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A. Proofs and Additional Theoretical Results

A.1. Preliminaries

Lemma 1. (i) For any V (·), not necessarily monotone or submodular, in any equilibrium and

for any owner Z ∈ Z , the payments p∗nZ, p∗n′Z made in equilibrium to owner Z by any two

advertisers n,n′ must coincide, p∗nZ = p∗n′Z .

(ii) If V (·) is either monotone and submodular or strictly monotone and not necessarily sub-

modular, then in any equilibrium each advertiser buys slots on all outlets.

Proof. Fix any equilibrium. First, we claim that because the advertisers are homogeneous, they
must have the same equilibrium payoff. Suppose toward contradiction that advertiser n′ has a
strictly higher equilibrium payoff than advertiser n. Now, let advertiser n imitate the strategy of
advertiser n′. Since ad slots are not scarce (N ≤ K), advertiser n must obtain the equilibrium
payoff of advertiser n′, which is a contradiction. So all advertisers have the same equilibrium
payoff, which we denote by W .

For part (i), suppose toward contradiction that in the equilibrium there exists some owner
Z ∈Z such that not all advertisers make the same total payment to Z. Let n be an advertiser whose
equilibrium payment to owner Z is at least as much as any other advertiser’s (and therefore strictly
greater than some other advertiser’s). Let S ⊆ Z be the set of outlets owned by owner Z on which
advertiser n buys slots. Let owner Z deviate by offering bundle B = S at price p∗S−ε for any ε > 0,
where p∗S denotes the minimum price to buy slots on the set of outlets S at the on-path history in the
supposed equilibrium. By subgame perfection, at every possible subgame, each advertiser must
purchase a payoff-maximizing set of bundles. We claim that upon the deviation by owner Z, all
advertisers buy bundle B offered by owner Z. To see why, note that by buying the bundle B upon
the deviation (and imitating advertiser n’s choices at the on-path history), any advertiser can obtain
a payoff of W +ε , which is strictly greater than the payoff of W prescribed by the equilibrium, and
therefore (because no prices have changed other than the price of bundle B) also strictly greater
than the payoff from any other choice of bundles. For sufficiently small ε , the deviation increases
the payment to owner Z from at least one advertiser other than n more than it decreases the payment
from advertiser n, and therefore strictly increases the payoff to owner Z. This establishes that the
deviation is profitable, and hence that there is a contradiction.

For part (ii), suppose toward contradiction that in the equilibrium there exists some advertiser
n who does not buy a slot on some outlet j ∈ Z owned by some owner Z ∈ Z . Let T ⊂ Z be the
set of outlets owned by owner Z on which advertiser n buys slots, and let R ⊆ J\Z be the set of
outlets owned by other owners on which advertiser n buys slots. By part (i), all advertisers pay
the same total amount to owner Z, which then must be p∗T , the minimum price to buy slots on all
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outlets in T . The equilibrium payoff for each advertiser is then given by

W =V (T ∪R)− p∗R− p∗T ,

where p∗R is the minimum price to buy slots on all outlets in R. Let owner Z deviate by offering
a single bundle Z with a price p∗T + ε for some ε > 0. We show that for ε small enough, every
advertiser must purchase this bundle. First, note that V (Z∪R)−V (T ∪R)> 0. This is clearly true
if V (·) is strictly monotone. If V (·) is submodular and monotone, then we also have

V (Z∪R)−V (T ∪R)≥V (J )−V (J \(Z\T ))≥V (J )−V (J \{ j}) = v j > 0

where the strict inequality is due to our assumption that every outlet has positive incremental value.
Thus, for ε small enough, we have

V (Z∪R)− p∗R− (p∗T + ε)>V (T ∪R)− p∗R− p∗T =W.

Now, pick any such sufficiently small ε . Note again that by subgame perfection, at every possible
subgame, each advertiser must purchase a payoff-maximizing set of bundles. Thus, upon this
deviation, each advertiser buys the bundle Z at the price p∗T + ε , because any strategy not doing so
is a feasible strategy at the on-path history in the supposed equilibrium and therefore generates a
payoff less than or equal to W . But this is then a profitable deviation for owner Z, and therefore a
contradiction.

A.2. Proofs Omitted From the Main Text

Proof of Theorem 1. We first construct an equilibrium. Let each owner Z offer, at a price of
pZ = vZ, a single bundle consisting of all outlets in Z. For any profile p of posted prices (including
those off of the equilibrium path), and any set of outlets S ⊆ J , let pS denote the minimum price
to buy slots on all the outlets in S. Now let every advertiser buy the same bundle S∗ (p), chosen
arbitrarily from the set of solutions to the problem

max |S|

s.t.S ∈ argmax
S⊆J

V (S)− pS

By construction, S∗ (·) constitutes an equilibrium strategy profile for the advertisers.
It remains to verify that no owner has a profitable deviation from the proposed profile p∗.

Observe that if owner Z plays the proposed strategy, then each advertiser buys the bundle offered by
owner Z regardless of the other owners’ offerings. This is because for any S⊆J \Z, submodularity
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of V (·) implies
V (S∪Z)−V (S)≥V (J )−V (J \Z) = vZ.

Fix any owner Z. Suppose all other owners Z′ 6= Z follow the proposed strategy. Fix any
advertiser. By the above observation we know that the advertiser buys slots on all outlets not in Z

regardless of the strategy of owner Z. It follows that the most that owner Z can extract from the
advertiser is vZ because for any T ⊇ J \Z, monotonicity of V (·) implies

vZ =V (J )−V (J \Z)≥V (T )−V (J \Z)

where the right hand side is the most that the advertiser is willing to pay for slots on all the outlets
in T\(J \Z). Therefore, there is no profitable deviation from the proposed strategy for owner Z.
Since Z is an arbitrary owner, the proposed profile is an equilibrium.

To prove the second part of the statement, fix any equilibrium of the game, and denote its
price profile by p∗. By Lemma 1(ii), all advertisers buy slots on all outlets in J . Therefore, each
advertiser pays p∗Z to each owner Z. If p∗Z > vZ for any owner Z, then any advertiser can profitably
deviate by only buying slots on all outlets in J \Z. If p∗Z < vZ for any owner Z, then, by the
submodularity of V (·), owner Z can profitably deviate by offering a single bundle Z with a price
vZ− ε for ε > 0 sufficiently small to extract vZ− ε > p∗Z from each advertiser. Thus p∗Z = vZ for
all Z ∈ Z .

Monotonicity and Submodularity of V (·) in the Viewer-level Model. Let JF be the set of
outlets whose owner is of format F . For each viewer i ∈ I and each set of outlets S ⊆ J , let X i

S

count the number of outlets in S on which viewer i sees ads. For each S⊆ J we can write

V (S) = |I| ·E
[
aiu
(

X i
S∩J1

, . . . ,X i
S∩J|F |

)]
= |I| ·E [Vi (S)]

where the expectation is taken with respect to the population of viewers i and their random viewing
behavior, and the value Vi (·) is based on the realized behavior of viewer i. To show that V (·) is
monotone and submodular, it suffices to show that Vi (S) is monotone and submodular for all i and
realized X i

· , since averaging preserves monotonicity and submodularity.
To show monotonicity of Vi (·), pick some i and realized X i

· and fix any S ⊆ J and j ∈ J \S.
Let F be the format of the owner of outlet j. Then,

Vi (S∪{ j})−Vi (S)= ai1i→ j

(
u
(

X i
S∩J1

, . . . ,X i
S∩JF

+1, . . . ,X i
S∩J|F |

)
−u
(

X i
S∩J1

, . . . ,X i
S∩JF

, . . . ,X i
S∩J|F |

))
where i→ j denotes the event that viewer i sees ads on outlet j. This shows the monotonicity of
Vi (·) as u(·) is monotone.
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To show the submodularity of Vi (·), pick some i and realized X i
· and fix any S ⊆ T ⊆ J , and

j ∈ J \T . Let F be the format of the owner of outlet j. Since X i
S∩JF ′

≤ X i
T∩JF ′

for all formats F ′,
we have

Vi (S∪{ j})−Vi (S) = ai1i→ j

(
u
(

X i
S∩J1

, . . . ,X i
S∩JF

+1, . . . ,X i
S∩J|F |

)
−u
(

X i
S∩J1

, . . . ,X i
S∩JF

, . . . ,X i
S∩J|F |

))
≥ ai1i→ j

(
u
(

X i
S∩J1

, . . . ,X i
T∩JF

+1, . . . ,X i
S∩J|F |

)
−u
(

X i
S∩J1

, . . . ,X i
T∩JF

, . . . ,X i
S∩J|F |

))
≥ ai1i→ j

(
u
(

X i
T∩J1

, . . . ,X i
T∩JF

+1, . . . ,X i
T∩J|F |

)
−u
(

X i
T∩J1

, . . . ,X i
T∩JF

, . . . ,X i
T∩J|F |

))
=Vi (T ∪{ j}))−Vi (T )

where the second line follows because u(·) has decreasing differences in each argument, and the
third line follows because u(·) is submodular. This shows the submodularity of Vi (·).

Proof of Corollary 1. Following the notation in the proof for the viewer-level model, we have
that

vZ = |I| ·E
[
ai

(
u
(
X i
J
)
−u
(

X i
J \Z

))]
= |I| ·E

[
ai1i→Z1i6→J \Z

]
= ∑

i
aiE [1i→Z]E

[
1i 6→J \Z

]
= ∑

i
aiηiZ ∏

j 6∈Z

(
1−ηi j

)
= ∑

i
aiηiZ ∏

Z′ 6=Z
(1−ηiZ′)

where we use the notation 1i→S to denote the event that viewer i watches at least one outlet in the
set S and the notation 1i6→S to denote the opposite. The second line follows because u(M) = 1M>0,
the third because of the independence of ad viewing across outlets, and the fourth and fifth by the
definition of ηiZ and the structure of viewing behavior in the viewer-level model. The corollary
then follows by Theorem 1.

Proof of Proposition 1. The setting of Proposition 1 is formally equivalent to a special case of the
setting of Proposition 4 in Appendix A.3.1, in which β1 = u(1)−u(0) = 1> 0= u(2)−u(1) = β2

and, for each owner Z, we consider that it owns a single outlet with viewing probability ηg j = ηgZ .
The desired result then follows by Proposition 4.
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Proof of Proposition 2. The setting of Proposition 2 is formally equivalent to a special case of the
setting of Proposition 5 in Appendix A.3.1, in which β1 = u(1)−u(0) = 1> 0= u(2)−u(1) = β2

and, for each owner Z, we consider that it owns a single outlet with viewing probability ηg j = ηgZ .
The desired result then follows by Proposition 5.

Proof of Proposition 3. We proceed by showing that the setting of Proposition 3 is equivalent to
a special case of the setting of Theorem 1. Let J̃ be the set of outlets owned by owners in Z̃ . Let

J ∗ =
(
J \J̃

)
∪
(
J̃ ×I

)
be an augmented set of outlets that includes viewer-specific instances of all outlets in J̃ . Let
Z∗ =

(
Z\Z̃

)
∪
(
Z̃ ×I

)
be the corresponding augmented set of owners. Let J ∗i =

(
J \J̃

)
∪(

J̃ ×{i}
)
⊆J ∗ denote the set of outlets on which it is possible to show ads to viewer i. Let V ∗i (·)

be the restriction of Vi (·) to J ∗i , i.e.

V ∗i (S) =Vi (S∩J ∗i )

for all S ⊆ J ∗, where with slight abuse of notation we take {( j, i)} as equivalent to { j} when
evaluating Vi (·). Let V ∗ (·) = ∑i∈I V ∗i (·). Recall that both monotonicity and submodularity are
preserved under restriction and addition. Observe that an instance of the game considered in The-
orem 1 with primitives J ∗,V ∗ (·) ,Z∗ is equivalent to the game considered in Proposition 3. The
conclusions of Proposition 3 therefore follow from Theorem 1 and the structure of the value func-
tion V ∗i (·).

Proof of Corollary 2. Following the notation in the proof of Corollary 1, for any owner Z in
format 1 we have that

vZ = |I| ·E
[
ai

(
u
(
X i
J1
,X i

J2

)
−u
(

X i
J1\Z,X

i
J2

))]
= |I| ·E

[
ai

(
1X i

J1
>0−1X i

J1\Z
>0−φ

(
1X i

J1
X i
J2

>0−1X i
J1\Z

X i
J2

>0

))]
= |I| ·E

[
ai

(
1X i

J1
>0−1X i

J1\Z
>0−φ1X i

J2
>0

(
1X i

J1
>0−1X i

J1\Z
>0

))]
= |I| ·E

[
ai

(
1X i

J1
>0−1X i

J1\Z
>0

)(
1−φ1X i

J2
>0

)]
= ∑

i
aiE [1i→Z]E

[
1i 6→J1\Z

]
(1−φE [1i→J2])
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= ∑
i

aiηiZ

(
1−φ

(
1− ∏

Z′∈Z\F(Z)
(1−ηiZ′)

))
∏

Z′∈F(Z)\{Z}
(1−ηiZ′)

and

viZ = aiηiZ

(
1−φ

(
1− ∏

Z′∈Z\F(Z)
(1−ηiZ′)

))
∏

Z′∈F(Z)\{Z}
(1−ηiZ′) .

The second line follows because u(M1,M2) = 1M1>0 +1M2>0−φ1M1M2>0 and the remaining lines
follow from the independence of ad viewing across outlets, the structure of viewing behavior, and
the definition of ηiZ . An analogous construction applies for any owner Z in format 2. The corollary
then follows by Proposition 3.

Proof of Corollary 3. This is an immediate consequence of Corollary 2.

A.3. Extensions

A.3.1. Comparative Statics with General Diminishing Returns

Consider a special case of the viewer-level model in which there is a single format, every owner
owns a single outlet, ai = a > 0 for all i ∈ I, and ηi j = ηi′ j for any i, i′ ∈ g for g ∈ G and G a
partition of I. To ease notation, let β0 = 0, and let

βm := u(m)−u(m−1)

for m≥ 1, so that

u(M) =
M

∑
m=0

βm .

Let µg denote the size of viewers from group g. Let

λ j = ∑
g∈G

µgηg j, σg j =
µgηg j

λ j

denote, respectively, the expected number of viewers seeing an ad on outlet j, and the share of this
audience that comes from group g. Then p∗j/λ j is the equilibrium price per viewer charged by the
owner for an ad slot. In this setting, we define a group g ∈ G to be less active than group h ∈ G if
ηg j ≤ ηh j for all j ∈ J .

Proposition 4. Suppose that outlet j ∈ J draws a larger share of its audience from a less active

group g and a smaller share of its audience from a more active group h than outlet k ∈ J , in

the sense that σg j ≥ σgk and σh j ≤ σhk, and that the two outlets have equal total audience sizes,
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λ j = λk, and equal shares of audience from groups other than g and h, σg′ j = σg′k for all g′ 6= g,h.

Then outlet j has a higher equilibrium price per viewer than outlet k, p∗j/λ j ≥ p∗k/λk, with strict

inequality whenever ∏l 6= j,k
(
1−ηgl

)
> ∏l 6= j,k (1−ηhl), σg j > σgk, and β1 > β2.

Proof. With a slight abuse of notation, for any group g, let g denote both the group and a randomly
sampled viewer from the group. By Theorem 1, we can write

p∗j = a∑
g

µgE[1g→ jβXg
J \{ j}+1]

where g→ j denotes the event that a randomly sampled viewer g views ads on outlet j and Xg
J \{ j}

counts the random number of outlets other than j on which viewer g views ads. For any g′ 6= g,h,
we have

ηg′ j =
λ jσg′ j

µg′
=

λkσg′k

µg′
= ηg′k.

Therefore, for any g′ 6= g,h, by independence and symmetry,

E[1g′→ jβXg′
J \{ j}+1

] = E[1g′→kβ
Xg′
J \{k}+1

].

To prove that p∗j/λ j ≥ p∗k/λk, it then suffices to show

µgE[1g→ jβXg
J \{ j}+1−1g→kβXg

J \{k}+1]≥ µhE[1h→kβXh
J \{k}+1−1h→ jβXh

J \{ j}+1].

Because ad viewing is independent across outlets for any given viewer, we can write the above as

µg
[
ηg j(1−ηgk)−ηgk(1−ηg j)

]
E[βXg

J \{ j,k}+1]≥ µh
[
ηhk(1−ηh j)−ηh j(1−ηhk)

]
E[βXh

J \{ j,k}+1]

where Xg
J \{ j,k} counts the random number of outlets not in { j,k} on which viewer g views ads.

Since λ j = λk, this reduces to

(σg j−σgk)E[βXg
J \{ j,k}+1]≥ (σhk−σh j)E[βXh

J \{ j,k}+1].

It follows easily from our assumptions that σg j − σgk = σhk − σh j ≥ 0. So it suffices to show
E[βXg

J \{ j,k}+1]≥E[βXh
J \{ j,k}+1]. Since ηg j≤ηh j for all j∈J and viewing decisions are independent

across outlets for both g and h, there exists a monotone coupling of the viewing decisions by g and
h in the sense that 1g→ j ≤ 1h→ j for all j ∈ J . Under this coupling, we have Xg

J \{ j,k} ≤ Xh
J \{ j,k}

pointwise. The claim then follows directly by noting that βm is non-increasing in m for m≥ 1 and
by the definition of the viewer-level model.

To show strict inequality, suppose that ∏l 6= j,k
(
1−ηgl

)
> ∏l 6= j,k (1−ηhl), σg j > σgk, and
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β1 > β2. Using integration by parts and the definition of βm, we have

E[βXg
J \{ j,k}+1]−E[βXh

J \{ j,k}+1] =
∫

∞

0
P(βXg

J \{ j,k}+1 > s)ds−
∫

∞

0
P(βXh

J \{ j,k}+1 > s)ds

=
∞

∑
m=1

(βm−βm+1)
(
P(Xg

J \{ j,k}+1≤ m)−P(Xh
J \{ j,k}+1≤ m)

)
> 0

where the strict inequality follows from the fact that each term in the summation is nonnegative,
β1 > β2, and P(Xg

J \{ j,k} = 0) = ∏l 6= j,k(1−ηgl)> ∏l 6= j,k(1−ηhl) = P(Xh
J \{ j,k} = 0). Since σg j >

σgk, we then have (σg j−σgk)E[βXg
J \{ j,k}+1]> (σhk−σh j)E[βXh

J \{ j,k}+1] and hence p∗j/λ j > p∗k/λk.

Proposition 5. Suppose that outlet j has a larger audience than outlet k in the sense that for

some δ ≥ 1, ηg j = δηgk for all g ∈ G. Then outlet j has a higher price per viewer than outlet k,

p∗j/λ j ≥ p∗k/λk with strict inequalty whenever ηg j ∏l 6= j,k
(
1−ηgl

)
> 0, δ > 1, and β1 > β2.

Proof. We follow the same notation as in the proof of Proposition 4. By Theorem 1, we can write

p∗j = a∑
g

µgE
[
1g→ jβXg

J \{ j}+1

]
= a∑

g
µg

(
ηg jηgkE

[
βXg

J \{ j,k}+2

]
+ηg j

(
1−ηgk

)
E
[
βXg

J \{ j,k}+1

])
= a∑

g
µg

(
ηgkηg jE

[
βXg

J \{ j,k}+2

]
+δηgk

(
1− 1

δ
ηg j

)
E
[
βXg

J \{ j,k}+1

])
= a∑

g
µg

(
ηgkηg jE

[
βXg

J \{ j,k}+2

]
+ηgk

(
1−ηg j

)
E
[
βXg

J \{ j,k}+1

]
+ηgk (δ −1)E

[
βXg

J \{ j,k}+1

])
= a∑

g
µgηgk

(
E
[
βXg

J \{k}+1

]
+(δ −1)E

[
βXg

J \{ j,k}+1

])
≥ a∑

g
µgηgk

(
E
[
βXg

J \{k}+1

]
+(δ −1)E[βXg

J \{k}+1]
)
= δ p∗k =

λ j

λk
p∗k

where we have used independence of ad viewing across outlets, ηg j = δηgk, δ ≥ 1, Xg
J \{k} ≥

Xg
J \{ j,k}, and the fact that βm is nonincreasing in m for m≥ 1.

To show strict inequality, suppose that ηg j ∏l 6= j,k
(
1−ηgl

)
> 0, δ > 1, and β1 > β2. For any

group g, using integration by parts and the definition of βm, we have

E
[
βXg

J \{ j,k}+1

]
−E[βXg

J \{k}+1] =
∫

∞

0
P(βXg

J \{ j,k}+1 > s)ds−
∫

∞

0
P(βXg

J \{k}+1 > s)ds

=
∞

∑
m=1

(βm−βm+1)
(
P(Xg

J \{ j,k}+1≤ m)−P(Xg
J \{k}+1≤ m)

)
> 0
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where the strict inequality follows from that each term in the summation is nonnegative, β1 > β2,
and P

(
Xg
J \{ j,k} = 0

)
−P

(
Xg
J \{k} = 0

)
= ηg j ∏l 6= j,k

(
1−ηgl

)
> 0. Since δ > 1, we then have

(δ −1)E
[
βXg

J \{ j,k}+1

]
> (δ −1)E[βXg

J \{k}+1] and hence p∗j/λ j > p∗k/λk.

A.3.2. Endogenous Response of Viewers

There is a set of programs K. Each outlet consists of K programs. Each program has one ad
slot. Each advertiser that purchases an ad slot on a given outlet is randomly assigned to the slot
in one of the outlet’s programs. There is a set of viewers I. Each viewer views a subset of
programs. Whether a given viewer views a given program depends on whether that program carries
an ad, but not on whether other programs do. Thus, as in Ambrus, Calvano, and Reisinger (2016,
Section II), advertising may be a nuisance (or attraction) that affects a given outlet’s audience, but
advertising on one outlet does not drive audience to (or attract audience from) another. For each
viewer that views its ad on M ∈N distinct outlets, each advertiser gets value u(M)≥ 0 where u(·)
is nondecreasing and exhibits decreasing differences.

Proposition 6. There exists an equilibrium. In any equilibrium, all advertisers buy slots on all

outlets, and the payment by each advertiser to each owner Z is given by p∗Z = vZ .

Proof. By Theorem 1, it suffices to show that the value function V (·), in this setting, satisfies
monotonicity and submodularity. Let k ∈ K denote a generic program and let K j ⊆ K be the
programs associated with outlet j. For each viewer i ∈ I, let i 99K k denote the event that viewer
i watches program k in the scenario that program k carries an ad. This event may be random if
viewing behavior is probabilistic. For a set of programs K′ ⊆K, let

X i
K′ = ∑

k∈K′
1i99Kk

be the (possibly random) number of programs inK′ watched by i in the scenario that each program
k ∈ K′ carries an ad. Let

R=
{
K′ ⊆K : |K′∩K j|= 1 for all j ∈ J

}
be the set of all sets of representative programs, such that within each set there is one program for
each outlet. For any set of outlets S ⊆ J , let KS = ∪ j∈SK j. For each advertiser, the value of a set
of outlets S⊆ J can be written as

V (S) = |I| ·E

[
1
|R| ∑

K′∈R
u
(

X i
K′∩KS

)]
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where the expectation is taken with respect to the population of viewers and the (possibly random)
viewing behavior of each viewer. Because averaging preserves monotonicity and submodularity,
it suffices to show that for any realized viewing behavior and representative programs R, and any
K′ ∈R, we have that the function

Ṽi (S) := u
(

X i
K′∩KS

)
is monotone and submodular. It is clear that Ṽi (S) is monotone since u(·) is nondecreasing. For
submodularity, note that for any S⊆ T ⊆ J and any j ∈ J \T ,

Ṽi (S∪{ j})−Ṽi (S) = u
(

X i
K′∩KS∪{ j}

)
−u
(

X i
K′∩KS

)
≥ u

(
X i
K′∩KT∪{ j}

)
−u
(
X i
K′∩KT

)
= Ṽi (T ∪{ j})−Ṽi (T )

where the second line follows from the assumption that u(·) has decreasing differences.

A.3.3. Rationing of Ad Slots

Suppose that we may have N > K and assume that bundle prices can only take on values in the
set {0,∆,2∆, · · ·} where ∆ > 0 is some fixed increment. For this extension, we allow for mixed
strategies and assume that the advertisers make purchasing decisions sequentially (in a random
order) rather than simultaneously.

Proposition 7. There exists a subgame perfect Nash equilibrium, possibly in mixed strategies, and

in any subgame perfect Nash equilibrium each owner Z earns an expected revenue per ad slot

between (vZ−∆)/ |Z| and ∑ j∈Z V ({ j})/ |Z|.

Proof. We prove the second part of the statement first. Fix any subgame perfect equilibrium al-
lowing for mixed strategies (SPEMS). Suppose, toward contradiction, that expected revenue per
slot is strictly higher than ∑ j∈Z V ({ j})/ |Z| for some owner Z ∈ Z . Then the owner’s expected
total revenue is strictly higher than K ∑ j∈Z V ({ j}). Thus with positive probability, the owner earns
a realized revenue strictly higher than K ∑ j∈Z V ({ j}). In any such event, there is at least one ad-
vertiser who buys slots on a set of outlets B ⊆ Z and pays strictly more than ∑ j∈BV ({ j}) to the
owner. Let S ⊆ J be the set of outlets that this advertiser buys slots on. Since any non-negative
submodular function is also sub-additive, we have that

V (S)−V (S\B)≤V (B)−V (∅)≤ ∑
j∈B

V ({ j}) .
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So not buying anything from Z is a profitable deviation for the advertiser, implying a contradiction.
Next, toward contradiction suppose that the expected revenue per slot is strictly lower than

(vZ−∆)/ |Z| for some owner Z ∈ Z . Then the expected total revenue is strictly lower than
K (vZ−∆). Let the owner deviate by offering a single bundle Z with a price p̃Z = dvZ−∆e, where
dxe denotes the operator that rounds x up to the closest value in {0,∆,2∆, · · ·}. Note that

vZ−∆≤ dvZ−∆e< vZ.

Since p̃Z < vZ , by an argument analogous to the one in the proof of Theorem 1, submodularity
of V (·) implies that, in any realization, the owner would be able to sell all the slots and secure
revenue K p̃Z . Because this is a profitable deviation for the owner, we have a contradiction.

To show the existence of a SPEMS, we construct an auxiliary finite game in normal form,
apply the standard existence result, and then recover a SPEMS in the original game. Consider a
simultaneous-move game between all the owners. Let

A(Z) = {0,∆,2∆, · · · ,dV (J )e,∞}|P(Z)|

be the set of pure strategies that an owner can choose from. Clearly, A(Z) is finite for any Z.
For each pure strategy profile p ∈ A(Z), draw a random order for the advertisers and then let the
advertisers, in that order, choose which slots to buy given the posted prices specified in p. Then, for
each p ∈A(Z), assign the resulting expected revenue (averaged over different orders) for owner Z

as the payoff to owner Z in the auxiliary game. This constructs a finite normal-form game among
the owners. Standard results then imply the existence of a Nash equilibrium, possibly in mixed
strategies. Call this equilibrium E . Now let each owner play the strategy prescribed by E in the
original game. Evidently, this constructs a SPEMS for the original game.

A.3.4. Partially Increasing Returns

Theorem 1 relies on submodularity of V (·). Under strict monotonicity the conclusion of Theorem
1 obtains under a weakening of submodularity.

Proposition 8. Suppose that V (·) is strictly monotone and that V (S∪Z)−V (S)≥V (J )−V (J \Z)
for all Z ∈ Z and S ⊆ J \Z. Then there exists an equilibrium, and in any equilibrium, all adver-

tisers buy slots on all outlets, and the payment by each advertiser to each owner Z is given by

p∗Z = vZ .

Proof. We first construct an equilibrium. We use the same construction as in the proof of Theorem
1. When verifying the construction, the only properties of V (·) used in the proof of Theorem 1 are

12



that V (·) is monotone and that for any S⊆ J \Z,

V (S∪Z)−V (S)≥V (J )−V (J \Z)

which we assume.
To prove the second part of the statement, fix any equilibrium of the game. By Lemma 1(ii)

and strict monotonocity of V (·), all advertisers buy slots on all outlets in J . The rest follows
analogously to the proof of Theorem 1.

The decreasing differences condition on V (·) in the hypothesis of Proposition 8 is strictly weaker
than submodularity. In particular, consider the following example.

Example 1. Owners are singletons, each of a set I of viewers i ∈ I sees ads on at least L outlets,
each outlet has a strictly positive number of viewers, and an advertiser’s value for viewer i seeing
its ad M times is aiu(M) = ai ∑

M
m=0 βm where ai > 0 for all i, β0 = 0,βm > 0 for all m, βm is

non-increasing for all m≥ L, and βL ≤min1≤m<L βm.

Example 1 allows increasing returns to advertising for viewers receiving few impressions (as in,
e.g., Dubé, Hitsch, and Manchanda 2005). Although Example 1 need not satisfy the hypotheses of
Theorem 1, Example 1 does satisfy the hypotheses of Proposition 8.

Proposition 9. The value function V (·) in Example 1 satisfies the hypotheses of Proposition 8.

Proof. For any viewer i ∈ I and outlet j ∈ J , let i→ j denote the event that viewer i watches
outlet j. For any viewer i ∈ I and set of outlets S⊆J , let X i

S denote the number of outlets in set S

on which viewer i views ads.We have that

V (S) = |I| ·E
[
aiu
(
X i

S
)]

= |I| ·E [Vi (S)]

where the expectation is taken with respect to the population of viewers and their (possibly random)
viewing behavior. To show strict monotonicity, observe that for any j ∈ J and any S⊆ J \{ j},

Vi (S∪{ j})−Vi (S) = ai1i→ jβXS+1

is weakly positive, and strictly so with positive probability. To show that

V (S∪Z)−V (S)≥V (J )−V (J \Z)

for all Z ∈ Z, S ⊆ J \Z, because owners are singletons, it suffices to show that for any j and any
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S⊆ J \{ j}, we have

Vi (S∪{ j})−Vi (S) = ai1i→ jβXS+1 ≥ ai1i→ jβXJ \{ j}+1 =Vi (J )−Vi (J \{ j}) .

To see the above, consider the event i→ j. Then, XJ \{ j}+1=XJ ≥ L. Note that XS+1=XS∪{ j}≤
XJ . If XS∪{ j} ≥ L, then βXS∪{ j} ≥ βXJ because βm is non-increasing for m≥ L. If XS∪{ j} < L, then
we have

βXJ ≤ βL ≤ min
1≤m<L

βm ≤ βXS∪{ j}.

So in either case, the claimed inequality holds.

The setting of Example 1 continues to satisfy the hypotheses of Proposition 8 if a small number of
viewers view fewer than L outlets.

Example 2. Owners are singletons. There is a set of viewers I. There is a subset of viewers I ⊆ I
such that (i) each viewer i ∈ I sees ads on at least L outlets and (ii) each viewer i ∈ I sees ads on
both of any pair of outlets { j,k} ∈ J 2 with strictly positive probability. An advertiser’s value for
viewer i seeing its ad M times is aiu(M) = ai ∑

M
m=0 βm where ai ∈ (0,a) for all i, β0 = 0,βm > 0

for all m, βm is strictly decreasing for all m≥ L, and βL < min1≤m<L βm.

Proposition 10. There exists ε > 0 such that the value function V (·) in Example 2 satisfies the

hypotheses of Proposition 8 as long as the share of viewers not in I is no more than ε .

Proof. Strict monotonicity follows by the same argument as in the proof of Proposition 9. Now,
fix any j ∈ J , any S ⊂ J \{ j}, and any k ∈ J \(S∪{ j}). Because each viewer i ∈ I sees ads on
both of any pair of outlets { j,k} ∈ J 2 with strictly positive probability, following the notation in
the proof of Proposition 9 we have that

P
(

i→ j,X i
S < X i

J \{ j}|i ∈ I
)
> 0.

Thus, since βm is strictly decreasing for all m≥ L, and βL < min1≤m<L βm, we have

E
[
ai1i→ jβX i

S+1|i ∈ I
]
> E

[
ai1i→ jβX i

J \{ j}+1|i ∈ I
]
.

Now let

τ := min
j∈J ,S⊂J \{ j}

(
E
[
ai1i→ jβX i

S+1|i ∈ I
]
−E

[
ai1i→ jβX i

J \{ j}+1|i ∈ I
])

> 0.

Let β = max1≤m<L βm. Let
ε =

τ

τ +aβ
> 0.
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We claim that if P(i /∈ I) ≤ ε then V (·) satisfies that V (S∪Z)−V (S) ≥ V (J )−V (J \Z) for
all Z ∈ Z,S ⊆ J\Z. Because owners are singletons, it suffices to consider any j ∈ J and any
S⊂ J \{ j}. Note that

V (S∪{ j})−V (S)≥ |I| ·P(i ∈ I)E[ai1i→ jβXS+1|i ∈ I]

≥ |I| ·P(i ∈ I)
(
E[ai1i→ jβXJ \{ j}+1|i ∈ I]+ τ

)
≥ |I| ·

(
P(i ∈ I)E[ai1i→ jβXJ \{ j}+1|i ∈ I]+P(i /∈ I)aβ

)
≥ |I| ·

(
P(i ∈ I)E[ai1i→ jβXJ \{ j}+1|i ∈ I]+P(i /∈ I)E[ai1i→ jβXJ \{ j}+1|i 6∈ I]

)
=V (J )−V (J \{ j}),

where the second inequality follows from the construction of τ and the third inequality follows
from the fact that P(i /∈ I)≤ ε .

Lastly, we show that analogues of Propositions 1 and 2 hold in a special case of Example 1 that is
analogous to the setting of Section I.B.

Proposition 11. Consider a special case of Example 1 with ai = a for all i, and further impose the

structure in Section I.B, where for each group g ∈G, there is a set Lg ⊆J such that
∣∣Lg
∣∣≥ L and

ηg j = 1 for all j ∈ Lg. Then the conclusions of Propositions 1 and 2 hold.

Proof. We follow the same arguments and notation as in the proofs of Propositions 4 and 5. By
Propositions 8 and 9, we have only to characterize the incremental value for each owner Z.

For the conclusion of Proposition 1, recall that we use a monotone coupling in the proof
of Proposition 4. Under that coupling we have Xg

J \{ j,k} ≤ Xh
J \{ j,k} pointwise, where we re-

call that Xg
J \{ j,k} counts the random number of outlets not in { j,k} on which viewer g sees

ads. It follows that Xg
J \{ j,k},X

h
J \{ j,k} ≥ L− 2 and so Xg

J \{ j,k}+ 1,Xh
J \{ j,k}+ 1 ≥ L− 1. Since

βL ≤min1≤m<L βm ≤ βL−1 and βm is non-increasing in m for m≥ L, βm is non-increasing in m for
m≥ L−1. Since Xg

J \{ j,k}+1≤Xh
J \{ j,k}+1 pointwise, we have βXg

J \{ j,k}+1≥ βXh
J \{ j,k}+1 pointwise

and so E
[
βXg

J \{ j,k}+1

]
≥ E

[
βXh

J \{ j,k}+1

]
, which concludes the proof as before.

For the conclusion of Proposition 2, recall that Xg
J \{k} counts the random number of outlets

other than k on which viewer g sees ads. So Xg
J \{k}+1≥ Xg

J \{ j,k}+1≥ L−1. Because βm is non-

increasing in m for m≥ L−1, we have βXg
J \{ j,k}+1 ≥ βXg

J \{k}+1 pointwise and so E
[
βXg

J \{ j,k}+1

]
≥

E
[
βXg

J \{k}+1

]
, which concludes the proof as before.
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A.3.5. Heterogeneous Advertisers

Suppose now that each advertiser n ∈ N has a monotone and submodular value function Vn (·).
If outlets can post advertiser-specific prices, then the result is parallel to that in Theorem 1,
in the sense that the equilibrium price of owner Z’s bundle to advertiser n is given by vn,Z =

Vn (J )−Vn (J \Z). If outlets cannot post advertiser-specific prices, then incremental pricing holds
if heterogeneity among the advertisers is sufficiently small compared to the incremental value of
a single outlet. Let vZ = minn∈N vn,Z and vZ = maxn∈N vn,Z denote the minimum and maximum
values of vn,Z , respectively, with respect to n. Let ϕ(Z) =minn∈N , j∈Z Vn((J \Z)∪{ j})−Vn (J \Z)
denote the minimal incremental value of any one of owner Z’s outlets. In the special case where Z

is a single-outlet owner, ϕ(Z) = vZ .

Proposition 12. Suppose that heterogeneity in the value functions Vn (·) is small in the sense that

vZ − vZ ≤ 1
N ϕ(Z) for all Z ∈ Z . Then there exists an efficient equilibrium, and in any efficient

equilibrium, all advertisers buy slots on all outlets, and p∗Z = vZ for all Z ∈ Z .

Proof. As in the proof of Theorem 1, we first construct an equilibrium. For any profile p of posted
prices (including those off of the equilibrium path), let pS denote the minimum price to buy slots
on all the outlets in S. Now let every advertiser n buy the bundle S∗n (p), chosen arbitrarily from the
set of solutions to the problem

max |S|

s.t.S ∈ argmax
S⊆J

Vn (S)− pS

By construction, (S∗1 (·) , ...,S∗N (·)) constitutes an equilibrium strategy profile for the advertisers.
Now, let each owner Z offer a single bundle consisting of all outlets in Z with a price pZ = vZ .

We only need to check that each owner has no profitable deviation. Observe that if pZ = vZ is
offered by some owner Z and there is no proper subset W ⊂ Z being offered, then any advertiser
will buy the bundle Z regardless of the prices posted by owners other than Z. This is because for
any S⊆ J \Z, submodularity of Vn(·) implies that

Vn(S∪Z)−Vn(S)≥Vn(J )−Vn(J \Z)≥ min
n′∈N

Vn′(J )−Vn′(J \Z) = vZ.

Fix an owner Z ∈Z and suppose all other players follow the proposed strategy. We claim that
offering a single bundle Z with a price vZ is an optimal strategy for owner Z. To see this, consider
two cases.

Case 1: Suppose Z offers some set of bundles BZ such that every advertiser buys a slot on
every outlet in Z. Then the minimal price to buy all outlets in Z must be no more than vZ because
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otherwise there is one advertiser who can profitably deviate by simply not buying anything in BZ .
Hence in this case the owner cannot do better than simply offering the bundle Z with a price vZ .

Case 2: Suppose Z offers some set of bundles BZ such that there exist at least one outlet j ∈ Z

and one advertiser ñ ∈ N such that advertiser ñ does not buy a slot on outlet j. The total revenue
that owner Z extracts is no more than

max
n, j

{
∑

n′ 6=n
vn′,Z + vn,Z\{ j}

}

where vn,Z\{ j} =Vn (J )−Vn (J \ (Z\{ j})) is the incremental value to advertiser n of the owner’s
outlets excluding outlet j. We also have that

max
n, j

{
∑

n′ 6=n
vn′,Z + vn,Z\{ j}

}
≤max

n, j

{
NvZ−

(
vn,Z− vn,Z\{ j}

)}
=NvZ−min

n, j
{Vn ((J \Z)∪{ j})−Vn (J \Z)}

=NvZ−ϕ(Z)

≤NvZ−N(vZ− vZ) = NvZ

where we have used the assumption that vZ− vZ ≤ 1
N ϕ(Z). Hence the owner also cannot do better

than simply offering the bundle Z with a price vZ .
Thus the construction is an equilibrium. The outcome is efficient because all advertisers buy

slots on all outlets.
To prove the second part of the statement, fix any efficient equilibrium. All outlets must sell N

slots, because the preferences for each player are quasilinear in money and thus the total surplus is
maximized only if all potential trades are realized (recall K ≥ N). Then by the argument in Case 1,
we know that p∗Z ≤ vZ for all Z ∈ Z . Moreover, p∗Z cannot be strictly lower than vZ for any owner
Z, because if this were the case then it would be a profitable deviation for owner Z to offer a single
bundle Z with a price vZ− ε for ε > 0 small enough. Hence p∗Z = vZ for all Z ∈ Z .

Note that the hypothesis of Proposition 12 restricts the incremental values rather than the level
of Vn (·), in the sense that it allows for Vn(·) =V (·)+ cn for any cn that preserves non-negativity.1

The restriction on incremental values becomes more demanding as the number of advertisers, N,
grows large.

1When there are two or more owners, it also allows for Vn(∅) = V (∅) and Vn(J ′) = V (J ′)+ cn for ∅ 6= J ′ ⊆ J ,
where cn ≥ 0.
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A.3.6. Unbundled Pricing

Suppose that each owner Z ∈ Z is endowed with a partition FZ of Z such that owner Z can offer a
bundle B⊆ Z if and only if there exists C∈FZ such that B⊆C. For example, ifFZ partitions owner
Z’s outlets into singletons, then the owner cannot bundle together ads on different outlets. Denote
by vS

B = V (S)−V (S\B) the incremental value of bundle B ⊆ S relative to set S ⊆ J . We refine
the notion of equilibrium by assuming that, when indifferent, owners break ties in favor of offering
fewer bundles, and each advertiser breaks ties by favoring owners according to a prespecified
ordering.

Proposition 13. In any equilibrium satisfying the tie-breaking rule, each bundle sold has a price

of p∗B = vS
B, where S⊆ J is the set of all outlets sold.

Proof. LetOn denote advertiser n’s tie-breaking ordering over owners; that is, if indifferent among
one or more sets of bundles, advertiser n chooses in a manner that maximizes the payoffs of the
owners according to a lexicographic preference over owners defined by On.

If in some equilibrium advertiser n′ obtains a strictly greater payoff than advertiser n, adver-
tiser n can improve their payoff by mimicking the strategy of advertiser n′. It follows that in any
equilibrium all advertisers must obtain the same payoff.

Now, fix some equilibrium with advertiser payoff W and pricing profile p. For any set S⊆J ,
let pS be the minimum price to buy slots on all the outlets in S in the equilibrium.

We first prove that, analogous to Lemma 1(i), in the equilibrium all advertisers pay the same
total amount to any given owner Z. Suppose toward contradiction that there exists some owner
Z ∈Z such that not all advertisers make the same total payment to Z. Let n be an advertiser whose
payment to owner Z in the supposed equilibrium is at least as large as any other advertiser’s, and
strictly larger than some other advertiser’s. Let SC be the set of outlets that advertiser n buys slots
on in the cell C ∈ FZ . Let owner Z deviate by offering the bundles B := {SC : SC 6=∅,C ∈ FZ}
with prices

{
pSC − ε : SC 6=∅,C ∈ FZ

}
for some ε > 0. Note that |B| ≥ 1 since advertiser n

pays a positive amount to owner Z. By buying all the bundles offered in this deviation of Z (and
imitating advertiser n’s choices at the on-path history in the supposed equilibrium), any advertiser
can obtain a payoff of W + ε|B|. Because any set of outlets an advertiser wants to buy slots on
after this deviation is also a valid choice at the on-path history, if an advertiser does not buy all
the bundles in B, then the advertiser gets at most W + ε(|B|− 1). Hence after this deviation, all
advertisers buy the bundles in B offered by Z. Because this is a profitable deviation for owner Z

when ε is small enough, we have a contradiction.
We next prove that every advertiser must buy the same set of bundles from any given owner

Z and that owner Z offers at most one bundle from each cell in FZ . Fix any owner Z ∈ Z
and any advertiser n ∈ N . Let SC be the set of outlets that advertiser n buys slots on in the
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cell C ∈ FZ . Suppose that owner Z offers the bundles B := {SC : SC 6=∅,C ∈ FZ} with prices{
pSC : SC 6=∅,C ∈ FZ

}
. We claim that owner Z weakly increases their payoff with this strategy

compared to any equilibrium strategy. For each advertiser, this change restricts the set of possi-
ble choices while keeping at least one choice that maintains the equilibrium payoff (imitating the
choice of advertiser n at the on-path history in the equilibrium). Because at the on-path history all
advertisers pay the same total amount to Z, this change can only decrease owner Z’s payoff if there
is some advertiser n′ (not necessarily different from n) who now breaks ties in favor of some owner
that ranks higher than Z in On′ . However, that choice must also be made at the on-path history by
advertiser n′ due to the tie-breaking rule. But then advertiser n′ pays strictly less than advertiser n

to owner Z in the equilibrium, which contradicts what we previously showed.
Because an owner chooses to offer fewer bundles when indifferent, the above observation

implies that every advertiser must buy the same set of bundles from any given owner Z and that
owner Z offers at most one bundle from each cell in FZ . (Otherwise, owner Z may simply pick
an advertiser n who buys the smallest number of bundles from Z and offer the set of bundles
B as defined above to strictly decrease the total number of bundles offered without decreasing
payoff.) Then all advertisers buy slots on the same set of outlets (say S) and any owner Z offers
BZ := {S∩B : S∩B 6=∅,B ∈ FZ} as the available bundles.

Therefore, in the second stage, the set of feasible bundles that advertisers can choose

{S∩B : S∩B 6=∅,B ∈ FZ}Z∈Z

must be a partition of the set S. For any bundle B offered by any owner Z, by rationality of the
advertisers,

pB ≤V (S)−V (S\B) = vS
B.

Next we show that pB ≥ vS
B. Suppose toward contradiction that there exist some owner Z and some

bundle B′ ∈FZ , B′ ⊆ S such that pB′ < vS
B′ . Consider the following deviation. Let owner Z offer all

bundles in BZ as in the equilibrium but change the price for each bundle B to p̃B = vS
B−ε for some

ε > 0. We claim that after this deviation, all advertisers continue buying slots on the same outlets
from owner Z as in the equilibrium. Indeed, if an advertiser stops buying some bundle B ∈ BZ ,
then the advertiser can only choose S′ ⊆ S\B since the set of available bundles is a partition of S.
But submodularity of V (·) implies

V
(
S′∪B

)
−V

(
S′
)
≥V (S)−V (S\B) = vS

B > p̃B.

Therefore owner Z can extract vS
B− ε for each bundle B ∈ BZ from each advertiser. For ε suf-

ficiently small, this is then a profitable deviation for owner Z since in the equilibrium we have
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pB ≤ vS
B for all B ∈ BZ and pB′ < vS

B′ for some bundle B′ ∈ BZ . We therefore have contradic-
tion.

A.3.7. Bargaining between Owners and Advertisers

Suppose that rather than simultaneously posting prices, owners bargain with advertisers a la Nash-
in-Nash (Lee, Whinston, and Yurukoglu 2021). We follow the notation in Lee, Whinston, and
Yurukoglu (2021). For each owner Z and each advertiser n, let

CZn := {(B, p) : B⊆ Z, p ∈ R+}

be the contract space, with an element denoted by CZn. For a contract CZn, let B(CZn) and p(CZn)

denote the associated bundle and price. Let C0 = {(∅,0)} denote the null contract. For a given set
of contracts C := {CZn}Z∈Z,n=1,...,N , owner Z’s payoff is given by

ΠZ(C) = ∑
n

p(CZn)

and advertiser n’s payoff is given by

Πn(C) =V

(⋃
Z∈Z

B(CZn)

)
− ∑

Z∈Z
p(CZn) .

Given the set of contracts C−Zn excluding pair (Z,n), let

C+Zn (C−Zn) = {CZn ∈ CZn : Πn({CZn,C−Zn})−Πn({C0,C−Zn})≥ 0}

be the set of contracts between Z and n that give non-negative gains from trade to owner Z and
advertiser n (note that only the constraint for the advertiser is relevant as any contract would give
non-negative gains from trade to owner Z). Recall that a set of contracts Ĉ is a Nash-in-Nash

equilibrium if:
(i) For all Z,n such that ĈZn 6= C0,

ĈZn ∈ argmax
CZn∈C+Zn(Ĉ−Zn)

[ΠZ({CZn, Ĉ−Zn})−ΠZ({C0, Ĉ−Zn})]ξZ [Πn({CZn, Ĉ−Zn})−Πn({C0, Ĉ−Zn})]1−ξZ ,

where ξZ ∈ [0,1] denotes the bargaining weight for owner Z.
(ii) For all Z,n such that ĈZn = C0, there is no contract in C+Zn

(
Ĉ−Zn

)
that gives strictly

positive gains from trade to both Z and n.
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Proposition 14. If all owners have identical bargaining weights, there exists a Nash-in-Nash equi-

librium in which all advertisers buy slots on all outlets, and the payment by each advertiser to each

owner Z is proportional to vZ . If V (·) is strictly monotone, then this outcome is unique.

Proof. We first show that Ĉ := {(Z,ξZvZ)} is a Nash-in-Nash equilibrium. Condition (ii) clearly
holds. For (i), note that

ΠZ({CZn, Ĉ−Zn})−ΠZ({C0, Ĉ−Zn}) = p(CZn)

and

Πn({CZn, Ĉ−Zn})−Πn({C0, Ĉ−Zn}) =V (B(CZn)∪ (J \Z))−V (J \Z)− p(CZn) .

Because V (·) is monotone, a solution to the Nash bargaining problem is given by B(CZn) = Z and
p(CZn) = ξZ(V (J )−V (J \Z)). This proves that Ĉ is a Nash-in-Nash equilibrium.

For uniqueness, suppose that V (·) is strictly monotone and fix any Nash-in-Nash equilibrium
C̃. For any Z and n, regardless of C̃−Zn, given that V (·) is strictly monotone, any solution to the
Nash bargaining problem must have B(CZn) = Z. Therefore, for any Z and n, any solution to the
Nash bargaining problem must have p(CZn) = ξZ (V (J )−V (J \Z)), proving the claim.

Lastly, observe that when ξZ = ξ for all Z ∈ Z , the payments to each owner under Ĉ are
proportional to vZ .

A.3.8. Auctioning of Advertising Slots

Suppose that rather than simultaneously posting prices, owners simultaneously set reserve prices
for each of their bundles, and then conduct simultaneous first-price auctions.

Proposition 15. If owners simultaneously set reserve prices and then conduct simultaneous first-

price auctions, there exists an equilibrium, and in any equilibrium all advertisers buy slots on all

outlets, and the payment by each advertiser to each owner Z is given by vZ .

Proof. Fix any profile of announced reserve prices p := {pB : B⊆ Z,Z ∈ Z}. For any advertiser,
bidding strictly above the reserve price for any bundle B is strictly dominated by bidding at the
reserve price pB, because in both cases the advertiser is guaranteed to win the bundle (as K ≥ N).
Thus, for any bundle B, each advertiser either bids at the reserve price for that bundle, or bids
below the reserve price and loses the auction. Therefore, after eliminating the strictly dominated
strategies for the advertisers, this game is strategically equivalent to the pricing game of our main
model. Hence, the claim follows directly from Theorem 1.
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Now, in addition, we further characterize equilibrium in a model where owners conduct auc-
tions, advertising slots are scarce, and advertisers’ valuations are heterogeneous. Suppose that each
owner owns one outlet, and identify each owner with the outlet j that the owner owns. Suppose
further that each outlet has K slots, where K < N (so ad slots are scarce). The advertisers are het-
erogeneous, with value functions given by αnV (·) where V (·) is monotone and submodular with
V (∅) = 0. We order the advertisers so that α1 > α2 > · · ·> αN > 0. We assume that

(A1) αK+1V ({ j})< αK(V (J )−V (J \{ j})) ∀ j ∈ J .

Each owner runs a uniform price auction in which the K slots are allocated to the K highest
bidders at a price equal to the (K +1)th highest bid, with ties broken in favor of advertisers with
higher αn. The auctions happen simultaneously. Each advertiser simultaneously submits bids to
every auction. We take an equilibrium to be a Nash equilibrium in pure strategies. We say an
equilibrium is owner-optimal if there is no other equilibrium that gives weakly higher payoffs to
all owners and strictly higher payoff to at least one owner. We say an equilibrium is efficient if the
equilibrium allocation maximizes total surplus among all possible allocations.

Proposition 16. Suppose that Assumption (A1) holds. Then, there exists an efficient owner-optimal

equilibrium, and in every efficient owner-optimal equilibrium, for every owner j, the clearing price

of auction j is αK(V (J )−V (J \{ j})).

Proof. Consider the following strategy profile: in every auction j, each advertiser n ≤ K bids
αn(V (J )−V (J \{ j})); advertiser K + 1 bids αK(V (J )−V (J \{ j})); and each advertiser n >

K +1 bids 0.
We show that this is an equilibrium. Fix any j and any advertiser n with n ≤ K. Because

this is a (K + 1)-th price auction, the advertiser cannot influence the price it pays conditional on
winning. Regardless of the choices the advertiser makes on other auctions, the advertiser weakly
prefers to win auction j at the price of αK(V (J )−V (J \{ j})) rather than to lose the auction at
that price because for any S⊆ J \{ j}, we have

αn(V (S∪{ j})−V (S))≥ αK(V (S∪{ j})−V (S))≥ αK(V (J )−V (J \{ j})),

where we have used submodularity of V (·). Therefore, advertiser n has no profitable deviation.
Next, fix any j and any advertiser n with n > K. Note that advertiser n loses every auc-

tion under the proposed strategy profile. Also note that to win auction j, advertiser n has to pay
αK(V (J )−V (J \{ j})). However, regardless of the choices the advertiser makes on other auc-
tions, the advertiser strictly prefers not to win auction j at this price, because for any S ⊆ J \{ j},
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we have

αn (V (S∪{ j})−V (S))≤ αnV ({ j})≤ αK+1V ({ j})< αK (V (J )−V (J \{ j})) ,

where we have used submodularity of V (·) and Assumption (A1). Therefore, advertiser n has no
profitable deviation.

Now, we show that this equilibrium is owner-optimal. Suppose toward contradiction that there
is another equilibrium that gives some owner j a strictly higher payoff and all other owners weakly
higher payoffs. Fix any such equilibrium E ′. By the argument above, no advertiser n with n > K

would want to win auction j at a price strictly higher than αK(V (J )−V (J \{ j})). Therefore, the
K winning bidders in auction j must be advertisers 1, . . . ,K. However, at a price strictly higher
than αK(V (J )−V (J \{ j})) for auction j, advertiser K must lose some auction j′ 6= j, because
otherwise the advertiser can profitably deviate to losing auction j. Then, since there are K winners
in auction j′, there must be an advertiser n′ with n′ > K who wins auction j′. For owner j′ to
have a weakly higher payoff in equilibrium E ′ than in the original equilibrium, the clearing price
in auction j′ must be weakly higher than αK(V (J )−V (J \{ j′})). But then advertiser n′ can
profitably deviate to losing auction j′ by the argument above, which is a contradiction.

We claim that the allocation of ad slots to advertisers under this equilibrium is the unique
efficient allocation. To see this, fix any efficient allocation x and suppose toward contradiction that
x differs from the allocation under the equilibrium. Then, it must be that some advertiser n≤ K is
not allocated to an ad slot on some outlet j, which means that some advertiser n′ > K is allocated
to an ad slot on outlet j. Consider an allocation x̃ that is the same as x except that it allocates the
ad slot on outlet j to n instead of n′. We claim that this change strictly increases the total surplus.
Indeed, let S be the set of outlets whose slots are assigned to advertiser n under allocation x, and
similarly define S′ for advertiser n′. Then,

αn (V (S∪{ j})−V (S))≥ αK (V (J )−V (J \{ j}))

> αK+1V ({ j})≥ αn′
(
V (S′)−V (S′\{ j})

)
,

where we have used submodularity of V (·) and Assumption (A1). Therefore,

αnV (S∪{ j})+αn′V (S′\{ j})> αnV (S)+αn′V (S′),

and hence x̃ gives a strictly higher total surplus than x, which is a contradiction.
Finally, fix any efficient owner-optimal equilibrium. By efficiency and the argument above,

the winning bidders in every auction must be advertisers 1, . . . ,K. If there is any auction j in which
the clearing price is strictly higher than αK(V (J )−V (J \{ j})), then advertiser K can profitably
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deviate to losing auction j. Therefore, in every auction j, the clearing price must be weakly lower
than αK(V (J )−V (J \{ j})). Now, if there is any auction j′ in which the clearing price is strictly
lower than αK(V (J )−V (J \{ j′})), the equilibrium cannot be owner-optimal, because we have
just shown an equilibrium that has clearing prices equal to αK(V (J )−V (J \{ j})) for all j. Thus,
in every efficient owner-optimal equilibrium, the clearing price in every auction j must be exactly
αK(V (J )−V (J \{ j})).

A.3.9. Competition between Advertisers

We consider a setting in which each owner owns a single outlet and advertisers make purchasing
decisions sequentially in random order. We modify the value function V (·) as follows. Let adver-
tiser n’s value for buying ads on the set of outlets Sn be V (Sn,~S−n), where~S−n ∈J N−1 is the vector
of sets bought by other advertisers. We say ~S−n ≤ ~S′−n if each entry of the vector is smaller in the
set-inclusion order. Since all owners are single-outlet owners, we use j to denote both an outlet
and the owner associated with the outlet. Let ~J be the vector of length N−1 with J in each entry,
and
−−−−→
J\{ j} be the vector of length N−1 with J \{ j} in each entry. We impose two assumptions:

V (J ,~S)−V (J \{ j},~S)≥V (J ,~S′)−V (J \{ j},~S′) for any ~S≤~S′ and j;(A2)

V (J ,
−−−−→
J\{ j})−V (J \{ j},

−−−−→
J\{ j})≤

(
1+

1
N

)(
V (J , ~J )−V (J \{ j}, ~J )

)
for any j.(A3)

Let ṽ j =V (J , ~J )−V (J \{ j}, ~J ) denote the modified incremental value of outlet j in this setting.

Proposition 17. Suppose that V ( · ,~S) is monotone and submodular for any ~S, and that V (·, ·)
satisfies (A2 ) and (A3). Then there exists an equilibrium in which all advertisers buy slots on all

outlets, and the price for outlet j is p∗j = ṽ j.

Proof. We construct an equilibrium as follows. Let each owner j announce price ṽ j. For each
profile of prices p announced (including off-the-equilibrium-path histories), the subgame in the
second stage is a finite extensive-form game and hence admits an equilibrium by backward induc-
tion. When doing the backward induction, if an advertiser is indifferent between different sets of
outlets to buy slots on, we pick one with the largest cardinality. Now we verify that no owner has
a profitable deviation.

Observe that at any history, if p j = ṽ j is offered by an owner j ∈ J , then any advertiser will
buy a slot on outlet j regardless of p− j and what other advertisers do. This is because for any
S⊆ J \{ j} and any ~S−n ≤ ~J ,

V (S∪{ j},~S−n)−V (S,~S−n)≥V (J ,~S−n)−V (J \{ j},~S−n)≥V (J , ~J )−V (J \{ j}, ~J )
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where we have used submodularity of V (·,~S−n) and Assumption (A2 ). Further, when all other
advertisers buy slots on all outlets, the incremental value for an advertiser to buy a slot on some
outlet j is exactly V (J , ~J )−V (J \{ j}, ~J ). Therefore, at the proposed price profile, for any outlet
j, each advertiser is indifferent between buying and not buying a slot on outlet j in the proposed
equilibrium.

Now fix any owner j ∈ J . Suppose all other players follow the proposed strategy. Owner j is
selling N slots by announcing price ṽ j and clearly has no incentive to decrease the price. Consider
the deviation of raising the price. By the earlier observation, all advertisers would continue buying
slots on outlets in J \{ j}. Therefore, by (A2 ), owner j cannot extract more than V (J ,

−−−−→
J\{ j})−

V (J \{ j},
−−−−→
J\{ j}) from any advertiser. Further, we claim that at least one advertiser would stop

buying the slot on outlet j after the price increase, because if not, the last advertiser to move can
profitably deviate by buying only the slots on the outlets in J \{ j}. Thus there are at most N−1
advertisers buying a slot on outlet j. Hence owner j’s revenue is at most

(N−1)
(

V (J ,
−−−−→
J\{ j})−V (J \{ j},

−−−−→
J\{ j})

)
≤ (N−1)

(
1+

1
N

)(
V (J ,

−→
J )−V (J \{ j},

−→
J )
)
≤Nṽ j

where the first inequality is due to (A3). So there is no profitable deviation for owner j. Since this
holds for any owner, the construction is an equilibrium.

A.3.10. Incentive to Invest in Content

Suppose that there is a set of viewers I. Each viewer i ∈ I is attracted to each owner Z’s content
with probability αiZ ∈ [0,1]. If a viewer i is attracted to owner Z’s content, the viewer sees ads
on outlets j ∈ Z with probability ηi j ∈ (0,1), independently across j, and other details follow the
reach-only model. Prior to the game specified in Section I, each owner simultaneously announces a
choice of αiZ for all viewers i, paying a content cost ∑i∈I CiZ (αiZ) where CiZ (0) =C′iZ (0) = 0 and
C′iZ (1)> ai, for C

′
iZ (·) the first derivative of CiZ (·). For a given investment profile {(αiZ)i∈I}Z∈Z ,

a viewer i, and an owner Z, let V Z
i ( · ;α) denote the value function induced by the viewing proba-

bilities of viewer i conditional on viewer i being attracted to owner Z.

Proposition 18. Suppose the investment profile {(αiZ)i∈I}Z∈Z is an equilibrium. Then,

C′iZ(αiZ) =V Z
i (J ;α)−V Z

i (J \Z;α) = aiηiZ ∏
Z′ 6=Z

(1−αiZ′ηiZ′) .

Proof. For a given investment profile α , by Theorem 1, the equilibrium payments in the subgame
are given by

p∗Z (α) = ∑
i

αiZ
(
V Z

i (J ;α)−V Z
i (J \Z;α)

)
.
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So when making investment choices, owner Z maximizes the objective

∑
i

αiZ
(
V Z

i (J ;α)−V Z
i (J \Z;α)

)
−∑

i
CiZ(αiZ),

which is differentiable in (αiZ) i∈I , and where V Z
i (J ;α)−V Z

i (J \Z;α) does not depend on αiZ .
For owner Z, the first order condition for αiZ is given by

C′iZ (αiZ) =V Z
i (J ;α)−V Z

i (J \Z;α) .

Since C′iZ (1) > ai ≥ V Z
i (J ;α)−V Z

i (J \Z;α) for all α , i, and Z, in any equilibrium no owner Z

will choose αiZ = 1 for any viewer i. Then, since C′iZ (0) = 0 and ηiZ > 0, in any equilibrium no
owner Z will choose αiZ = 0 for any viewer i. Hence, in any equilibrium, the above first order
condition must hold for all i and all Z. The form of V Z

i (J ;α)−V Z
i (J \Z;α) follows by Corollary

1.

In the (unattainable) limiting case where αiZ = 1 for all Z ∈ Z , we have that C′iZ (1) = p∗iZ for all
Z.

A.4. Alternative Models with Declining Audience

In this section, we present two alternative models for ad markets, and show that these models
cannot generate rising ad revenues with declining audience, even though they can generate rising
prices.

A.4.1. Heterogeneous Advertisers with Additively Separable Values

Here we interpret declining audience as a decline in advertisers’ separable valuations for outlets.
Consider a special case of the extension in A.3.5 with heterogeneous advertisers in which each
owner owns a single outlet j ∈ J and each advertiser n ∈N has value Vn (·) such that

Vn (S) = ∑
j∈S

Vn ({ j})

for any S⊆ J .

Proposition 19. Consider two markets M and M̃, one in which the advertisers’ values are Vn

and the other in which the advertisers’ values are Ṽn. Suppose that Ṽn ≤ Vn for all advertisers n.

Then the total ad revenue in any equilibrium of market M̃ must be weakly lower than the total ad

revenue in any equilibrium of marketM.
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Proof. We show that for any outlet j, its ad revenue must be lower in market M̃. Note that
because each advertiser has an additively separable value function, the pricing problem for outlet
j, regardless of how other outlets price, is equivalent to the pricing problem where the N advertisers
have values Vn({ j}). Now, note that for any price p,

p ·∑
n

1Vn({ j})≥p ≥ p ·∑
n

1Ṽn({ j})≥p .

Thus, for any price p,

sup
p′

{
p′ ·∑

n
1Vn({ j})≥p′

}
≥ p ·∑

n
1Ṽn({ j})≥p .

Therefore, we have

sup
p′

{
p′ ·∑

n
1Vn({ j})≥p′

}
≥ sup

p

{
p ·∑

n
1Ṽn({ j})≥p

}
.

The left-hand side is the ad revenue for outlet j in any equilibrium of marketM, and the right-hand
side is the ad revenue for outlet j in any equilibrium of market M̃ . The claim follows.

Proposition 19 does not preclude that the equilibrium price for any outlet j can be higher
in market M̃ than in market M. For example, suppose that there are two advertisers such that
V1 =V2− ε > 0 in marketM, and Ṽ1 = 0 and Ṽ2 =V2 in market M̃. For ε > 0 small enough, the
equilibrium price for each outlet is greater in market M̃ than in marketM.

A.4.2. Falling Supply of Ad Slots

Here we interpret declining audience as a decrease in the total supply of ad slots K. Suppose
that the advertisers are heterogeneous. Specifically, each advertiser n values the number of total
impressions at bn per impression, and has a budget constraint cn. We use perfect competition as a
solution concept, so that a price per impression p∗ is an equilibrium if and only if

D(p∗) = K

where D(·) is the aggregate market demand for ad slots, with D(p)=∑n∈N Dn(p)= 1
p ∑n∈N cn1bn≥p

for any price p≥ 0.

Proposition 20. Consider two marketsM and M̃, one in which the supply of ad slots is K and

the other in which the supply of ad slots is K̃. Suppose that K̃ < K. Then the total ad revenue in

any equilibrium of market M̃ must be weakly lower than the total ad revenue in any equilibrium

of marketM, although the price per impression in any equilibrium of market M̃ must be weakly

greater than the price per impression in any equilibrium of marketM.
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Proof. At any equilibrium price p∗ for marketM, we have that

1
p∗∑n

cn1bn≥p∗ = K .

At any equilibrium price p̃∗ for market M̃, we have that

1
p̃∗∑n

cn1bn≥p̃∗ = K̃ .

It follows by inspection that p̃∗ ≥ p∗ because K̃ < K. We also observe that revenues are weakly
lower in market M̃ because

p̃∗K̃ = ∑
n

cn1bn≥p̃∗ ≤∑
n

cn1bn≥p∗ = p∗K

and p̃∗ ≥ p∗.
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B. Additional Empirical Results
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Appendix Figure 1: Sensitivity to Alternative Samples
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Notes: Within a given row, both plots are based on the same regression specification. The row labeled “Baseline” corresponds to the main
specification in the paper, with the plot “Price per impression vs. audience activity” corresponding to Panel B of Figure 2 and the plot “Price per
impression vs. audience size” corresponding to Panel B of Figure 4. The rows under the header “Alternative sample years” present results for
alternative sample years.
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Appendix Figure 2: Sensitivity to Alternative Outlet Definitions

Price per impression vs.
audience activity audience size
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Notes: Within a given row, both plots are based on the same regression specification. The row labeled “Baseline” corresponds to the main
specification in the paper, with the plot “Price per impression vs. audience activity” corresponding to Panel B of Figure 2 and the plot “Price per
impression vs. audience size” corresponding to Panel B of Figure 4. The rows under the header “Alternative definition of outlet” consider different
outlet definitions. In the row labeled “Network” an outlet j is a network. In the “Network” row, the “Price per impression vs. audience activity”
specification includes controls for the share of total impressions that are to adults and for indicators of deciles of audience size, and the “Price per
impression vs. audience size” specification includes controls for the share of total impressions that are to adults and for indicators of deciles of
audience activity. In the row labeled “Broadcast program” an outlet j is a broadcast program, with bins corresponding to 15 quantiles of the full
sample of broadcast programs (3055 programs) colored black and bins corresponding to deciles of the subsample of broadcast programs included
in the audience survey (173 programs) colored gray. In the “Broadcast program” row, the “Price per impression vs. audience activity” specification
includes controls for the share of total impressions that are to adults and for indicators of deciles of audience size, and the “Price per impression vs.
audience size” specification includes a control for the share of total impressions that are to adults.
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Appendix Figure 3: Sensitivity to Alternative Controls
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Notes: Within a given row, both plots are based on the same regression specification. The row labeled “Baseline” corresponds to the main
specification in the paper, with the plot “Price per impression vs. audience activity” corresponding to Panel B of Figure 2 and the plot “Price per
impression vs. audience size” corresponding to Panel B of Figure 4. The rows under the header “Alternative controls” consider different sets of
control variables. The row labeled “Income” adds controls for indicators for deciles of the average household income of adult impressions. The row
labeled “Attentiveness” adds controls for indicators for deciles of the time-weighted average attentiveness of the outlet’s viewers, where a viewer’s
attentiveness is the viewer’s average self-reported attentiveness across broadcast and cable programs, coded as some (0.5), most (0.75), or full (1),
and measured for each program relative to the mean among all respondents who rate the program. The row labeled “Attitude” adds controls for
indicators for deciles of the time-weighted average of viewers’ attitudes toward television advertising, where a viewer’s attitude toward advertising
is measured as the first principal component of the viewer’s responses (on a five-point scale) to a series of eight questions about TV advertising.
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Appendix Figure 3: Sensitivity to Alternative Controls (continued)

Price per impression vs.
audience activity audience size
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Notes: Within a given row, both plots are based on the same regression specification. The row labeled “Baseline” corresponds to the main
specification in the paper, with the plot “Price per impression vs. audience activity” corresponding to Panel B of Figure 2 and the plot “Price per
impression vs. audience size” corresponding to Panel B of Figure 4. The rows under the header “Alternative controls” consider different sets of
control variables. The row labeled “Industry” adds controls for the share of the outlet’s adult impressions that are to ads whose advertisers are in
each of 11 industry categories: automotive; business and consumer services; business supplies; drugs and remedies; entertainment; food and drink;
home and garden; insurance and real estate; retail; travel; and other.
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Appendix Figure 4: Average Television Viewing Hours Per Day by Age and Gender
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Notes: The figure shows the average daily viewing hours spent on television across age groups by gender.
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Appendix Figure 5: Fit of Quantitative Model Under Imperfect Diminishing Returns

Panel A: Baseline model with homogeneous value Panel B: Model with value proportional to income
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Notes: In each plot we depict the fit of a model-based prediction of advertising prices (y-axis) as a function of the extent of diminishing returns from advertising
assumed in the model (x-axis). To produce the plot, we parameterize the viewer-level model with a single format such that u(M) = ∑

M
m=1 βm where βm = β m−1 for

m ∈
{

1, ...,M
}

, βm = 0 for m > M, and β ∈ [0,1]. Here, β describes the extent of diminishing returns, with β = 0 denoting the special case of the reach-only model

and β = 1 denoting the special case of no diminishing returns up to the Mth impression. We assume that M = 10 and calculate ηi j as described in Section IV. We
calculate the log(price per viewer) implied by the model for each value β ∈ {0,0.1, ...,1} depicted on the x-axis. We then regress the log(price per impression) of
a 30-second spot observed in the data, as described in Section II.A, against the log(price per viewer) predicted by the model and depict on the y-axis the R2 of the
regression and the multiplicative inverse of the estimated slope. Panel A uses log(price per viewer) predicted from the baseline model in which advertisers’ value
of a first impression is homogeneous across viewers. Panel B uses log(price per viewer) predicted from the model in which advertisers’ value of a first impression
is proportional to a viewer’s income. The unit of analysis for the regression is an owner Z, and all variables in the regression are residualized with respect to the
share of the owner’s impressions that are to adults.
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Appendix Figure 6: Observed and Predicted Television Advertising Revenues, Alternate Estimates of
Impressions

Panel A: Observed trends
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Panel B: Predicted trends
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Notes: Each plot depicts trends in the television advertising market over the sample period. We plot trends in total
revenue, total impressions, and price per impression (total revenues divided by total impressions), all normalized
relative to their 2015 value. In Panel A, all series are as observed in the data, as described in Section II.A, and
revenue is deflated to 2015 dollars using the US Consumer Price Index (Organization for Economic Co-operation and
Development 2022). In Panel B, the trends in revenue and impressions are predicted by the baseline model in which
advertisers’ value of a first impression is homogeneous across viewers, as described in Section IV.
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Appendix Figure 7: Predicted Television Advertising Revenues, Strong Cross-Format Diminishing Re-
turns
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Notes: The plot depicts trends in total revenue, total impressions, and price per impression (total revenues divided
by total impressions), all normalized relative to their 2015 value. Total revenue is is predicted by the cross-format
reach-only model defined in Section V where φ = 1 such that diminishing returns operate just as strongly between as
within formats. Total impressions are as observed in the data, as described in Section II.A. Price per impression is
calculated as the ratio of the predicted revenue to total impressions.
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Appendix Figure 8: Measures of Online Activity by Age and Gender

Panel A: Share of social media sites visited in the past 30 days
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Panel B: Average internet hours per day
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Notes: Panel A shows the average share of five social media sites (Facebook, Instagram, Reddit, Twitter and
YouTube) visited in the past 30 days across age groups by gender. Panel B shows average daily hours spent
on the internet across age groups by gender.
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Appendix Figure 9: Demographic Premia (Per Click) and Viewing Time on Facebook

Panel A: Data from our experiment
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Panel B: Data from Allcott et al. (2020b)
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Notes: The plot shows the log(price per click) for advertisement sets targeted to a given gender and age
group. In Panel A, the data are taken from our own experiment, and the groups are {Men, Women} ×
{18-24, 25-34, 35-44, 45-54, 55-64, 65+}. In Panel B, the the data are taken from Allcott et al. (2020b), and the
groups are {Men, Women}×{18-24, 25-44, 45-64, 65+}. In both panels, the y-axis value is the log(price per click)
for advertisement sets targeting the given group, and the x-axis value is the midpoint of the age range for the given
group, treating 70 as the midpoint for ages 65+.
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Appendix Figure 10: Advertising Prices and Demographics of Digital Platforms

Panel A: Average age
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Panel B: Share female
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Notes: Each plot is a scatterplot of the log(price per impression) of display advertising on a platform against the de-
mographic characteristics of the platform’s viewers. We construct the price per impression by computing the ratio of
total revenue to total impressions across all display ads on the platform reported in AdIntel 2017 (The Nielsen Com-
pany 2022). The sample of platforms is the set of platforms that AdIntel 2017 (The Nielsen Company 2022) classifies
as Entertainment, Finance, Information/Reference, News/Commentary, Spanish, Sports, Technology, or Weather, ex-
cluding some platforms such as those that focus primarily on direct sales of products or services. The x-axis shows
the average age (Panel A) or share female (Panel B) of those who report visiting the platform in the previous 30 days
in GfK MRI’s 2017 Survey of the American Consumer (GfK Mediamark Research and Intelligence 2019).
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Appendix Figure 11: Fit of Quantitative Model of Television Prices with Social Media Competition

Panel A: Baseline model with homogeneous value Panel B: Model with value proportional to income
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Notes: In each plot we depict the fit of a model-based prediction of advertising prices (y-axis) as a function of the strength of cross-format diminishing returns
(x-axis). To produce the plot, for each television owner Z and for each value φ ∈ {0,0.1, ...,1} of the parameter governing the strength of cross-format diminishing
returns, we calculate the predicted log(price per viewer) implied by the cross-format reach-only model defined in Section V. For each value of φ , we then regress
the log(price per impression) of a 30-second spot observed in the data, as described in Section II.A, against the log(price per viewer) predicted by the model and
depict on the y-axis the R2 of the regression and one minus the percent deviation of the slope from one. Panel A uses log(price per viewer) predicted from the
baseline model in which advertisers’ value of a first impression is homogeneous across viewers. Panel B uses log(price per viewer) predicted from the model in
which advertisers’ value of a first impression is proportional to a viewer’s income. The unit of analysis for the regression is an owner Z, and all variables in the
regression are residualized with respect to the share of the owner’s impressions that are to adults.
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Appendix Table 1: Restrictiveness and Completeness of Quantitative Economic Model

Panel A: Restrictiveness
Economic model: Homogeneous values Value proportional to income

(1) (2)
MSE of log(simulated price per impression) w.r.t.

....constant model 0.6650 0.6650

....economic model 0.7190 0.8200
Restrictiveness of economic model 1.0800 1.2330

Number of owners 33 33
Number of viewers 21506 21506

Notes: The table evaluates the restrictiveness (Fudenberg, Gao, and Liang 2023) and completeness (Fudenberg et al. 2022) of the quantitative model
of log(price per viewer) described in Section IV. Column (1) uses log(price per viewer) predicted from the baseline model in which advertisers’ value
of a first impression is homogeneous across viewers. Column (2) uses log(price per viewer) predicted from the model in which advertisers’ value
of a first impression is proportional to a viewer’s income. The constant model predicts log(price per impression) with its mean across owners. In
calculating the mean squared error, we represent both the observed and predicted values in terms of deviation from the mean across owners.

To evaluate restrictiveness (Panel A), in each of 10,000 replicates, we randomly draw values of each owner’s log(price per impression), independently
uniform over the support of the observed log(price per impression). Restrictiveness is the ratio of the mean, across replicates, of the mean squared
error of the economic model of log(price per viewer) described in Section IV, and the mean squared error of the constant model, with respect to the
random draws.
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Appendix Table 1: (continued): Restrictiveness and Completeness of Quantitative Economic Model
Panel B: Completeness

Economic model: Homogeneous values Value proportional to income
(1) (2)

MSE of log(observed price per impression) w.r.t.

....constant model 0.4570 0.4570

....owner-level regression model 0.4360 0.4240

....viewer-level lasso model 0.4910 0.4910

....economic model 0.3290 0.3090

Completeness of economic model w.r.t.

....owner-level regression model 6.0480 4.4490

....viewer-level lasso model — —

Number of owners 33 33
Number of viewers 21506 21506

Notes (continued): The table evaluates the restrictiveness (Fudenberg, Gao, and Liang 2023) and completeness (Fudenberg et al. 2022) of the
quantitative model of log(price per viewer) described in Section IV.

To evaluate completeness (Panel B), we consider two comparison models. In the first comparison model, we estimate a linear regression of the
observed log(price per impression) of each owner Z on the log value, ln(λZ), of total impressions, the log value, ln

(
∑i∈I aiηiZ

∑i∈I ai

)
, of total weighted

impressions, and the log value, ln
(

∑i∈I ai ∏Z′ 6=Z(1−ηiZ′ )

∑i∈I ai

)
, of the weighted fraction of viewers not seeing an ad on other owners’ networks.

In the second comparison model, for each viewer i, we estimate a linear regression of the observed log(price per impression) of each owner Z on
the log value, ln(ηiZ), of the viewer’s probability of seeing an ad on that owner’s networks, as well as the log values, ln

(
1−ηi(Z)

)
, of the viewer’s

probability of not seeing an ad on each of the other owners’ networks, indexed in descending order. When a value inside a logarithm is zero we
replace it with its minimum across all owners Z for the given viewer i, and we include indicators for imputed values in the regression. We estimate
the model via lasso using 10-fold cross-validation to choose the penalty, and for each viewer i we hold out one randomly chosen target owner whose
data is excluded from the estimation sample and for which we predict the log(price per impression) from the final lasso fit. In the 1.9 percent of cases
where there is insufficient variation in the regressors to estimate the model, we use the mean of the dependent variable as the lasso fit. For each owner
Z, we take the weighted mean predicted log(price per impression) across all viewers i for which the given owner is the target, and treat this mean as
the lasso-predicted log(price per impression) for the given owner. When comparing to the model with homogeneous values we use uniform weights;
when comparing to the model with value proportional to household income we use household income as the weight.

Completeness is the ratio of the improvement in mean squared error between the economic model of log(price per viewer) described in Section IV
and the comparison model, each evaluated relative to the constant model. We treat completeness as undefined when a given model has higher mean
squared error than the constant model.
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