f0,r0=1(t2 � q, f 2 � F̄). The
maximum occurs at f0 = f⇤, which is the smallest maximizing point for f0 >
0.

2. Importantly, note that the derivative of Pr f0,r0=1(t2 � q, f 2 � F̄) is discontin-
uous at f0 = f⇤, so this maximizer is well separated, which is useful for our
numerical analysis.

3. We know the asymptotic value of this rejection probability by Corollary 1(c).
In addition, numerical experimentation shows another bounded local maxi-
mum can sometimes be the global maximizer when q > 4, as might be ex-
pected given Corollary 2.

4.
(9)

Pr f0=f⇤,r0=1(t2 � q, f 2 � F̄) = 1�F

 p
F̄qp

F̄ +
pq

!
+F

 
�
p

F̄q�2F̄p
F̄ +

pq

!

• ∂
∂ F̄ Pr f0=f⇤,r0=1(t2 � q, f 2 � F̄) < 0 and ∂

∂qPr f0=f⇤,r0=1(t2 � q, f 2 �
F̄)< 0

• limF̄#0 Pr f0=f⇤,r0=1(t2 � q, f 2 � F̄) = 1

• limF̄�!• Pr f0=f⇤,r0=1(t2 � q, f 2 � F̄) = 1�F(
pq).

• Clearly, Pr f0=f⇤,r0=1(t2 � q, f 2 � F̄) cannot be a global maximizer over
f0 > 0 if Pr f0=f⇤,r0=1(t2 � q, f 2 � F̄)< 1� [F(

pq)�F(�pq)]

Size Calculations

Equation (9) is a key step in our size calculation results. We use Lemma 8 and
numerical evidence to verify that Pr f0=f⇤,r0=1(t2 � q, f 2 � F̄) is a global maximizer
over f0,r0. To achieve a size g test, we solve

g = 1�F

 p
F̄qp

F̄ +
pq

!
+F

 
�
p

F̄q�2F̄p
F̄ +

pq

!
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Note that the expression on the right-hand side is monotonic decreasing in both F̄
and q, so that solving this equation for F̄ or q is straightforward.

Derivation of Result 2a: Set F̄ = 10 and q = 1.962. Then, g = 0.113.51 ⇥

Derivation of Result 2b: Set q = 1.962 and g = 0.05. Then, solve for F̄ yielding
F̄ = 104.7. ⇥

Derivation of Result 2c: Set F̄ = 10 and g = 0.05. Then, solve for q yielding
q = 3.4. ⇥

Derivation of Result 2d: Let f0 = f⇤. Then,

Pr f0=f⇤,r0=1({t2 � q, f 2 � F̄}[{t2
AR � q, f 2 < F̄}) =

8
>>>>>>><

>>>>>>>:

1�F
✓ p

F̄qp
F̄+

pq

◆
+F

✓
�
p

F̄q�2F̄p
F̄+

pq

◆

if F̄  q
2

1�F
✓ p

F̄qp
F̄+

pq

◆
+F(�pq)

if F̄ > q
2

Note that 1�F
✓ p

F̄qp
F̄+

pq

◆
+F(�pq)> 1�F(

pq)+F(�pq). When F̄ = q
2 , the

expressions in the bracket above are equal. Since we already know 1�F
✓ p

F̄qp
F̄+

pq

◆
+

F
✓

�
p

F̄q�2F̄p
F̄+

pq

◆
is decreasing in F̄ , we can conclude that for all F̄ ,

Pr f0=f⇤,r0=1({t2 � q, f 2 � F̄}[{t2
AR � q, f 2 < F̄})> 1�F(

p
q)+F(�p

q).

Plugging in q = 1.962 yields the stated result. ⇥

A.8 Imposing Restrictions on r and Inference on r
A.8.1 Interpretation and Adjustment of the Usual Critical Values under Dif-

ferent Assumptions about r

For a range of assumptions about r , the table below reports 1) the correct signifi-
cance levels for the tests t2 > 1.962 and t2 > 2.5762 and 2) the necessary minimal
adjustments to the usual critical values to restore the 5 percent and 1 percent signif-
icance levels. The |r| 0.565 and |r| 0.435 necessary restrictions were reported

51To be precise, we set q to the 95% quantile of the c2
1 distribution.
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in Lee et al. (2020), and both the |r|  0.565 and |r|  0.760 restrictions were
reported in Angrist and Kolesár (2021).

Table 5: Additional Assumptions about |r|: Actual Significance Levels for |t| >
1.960, |t| > 2.576 and Necessary Critical Values, Standard Error Adjustments for
Correct Significance Levels

Assumed upper
bound on |r|

Actual significance
level, critical value

for |t| is 1.960

Critical Value for |t|
(Std. Error Adj.

Factor), 5% level

Actual significance
level, critical value

for |t| is 2.576

Critical Value for
|t| (Std. Error Adj.
Factor), 1% level

1.000 1.000 • (•) 1.000 • (•)
0.950 0.396 5.656 (2.886) 0.302 7.663 (2.975)
0.850 0.186 3.158 (1.611) 0.099 4.315 (1.675)
0.760 0.100 2.451 (1.251) 0.042 3.500 (1.359)
0.650 0.063 2.108 (1.076) 0.023 3.017 (1.171)
0.565 0.050 1.960 (1.000) 0.016 2.794 (1.083)
0.500 0.050 1.960 (1.000) 0.012 2.671 (1.035)
0.435 0.050 1.960 (1.000) 0.010 2.576 (1.000)

Note: Numbers in parentheses are the correct critical values divided by 1.96 (third column) and
2.576 (fifth column).

A.8.2 Assumptions on r imply Assumptions on b

As noted by Van de Sijpe and Windmeijer (2021), inspecting the definition of r is
instructive because it reveals a tight connection between r and b . Specifically, we
have

r = r (b )⌘ C (Zu,Zv)p
V (Zu)V (Zv)

(10)

=
C (Ze,Zv)�bV (Zv)p

(V (Ze)+b 2V (Zv)�2bC (Ze,Zv))V (Zv)

=
rRF �b

p
V (Zv)p
V (Ze)vuut

 
1+

✓
b
p

V (Zv)p
V (Ze)

◆2
�2rRFb

p
V (Zv)p
V (Ze)

!

where the reduced-form population residual is e ⌘ vb + u, and the correlation be-
tween the reduced form and first-stage errors (multiplied by Z) is rRF ⌘Corr (Zv,Ze).
Since the variance and rRF terms can be consistently estimated (irrespective of the
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first-stage strength) from the residuals of the first-stage and reduced-form regres-
sions, there is a one-to-one relationship between the unknown parameters b and
r .52

Imposing the restriction |r| 0.565 is therefore equivalent to

V (Zv)
V (Ze)

b 2 �2rRF

p
V (Zv)p
V (Ze)

b +
r2

RF �0.5652

1�0.5652  0,

giving endpoints for the interval for b ,
p

V (Ze)p
V (Zv)

✓
rRF ±

q
1�r2

RF
0.565p

1�0.5652

◆
.

This interval omits information on p and the reduced-form coefficient pb . Indeed,
the constraint on b from from any assumption about r(b ) exists even when the
instrument is irrelevant (p = 0). These resultant a priori bounds on b need not
include 0; they exclude 0 if and only if |rRF | > 0.565 regardless of the IV regres-
sion. This may concern researchers wishing information from the IV strategy as to
whether b = 0, rather than the imposition of a priori assumptions about r .53

Of the 66 specifications (drawn from 10 separate studies) for which the cal-
culation is possible (see details below), 30 percent (weighted by the reciprocal of
specifications within a study to give each study implicitly equal weight) of the time
the a priori restriction |r|  0.565 excludes b = 0. 42 percent (weighted) of the
time the a priori restriction |r| 0.435 rules out b = 0.

A.8.3 Confidence Intervals for r

The one-to-one mapping between r and b in Equation (10) makes clear that it is
possible to make statistical inferences about the unknown parameter r , even in the
presence of the same issues that affect inference on b (e.g., an unknown strength
of the instrument). A simple and direct valid confidence interval for r consists of
the endpoints r(b̂ L) and r(b̂U) using (10), where

h
b̂ L, b̂U

i
is the tF confidence

interval for b .54

52This point is also emphasized by Van de Sijpe and Windmeijer (2021), who note an al-
ternative way to state our Equation (10), namely rRF = (r +b r)

�
(1+2brr+b 2r2) where r =p

V (Zv)/V (Zu). See their Equation (7) and their Section 4.
53This is especially true if the specification is used as a “placebo” test.
54Alternatively the AR confidence set could be used as the input to Equation (10) to construct a

valid confidence set for r , since AR inference also accommodates |r| as large as 1.
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To shed light on what these intervals might look like in practice, we compute
95-percent confidence intervals for r for the same subsample of 66 specifications
(as described below). We find that 41 percent of the confidence intervals for r are
contained within the ±0.565 interval, of which 55 percent include r = 0, which is
consistent with no endogeneity; 34 percent are contained within ±0.435. Further-
more, 57 percent, 41 percent, 36 percent, and 24 percent of the intervals contain
the values |r| of 0, 0.7, 0.8, and 0.9, respectively. The data are consistent with a
broad range of values for r (including |r| much larger than 0.565 or 0.435) that
could not be statistically rejected at conventional levels of significance. Finally,
we find that 18 percent of the confidence intervals for r do not intersect with the
|r|  .565 region, therefore rejecting that that hypothesis at the 5 percent level of
significance.55,56

A separate, more involved question is how one could incorporate information
on these confidence sets from into any particular study. Different approaches are
possible, including empirical Bayes and hierarchical Bayes. Precisely how to in-
corporate prior information on |r| is beyond the scope of our paper, but could be an
interesting avenue for future research.

A.8.4 Recovery of the Reduced-Form Covariance Matrix from the AER Sam-
ple of Studies

V (Ze) , V (Zv) , and C (Ze,Zv) (and therefore rRF ) can be consistently estimated,
under both weak-IV and strong-IV asymptotics since each of can also be consis-
tently estimated by sample analogues V̂ (Zv̂RF) ,V̂ (Zv̂) , and V̂ (Zê) This can be
done directly from the microdata using the residuals from the reduced form and
first-stage regressions, with no need to compute b̂ .

Without the microdata in hand, we recover the covariance and variance esti-
mates above from the five reported statistics: b̂ , p̂,V̂N

⇣
cpb
⌘

, V̂N (p̂), and V̂N

⇣
b̂
⌘

.

55Note that tF confidence intervals for r are, by construction, more conservative than (and en-
tirely contain) confidence intervals on r that could be derived from the usual ±1.96 confidence
intervals. Using the usual IV confidence intervals, we find the same 18 percent that do not intersect
with the |r|  .565 region. An equivalent way to state this is that 18 percent of the time the usual
±1.96 confidence intervals for b do not intersect with the bounds on b implied by the |r|  .565
assumption.

56All considerations so far refer to size and confidence level. When the null is not true, the
parameter r(b ) can differ from the structural correlation r .

23



By using the relation that ê = v̂b̂ + û, one can express the desired estimators as

V̂ (Zê) = NV̂ (Z)2 V̂N

⇣
cpb
⌘

Ĉ (Zê,Zv̂) =
NV̂ (Z)2 V̂N

⇣
cpb
⌘
+ b̂ 2NV̂ (Z)2 V̂N (bp)�V̂ (Z)2 Np̂2V̂N

⇣
b̂
⌘

2b̂
V̂ (Zv̂) = NV̂ (Z)2 V̂N (bp)

Information about NV̂ (Z)2 is not needed since they cancel out in using these quan-
tities in the sample analogues of V (Zv)

V (ZvRF )
and rRF .

Starting with the sample of 255 specifications from Table 1, we make the fol-
lowing restrictions: 1) all five statistics are nonmissing, 2) identical sample sizes
are reported for the 2SLS, first-stage, and reduced form regressions, 3) the ratio
of the reduced-form and first stage coefficients is within 5 percent of the reported
2SLS point estimate, 4) the variance estimates result in |r̂RF |  1.57 The resulting
sample consists of 66 specifications drawn from 10 separate studies.

A.9 Power curves: AR, tF , and step functions (c⇤,F⇤)

Figure A2 contains the power curves for the eight remaining scenarios as described
in the text. A black diamond represents the rejection probability from 250,000
Monte Carlo simulations, each with a sample size of 1,000.

B Detailed Discussion of the tF Critical Value Func-
tion and Proofs

Section III.B described how to construct a critical value function ca (F) that smoothly
adjusts according to the first-stage F-statistic and that also controls size,

(11) PrD(b0)=0,r, f0
⇥
t2 > ca (F)

⇤
 a.

In this Appendix Section, we introduce four properties that define a class C of

57For 3) although the ratio of the reduced-form and first-stage coefficients should equal the 2SLS
point estimate, we make an allowance for rounding and other small discrepencies in the authors’
reporting. Given the micro-data all estimates of r̂RF will be, by construction, less than 1 in absolute
value (restriction 4). The fact that this is not always true suggests some inconsistency in reporting
by the authors of the studies.
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Figure A2: Power Curves
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possible critical value functions.58 We show that the constructed tF critical value
function, described in section III.B and in more detail in section B.3, exists and is
an element of the class C. We also show that the construction process described in
III.B leads to the only possible critical value functions in C. Finally, in sections B.4
and B.5, we prove additional properties that further motivate the tF critical value
function.

B.1 Critical Value Function Properties
In this section, we define a class C of candidate critical value functions. We will
only consider critical value functions of F that are positive and continuous, and
have a plateau structure.59 The required plateau structure is that for sufficiently
large values of F , the critical value function is constant. This structure simplifies the
description of the critical value function for practitioners (and also is aligned with
the notion that the critical value should never fall below the standard chi-square
quantile q1�a for strong instruments).60 Since all candidate critical value functions
will have the plateau structure it will be convenient to adopt a notation that includes
this structure. Suppose a candidate critical value function is constant for all F � F̃ .
Then we will denote the critical value function by c̃(F ; F̃). Let c ⌘ c̃

�
F̃ ; F̃

�
, so that

c̃(F ; F̃) = c for F � F̃ .
Next we provide an overview of the properties underlying the class of candidate

critical value functions C, before introducing the formal notation and statements.
First, based on the intuition that increasing F signals a stronger instrument and

less distortion to the t-statistic, we require the critical value function c̃(F ; F̃) to
be decreasing in F for F < F̃ . Hence, we are considering a class of continuous
functions that are decreasing for a range F 2 (

˜
F, F̃) and that plateau at a constant

level for F � F̃ , where 0 
˜
F < F̃ .61

Second, we require that, for small values of f0 and |r| = 1, the null rejection
probability is exactly equal to a . This is motivated by the conjecture of Stock and

58In this Appendix Section, we use ca(·) for the tF critical value function, c̃a(·) for the decreas-
ing segments of the critical value function, as described in Section III.B, and c̃(·; ·) as a critical value
function with a plateau structure, as introduced below.

59Following the approach of Stock and Yogo (2005), our study exclusively focuses on critical
value functions of the first-stage F-statistic. Critical value functions that depend on more infor-
mation from the data (for example, the sign of f ) might also be possible and could lead to some
efficiency gains.

60It is possible that other forms of the critical value function could lead to efficiency gains, but
we impose the plateau structure here.

61Allowing the domain of candidate critical value functions to be (
˜
F,•), where possibly

˜
F > 0,

allows the inclusion of critical value functions where no rejections occur for a range of small values
of F 

˜
F , or equivalently the critical value function is set to infinity for this range of F values.

26



Yogo (2005) that for a fixed value of f0, the “worst case” null rejection probability
occurs when r = ±1. We are able to theoretically verify this conjecture for small
values of f0 and values of |r| arbitrarily close to 1. We show this in Appendix
Section B.5.

It is possible to show that critical value functions that satisfy the above restric-
tions will 1) have

˜
F = q1�a , which means that the domain of the critical value

function is (q1�a ,•), and 2) asymptote to infinity as F #
˜
F = q1�a . Deriving the

critical value function along this asymptote is a key technical challenge to obtaining
the tF critical value function.

We add a third requirement that puts an upper bound on the magnitude of F̃
(where the plateau begins) in a way that we make precise below. In general, the
bound is increasing, as the decreasing part of the critical value function uniformly
increases. This requirement does not stem from an a priori motivation; instead, it is
a technical restriction that allows us to ultimately establish existence of elements of
the class C. That said, the third requirement alone captures a wide range of potential
critical value functions. It will turn out that this bound is irrelevant for a = .05 but
relevant for other a such as .01.

The fourth requirement is a technical condition that characterizes the critical
value function as it asymptotes. This property will be used to prove a certain form
of uniqueness of the candidate critical value functions.

To state the above required properties more formally, it is useful to adopt some
notation for candidate critical value functions.

• As noted above, without loss of generality, we can assume that the domain
of the candidate critical value functions is F 2 (q1�a ,•). So, we let c̃(F ; F̃)
denote a positive function continuous in F with domain F 2 (q1�a ,•) that is
constant on F 2 [F̃,•) for F̃ > q1�a .

• Let f̄ ( f0) denote the maximum value of f among all intersections between
the graphs c̃(F ; F̃) and t2 = f 2( f� f0)2

f 2
0

for a given f0; let
¯
f ( f0) denote the

minimum value among all intersections.

• Let f̄0 be the value of f0 such that [ f̄ ( f0)]2 = F̃ ; specifically

(12) f̄0 =
F̃p

F̃ +
p

c̃(F̃ ; F̃)
.

For every critical value function with the plateau structure, there is a point where
the decreasing segment meets the plateau. This point is at f 2 = F̃ with critical value
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c̃(F̃ ; F̃). Then, f̄0 is the f0 associated with the "W" curve whose right "arm" passes
through this point. The horizontal axis in Figure 7 denotes values of f , so a can-
didate critical value function that plateaus at A⇤⇤ (with coordinates (

p
F̃ , c̃(F̃ ; F̃)))

would have a corresponding value f̄0 = f 00.
We are now in a position to formally define C as the class of candidate critical

value functions c̃(F ; F̃) satisfying the following properties (A)-(D):

(A) (Decreasing) The function c̃(F ; F̃) is decreasing in F on (q1�a , F̃).

(B) (Rejection probability of a, for |r|= 1, f0 small) For f̄0 defined in (12),

Pr|r|=1, f0
⇥
t2 > c̃

�
F ; F̃

�⇤
= a, 80 < | f0|< f̄0.

(C) (Bound on F̃) For each 0 < | f0| f̄0,
(

f :
f 2 ( f � f0)

2

f 2
0

 c̃
�

f 2; F̃
�
)

= [
¯
f ( f0), f̄ ( f0)].

(D) (Class for uniqueness)

c̃(F ; F̃) =
q3

1�a
F �q1�a

�b+o((F �q1�a)
�1/3), as F # q1�a

where b = 3q1�a � q2
1�a
2 +

q3
1�a
6 .

It is clear that there is a wide range of critical value functions that satisfy Prop-
erty (A), even for a fixed pair of values F̃ and c. The same is true for Property (C),
even though this property essentially places an upper bound on the point at which
the plateau begins, depending on the shape of the decreasing segment. As an exam-
ple, a critical value function that included the extended dashed line in Figure 7 does
not satisfy Property (C), because when f0 = f 0000 , the acceptance region in terms of f
is no longer an interval.62 We elaborate on the technical reason why we impose this
property in a remark below. Here we simply note that the property effectively puts
a bound on how far the decreasing segment extends. As the decreasing segment
uniformly increases, so does that bound.

Similarly, Property (D) is not based on an a priori principle. Instead, it describes
a range of critical value functions within which we will be able to say that for a

62Here, we are using Figure 7, which displays the tF critical value function, to illustrate this
property, but in general other critical value functions could possess this property.
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given F̃ there is only one decreasing function that satisfies Properties (A), (B), and
(C). Note that Property (D), by itself, appears to describe a wide range of possible
critical value functions and only restricts the behavior of the critical value function
as it asymptotes, as F # q1�a . For example, consider the function q3

1�a
F�q1�a

� b+
KF with KF some large positive or negative constant. Any such function would
satisfy Property (D), and KF !±• would even be allowed by (D) as long as (F �
q1�a)

1/3KF ! 0.63

Clearly, for any fixed pair (F̃ ,c), a critical value function is not uniquely deter-
mined by the combination of the three Properties (A), (C), and (D).

As we show in Appendix B.2, the additional restriction of (B) is not so restric-
tive to cause C to be empty (Proposition 1), and at the same time leads to a unique
decreasing segment: any two members of the set C are identical on the interval in
which both functions are decreasing (Proposition 2). Thus, the candidate critical
value functions can be indexed by the value at which the plateau begins, F̃ .

It is precisely within this class C that we obtain the tF critical value function
(as described in Section III.B) – the member of C with the smallest value of plateau
c (equivalently choosing the largest possible F̃ , given that the nonconstant portion
of the function is restricted to be decreasing), while still controlling size (rejection
probabilities across the entire nuisance parameter space, as in (11), not only for
|r|= 1, and small f0).

Formally, we can define the tF critical value function described in Section III.B
to be ca (F) = c̃(F ;F⇤) where

F⇤ = max
�

F̃ |c̃
�
F ; F̃

�
2 C and Prr, f0

⇥
t2 > c̃

�
F ; F̃

�⇤
 a, 8r, f0 6= 0

 
.

where c = c̃(F⇤;F⇤)
Our computation of the tF critical value function is shown in Tables 3 Panel A

and 3 Panel B. In order to find the minimized c, we use numerical integration of the
expression in (4) to compute the rejection probabilities under the null, as illustrated
in Figure 2.64 Even if there were some regions where rejection probabilities were
larger for |r| < 1, they would be limited to that which could not be detected given
the precision of numerical integration. For the 5 percent level, we compute F⇤ =
104.7 and pc =

p
c0.05 (104.7) = 1.96 as labeled in Figure 6 and shown in Table

3 Panel A, while for the 1 percent level F⇤ = 252.34 and pc =
p

c0.01 (252.34) =
2.73 as shown in Table 3 Panel B.

Remark. Property (C), by itself, accommodates a large range of critical value

63Property (D) is derived from uniqueness results in the dynamical systems literature, see Fef-
ferman (2021) and the discussion in Appendix B.2.

64Stock and Yogo (2005) use Monte Carlo integration to evaluate the expression.
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functions, but is not motivated by an a priori desirable characteristic. Instead, we
make this restriction because it allows us to characterize the decreasing segment
of the critical value function that satisfies Equation (5), which we have denoted
in Section III.B as c̃0.05

�
f 2�, as a continuous decreasing function that satisfies the

system (6). In principle, one could attempt to extend the domain of c̃0.05
�

f 2�, as
illustrated by the dashed extension in Figure 7. However, doing so would imply that
there would be some f0 (in the figure, for example, f 0000 ) for which (5) holds, but that
would not satisfy the system (6) – a different set of equations would be needed.

It turns out that for the case of a = 0.05, the possibility of extending the function
is irrelevant because c̃0.05

⇣
f̄
�

f 000
�2
⌘

is below 1.962, as shown in the figure; any

plateau below 1.962 would lead to over-rejection for some large values of f0, and
such a plateau would not be considered due to the need to control size.

By contrast, when applied to the case of a = 0.01, the restriction on the domain
of c̃a

�
f 2� does become relevant. As illustrated in Appendix Figure A3, the tF

critical value function plateaus at f̄ ( f0)
2 = 252.342 with c0.01

⇣
f̄ ( f0)

2
⌘
= 2.7262

which is greater than the nominal value of 2.5762.65 Our numerical analysis in-
dicates that when the plateau is set to 2.7262, size continues to be controlled,
which raises the possibility that an even lower plateau could be used if one ex-
tended c̃0.01

�
f 2� outside our restricted domain. One conjecture is that for f0 > f 000

in Appendix Figure A3 the t2 function intersects c̃0.01
�

f 2� four times, leading to an
acceptance region in f consisting of a union of two disjoint intervals. This conjec-
ture is consistent with numerical analysis that we conducted for an earlier version
of our paper, but given that it is also an unproven conjecture, here we take a conser-
vative approach and instead rely exclusively on the c̃0.01

�
f 2� function restricted to

the domain so that we have a formally proven characterization of c̃0.01
�

f 2� via the
system (6).66

Remark. As added assurance of size control, in Appendix B.5 we present and
prove a theoretical result that establishes that r =±1 represents worst case rejection
probabilities in a particular “corner” of the nuisance parameter space, when |r| is
in a neighborhood of 1 while f0 is in a neighborhood of zero.

Remark. Finally, since the decreasing segment of the tF critical value func-
tion is driven by Property (B), it is natural to wonder whether there might exist an

65When we impose Property (C) for the cases of a = 0.005 and a = 0.001, and compute the
decreasing segments used to construct the tF critical value functions, the lowest possible values on
these computed segments are such that

p
c̃0.005

2.807 ⇡ 1.075 and
p

c̃0.001
3.29 ⇡ 1.10, (where 2.807 and 3.29

are the respective nominal thresholds for a two-tailed test), suggesting somewhat limited potential
of efficiency gains from loosening the restriction of Property (C) for those significance levels.

66In Lee et al. (2020), we provide equations that use the conjecture of four intersection points.
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Figure A3: Construction of the tF Critical Value Function, a = 0.01
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alternative valid critical value function that does not satisfy (B), also decreasing
and similarly asymptoting to infinity, yet uniformly below ca (F) in a neighbor-
hood (q1�a ,q1�a +e). Appendix B.4 shows that such an alternative does not exist.
Thus, although one could imagine constructing size-controlling critical value func-
tions that are uniformly below the tF function within intervals of F larger than
q1�a (and consequently above ca(F) in other regions of F), one cannot construct
one that is uniformly below ca(F) within a neighborhood (q1�a ,q1�a + e).

B.2 Existence and Uniqueness
From the system of equations (6), we can solve for f0, reducing the system to a
single functional equation (with F = ( f̄ ( f0))2) describing the behavior of c̃a(·) as
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it asymptotes:

c̃a
⇣
[g(F)]2

⌘
=

g(F)2 [g(F)�h(F)]2

h(F)2 ,

where h(F) =
Fp

c̃a (F)+
p

F
,

and g(F) = h(F)+F�1
⇣

F
⇣p

F �h(F)
⌘
� (1�a)

⌘
.

More compactly, we have

c̃a

0

@
"

F�1

 
F

 
p

F � Fp
c̃a(F)+

p
F

!
� (1�a)

!
+

Fp
c̃a(F)+

p
F

#2
1

A(13)

=


F�1

✓
F
✓p

F � Fp
c̃a (F)+

p
F

◆
� (1�a)

◆
+ Fp

c̃a (F)+
p

F

�2


Fp

c̃a (F)+
p

F

�2

·
"

F�1

 
F

 
p

F � Fp
c̃a(F)+

p
F

!
� (1�a)

!#2

Define q1�a =
�
F�1 �1� a

2
��2, b = 3q1�a � q2

1�a
2 +

q3
1�a
6 .

Lemma 9. There exists a function c̃a(·) satisfying (13) for F 2 (q1�a ,q1�a + d ]
for some d > 0 with the following properties:

(i) c̃a(F)�
✓

q3
1�a

F�q1�a
�b

◆
= O(

p
F �q1�a) as F # q1�a

(ii) Let c̆a satisfy (13) for F 2 (q1�a ,q1�a + d̆ ] for some d̆ > 0 with c̆a(F) =
q3

1�a
F�q1�a

�b+o((F �q1�a)�
1/3) as F # q1�a . Then, c̃a(F) = c̆a(F) for F 2

(q1�a ,q1�a +d1] and some d1 > 0;

(iii) c̃a 2C• on (q1�a ,q1�a +d ];

(iv) For any k > 0, there exists d2 > 0 such that c̃a(F)� k for F 2 (q1�a ,q1�a +
d2], and c̃a(F) is decreasing for F 2 (q1�a ,q1�a +d3] for some d3 > 0.

PROOF: To show the desired existence, we will transform equation (13) to put
it into canonical form for results from the dynamical systems literature. Once in
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canonical form, we find that (13) is a degenerate case to which the standard stable
manifold theorem does not apply. New results from Fefferman (2021), Baldomá
et al. (2007), and Baldomá, Fontich and Martín (2020) provide the desired existence
and uniqueness.

Based on (13), define the map T : (F,y) 7! (n ,h) where

n(F,y) =

"
F�1

 
F

 
p

F � F
py+

p
F

!
� (1�a)

!
+

F
py+

p
F

#2

(14)

h(F,y) =

h
F�1

⇣
F
⇣p

F � Fpy+
p

F

⌘
� (1�a)

⌘
+ Fpy+

p
F

i2 h
F�1

⇣
F
⇣p

F � Fpy+
p

F

⌘
� (1�a)

⌘i2

h
Fpy+
p

F

i2 .

We will show existence of an invariant curve for the map T . In particular, a function
c̃a exists such that T (P) ⇢ P where P = {(F,ca(F)) |F 2 (q1�a ,q1�a + d ]} for
some d > 0. Since T (P)⇢ P,

(15) h(F, c̃a(F)) = c̃a(n(F, c̃a(F)))

for all F 2 (q1�a ,q1�a +d ]. Given the definitions of n and h , (15) is exactly (13),
so existence of the invariant curve for T yields a function c̃a(·) satisfying (13). We
now turn to obtaining the desired invariant curve for T .

We will transform T to obtain an equivalent map with an approximation in
canonical form.

h(t,z) =
(t +q1�a)

p
t

p
z+

p
t(t +q1�a)

gh(t,z) = F�1

 
F

 
p

t +q1�a � (t +q1�a)
p

t
p

z+
p

t(t +q1�a)

!
� (1�a)

!

g(t,z) = gh(t,z)+h(t,z)

x (F,z) = [g(F �q1�a ,z)]2

z (F,z) =

�
[g(F �q1�a ,z)]2 �q1�a

�
[g(F �q1�a ,z)]2 [gh(F �q1�a ,z)]2

[h(F �q1�a ,z)]2
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These functions define a dynamical system iterative map: T ⇤ : (F,z) 7! (x ,z )
with a fixed point at (q1�a ,q3

1�a). Taking standard expansions in t and Lagrange
remainders, we obtain

h(t,z) =
q1�ap

z
p

t �
q3/2

1�a
z

t +

"
1p
z
+

q2
1�a

z3/2

#
t3/2 �

"
3pq1�a

2z
+

q5/2
1�a
z2

#
t2 + rh(t,z)t5/2

gh(t,z) = �p
q1�a � q1�ap

z
p

t +

"
1

2pq1�a
+

q3/2
1�a
z

�
q5/2

1�a
z

#
t

+

"
q1�a �1p

z
�

q2
1�a(q1�a �1)2

z3/2

#
t3/2

+

"
� 1

4pq1�a
� 1

8q3/2
1�a

+
3pq1�a

2z
(q1�a �1)2 +

q5/2
1�a �3q7/2

1�a
z2 +

11q9/2
1�a

4z2 �
13q11/2

1�a
12z2

#
t2

+rgh(t,z)t5/2

where the remainder terms rh(t,z) and rgh(t,z) can be bounded for t in a non-
negative neighborhood of zero and z in a neighborhood of q3

1�a .
Corresponding expansions for gh(t,z), x (F,z), and z (F,z) follow. Re-centering

the fixed point to the origin by the change of variables t = x �q1�a , (t =F�q1�a ),
µ = z � q3

1�a , (u = z� q3
1�a ), and then expanding in u in a neighborhood of zero

yields:

t(t,u) = t � 4
q1�a

t3/2 � 2
q3

1�a
ut +Rt

µ(t,u) = �u +

"
�6q1�a + q2

1�a �
q3

1�a
3

#
t � 2(2+q1�a)

q1�a
u
p

t + O(|(
p

t,u)|3)

where Rt = Â4
i=2 r̃i(t,u)(

p
t)iu4�i and the terms r̃i(t,u) can be bounded for t in a

non-negative neighborhood of zero and u in a neighborhood of zero. The form of
the remainder Rt allows t to be factored out in t:

(16) t = t

"
1� 4

q1�a
t1/2 � 2

q3
1�a

u+

 
2

Â
i=0

r̃i(t,u)(
p

t)iu2�i

!#
.

Now, we can apply one more set of set of transformations X̃ = 2
q1�a

p
t, x̃ =

2
q1�a

p
t , Ỹ = u+ bt, and ỹ = µ + bt , where b = 3q1�a � q2

1�a
2 +

q3
1�a
6 is chosen to
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eliminate the X̃2 term from the ỹ equation.

(17)
x̃ = X̃ � X̃2 � 1

q3
1�a

X̃Ỹ +O(|(X̃ ,Ỹ )|3)

ỹ = �Ỹ � (2+q1�a)X̃Ỹ +O(|(X̃ ,Ỹ )|3)

This mapping and its inverse:

(18)
X̃ = x̃+ x̃2 � 1

q3
1�a

x̃ỹ+O(|(x̃, ỹ)|3)

Ỹ = �ỹ+(2+q1�a)x̃ỹ+O(|(x̃, ỹ)|3)

are in form for direct application of the results in Fefferman (2021).
Applying the above series of transformations directly to the map T : (F,y) 7!

(n ,h) in (14) yields the mapping Y : (X̃ ,Ỹ ) 7! (x̃, ỹ) given by

x̃ =
2

q1�a

vuutn

 
q2

1�a
4

X̃ +q1�a ,
4

q2
1�a X̃2 (Ỹ +q3

1�a)�b

!
�q1�a(19)

ỹ =

"
n

 
q2

1�a
4

X̃ +q1�a ,
4

q2
1�a X̃2 (Ỹ +q3

1�a)�b

!
�q1�a

#

·
"

h

 
q2

1�a
4

X̃ +q1�a ,
4

q2
1�a X̃2 (Ỹ +q3

1�a)�b

!
+b

#
�q3

1�a

So Y is the mapping approximated by (17) and the inverse Y�1 : (X ,Y ) 7! (x,y) is
approximated in (18).

By Fefferman (2021) Theorem 1.1, there exists a function c̄ that:
(a) generates an invariant curve for Y, for Ḡ = {(x̃, c̄(x̃)) | x̃ 2 [0, d̄ ]}, Y(Ḡ)⇢ Ḡ;
(b) is tangent to the x-axis near the fixed point at the origin, c̄(x̃) = O(x̃3) as x̃ # 0;
and
(c) is infinitely differentiable on [0, d̄ ] for some d̄ > 0.
This theorem also delivers uniqueness in the following sense. Let c̆ be a function
such that x̃�

2
3 c̆(x̃)! 0 as x̃ # 0 and define Ğ = {(x̃, c̆(x̃)) | x̃ 2 [0, d̆ ]} for d̆ > 0. If

Y(Ğ)⇢ Ğ, then c̆ = c̄ on [0, d̃ ] for some d̃ > 0.
Given the function c̄ that defines an invariant curve for Y, we define a corre-
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sponding function for T :

(20) c̃a(F) =
c̄
⇣

2
q1�a

p
F �q1�a

⌘
+q3

1�a

F �q1�a
�b.

for F > q1�a such that c̄
⇣

2
q1�a

p
F �q1�a

⌘
is well-defined. Then, c̃a will inherit

the smoothness properties of c̄ on this domain proving (iii). Consider F such that
q1�a < F  q1�a +

q2
1�a
4 d̄ 2, and define y = c̃a(F). Now apply the map T yielding

(n ,h) as given by (14). To show that c̃a defines an invariant curve for T , we need to
show that h = c̃a(n). Let X̃ = 2

q1�a

p
F �q1�a and Ỹ = (y+b)(F �q1�a)�q3

1�a .
By the definition of c̃a , Ỹ = c̄(X̃) and X̃ 2 (0, d̄ ]. Define (x̃, ỹ) = Y(X̃ ,Ỹ ) as in (19).
Then, the result in Fefferman (2021) shows that ỹ = c̄(x̃) and x̃ 2 (0, d̄ ]. Notice that

n =
q2

1�a
4 x̃+q1�a 2 (q1�a ,q1�a +

q2
1�a
4 d̄ 2], and

h =
4

q2
1�a x̃2 (ỹ+q3

1�a)�b =
4

q2
1�a x̃2 (c̄(x̃)+q3

1�a)�b

=
c̄
⇣

2
q1�a

p
n �q1�a

⌘
+q3

1�a

n �q1�a
�b = c̃a(n),

as desired. This invariance shows that c̃a satisfies (13) for F 2 (q1�a ,q1�a +
q2

1�a
4 d̄ 2]. Also, note that by the definition of c̃a in (20), c̄(x̃)=O(x̃3) directly implies

c̃a(F)�
✓

q3
1�a

F�q1�a
�b

◆
= O(

p
F �q1�a) as F # q1�a proving (i).

Next, we show uniqueness of c̃a . Consider a function

c̆a 2
(

c
����(F �q1�a)

1/3

"
c(F)�

 
q3

1�a
F �q1�a

�b

!#
! 0 as F # q1�a

)

such that T (P)⇢ P where P = {(F, c̆a(F)) |F 2 (q1�a ,q1�a +
q2

1�a
4 d̆ 2]} for some

d̆ > 0. Set c̆(x̃) =


c̆a

✓
q2

1�a
4 x̃2 +q1�a

◆
+b

�✓
q2

1�a
4 x̃2

◆
� q3

1�a . Similar to the

argument above, T (P) ⇢ P implies that Y(Ğ) ⇢ Ğ for Ğ = {(x̃, c̆(x̃)) | x̃ 2 (0, d̆ ]}.
By the uniqueness result in Fefferman (2021), it follows that c̆ = c̄ on (0, d̃ ] for

some d̃ > 0 and hence c̆a = c̃a on (q1�a ,q1�a +
q2

1�a
4 d̃ 2], which shows (ii).

Now, we show that c̃a(F) is decreasing for F 2 (q1�a ,q1�a + d3] for some
d3 > 0. Since c̄0(x̃) is continuous on [0, d̄ ], it is also bounded. In particular, c̄0(x̃)< k
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on [0, d̄ ], for some k > 0. Since c̄(x̃) = O(x̃3), there exists d̄1 2 (0, d̄ ] such that

c̄(x̃) > �q3
1�a
3 for x̃ 2 [0, d̄1], and hence �q1�a c̄

⇣
2

q1�a

p
F �q1�a

⌘
< d4

3 for F 2

(q1�a ,q1�a +
q2

1�a
4 d̄ 2

1 ]. Let d3 = min{q2
1�a
4 d̄1,

q8
1�a
9k2 }. Then, F 2 (q1�a ,q1�a + d3]

implies
p

F �q1�a <
q4

1�a
3k and c̄0

⇣
2

q1�a

p
F �q1�a

⌘p
F �q1�a <

q4
1�a
3 . Then, for

F 2 (q1�a ,q1�a +d3],

c̃0a(F) =
c̄0
⇣

2
q1�a

p
F �q1�a

⌘p
F �q1�a �q1�a c̄

⇣
2

q1�a

p
F �q1�a

⌘
�q4

1�a

q1�a(F �q1�a)2

<

q4
1�a
3 +

q4
1�a
3 �q4

1�a
q1�a(F �q1�a)2 = �

q3
1�a

3(F �q1�a)2 < 0.

Lastly, take any k > 0. Set d2 = min
⇢

2q3
1�a

3(k+b) ,
q2

1�a
4 d̄ 2

1

�
. For F 2 (q1�a ,q1�a +

d2], 0 < 2
d
p

F �q1�a  d̄1 which implies c̄
⇣

2
q1�a

p
F �q1�a

⌘
> �q3

1�a
3 , and F �

q1�a <
2q3

1�a
3(k+b) implies �q3

1�a +(k+b)(F�q1�a)<�q3
1�a
3 . Hence, c̄

⇣
2

q1�a

p
F �q1�a

⌘
>

�q3
1�a +(k+b)(F �q1�a) which can be re-arranged to yield c̃a(F)> k, so (iv) is

proven. ⇥

Existence. Now we show that a candidate critical value function in C exists.

Proposition 1. (C is nonempty) There exists a critical value function c̃
�
F ; F̃

�

satisfying Properties (A), (B), (C), and (D).

PROOF: To see this, using the notation from Lemma 9, which states the exis-
tence of some c̃a (F), we construct the critical value function c̃

�
F ; F̃

�
as follows.

Since c̃a(F) asymptotes as F # q1�a , we can choose F̃ 2 (q1�a ,q1�a +d3] such
that F̃q

c̃a(F̃)+
p

F̃
 q1�a , for d3 as defined in Lemma 9. Define

c̃
�
F ; F̃

�
⌘
⇢

c̃a (F) for F 2 (q1�a , F̃ ]
c̃a
�
F̃
�

for F > F̃ .

By this definition and Lemma 9 (iii) and (iv), c̃
�
F ; F̃

�
is a continuous plateau func-

tion satisfying property (A).
Recall f̄0 as defined in (12). Take any f0 such that 0< f0  f̄0 (the case 0> f0 >

� f̄0 follows similarly). We next establish convexity of the acceptance region as in
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property (C). Choice of F̃ ensures that f 2( f� f0)2

f0
is strictly increasing for f >pq1�a

and strictly decreasing for f < 0. Also, note that c̃
�

f 2; F̃
�

is weakly decreasing for
f >

pq1�a and weakly increasing for f < 0. By the asymptoting behavior of

c̃
�

f 2; F̃
�

as f # pq1�a , there exists f >
pq1�a such that c̃

�
f 2; F̃

�
> f 2( f� f0)2

f0
.

Also note
F̃
⇣p

F̃� f0
⌘2

f0
�

F̃
⇣p

F̃� f̄0
⌘2

f̄0
= c̃a

�
F̃
�
= c̃

�
F̃ ; F̃

�
. It follows that f 2( f� f0)2

f0
intersects c̃

�
f 2; F̃

�
exactly once for f >pq1�a . Moreover, the intersection point

occurs for f 2 (
pq1�a ,

p
F̃ ] which is the decreasing part of c̃

�
f 2; F̃

�
. Similarly

f 2( f� f0)2

f0
intersects c̃

�
f 2; F̃

�
exactly once for f < �pq1�a and the intersection

occurs for f 2 [�
p

F̃ ,�pq1�a). This establishes property (C).
Now we turn to property (B). Again take any f0 such that 0 < f0  f̄0. As ar-

gued above, there exists fU 2 (
pq1�a ,

p
F̃ ] such that ( fU )2( fU� f0)

2

f0
= c̃

�
( fU)2; F̃

�
.

Solving for f0 in terms of fU , we get f0 = ( fU )2
q

c̃(( fU )2;F̃)+ fU
. Notice that fU 2

(
pq1�a ,

p
F̃ ], so (13) holds with F = ( fU)2 and c̃a(F) = c̃

�
( fU)2; F̃

�
. It follows

that the next expression is well defined. Let

f L = F�1 �F( fU � f0)� (1�a)
�
+ f0

= F�1

0

@F

0

@ fU � ( fU)2
q

c̃
�
( fU)2; F̃

�
+ fU

1

A� (1�a)

1

A+
( fU)2

q
c̃
�
( fU)2; F̃

�
+ fU

With this definition, (13) can be restated as c̃
�
( f L)2; F̃

�
= ( f L)2( f L� f0)2

f 2
0

. That is,

f L is the other point of intersection between the functions f 2( f� f0)2

f0
and c̃

�
f 2; F̃

�
.

By property (C), [ f L, fU ] forms the acceptance region under f0. Also, notice that
rearranging the expression for f L, we have

F( fU � f0)�F( f L � f0) = 1�a.

Hence, property (B) holds. And Property (D) holds by Lemma 9 (ii). ⇥

Uniqueness. Having established that C is nonempty, we characterize the extent to
which the decreasing segment of any member of C is unique for a given F̃ .

Lemma 10. Suppose c
�
F ; F̃

�
2 C. Then for F 2 (q1�a , F̃ ], c

�
F ; F̃

�
satisfies the

functional equation (13).
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PROOF: Continuity and decreasingness of the function from Property (A), as
well as the restriction on the size of F̃ from Property (C), implies that when |r|= 1
the t2 function (a quartic in f ) will intersect the critical value function two times
when | f0| < f̄0. Thus, Property (B) implies that the system of equations in (6),
which implies c

�
F ; F̃

�
must satisfy the functional equation (13). ⇥

Proposition 2. (Uniqueness). Suppose c1
�
F ; F̃1

�
,c2

�
F ; F̃2

�
2C. Let F̃min =min

�
F̃1, F̃2

 
.

Then c1
�
F ; F̃1

�
= c2

�
F ; F̃2

�
for F 2 (q1�a , F̃min].

PROOF: We will prove by contradiction: suppose that for some FA 2 (q1�a , F̃min],
c1
�
FA; F̃1

�
6= c2

�
FA; F̃2

�
. By Lemma 10, c1 and c2 satisfy the functional equa-

tion on (q1�a , F̃min]. By Lemma 9, 9d1 > 0 such that c1
�
F ; F̃1

�
= c2

�
F ; F̃2

�
for

F 2 (q1�a ,q1�a + d1]. From the supposition, q1�a < q1�a + d1 < FA. Let d̄ =
sup{d : c1

�
F ; F̃1

�
= c2

�
F ; F̃2

�
, 8F 2 (q1�a ,q1�a +d ]}. By continuity of the func-

tions from Property (A), the supremum is equal to the maximum. Also, by continu-
ity of the functions from Property (A), 9e > 0 such that c1

�
F ; F̃1

�
6= c2

�
F ; F̃2

�
for

all F 2 (q1�a + d̄ ,q1�a + d̄ + e) and q1�a + d̄ + e < F̃min.
When |r| = 1, the t2 function of f is quartic and due to the continuity and

decreasingness in Property (A) and the restriction of Property (C), it intersects ex-

actly twice for each 0 < | f0|< f̄0 for both c1 and c2.67 Consider f̃U =
q

q1�a + d̄ ,

and let f̃0 =
f̃ 2
Uq

c1( f̃ 2
U ;F̃1)+ f̃U

. Then, f̃U is one point of intersection of c1( f 2; F̃1) and

f 2( f� f̃0)2

f̃ 2
0

. Let f̃L denote the other point of intersection. Since c1( f 2; F̃1) is symmet-

ric about zero, and f 2( f� f̃0)2

f̃ 2
0

is symmetric about f̃0/2, f̃ 2
L < f̃ 2

U = q1�a + d̄ . For

any FU 2 (q1�a + d̄ ,q1�a + d̄ + e), note that
p

FU is one point of intersection be-
tween c1( f 2; F̃1) and f 2( f� f0)2

f 2
0

where f0 =
FUq

c1(FU ;F̃1)+
p

FU
. Let fL =�

p
FL denote

the other point of intersection. By continuity, we can choose FU close enough to
f̃ 2
U = q1�a + d̄ such that FL < q1�a + d̄ . By Properties (A), (B), (C), the acceptance

region for r = 1 and f0 as given above, must be [ fL,
p

FU ] and

(21) F
⇣p

FU � f0

⌘
�F( fL � f0) = 1�a.

Since c1 and c2 coincide for F  q1�a + d̄ , the point fL must also be a point of
intersection between c2( f 2; F̃2) and f 2( f� f0)2

f 2
0

using f0 as above. By Properties (A),

67Note that f̄0 in this statement would generally take different values for c1 and c2 based on (12).
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(B), (C), there is one other point of intersection, which we denote by fU,2 =
p

FU,2,
and we must have F( fU,2 � f0)�F( fL � f0) = 1�a . Given (21) and invertibility
of F(·), we must have FU,2 = FU . That is, the other points of intersection for c1 and
c2 must also be the same. Recall that we chose FU 2 (q1�a + d̄ ,q1�a + d̄ + e), so
that c1

�
FU ; F̃1

�
6= c2

�
FU ; F̃2

�
. Hence, f 2( f� f0)2

f 2
0

cannot intersect both c1 and c2 at
FU . This contradiction means the supposition does not hold and the conclusion of
the proposition follows. ⇥

B.3 Numerical Recipe for tF Critical Values
We now describe the process of computing the critical values in Tables 3 Panel A
and 3 Panel B.

1. For a range of values in the (q1�a ,q1�a + e] interval, with e as small as
numerically feasible, compute ca (F) as

ca (F) =
q3

1�a
F �q1�a

�
 

3q1�a �
q2

1�a
2

+
q3

1�a
6

!

which comes from Lemma 9.

2. Using the resulting pairs (F,ca (F)), extend the function by generating new
values F 0 and ca (F 0) using the inverse map T�1, which can be broken down
into the following intermediate steps:

f0 =
Fp

ca (F)�
p

F
p

F 0 = f0 +F�1
⇣
(1�a)+F

⇣
�
p

F � f0

⌘⌘

ca
�
F 0�=

F 0
⇣p

F 0 � f0

⌘2

f 2
0

3. Using the updated function, re-apply the inverse map as above and iterate to
extend the domain as much as possible, with each iteration verifying that the
function is decreasing over the extended domain. Note that, by construction,
this segment of the function satisfies property (D).
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4. At the end of the iterative process, truncate the domain (if necessary) so that
Property (C) holds. Note that as long as Property (C) holds and the non-
plateau function is still decreasing, then Property (B) will hold.

5. Consider different critical value functions based on plateaus, departing at dif-
ferent points on the decreasing segment, as specified in Property (A).

6. Use numerical integration to find the lowest plateau that controls size for all
r and f0.

We implement this algorithm using an extremely fine grid of values on the initial
interval in the first step, with e on the order of 0.0001.

B.4 Non-existence of alternative critical value function that is
uniformly below ca (F) in a neighborhood (q1�a ,q1�a +d )

Proposition 3. Consider any alternative continuous function k (F) (with plateau
structure) satisfying Property (A) such that k (F)  ca (F) for all F  q1�a + d ,
0 < d  F⇤ � q1�a , with k (F1) < ca (F1) for some value F1 < q1�a + d . Then
k (F) cannot control size to be a .

PROOF: We prove that if in a neighborhood, k(F) is uniformly below ca(F),
then there will be a data generating process (in particular, one with r = 1) that will
over-reject.

Define
f ⇤0 =

F1p
ca(F1)+

p
F1

.

And recall that when r = 1, t2(F) =
F(

p
F� f0)

2

f 2
0

. Fixing f0 = f ⇤0 , where by sup-

position t2(F1) = ca (F1)> k(F1), and ca and k are continuous and non-increasing
at F1, and t2 is continuous and strictly increasing at F1 (since F1 > f ⇤0 ). It fol-
lows by continuity that there exists an e with 0 < e < F1 � q1�a such that for
F 2 [F1 � e,F1) we have k(F) < t2(F) < ca (F). By this definition of the small
region [F1 � e,F1), it must be true that [F1 � e,F1) ⇢ {F | t2(F) � k(F)}. At the
same time, by the definition of f ⇤0 , we have [F1 � e,F1)\{F | t2(F)� ca (F)}= /0.
Since k(F)  ca (F) for all F 1�a +d and because k is decreasing in F ,then
{F | t2(F)� ca (F)}⇢ {F | t2(F)� k(F)}. So both {F | t2(F)� ca (F)} and [F1 �
e,F1) are non-intersecting and subsets of {F | t2(F) � k(F)}. Thus, {F | t2(F) �
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ca (F)}[ [F1 � e,F1)⇢ {F | t2(F)� k(F)}. This means that

a = Pr f ⇤0 ,r=1(t2(F)� ca (F))

 Pr f ⇤0 ,r=1(t2(F)� k (F))�Pr f ⇤0 ,r=1(F 2 [F1 � e,F1))

< Pr f ⇤0 ,r=1(t2(F)� k (F))

But this contradicts k controlling size at level a . ⇥

B.5 tF: Size control for |r| near 1, small f0

Proposition 4. Under the null hypothesis, for any arbitrarily small departure from
|r|= 1 there exists a neighborhood of values f0 near f0 = 0 such that all rejection
probabilities Prr, f0

⇥
t2 > ca (F)

⇤
are smaller than the intended significance level a .

PROOF: Below, the proof involves focusing on small f0, using the change of
variables %=

p
1�r2 and considering the derivative of the rejection probability

with respect to %, evaluated at %= 0. We find that the first derivative is zero for f0
small. We therefore compute the second derivative at %= 0, and then take a Taylor
series expansion of this second derviative expression to find that in a neighborhood
of f0 = 0, this second derivative is negative, which implies that when one departs
slightly from |r| = 1, then the rejection probability will decline, leading to size
control in this “corner” of the nuisance parameter space. Below, we suppress a to
simplify notation.

We begin with our relationship

t2 =
f 2t2

AR
f 2 �2rtAR f + t2

AR

which expresses t2 as a function of tAR, f , and correlation r .
Under the tF procedure, rejection occurs in the event that

f 2t2
AR �

�
f 2 �2rtAR f + t2

AR
�

ca
�

f 2�> 0

where ca
�

f 2� is our critical value function, and where f and tAR are bivariate nor-
mal with unit variances and mean vector ( f0,0) (under the null hypothesis), with
correlation r .

We do a change of variables

x = f �rtAR
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and note that x and tAR are by construction uncorrelated and therefore, by bivariate
normality, independent. x has mean f0 and variance 1�r2.

Substituting, we now have rejection occurring when

(22) (x+rtAR)
2 t2

AR �
⇣
(x+rtAR)

2 �2rtAR (x+rtAR)+ t2
AR

⌘
ca
⇣
(x+rtAR)

2
⌘
> 0

We now have

Pr
⇥
t2 > ca

�
f 2�⇤=

Z •

�•
[1�F(r4 (r,z))

+F(r1 (r,z))

+ 1 [|z|> z̄]{F(r3 (r,z))�F(r2 (r,z))}]
1p

1�r2
f

 
z� f0p
1�r2

!
dz

where r1,r2,r3,r4 are functions of x and r that are implicitly defined by the r j that
satisfy

(x+rr j)
2 r2

j �
⇣
(x+rr j)

2 �2rr j (x+rr j)+ r2
j

⌘
ca
⇣
(x+rr j)

2
⌘
= 0

r j gives the tAR coordinate of any point on the critical value boundaries, as a function
of r and x. Since the equation defines a (near) quartic polynomial in r j, we can
expect up to four roots of the equation. z is the variable of integration for the
random variable x.

We now do two changes of variables

U =
x� f0p
1�r2

%=
q

1�r2

where we will be focusing on a neighborhood, without loss of generality, of r = 1
(and equivalently a neighborhood of %= 0).

tAR and U are also independent; U is a standard normal random variable. With
this change of variables we substitute and now have

Pr
⇥
t2 > c

�
f 2�⇤=

Z •

�•
[1�F(r⇤4 (%,u, f0))

+F(r⇤1 (%,u, f0))

+ 1 [| f0+ % u|> z̄]{F(r⇤3 (%,u, f0))�F(r⇤2 (%,u, f0))}]f (u)du

43



where we have r⇤j (%,u, f0) = r j

⇣p
1� %2, f0+ % u

⌘
for j = 1,2,3,4, and z̄ is defined

as the value of u that separates the regions where there are 4 or 2 roots. Note that,
using the change of variables, each of the r⇤j also satisfy the equation

F
�
%,r⇤j ,u, f0

�
=
⇣

f0+ % u+
p

1� %2r⇤j
⌘2 �

r⇤j
�2

�
✓⇣

f0+ % u+
p

1� %2r⇤j
⌘2

�2
p

1� %2r⇤j
⇣

f0+ % u+
p

1� %2r⇤j
⌘
+
�
r⇤j
�2
◆

ca

✓⇣
f0+ % u+

p
1� %2r⇤j

⌘2
◆
= 0

Derivatives: first and second derivatives
We now take both the first and second derivative of the rejection probability with

respect to %, evaluated at %= 0, and with f0 “sufficiently small”. Here, “sufficiently
small” corresponds to small enough f0 so that the derivative terms below associated
with r⇤2 and r⇤3 will be zero.

Thus, with sufficiently small f0, the first derivative of the rejection probability
is

∂ Pr
⇥
t2 > c

�
f 2�⇤

∂ %
=
Z •

�•


�f (r⇤4)

∂ r⇤4
∂ %

+ f (r⇤1)
∂ r⇤1
∂ %

�
f (u)du

and the second derivative is

∂ 2 Pr
⇥
t2 > c

�
f 2�⇤

∂ %2 =
Z •

�•

"
r⇤4f (r⇤4)

✓
∂ r⇤4
∂ %

◆2
�f (r⇤4)

∂ 2r⇤4
∂ %2

�r⇤1f (r⇤1)
✓

∂ r⇤1
∂ %

◆2
+f (r⇤1)

∂ 2r⇤1
∂ %2

#
f (u)du

=
Z •

�•

"
f (r⇤4)

(
r⇤4

✓
∂ r⇤4
∂ %

◆2
� ∂ 2r⇤4

∂ %2

)

�f (r⇤1)

(
r⇤1

✓
∂ r⇤1
∂ %

◆2
� ∂ 2r⇤1

∂ %2

)#
f (u)du.

We then take the following steps:

1. Using implicit differentiation, obtain the first and second derivatives of r⇤j
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with respect to %. These expressions will be functions of r⇤j ,%,u, f0,ca (·), and
c0a (·).

2. Evaluate these derivatives at %= 0. The expressions will be functions of
r⇤j ,u, f0,ca (·), and c0a (·)

3. Because %= 0 is equivalent to r = 1, we can replace r⇤j = f ⇤j � f0, where
f ⇤j is the corresponding f -coordinate on the critical value boundary. This
substitution results in functions that involve f ⇤j ,u, f0,ca (·), and c0a (·)

4. We use the fact that at %= 0, that for every associated f0 there are f ⇤j that

satisfy f0 =
( f ⇤j )

2

r⇣
f ⇤j
⌘2

+

s

c
✓⇣

f ⇤j
⌘2
◆ , substituting this in leaves expressions that

involve f ⇤j ,u,ca (·), and c0a (·)

5. We make another substitution: z = ca

✓⇣
f ⇤j
⌘2
◆⇣

f ⇤j
⌘2

�q1�a

�
which im-

plies that c0a
⇣
( f ⇤)2

⌘
=

z 0(( f ⇤)2)
( f ⇤)2�q1�a

� z(( f ⇤)2)

(( f ⇤)2�q1�a)
2 . This substituion leads to

expressions that are functions of f ⇤j ,u,z (·), and z 0 (·)

6. Another change of variables, using t > 0 as f ⇤4 =
p

t2 +q1�a and f ⇤1 =
�
p

t2 +q1�a , leaving expressions that involve t,u,z ,z 0, and q1�a .

7. Collect powers of u, integrate out u (noting U is standard normal) so thatR
u2f (u)du = 1. This leaves expressions that involve t,z , and z 0, and q1�a .

At this step, we have found that the first derivative of the rejection probability
for f0 sufficiently small as described above is equal to zero.

8. Take a first order taylor series expansion in t around t = 0, and note from
property (i) from Lemma 9 that as t tends to zero, z tends to q3

1�a and z 0

tends to �
✓

3q1�a � q2
1�a
2 +

q3
1�a
6

◆
. This means that the linear approximation

for the second derivative (with respect to %) is a linear function with constants
and linear coefficient depending on q1�a only.

9. Specifically, the second derivative is

(23) f (
p

q1�a)


�2

✓
p

q1�a +q
3
2
1�a

◆
� 4(1+q1�a)pq1�a

t
�
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This means that we can always find a small enough t =
p

F �q1�a so that the
second derivative is negative. Since we are at %= 0, for each of these small values
of t , there is a corresponding f0

f0 =
t2 +q1�ap

ca (t2 +q1�a)+
p

t2 +q1�a

( f0 and t are one-to-one with sufficiently small t , because

d f0

dt
=

2t
⇣p

ca (t2 +q1�a)+
p

t2 +q1�a
⌘
�
�
t2 +q1�a

� c0a
2
p

ca
2t � 2t

2
p

t2+q1�a

�

⇣p
ca (t2 +q1�a)+

p
t2 +q1�a

⌘2 > 0

for all small postive values of t , since c0a is negative).
So this means that you can always find a neighborhood (0,t0) such that for

all values of t in the neighborhood, the second derivative will be negative, and
therefore, you can always find a neighborhood (0, f ⇤0 ) such that for all f0 in the
neighborhood, the second derivative will be negative. We have cross-checked the
expression in (23) by numerically computing rejection probabilities for r values
close to 1 and f0 = 0. ⇥

C Conditional Expected Length: AR and tF

C.1 Limiting Distribution of AR and tF confidence sets

Derivation of inflation factor
q

1� q
F̂ (1� ˆ̃r2)
1� q

F̂
To derive how much we inflate the 2SLS confidence interval to obtain the AR

interval length, we use the relationship

t̂2
AR =

t̂2 f̂ 2

f̂ 2 +2 ˆ̃r
p

F̂t̂ + t̂2

and solve
t̂2 f̂ 2

f̂ 2 +2 ˆ̃r
p

F̂t̂ + t̂2
< q
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for t̂.

t̂2 f̂ 2 �q
⇣

f̂ 2 +2 ˆ̃r
p

F̂t̂ + t̂2
⌘
< 0

t̂2 f̂ 2 �q f̂ 2 �q2 ˆ̃r
p

F̂t̂ �qt̂2 < 0
�

f̂ 2 �q
�

t̂2 �
⇣

2q ˆ̃r
p

F̂
⌘

t̂ �q f̂ 2 < 0

which is a convex function in t̂ when f̂ 2 > q. So the t̂ that satisfies the inequality is
an interval in this case, with endpoints

⇣
2q ˆ̃r

p
F̂
⌘
±
r⇣

2q ˆ̃r
p

F̂
⌘2

+4
�

f̂ 2 �q
�

q f̂ 2

2
�

f̂ 2 �q
� =

⇣
q ˆ̃r

p
F̂
⌘
±pq

p
F̂
q

q ˆ̃r2 + f̂ 2 �q
�

f̂ 2 �q
� =

⇣
q ˆ̃r

p
F̂
⌘
±pq

p
F̂
q

f̂ 2 �q
�
1� ˆ̃r2

�

�
f̂ 2 �q

� =

⇣
q ˆ̃rp

F̂

⌘
±pq

r
1� q(1� ˆ̃r2)

F̂⇣
1� q

F̂

⌘

Since
t̂ =

b̂ �br
V̂N

⇣
b̂
⌘

then the AR interval is given by

b̂ +
�
⇣

q ˆ̃rp
F̂

⌘
+
pq

r
1� q(1� ˆ̃r2)

F̂⇣
1� q

F̂

⌘
r

V̂N

⇣
b̂
⌘
� b � b̂ +

�
⇣

q ˆ̃rp
F̂

⌘
�pq

r
1� q(1� ˆ̃r2)

F̂⇣
1� q

F̂

⌘
r

V̂N

⇣
b̂
⌘

b̂ +
�
q

q
F̂

ˆ̃r �
r

1� q(1� ˆ̃r2)
F̂⇣

1� q
F̂

⌘ p
q
r

V̂N

⇣
b̂
⌘
 b  b̂ +

�
q

q
F̂

ˆ̃r +

r
1� q(1� ˆ̃r2)

F̂⇣
1� q

F̂

⌘ p
q
r

V̂N

⇣
b̂
⌘

Since the half-length of the 2SLS confidence interval is pq
r

V̂N

⇣
b̂
⌘

, then the in-
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flation factor to obtain the half-length of the AR interval is
q

1� q
F̂

�
1� ˆ̃r2

�

1� q
F̂

Derivation of limiting distributions of the (1�a) confidence intervals L̂IV , L̂AR, L̂tF

L̂IV
d! LIV ⌘ 2

p
q1�a

s

1�2r tAR (b )
f

+
t2
AR (b )

f 2
1p
F

p
VW(24)

L̂AR
d! LAR ⌘

p
F
p

F �q1�a (1� r̃2)

F �q1�a
LIV

L̂tF
d! LtF ⌘

p
ca (F)

pq1�a
LIV

where

r̃2 =
(�tAR (b )+r f )2

�
f 2 �2rtAR (b ) f + t2

AR (b )
�

VW =
AV

⇣
cpb
⌘
�2bAC

⇣
cpb , p̂

⌘
+b 2AV (p̂)

AV (p̂)

Limiting Distribution of L̂IV
Throughout this proof, when we consider the statistics t̂ and t̂AR, they have⇣

b̂ �b
⌘

, the estimator minus the true value of the parameter b , in the numerator.
By definition we have

L̂IV = 2
p

q

vuutV̂N

⇣
cpb
⌘
�2b̂ ˆCOV N

⇣
cpb , p̂

⌘
+ b̂ 2V̂N (p̂)

p̂2
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We first note that

V̂N

⇣
cpb
⌘
�2b̂ ˆCOV N

⇣
cpb , p̂

⌘
+ b̂ 2V̂N (p̂)

p̂2 =

⇣
b̂ �b

⌘2

t̂2

=
1�2r̂ t̂AR

f̂
+

t̂2
AR
f̂ 2

t̂2
AR

⇣
b̂ �b

⌘2

=
1�2r̂ t̂AR

f̂
+

t̂2
AR
f̂ 2

t̂2
AR

t̂2
AR
p̂2

⇣
V̂N

⇣
cpb
⌘
�2b ˆCOV N

⇣
cpb , p̂

⌘
+b 2V̂N (p̂)

⌘

=

✓
1�2r̂ t̂AR

f̂
+

t̂2
AR

f̂ 2

◆
V̂N (p̂)
V̂N (p̂)

⇣
V̂N

⇣
cpb
⌘
�2b ˆCOV N

⇣
cpb , p̂

⌘
+b 2V̂N (p̂)

⌘

p̂2

=

✓
1�2r̂ t̂AR

f̂
+

t̂2
AR

f̂ 2

◆
1
F̂

⇣
V̂N

⇣
cpb
⌘
�2b ˆCOV N

⇣
cpb , p̂

⌘
+b 2V̂N (p̂)

⌘

V̂N (p̂)

The result follows under Weak-IV asymptotics, by the continuous mapping theo-
rem.

Limiting Distribution of L̂tF
By definition,

L̂tF =

q
ca
�
F̂
�

pq1�a
L̂IV

The result follows under Weak-IV asymptotics, by the continuity of ca (·), and the
continuous mapping theorem.

Limiting Distribution of L̂AR
We have shown above that the (1�a) AR confidence set is an interval if and

only if F̂ > q1�a . If F̂ < q1�a , then the confidence set is the whole real line except
for an interval of length L̂AR.

We have shown above that L̂AR is related to L̂IV by the relationship

L̂AR =

q
1� q1�a

F̂

�
1� ˆ̃r2

�

1� q1�a
F̂

L̂IV

Note that, by definition

ˆ̃r =
Ĉ (Zû,Zv̂)q
V̂ (Zû)V̂ (Zv̂)

where we recall that û and v̂ are the IV and first-stage residuals.
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From Lemma 5 we have

t̂2
AR =

t̂2

1+2 ˆ̃r t̂p
f̂ 2
+ t̂2

f̂ 2

=
t̂2 f̂ 2

f̂ 2 +2 ˆ̃r
p

F̂t̂ + t̂2

Using this equation, we solve for ˆ̃r and take its square, to obtain

ˆ̃r2 =

�
t̂2 f̂ 2 � t̂2

ARt̂2 � t̂2
AR f̂ 2�2

�
2t̂2

AR
�2 F̂t̂2

We can now substitute in the numerical relationship

t̂2 =
t̂2
AR

1�2r̂ t̂AR
f̂
+

t̂2
AR
f̂ 2

=
f̂ 2t̂2

AR

f̂ 2 �2r̂ f̂ t̂AR + t̂2
AR

and with some simplification, one obtains

ˆ̃r2 =

�
�t̂AR + r̂ f̂

�2

�
f̂ 2 �2r̂ t̂AR f̂ + t̂2

AR
�

which, under Weak-IV asymptotics and the continuous mapping theorem, con-
verges in distribution to

r̃2 =
(�tAR +r f )2

�
f 2 �2rtAR f + t2

AR
�

So L̂AR converges in distribution to

LAR =

q
1� q1�a

F (1� r̃2)

1� q1�a
F

LIV =

p
F
p

F �q1�a (1� r̃2)

F �q1�a
LIV

C.2 E [LAR|F > q1�a ] = •
Conditional Expected Length of AR interval. Let

W = plimN

0

@
V̂N

⇣
cpb
⌘

ˆCOV
⇣

p̂,cpb
⌘

ˆCOV
⇣

p̂,cpb
⌘

V̂N (p̂)

1

A ,

the asymptotic variance-covariance matrix of the reduced form and first-stage
coefficients, be positive definite. Then E [LAR|F > q] = •
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From above, we have

LAR =

p
F
p

F �q1�a (1� r̃2)

F �q1�a
2
p

q1�a

s

1�2r tAR

f
+

t2
AR
f 2

1p
F

p
VW

= 2
p

q1�a

p
f 2 �q1�a (1� r̃2)

f 2 �q1�a

s
f 2 �2rtAR f + t2

AR
f 2

p
VW

with
✓

tAR
f

◆
⇠ N

  
0
pp

AV (p̂)

!
,

✓
1 r
r 1

◆!

VW =
(1,�b )0W(1,�b )

AV (p̂)
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We will show that

E

2

42
p

q1�a

p
f 2 �q1�a (1� r̃2)

f 2 �q1�a

s
f 2 �2rtAR f + t2

AR
f 2

p
VW|F > q1�a

3

5=(25)

1
Pr [F > q1�a ]

Z •

�•

Z

(�•,�pq1�a)[(
pq1�a ,•)

2
p

q1�a

r
x2 �q1�a

⇣
1� r̃ (x,y)2

⌘

x2 �q1�a
r

x2 �2rxy+ y2

x2

p
VWf f0,r (x,y)dxdy �

1
Pr [F > q1�a ]

Z y+e

y

Z

(pq1�a ,
pq1�a+e)

2
p

q1�a

r
x2 �q1�a

⇣
1� r̃ (x,y)2

⌘

x2 �q1�a
r

x2 �2rxy+ y2

x2

p
VWf f0,r (x,y)dxdy >

1
Pr [F > q1�a ]

Z y+e

y

Z

(pq1�a ,
pq1�a+e)

2
p

q1�a

p
x2 �q1�a (1� k1)

x2 �q1�a
k2k3

p
VWdxdy �

1
Pr [F > q1�a ]

Z y+e

y

Z

(pq1�a ,
pq1�a+e)

2
p

q1�a

p
q1�a �q1�a (1� k1)

x2 �q1�a
k2k3

p
VWdxdy =

1
Pr [F > q1�a ]

Z y+e

y

Z

(pq1�a ,
pq1�a+e)

2
p

q1�a

p
q1�a �q1�a (1� k1)�

x�pq1�a
��

x+pq1�a
�k2k3

p
VWdxdy �

1
Pr [F > q1�a ]

Z y+e

y

Z

(pq1�a ,
pq1�a+e)

2
p

q1�a
1�

x�pq1�a
�

p
q1�a k1

2pq1�a + e
k2k3

p
VWdxdy = •

where f f0,r is the bivariate normal density with mean ( f0,0), unit variances and
correlation r , and r̃ (x,y)⌘ (�x+ry)2

(x2�2rxy+y2)
, with both e > 0 and y chosen below.

In (25), the first equality (lines 1 and 2) holds by definition. The first in-
equality (lines 2 and 3) holds because the region of integration in the third line
is a subset of the region for the second line. Deferring the second inequality mo-
mentarily, the third inequality (lines 4 and 5) holds because

p
x2 �q1�a (1� k1) >p

q1�a �q1�a (1� k1) because x2 > q1�a in the region of integration. We expand
a term in the denominator from lines 5 to 6 and the final inequality follows be-
cause 1

x+pq1�a
� 1

2pq1�a+e when x 2
�pq1�a ,

pq1�a + e
�
. The final line holds

because we will show it is equal to a positive constant multiplied by the integral
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R
(pq1�a ,

pq1�a+e)
1

(x�pq1�a)
dx, which is infinite.

What remains is to show that the second inequality (lines 3 and 4) holds. Note
first that

p
VW > 0 due to the positive definiteness of W. Furthermore, we will show

that there always exists an integrating region
�pq1�a ,

pq1�a + e
�
⇥
�
y,y+ e

�
that

lead to lower bounds k1,k2,k3 > 0 for r̃ (x,y)2 ,
q

x2�2rxy+y2

x2 and f f0,r (x,y), respec-
tively, on the region

�pq1�a ,
pq1�a + e

�
⇥
�
y,y+ e

�
.

1. r̃ (x,y)2 > k1 > 0. Consider the quantity

r̃ (x,y)2 =
(�y+rx)2

(x2 �2ryx+ y2)

We seek a region of x,y space that satisfies

(�y+rx)2

(x2 �2ryx+ y2)
� k1 > 0

We restrict x to be in the interval
�pq1�a ,

pq1�a + e
�
. We can keep the

denominator positive by restricting

y > sup
x2(pq1�a ,

pq1�a+e)

2rx+
p

4r2x2 �4
2

In addition, we are seeking the values of y that satisfy

(�y+rx)2 � k1
�
x2 �2ryx+ y2�> 0

y2 �2ryx+r2x2 � k1
�
x2 �2ryx+ y2�> 0

y2 (1� k1)�2ryx(1� k1)+ x2 �r2 � k1
�
> 0

which is a quadratic inequality in y. We can choose 0 < k1 < 1 so that the
function in the last line is convex in tAR. So we can additionally restrict

y > sup
x2(pq1�a ,

pq1�a+e)

2rx(1� k1)+
q

4r2x2 (1� k1)
2 �4(1� k1)x2 (r2 � k1)

2(1� k1)

53



So by setting

y = max

0

@ sup
x2(pq1�a ,

pq1�a+e)

2rx+
p

4r2x2 �4
2

,

sup
x2(pq1�a ,

pq1�a+e)

2rx(1� k1)+
q

4r2x2 (1� k1)
2 �4(1� k1)x2 (r2 � k1)

2(1� k1)

1

A ,

then for any y > y, and x 2
�pq1�a ,

pq1�a + e
�

we have r̃ (x,y)2 � k1 > 0, as
desired.

2.
q

x2�2rxy+y2

x2 > k2 > 0. We established above that for y > y, the numerator
in the square root is positive. In the integrating region, the denominator
is positive as well. Let k2 be the infimum of

q
x2�2rxy+y2

x2 over the region�pq1�a ,
pq1�a + e

�
⇥
�
y,y+ e

�
.

3. f f0,r (x,y) > k3 > 0. The bivariate density is strictly positive. Let k3 be the
infimum of f f0,r (x,y) over the region

�pq1�a ,
pq1�a + e

�
⇥
�
y,y+ e

�

⇥

C.3 E [LtF |F > q1�a ]< •
Conditional Expected Length of tF interval: E [LtF |F > q1�a ]< •.

As shown above
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The conditional expectation of interest is
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We start by considering the conditional expectation
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Since ca (F) only depends on F , this is equivalent to
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Let us consider the expectation conditional on F
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Consider the conditional expectation of the random variable inside the square root:

E
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which can be expressed as
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Consider that
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Since each of these expressions is bounded on F 0 > q1�a , E
h

1
F � 2rtAR

f F +
t2
AR
F2 |F = F 0

i

is thus bounded on F 0 > q1�a by some constant F̄ . Due to Jensen’s inequality, we
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obtain

2
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p
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Therefore, for F 0 > q1�a , the function E [LtF |F = F 0] is bounded above by the func-
tion 2

p
ca (F 0)F̄ . Therefore,

E [LtF |F > q1�a ] =
1

Pr [F > q1�a ]

Z •

q1�a
E
⇥
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F 0�dF 0
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p
ca (F 0)w

�
F 0�dF 0

where w(·) is the density of F . To complete the proof, we need to show that the last
integral in the display above is finite. To do so, we will break the integral into two
pieces. The first piece will be from q1�a to q1�a + d , and the second will be from
q1�a +d to •.

For the first piece, from Lemma 9 we know that there exists a d > 0 such that
ca (F)(F �q1�a) is continuous on (q1�a ,q1�a + d ]. Moreover, Lemma 9 implies
we can extend the function ca(F)(F � q1�a) continuously at F = q1�a . Doing
so extends the definition of ca(F)(F � q1�a) to the compact set [q1�a ,q1�a + d ],
implying that it is uniformly continuous on this set by the Heine-Cantor theorem
and hence bounded above by some finite M on that set. The density w(·) is also
bounded above by some finite K in the same interval. Therefore
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M
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dx

and the last integral in the display above is finite by the integral p-test.
For the second piece, since ca(·) is decreasing,

p
ca (F 0) is bounded above by

M0 =
p

ca(q1�a +d ) which is finite. But then since w(·) is a density,
Z •

q1�a+d

p
ca (F 0)w

�
F 0�dF 0 < M0

Z •

q1�a+d
w
�
F 0�dF 0  M0

completing the proof. ⇥
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