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E Other Proofs of Results in Appendix C

Proof of Lemma C.1: Observe that for s ∈ (t, t], µh
s faces an outflow rate of (ρ + λ)µh

s

and an inflow rate of 1, where ρ is the risk of detection and λ the risk of transition to the

low state. That is

∂µh
s

∂s
= 1− (ρ+ λ)µh

s .

Solving this differential equation with the initial condition µh
0 = 0 leads to the result. □

Proof of Lemma C.2: For any policy (p, a) ∈ M, define p̃t ≡
(
1at(xh)=0

)
p + (1 −

1at(xh)=0)pt and ãt(x) ≡ at(x
h) for x ∈ {xh, xl}. The resulting policy, (p̃, ã), satisfies the

constraints on the right-hand side of (C.6) and delivers the regulator the same value as (p, a)

when αl = 0. On the other hand, any policy that satisfies the constraints on the right-hand

side of (C.6) is an element of M, and the result follows. □

Proof of Lemma C.3: For any policy (p, a) ∈ M, let T (a) ≡ {t|at(xh) = 1}. Let

M0 ⊂ M be the set of policies (p, a) such that

(i)
(
1− at(x

h)
)
p =

(
1− at(x

h)
)
pt and

(ii) inf
(t,s)∈(T (a))2

s.t. t̸=s

|t− s| > 0.

Let t(a) ≡ (ti(a))i∈N be the increasing sequence such that
⋃
i∈N

ti(a) = T (a). I first show that

V ∗ = sup
(p,a)∈M0

V (p, a).(E.1)

To see this, fix any policy (p, a) ∈ M∩ (M0)C . Choose recursively a sequence,

• t̃0 ∈
[
inf T (a), ϵ+ inf T (a)

]
∩ T (a)

• t̃i+1 ∈
[
inf
(
T (a) ∩

[
t̃i + ϵ,∞

))
, ϵ+ inf

(
T (a) ∩

[
t̃i + ϵ,∞

)) ]
∩ T (a).

and generate policy (p̃, ã) by setting p̃t ≡ p+(pt− p)1t∈{t̃i}i∈N and ãt(x) = 1t∈{t̃i}i∈N for each

x ∈ {xh, xl}. Observe that (p̃, ã) ∈ M0. Since regulator discounts at rate r > 0 and αl = 0,

|V (p, a)− V (p̃, ã)| →ϵ 0 and (E.1) follows.
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The remainder of the proof is a dynamic programming principle, which I present for

completeness. I will show that if αl = 0 and V(p) satisfies the premise of the lemma with

associated policies (tV (p), p
′
V (p)) then,

sup
(p,a)∈M0

V (p, a) = max
t0≥0,
p0∈P

{
−v(t0) + e−rt0V(p0)

}
.(E.2)

The result then follows from (E.1). To prove (E.2) holds, I first show

sup
(p,a)∈M0

V (p, a) ≤ max
t0≥0,
p0∈P

{
−v(t0) + e−rt0V(p0)

}
.(E.3)

For any policy (p, a), letting δi(a) ≡ ti(a)− ti−1(a),

−V (p, a) =
∞∑

i=0

e−rti−1(a)

δi(a)∫

0

e−rtµh
t+ti−1(a)

dt =
∞∑

i=0

e−rti−1(a)

δi(a)∫

0

e−rt1− e−(ρ+λ)t

ρ+ λ
dt

=
∞∑

i=0

e−rti−1v (δi(a))

where t−1(a) = 0, the second equality follows from Lemma C.1 and the third equality follows

from equation (C.3). Inequality (E.3) follows by observing that (p, a) ∈ M0 if and only if

for each i ∈ N, wh(ti)− e−(ρ+r)δi+1(a)pti+1(a) ≤ −pti(a).

Next, I argue that

sup
(p,a)∈M0

V (p, a) ≥ max
t0≥0,
p0∈P

{
−v(t0) + e−rt0V(p0)

}
.(E.4)

For any p0 ∈ P , recursively define pi(p0) ≡ p′V (p
i−1(p0)) and p0(p0) = p0. For any p0 ∈ P

and t0 ≥ 0, recursively define ti(p0) = ti−1(p0) + tV (p
i−1(p0)) and t0(p0) = t0. Then, for any

choice p0 and t0 on the right-hand side of (E.4), define (p, a) as follows,

pt = p+
∑

i∈N

1t=ti(p0)

(
pi(p0)− p

)
(E.5)

at(x) =
∑

i∈N

1t=ti(p0)(E.6)

Then since inf
i∈N

(ti(p0)− ti−1(p0)) > 0, (p, a) ∈ M0. Further, repeatedly substituting yields

V (p, a) = −v(t0) + e−rt0V(p0). As a result, (E.4) is satisfied, and combining with (E.3)

completes the proof. □

Proof of Lemma C.4: First, observe

lim
t→∞

(
wh(t)− e−(ρ+r)tp

)
=

xh − xl

ρ+ r + λ
− ρp− xl

ρ+ r
=

xh − xl

ρ+ r + λ
−∆l − p ≤ −p(E.7)
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where the inequality follows since θ ∈ Θ∗, and is strict whenever θ ∈ (Θ∗)o. Further,

wh(0)− e−(ρ+r)0p = −p.(E.8)

Observe next that

∂

∂t

(
wh(t)− e−(ρ+r)tp

)
= e−(ρ+r)t

(
(xh − xl)e−λt + (ρ+ r)p− (ρp− xl))

)
(E.9)

Since θ ∈ Θ∗, equation (E.9) is strictly positive at 0 and crosses zero exactly once. Combining

(E.8), (E.9) and the strict version of (E.7) implies that for θ ∈ (Θ∗)o, equation (C.8) has a

unique strictly positive solution t(p) > 0, which is strictly increasing. If instead θ ∈ ∂Θ∗,

then P = {−p} and equation (C.8) has a unique non-zero solution at t(p) = ∞. Since t(p)

is strictly increasing, inf
p∈P

t(p) = t(p) > 0.

Finally, for any p ∈ P and t ≥ t(p), (E.9) is non-positive, so wh(t)− e−(ρ+r)tp ≤ −p. □

Proof of Lemma C.5: Let f = ρ+ r + λ. Plugging in definitions yields,

v0(t) + e−rt v0(t)

1− e−rt
=

1

ρ+ λ

(
1− e−ft

f
+ e−rt 1− e−ft

f(1− e−rt)

)

Differentiate the term in parentheses on the right-hand side with respect to t to get:

∂

∂t

(
1− e−ft

f
+

1− e−ft

f(1− e−rt)

)
= e−ft − r

f
e−rt1− e−ft

1− e−rt

≤ e−ft − r

f
e−rt1− e−ft

1− e−rt

=
1− e−ft

f

[
fe−ft

1− e−ft
− re−rt

1− e−rt

]

=
1− e−ft

f
[ϕ(f)− ϕ(r)]

where ϕ(a) ≡ ae−at

1−e−at and the second line follows for any t ≥ t because 1−e−ft

1−e−rt is decreasing in

t.50 To see that ϕ(f)− ϕ(r) ≤ 0, note that f > r and

∂

∂a
ϕ(a) =

eat (1− (at+ e−at))

(eat − 1)2

≤ 0

50To see this, let z(t) ≡ e−ft and a ≡ r
f , so that 1−e−ft

1−e−rt = 1−z(t)
1−z(t)a . Let ζ(z) ≡ 1−z

1−za . Then
∂ 1−e−ft

1−e−rt

∂t =

ζ ′(z(t))(−fz(t)). Compute ζ ′(z) to get ζ ′(z) = −(1−za)+a(za−1−za)
(1−za)2 ; the numerator is decreasing in z, so

to show that ζ ′(z) ≥ 0 (and hence
∂ 1−e−ft

1−e−rt

∂t ≤ 0), it is sufficient to show that ζ ′(1) ≥ 0, which follows by
applying L’hôspital’s rule twice. Combining this with the chain rule above leads to the conclusion.
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for any at ≥ 0 since z + e−z > 1 for any z ≥ 0. This concludes the first part of the lemma.

For the second part of the lemma, observe that, by Lemma C.4, t(p) defined by equation

(C.8) is increasing in p. Applying the first part of this lemma then leads to the result. □

F Randomized Policies

I have restricted the regulator to deterministic policies. Although I do not characterize the

optimal policy for general random policies, I expand the model to allow for a limited class

of random policies and show that the deterministic optimal policy remains optimal. Extend

V linearly to random policies.

Definition 2. A randomized policy (p,a) is called a γ-Poisson policy if there exists t0 and

a sequence of random variables (ti)i∈N s.t.

• ti+1 − ti is independent of ti and exponentially distributed with rate parameter γ

• pti = p for i ∈ N and pt = p otherwise

• at(x
h) = 1 if and only if t ∈ {ti}i∈N

The set of γ-Poisson policies for any γ > 0 is denoted Γ.

These policies feature inter-arrival times of minimum penalties that are exponentially dis-

tributed with mean 1
γ
. I restrict to the setting in which p = xl = αl = 0 and argue that

the policy in Theorem 1 remains optimal when allowing the regulator to choose from Γ. Let

MΓ ≡ M∪ Γ.

(PΓ) V Γ ≡ sup
(p,a)∈MΓ

V (p, a)

i.e. the expanded regulator’s problem allowing for policies in Γ (with some abuse of notation

since p and a are now random variables).

I prove the result below for the case of αl = xl = p = 0, but it extends readily to the

general case.

Theorem F.1. Suppose p = xl = αl = 0. Then

V ∗ = V Γ > V (p,a)

for any (p,a) ∈ Γ, where V ∗ is the regulator’s optimal value over deterministic policies.
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Proof. Let f ≡ ρ + r + λ. In a γ-Poisson policy, the recommendation at(x
h) = 1pt=0 is

incentive compatible if and only if

Eγ

(
wh(t)

)
≤ 0(F.1)

where Eγ denotes the expectation operator for t distributed as an exponential distribution

with rate parameter γ. Recalling the relationship between V and v (defined in equation

(C.3)) from Lemma C.3, the result follows if any γ-Poisson policy satisfying equation (F.1)

also satisfies

sup
t0≥0

−v(t0) + e−rt0
−Eγ (v(t))

Eγ (1− e−rt)
< sup

t0≥0
−v(t0) + e−rt0

−v(t(0))

1− e−rt(0)

where t(0) is the unique strictly positive solution to equation (C.8) at p = p = 0 (when

θ ∈ Θ∗). Since the choice of t0 has the same domain in both problems, and a solution

t0 ∈ R+ exists for both problems, it is sufficient to show that

− Eγ (v(t))

Eγ (1− e−rt)
< − v(t(0))

1− e−rt(0)
(F.2)

From the definition of t(0), xhv0(t(0))

1−e−(ρ+r)t(0) =
ρp
ρ+r

, where v0(t) = 1−e−ft

f(ρ+λ)
. Recall that wh(t) =

xh(ρ+ λ)v0(t)− ρp
ρ+r

(1− e−(ρ+r)t). Then, inequality (F.1) becomes

Eγ

(
wh(t)

)
≤ 0

⇐⇒ Eγ

(
xh1− e−ft

f
− ρp

ρ+ r
(1− e−(ρ+r)t)

)
≤ 0

⇐⇒ Eγ

(
(
1− e−ft

)
+ e−(ρ+r)t

(
1− e−ft(0)

)

1− e−(ρ+r)t(0)

)
≤ 1− e−ft(0)

1− e−rt(0)
(F.3)

For inequality (F.2), plugging in (C.9) (v(t) = 1−e−rt

r(ρ+λ)
− v0(t)) and rearranging yields

− Eγ (v(t))

Eγ (1− e−rt)
< − v(t(0))

1− e−rt(0)

⇐⇒ Eγ

(
1− e−ft + e−rt1− e−ft(0)

1− e−rt(0)

)
<

1− e−ft(0)

1− e−rt(0)
(F.4)

Now, observe that inequalities (F.4) and (F.3) are special cases of the inequality:

Eγ

(
(1− e−ft)(1− (z)a) + (e−ft)a(1− z)

)
− (1− z)

︸ ︷︷ ︸
h(a,z,γ)≡

≤ 0(F.5)

where a = r
ρ+r+λ

for the regulator and a = ρ+r
ρ+r+λ

for the agent, and z ≡ e−ft(0) (and ≤ is
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replaced with < for inequality F.4). Similar to Proposition C.1, the crucial step is:

if h(a, z, γ) ≤ 0 at some a ∈ (0, 1), then h(a, z, γ) < 0 for each 0 < a ≤ a.(Cγ)

With this the proof will be concluded, since any policy that satisfies (F.1) also satisfies (F.2).

Integrate h(a, z, γ) with respect to t,

(1− za)

(
1− γ

γ + f

)
+

γ

γ + fa
(1− z)− (1− z) ≤ 0.

Rather than show (Cγ) for h, I will show it for h̃(a, z, γ) = h(a, z, γ)× (γ + fa), from which

the property for h can be recovered (since for a ∈ (0, 1), sgn(h) = sgn(h̃)). Computing h̃,

h̃ = (1− za)
(γ + fa)f

γ + f
+ γ(1− z)− (1− z)(γ + fa)

I claim that if ∂2h̃
∂a2

has at most one 0, then (Cγ) will be verified and the proof will be complete.

To see this, observe that as a ↓ −∞, h̃ ↑ ∞. Observe also that h̃(0) = h̃(1) = 0. To violate

the property, there must exist points 0 < a1 < a2 < 1 such that h̃(a1) ≥ 0, h̃(a2) ≤ 0, while

h̃(0) = h̃(1) = 0. Since h̃ ↑ ∞ as a ↓ −∞, there must also exist a0 < 0 s.t. h(a0) > 0.

Satisfying all of these requires ∂2h̃
∂h̃2 to have at least two zeros. So, I proceed to show that ∂2h̃

∂a2

has at most one 0.

Twice differentiating h̃ leads to:

∂2h̃

∂a2
= −

(
f

γ + f

)
zaln(z) [2f + ln(z)(γ + fa)]

which has at most one 0. So, I conclude that ∂2h̃
∂a2

crosses 0 at most one zero so (Cγ) holds,

and the conclusion follows.

G Generalizing the Arrival Distribution

In this section, I assume that the regulator faces a stream of agents arriving at time-

inhomogeneous rate e−γt for some γ ∈ [0,∞). The model studied in Section II corresponds

to γ = 0, while γ > 0 corresponds to a setting in which the distribution of arrival is weighted

towards time 0. I show that when γ < ρ, the main theorem of Section II still holds; an

optimal policy consists of amnesty cycles that take the form described in Theorem 1. When

instead γ > ρ, a new optimal policy can be described as follows: after an initialization period

as in Theorem 1, the regulator offers an interval with an increasing self-reporting penalty,

and after this interval offers a fixed penalty forever.

I operate in this section under the assumption that p = xl = 0, but this is only for
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simplicity and all of the results generalize.

Let Vγ(p, a) denote the regulator’s value from a policy (p, a) when the arrival rate of

agents is e−γt for γ ∈ [0,∞). Then, as in Section I, the regulator solves

V ∗
γ ≡ sup

(p,a)∈M
Vγ(p, a).

The steps for proving Theorem 1 apply with little adjustment to V ∗
γ , as long as γ ≤ ρ.

Proposition G.1. Suppose γ ≤ ρ and p = xl = 0. Then, the policy in Theorem 1 remains

optimal.

When γ ≤ ρ, the arrival rate of agents is still relatively steady over time, and the fact that

agents arrive more quickly near time 0 is not enough to overcome the backloading motive

that leads to the cyclical optimal policy. The proof is given below.

This is no longer true when γ > ρ. In this case, the arrival of agents is front-loaded and

the policy described in Theorem 1 does not deliver the regulator’s optimal value. After the

choice of the first reporting time, the optimal policy takes the following form:

(i) an interval with an increasing self-reporting penalty, on which all types report,

(ii) an upward jump at the end of this interval and

(iii) afterwards, a constant self-reporting penalty, with only low types reporting.

The proposition below states the form of the optimal policy. When θ /∈ Θ∗, a static policy

is again optimal, so I restrict the proposition to the case θ ∈ Θ∗. Let

tI ≡ ln


xh − (ρ+r)xh

ρ+r+λ

xh − ρp


 1

ρ+ r
.

Proposition G.2. Suppose γ > ρ, p = xl = 0, and θ ∈ Θ∗. Then, there exists t0 such that

an optimal policy, (p,a) = ((p∗t ), (a
∗
t ))t≥0, is:

• p∗t = (1− e−(ρ+r)(t0−t)) (ρp)
ρ+r

for t < t0

• p∗t = (e(ρ+r)(t−t0) − 1)x
h−ρp
ρ+r

if t0 ≤ t ≤ t0 + tI and

• p∗t =
ρp
ρ+r

for t ≥ t0 + tI .

• a∗t (x
h) = 1 if and only if t0 ≤ t ≤ t0 + tI

• a∗t (x
l) = 1 for all t
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Figure 2: An Example of the Optimal Policy in Proposition G.2

The result is proved below. An example of the optimal policy in Proposition G.2 beyond t0

is depicted in Figure 2. As in Theorem 1, the existence of t0 is a result of the fact that the

regulator has no prior incentive constraints to satisfy until the initial amnesty offer.

Proof of Proposition G.1: Suppose γ < ρ. Lemma C.2 proceeds in exactly the same

way. The statement of Lemma C.3 must now be altered so that rather than applying a

discount of e−rt the regulator applies a discount of e−(γ+r)t, but is otherwise identical. To

see this, fix some t ≥ 0 and policy (p, a) ∈ M0. Recall that, by the definition of M0, there

exists a sequence t = (ti)i∈N such that at(x
h) = 1 if and only if t ∈ {ti}i∈N. , Then note that

µh
t for t ∈ (ti, ti+1) is now

µh
t =

t−ti∫

0

e−γse−(ρ+λ)(t−ti−s)ds

=
e−γ(t−ti) − e−(ρ+λ)(t−ti)

ρ+ λ− γ

Plugging in to compute the regulator’s value yields,

Vγ(p, a) = −
∞∑

i=0

ti+1∫

ti

e−rt e
−γ(t−ti) − e−(ρ+λ)(t−ti)

ρ+ λ− γ

= − 1

(γ + r)(ρ+ λ− γ)
+

1

ρ+ λ− γ

∞∑

i=0

e−(r+γ)ti−1
1− e−(ρ+r+λ)(ti−ti−1)

ρ+ r + λ
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where t−1 = 0. Letting v̂(t) = 1−e−(ρ+r+λ)t

(ρ+r+λ)(ρ+λ−γ)
, a version of Lemma C.3 holds using the

recursive equation

V(p) =





sup
t≥0,p′∈P

v̂(t) + e−(r+γ)tV(p′)

subject to

wh(t)− e−(ρ+r)tp′ ≤ −p

and replacing the equation for V ∗ with V ∗
γ + 1

(γ+r)(ρ+λ−γ)
= max

t≥0,p0∈P
{v̂(t) + e−(r+γ)t0V(p0)}.

As long as γ < ρ, Proposition G.1 can be derived with the same steps as Theorem 1 and the

result follows. □

Proof of Proposition G.2: To avoid non-generic cases, suppose that ρ + λ ̸= γ. The

result for the case ρ+λ = γ can be recovered from the proof for the case ρ+λ ̸= γ by taking

the limit and using the continuity of the regulator’s value in γ.

Let V cont be the regulator’s value associated to the policy described in the proposition.

So to prove the result I must show that

V cont = sup
(p,a)∈Mcont

Vγ(p, a).

Recursive Representation. The recursive problem is described as follows:

• A decision node of the regulator is any reporting time of the high return agent that is

not an interior point of an interval of reporting times

• The choice of the regulator is now either

– next reporting time and penalty at next reporting time or

– length of an interval (I) on which to continuously induce reporting by high types

(at(x) = 1 for t ∈ I) as well as the penalty offered at the end of this interval

Let d = 0 indicate that the regulator is choosing the former and d = 1 the latter.

• The state of the regulator is the reporting penalty that she must offer immediately

• The constraint of the regulator is

– if d = 0, the one-shot incentive compatibility condition from the time-homogeneous

case

– if d = 1,
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∗ penalty at the end of the interval > penalty at the start of the interval

∗ a bound on the maximum length of the interval

In case d = 1, there is a maximum length of the interval, as a function of the initial and final

penalty of the interval, because the penalty pt must increase at a minimum speed to ensure

reporting by the high return agent at each instant.

Let tI(p, p′) denote the maximum length of the interval when the interval starts with

pt = p and ends with pt+tI(p,p′) = p′. Recall the definition of P in equation (C.5). Then a

solution to the recursive problem is a function Vγ(p) such that

(G.1) Vγ(p) =





sup
t,p′,d

−1d=0

(
t∫
0

e−(γ+r)s

(
t∫
s

e−(ρ+r+λ)(q−s)dq

)
ds

)
+ e−rtVγ(p

′)

subject to

if d = 0, wh(t)− e−(ρ+r)tp′ ≤ −p

if d = 1, 0 ≤ t ≤ tI(p, p′)

p′ ∈ P

with associated policy functions d(p), t(p) and p′(p), where t(p) is the length of the interval

if d = 1 and the delay until the next reporting time if d = 0. Similarly to Lemma C.3,

if Vγ(p) solves this equation and the policy function t(p) is such that, whenever d(p) = 0,

inf
p∈P

t(p) > 0, then

V ∗
γ = max

t0,p0

t0∫

0

e−(γ+r)s


−

t0∫

s

e−(ρ+r+λ)(q−s)dq


 ds+ e−rt0Vγ(p0).

Notice that if d = 1, it is always optimal to set t = tI(p′, p) i.e. at the upper bound.

Equation (G.1) then becomes

(G.2) Vγ(p) =





sup
t,p′,d

1d=0

(
−(1−e−(γ+r)t)
(γ+r)(ρ+λ−γ)

+ 1−e−(ρ+λ+r)t

(ρ+λ−γ)(ρ+λ+r)

)
+ e−rtVγ(p

′)

subject to

if d = 0, wh(t)− e−(ρ+r)tp′ ≤ −p

if d = 1, 0 ≤ t = tI(p, p′)

p′ ∈ P

Computing tI. In this step I derive the maximum length of an interval that the regulator

can continuously induce reporting by high types, given a penalty p that the regulator must

deliver at the beginning of the interval, i.e. the state, as well as the penalty chosen for the
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end of the interval, p′.

To compute the maximum length of this interval, it is sufficient to compute the path of

penalties with starting point p and ending point p′ such that the agent in the high state

is exactly indifferent between reporting at any point on the interval. Fix some time t0 and

suppose that the regulator wants to ensure that the agent in the high state is indifferent over

all reporting times on [t0, t0 + s] for some s > 0.

Let τ l be the transition time from the high to the low state. For an agent that arrives to

the model at time t0, let τq be the deterministic stopping time that stops with probability 1

at the minimum of t0 + q and τ l. Then, to ensure that the high type is indifferent over all

stopping times that stop on [t0, t0 + s], it must be that

∂W (xh, t0, τq)

∂q
= 0

for all q ∈ [0, s]. Letting g = ρ+ r and f = g + λ, this requirement can be written as,

0 =
∂W (xh, t0, τq)

∂q

=
∂

∂q




q∫

0

λe−λt




t∫

0

e−gs(xh − ρp)ds− e−gtpt0+t


 dt+ e−λq




q∫

0

e−gt(xh − ρp)dt− e−gqpt0+q






=
∂

∂q


xh − ρp

f
(1− e−fq)− λ

q∫

0

e−ftpt0+tdt− e−fqpt0+q




= (xh − ρp)e−fq − λe−fqpt0+q + fe−fqpt0+q − e−fq ∂pt0+q

∂q

= (xh − ρp)e−fq + ge−fqpt0+q − e−fq ∂pt0+q

∂q

The solution to this equation with initial condition pt0 = p is pt0+q =
xh−ρp

g
(egq − 1)+ egqp.51

Rearranging leads to

(G.3) tI(p, p′) =
1

g
ln

(
p′ + xh−ρp

g

p+ xh−ρp
g

)
.

51It can be verified that pt0+q must be differentiable in q. One can proceed with only the knowledge that

λ
q∫
0

e−ftpt0+qdt+ e−fqpt0+q is differentiable, which follows immediately from differentiability of W (xh, t, τq)

(since it is constant on the interval) and xh−ρp
f (1− e−fq), and arrive at the same conclusion.
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Guess solution to equation (G.2). I propose that an optimal policy in equation (G.2)

is

(G.4)


if p < ρp

ρ+r
− xh

ρ+r+λ
, d(p) = 1, p′(p) = ρp

ρ+r
− xh

ρ+r+λ
, t(p) = tI(p, ρp

ρ+r
− xh

ρ+r+λ
)

if p = ρp
ρ+r

− xh

ρ+r+λ
, d(p) = 0, p′(p) = ρp

ρ+r
− xh

ρ+r+λ
, t(p) = ∞

Let V ∗
γ (p) be the value function associated to this policy. The second part of the guess

can be immediately verified, since t(p) = ∞ and d(p) = 0 is the only feasible policy when

p = ρp
ρ+r

− xh

ρ+r+λ
, and the choice of p′(p) in this case enters neither the regulator’s value nor

the incentive compatibility conditions. It remains to verify the first part of the guess.

Verification. To verify the first part of the guess, it is sufficient to consider one-shot

deviations from the proposed optimal policy to policies with d = 0. Any deviation with

d = 1 but p′ < p′(p), delivers the regulator exactly the same value as the guess.52

Recall that we let f = ρ+ r+λ and g = ρ+ r. Let pfinal ≡ ρp
ρ+r

− xh

ρ+r+λ
. The regulator’s

value under the proposed guess is

V ∗
γ (p) = −e−(γ+r)(tI(p,pfinal))

∞∫

0

(
e−(γ+r)t

∫ ∞

t

e−f(s−t)ds

)
dt

= −e−(γ+r)(tI(p,pfinal)) 1

f(γ + r)

Then, to verify the guess, I must show that:

(G.5)

−e−(γ+r)(tI(p,pfinal))

f(γ + r)
=





sup
t≥0,p′

−(1−e−(γ+r)t)
(γ+r)(ρ+λ−γ)

+ 1−e−(ρ+λ+r)t

(ρ+λ−γ)f
− e−(r+γ)(t+tI(p′,pfinal)) 1

f(γ+r)

subject to

wh(t)− e−(ρ+r)tp′ ≤ −p

p′ ∈ P

Since tI(p′, pfinal) is decreasing in p′, the optimal choice of p′ given t satisfies the incentive

constraint at equality. Let s(t, p) = tI
(
(wh(t) + p)e(ρ+r)t, pfinal

)
and define

vγ(t) ≡ −(1− e−(γ+r)t)

(γ + r)(ρ+ λ− γ)
+

1− e−(ρ+λ+r)t

(ρ+ λ− γ)f
− 1

f(γ + r)
e−(r+γ)(t+s(t,p))

Plugging this into equation (G.5) and replacing the incentive constraint with a condition that

52And generates the exact same policy path. This is a consequence of the fact that for any p, p′′ and
p′ ∈ [p, p′′], tI(p, p′′) = tI(p, p′) + tI(p′, p′′).
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guarantees that the choice of t can be paired with a feasible p′ that satisfies the incentive

constraint, the verification problem reduces to showing

(G.6)

vγ0≡︷ ︸︸ ︷
−e−(γ+r)s(0,p)

f(γ + r)
=





sup
t≥0

vγ(t)

subject to

e(ρ+r)t(wh(t) + p) ∈ P

Since vγ(0) = vγ0 , the verification will be complete if I can show that ∂vγ(t)
∂t

≤ 0 on the set

of t such that e(ρ+r)t(wh(t) + p) ∈ P . To see why, first observe that the constraint in (G.6)

generates a set of feasible t ∈ R+ that is of the form

[0, tlower] ∪ [tupper,∞](G.7)

such that at tupper and tlower, the only feasible p′ is ρp
g
− xh

f
. Second, ∂vγ(t)

∂t
≤ 0 implies that

the solution is attained either at tupper or at 0. That the solution is always attained at 0 can

be shown by directly comparing the regulator’s value at the two choices 0 and tupper, and is

postponed until after I have shown that ∂vγ(t)
∂t

≤ 0 on the set of feasible t.

To show that ∂vγ(t)
∂t

≤ 0, plug in the definition of tI from equation (G.3) into s(t, p),

s(t, p) =
1

g
ln

(
xh(1

g
− 1

f
)

egt (wh(t) + p) + xh−ρp
g

)

=
1

g
ln


 xh(1

g
− 1

f
)

egt
(

1−e−ft

f
xh − ρp

g
+ p
)
+ xh

g




where I plugged in wh(t) = xh 1−e−ft

f
− ρp

g
(1− e−gt). Then,

vγ(t) =
−(1− e−(γ+r)t)

(γ + r)(ρ+ λ− γ)
+

1− e−ft

(ρ+ λ− γ)f
− 1

f(γ + r)
e−(r+γ)(t+s(t,p))

=
−(1− e−(γ+r)t)

(γ + r)(ρ+ λ− γ)
+

1− e−ft

(ρ+ λ− γ)f
− e−(r+γ)t

f(γ + r)



egt
(

1−e−ft

f
xh − ρp

g
+ p
)
+ xh

g

xh(1
g
− 1

f
)




γ+r
ρ+r

=
−(1− e−(γ+r)t)

(γ + r)(ρ+ λ− γ)
+

1− e−ft

(ρ+ λ− γ)f
− 1

f(γ + r)

(
1−e−ft

f
xh − ρp

g
+ p+ e−gt xh

g

xh(1
g
− 1

f
)

) γ+r
ρ+r

The last term in parentheses in the second line is always between 0 and 1 whenever the

incentive constraint is satisfied (i.e. egt(wh(t) + p) ∈ P), since the denominator is the

numerator evaluated at pfinal. As a result, the last term in parentheses in the last line is

smaller than e−(ρ+r)t for feasible choices of t (given p). Differentiating vγ(t),
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∂vγ(t)

∂t
=

1

ρ+ λ− γ

(
e−ft − e−(γ+r)t

)
+

e−gt − e−ft

λ

(
p+ xhe−gt

g
+ 1−e−ft

f
xh − ρp

g

xhλ
fg

) γ−ρ
ρ+r

≤ 1

ρ+ λ− γ

(
e−ft − e−(γ+r)t

)
+

1

λ

(
e−gt − e−ft

)
e−(γ−ρ)t

where the second line follows from the fact that, as noted above, the last term in parentheses

in the first line is smaller than e−gt. Rearranging,

∂vγ(t)

∂t
≤ 1

ρ+ λ− γ

(
e−ft − e−(γ+r)t

)
+

1

λ

(
e−gt − e−ft

)
e−(γ−ρ)t

= e−(γ+r)t

(
1

λ
− 1

ρ+ λ− γ

)
+ e−ft

(
1

ρ+ λ− γ
− e−(γ−ρ)t

λ

)

=
e−ft

λ




c(t)≡︷ ︸︸ ︷
λ(1− e−(γ−ρ)t) + (ρ− γ)(e(ρ+λ−γ)t − e(ρ−γ)t)

ρ+ λ− γ


(G.8)

The term c(t) is 0 at t = 0 and differentiating yields,

∂c(t)

∂t
=

λ(γ − ρ)e−(γ−ρ)t + (ρ− γ)2e−(γ−ρ)t(eλt − 1) + λ(ρ− γ)e(ρ+λ−γ)t

ρ+ λ− γ

=
(γ − ρ)e−(γ−ρ)t

[
λ+ (γ − ρ)[eλt − 1]− eλtλ

]

ρ+ λ− γ

= (γ − ρ)e−(γ−ρ)t(1− eλt)

≤ 0

where the last line is a result of the fact that γ > ρ and 1− eλt ≤ 0. Plugging into inequality

(G.8) implies that

∂vγ(t)

∂t
≤ 0.

To complete the verification, I need to show that vγ(0) ≥ vγ(tupper), where tupper is defined

in (G.7). To see that, observe that in the proposed optimal policy, the regulator induces

reporting by high types for a period of length

tI(p, pfinal) =
1

g
ln

(
pfinal + xh−ρp

g

p+ xh−ρp
g

)
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and then gets − 1
f(γ+r)

, so the regulator’s payoff is

vγ(0) ≡ − 1

f(γ + r)

(
pfinal + xh−ρp

g

p+ xh−ρp
g

)− γ+r
g

= − 1

f(γ + r)

(
p+ xh−ρp

g

xh(1
g
− 1

f
)

) γ+r
g

The alternative choice is t = tupper and p′ = ρp
g
− xh

f
(the maximum feasible), with the

incentive constraint satisfied at equality, i.e. 1−e−ft

f
xh − ρp

g
(1 − e−gt) − (ρp

g
− xh

f
)e−gt = −p.

The value under this alternative policy is (letting t = tupper)

vγ(t) = − 1− e−(γ+r)t

(γ + r)(ρ+ λ− γ)
+

1− e−ft

f(ρ+ λ− γ)
− 1

f(γ + r)
e−(γ+r)t

=
e−(γ+r)t − e−ft

f(ρ+ λ− γ)
− 1

(γ + r)f

= − 1

f(γ + r)

(
1− γ + r

ρ+ λ− γ

(
e−(γ+r)t − e−ft

))
(G.9)

Using the incentive constraint evaluated at t = tupper to substitute for p in vγ(0) yields

vγ(0) = − 1

f(γ + r)

(
xh(1

g
− 1

f
)− xh

f
(e−gt − e−ft)

xh(1
g
− 1

f
)

) γ+r
g

= − 1

f(γ + r)

(
1− g

λ
(e−gt − e−ft)

) γ+r
g

(G.10)

Now let,

v̂(x) ≡ − 1

f(γ + r)

[(
1 +

x

f − x

(
e−ft − e−xt

)) 1
x

]γ+r

and observe that vγ(0) = v̂(g) and vγ(t) = v̂(γ + r). Since, g < γ + r, the proof will be

complete if I show that v̂(x) is decreasing in x, because then vγ(0) ≤ vγ(t). To this end, I

will show

∂

∂x

[(
1 +

x

f − x

(
e−ft − e−xt

)) 1
x

]
≥ 0

This is relegated to Lemma G.1 below. This completes the verification, so V ∗
γ (p) solves

equation (G.2).
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Conclusion. Given the solution to the recursive representation V ∗
γ (p), and observing that

V ∗
γ (p) is maximized at p = p = 0, we have

V ∗
γ = max

t0

t0∫

0

e−(γ+r)s


−

t0∫

s

e−(ρ+r+λ)(q−s)dq


 ds+ e−rt0V ∗

γ (p).

Applying the policy functions associated with V ∗
γ (.) then generates the optimal path de-

scribed in the theorem. □

Lemma G.1. For any t, x ≥ 0

∂

∂x

[(
1 +

x

f − x
(e−ft − e−xt)

) 1
x

]
≥ 0

Proof. Observe that any function g(x) such that g(x) = e−xth(x, t) has the property that

(g(x))
1
x = e−th(x, t)

1
x

is increasing if h(x, t) is increasing in x. As a result, it is sufficient to show that

h(x, t) ≡
1 + x

f−x
(e−ft − e−xt)

e−xt
= ext +

x

f − x
(e(x−f)t − 1)

is weakly increasing in x. To this end write

∂h(x, t)

∂x
= text +

tx

f − x
(e(x−f)t) +

e(x−f)t − 1

f − x
+

x

(f − x)2
(e(x−f)t − 1).

At t = 0, ∂h(x,t)
∂x

= 0, so it is sufficient to show that ∂2h(x,t)
∂x∂t

≥ 0. Observe

∂2h(x, t)

∂x∂t
= ext + xtext +

xe(x−f)t

f − x
− txe(x−f)t − e(x−f)t +

xe(x−f)t

x− f

= ext(1 + xt)(1− e−ft) ≥ 0

which completes the proof.

55


