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Proof of Lemma 1

Proof. (“Only if” direction.) As a first step, we show that any RVP best response of
the consumer must display an adjusted multinomial logit formulation everywhere.

Claim 1. Suppose β is a RVP best response to µ. Then, for every w ∈ V and

y1, y2 ≥ 0, it holds that

βi(w, y1, y2) = πi · e
w−yi

k∑
j=1,2 πj · e

w−yj
k + 1 − π1 − π2

, (i ∈ I) (7)

where (π1, π2) is a solution to problem

max
π′

1,π′
2≥0

Eµ

[
log

(
π′

1 · e
v−x1

k + π′
2 · e

v−x2
k + (1 − π′

1 − π′
2)
)]

s.t. π′
1 + π′

2 ≤ 1. (8)

In particular, for every i ∈ I , it holds that

πi = Eµ[βi]. (9)

Proof of Claim 1. Let µ be consistent with a strategy profile σ of the sellers. Sup-
pose that β is a best response to µ and that it is RVP. Since β is a best response to
µ, known results show that30 (7) holds µ-almost surely, where (π1, π2) is a solution
to problem (8). Now, fix v ∈ V and x1, x2 ≥ 0 arbitrarily. Since β is RVP, there
exists a sequence (µn, σ̃n) with the desired properties such that β is a best response
to µn for every n ∈ N. Once again, we know that β must take the following logit
functional form in (7) µn-a.s. for every n ∈ N, where each (π1, π2) is replaced by
(πn

1 , π
n
2 ), which is a solution to

max
π′

1,π′
2≥0

Eµn

[
log

(
π′

1 · e
v−x1

k + π′
2 · e

v−x2
k + (1 − π′

1 − π′
2)
)]

subject to π′
1+π′

2 ≤ 1.

30See Matějka and McKay (2015), and Denti, Marinacci, and Montrucchio (2020).
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Since β is a best reply to all µn, and µn(v, x1, x2) > 0 for all n by assumption, it
must be that (πn

1 , π
n
2 ) = (π̄1, π̄2) for some π̄1, π̄2 ∈ [0, 1].

Now, let (v′, x′
1, x

′
2) be a generic element in the support of µ. Since σ̃n → σ im-

plies µn → µ in the topology of strong convergence, we have that µn(Supp(µ)) > 0
for large n. Because β has to be a best response at all n, we know that

βi(v′, x′
1, x

′
2) = π̄i · e

v′−x′
i

k∑
j=1,2 π̄j · e

v′−x′
j

k + 1 − π̄1 − π̄2

= πi · e
v′−x′

i
k∑

j=1,2 πj · e
v′−x′

j
k + 1 − π1 − π2

,

for all i ∈ I . Therefore, π̄i = πi for all i ∈ I . Lastly, that equation (9) holds follows
from standard results. See, e.g., Matějka and McKay (2015), Corollary 2.

Note that Claim 1 did not use symmetry. We now impose symmetry to prove
points (ii), ..., (v) of Lemma 1, thus concluding the “only if” direction.31 Since β
is symmetric by assumption, this implies that π1 = π2 =: π, i.e., condition (ii) is
satisfied. Points (iii), (iv) and (v) now follow from a standard analysis of problem
(8), once the constraint π′

1 = π′
2 is imposed. We omit the details.

(“If” direction.) Let β = (β1, β2) be given by (2) and satisfy points (i), ..., (v).
Clearly, β is symmetric. Furthermore, given the symmetry of µ, we know that β
is a best response to µ.32 Fix v ∈ V and x1, x2 ≥ 0 arbitrarily. To prove that β
is indeed RVP, we distinguish three cases. For each case, we define a symmetric
perturbation σ̃′(·|·) ∈ ∆(R2

+)V such that σ̃′(x1, x2|v) > 0 . Then, for each n ∈ N,
we let σ̃n = n−1

n
σ + 1

n
σ̃′. By construction, σ̃n → σ strongly and σ̃n(x1, x2|v) > 0

for every n ∈ N. Let µn be consistent with σ̃n. It remains to define σ̃′(·|·) and to
show that β is indeed a best response to µn for each n ∈ N in each case.

Case 1. Suppose π = Eµ [βi] ∈ (0, 1/2). At the end of this proof, Lemma 6
shows that the other conditions displayed in point (v) of Lemma 1 are redundant.
Let A := 1

2β1(v, x1, x2) + 1
2β1(v, x2, x1) > 0. Note that A = 1

2β2(v, x1, x2) +
1
2β2(v, x2, x1) due to symmetry. Also, βi(v, x, x) is strictly decreasing in x ≥ 0,

31That equation (2) and point (i) of Lemma 1 hold follows already from Claim 1.
32We say that µ is symmetric if µ(A) = µ(Asym) for every measurable A ⊆ V × R2

+, where
Asym :=

⋃
{(v, x1, x2) : (v, x2, x1) ∈ A} is the symmetric conjugate of A. If µ is part of a

symmetric assessment, then it is symmetric.
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and that βi(v, v, v) = π. There are two possibilities:

1) SupposeA < π. Then, there exists α ∈ (0, 1) and ε > 0 such that (i) v−ε ≥ 0
and (ii) αA+ (1 − α)βi(v, v − ε, v − ε) = π for each i ∈ I . Let σ̃′(·|·) ∈ ∆(R2

+)V

be such that σ̃′(·|v′) = δ(v′,v′) if v′ ̸= v, and σ̃′(·|v′) = α
(

1
2δ(x1,x2) + 1

2δ(x2,x1)
)

+
(1 − α)δ(v−ε,v−ε) when v′ = v. Since Eµn [βi] = π for each i ∈ I , β is a best
response to µn for each n ∈ N by Lemma 6 below and Corollary 2 of Matějka and
McKay (2015).

2) Suppose A ≥ π. Then, there exists α ∈ (0, 1) and ε ≥ 0 such that αA +
(1 − α)βi(v, v + ε, v + ε) = π for each i ∈ I . Let σ̃′(·|·) ∈ ∆(R2

+)V be such
that σ̃′(·|v′) = δ(v′,v′) if v′ ̸= v, and σ̃′(·|v′) = α

(
1
2δ(x1,x2) + 1

2δ(x2,x1)
)

+ (1 −
α)δ(v+ε,v+ε) when v′ = v. Like before, Eµn [βi] = π for each i ∈ I implies that β is
a best response to µn for each n ∈ N as required.

Case 2. Suppose π = 0, so that β1 = β2 = 0. Let A := 1
2e

v−x1
k + 1

2e
v−x2

k > 0.
There are two possibilities:

1) If A ≤ 1, let σ̃′(·|·) ∈ ∆(R2
+)V be such that σ̃′(·|v′) = δ(v′,v′) if v′ ̸= v, and

σ̃′(·|v′) = 1
2δ(x1,x2) + 1

2δ(x2,x1) when v′ = v. By construction, for every n ∈ N, we
have Eµn

[
e

v−xi
k

]
≤ 1 for each i ∈ I . This implies that β is a best reply to µn for all

n ∈ N as required.

2) If A > 1, there exists α ∈ (0, 1) and ε > 0 such that αA+ (1 − α)e−ε/k ≤ 1.
Let σ̃′(·|·) ∈ ∆(R2

+)V be such that σ̃′(·|v′) = δ(v′,v′) if v′ ̸= v, and σ̃′(·|v′) =
α
(

1
2δ(x1,x2) + 1

2δ(x2,x1)
)

+ (1 − α)δ(v+ε,v+ε) when v′ = v. For all n ∈ N, we have

Eµn

[
e

v−xi
k

]
≤ 1 for all i ∈ I . This implies that β is a best reply to µn for all n ∈ N

as required.

Case 3. The proof for the case π = 1/2 is similar to the one for π = 0 (see Case 2).
We omit the details.

Lemma 6. Let µ be symmetric, and β be given by (2). If π = Eµ[βi] ∈ (0, 1/2) for

all i ∈ I , then Eµ

[
e

v−xi
k

]
≥ 1 for all i ∈ I , and Eµ

[(
e

v−x1
k + e

v−x2
k

)−1]
≥ 1/2.

Proof. For every y > 0 and γ ∈ (0, 1/2), let

g(y, γ) = 1 − 2γ
γy + (1 − 2γ) and h(y, γ) = γ

γ + (1 − 2γ)y .
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Note that g and h are strictly decreasing and convex in y > 0 for every γ ∈ (0, 1/2).
Moreover, g(y, γ) = 1 − 2γ iff y = 2, and h(y, γ) = 2γ iff y = 1/2.

From Jensen’s inequality, we have

2π = Eµ[β1+β2] = Eµ

[
h

((
e

v−x1
k + e

v−x2
k

)−1
, π

)]
≥ h

(
Eµ

[(
e

v−x1
k + e

v−x2
k

)−1
]
, π

)
,

which implies that Eµ

[(
e

v−x1
k + e

v−x2
k

)−1]
≥ 1/2. Similarly,

1−2π = 1−Eµ[β1+β2] = Eµ

[
g
(
e

v−x1
k + e

v−x2
k , π

)]
≥ g

(
Eµ

[
e

v−x1
k + e

v−x2
k

]
, π
)
,

which implies that Eµ

[
e

v−x1
k + e

v−x2
k

]
≥ 2. Since µ is symmetric, it holds that

Eµ

[
e

v−x1
k

]
= Eµ

[
e

v−x2
k

]
. Therefore, Eµ

[
e

v−xi
k

]
≥ 1 for every i ∈ I .

Proof of Proposition 1

Proof. We show that colluding firms offer the same price as a monopolist facing
the aggregate trade engagement level. Since the functional form of the monop-
olist’s best response is enough to characterize the unique trading equilibrium in
Ravid (2020), this proves that monopoly and collusion are equilibrium outcome-
equivalent. Given this fact, the proposition follows from Theorem 1 and Corollary
1 in Ravid (2020).

Fix v ∈ V . Suppose firms face individual demands given by

Qi(x1, x2) := πi · e
v−xi

k∑
j=1,2 πj · e

v−xj
k + 1 − π1 − π2

(i ∈ I).

Colluding firms solve the problem (P): maxx1,x2≥0 ΠM(x1, x2), where ΠM(x1, x2) :=∑
i=1,2 Q

i(x1, x2) · xi. If 0 = πi < πj for some i ∈ I , the problem (P) is identical to
the problem solved by the monopolist in Ravid (2020). The equilibrium outcome
equivalence between monopoly and collusion is, therefore, immediate. Thus, sup-
pose πi > 0 for all i ∈ I , and let D := ∑

j=1,2 πj · e
v−xj

k + 1 − π1 − π2 > 0. The
FOCs associated to problem (P):
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D = πje
v−xj

k

k
· (xi − xj) + xi

k
(1 − πi − πj), ∀i ∈ I. (10)

An interior solution exists,33 and is characterized by the FOCs. Combing equations
(10) across i ∈ I yields x1−x2

k
·D = 0, which is true iff x1 = x2. Let x1 = x2 = x.

Equation (10) becomes D = x
k
(1 − π1 − π2), and admits unique solution x∗ given

by
x∗ = k

(
1 +W

(
π1 + π2

1 − π1 − π2
e

v−k
k

))
, (11)

where y 7→ W (y) is the Lambert function.34 Equation (11) is identical to equa-
tion (6) in Ravid (2020), characterizing the monopolist optimal equilibrium pricing
when the consumer’s overall trade engagement level is π1 + π2 = πM . Thus,
monopoly and collusion models are equilibrium outcome-equivalent, as required.

Proof of Lemma 2

Proof. A profile (µ, β, σ) is a competitive trading equilibrium if and only if it is
symmetric trading equilibrium. That is, (a) µ is consistent with σ, (b) β is given by
(2) with π > 0, and (c) σ is symmetric and σi is a best response to σ−i given β.

We focus on the equilibrium behavior of the firms. Fix v ∈ V arbitrarily. From
Milgrom and Roberts (1990), for fixed symmetric logit demand β of the consumer,
the unique NE of the pricing game played by the firms is pure and symmetric. To
characterize it, suppose (b) holds and let σi(·|v) = δxi(v) for all i ∈ I . Then, taking
π ∈ (0, 1/2] and −i’s offer x−i(v) = x−i as given, firm i solves:

max
xi≥0

xi · πe
v−xi

k

π ·
(
e

v−xi
k + e

v−x−i
k

)
+ 1 − 2π

33For all xj ≥ 0, if xi = 0, the LHS of (10) is strictly greater than the RHS. This implies that
any solution to (P) (if it exists) must be interior. Conversely, there exists a x̄i > 0 such that, for all
xi ≥ x̄i, the RHS of (10) is strictly greater than the LHS for all xj ≥ 0. This means that ΠM (xi, xj)
is eventually decreasing in xi for all xj ≥ 0, implying that a bounded solution exists.

34The Lambert function is defined as the inverse of z 7→ zez .
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The first-order condition can be written as

dΠC
i (v, x1, x2)
dxi

= βi(v, x1, x2)
(

1 − xi

k
· [1 − βi(v, x1, x2)]

)
= 0. (12)

Note that βi > 0 for all xi ≥ 0 and limxi→∞ βi = 0. Therefore, xi 7→ dΠC
i (v,x1,x2)

dxi

crosses zero exactly once from above. It follows that xi 7→ ΠC
i (v, xi, x−i) admits

a unique (interior) global maximum characterized by the FOC. We rearrange (12)
and use symmetry to see that, in equilibrium, xi(v) = x−i(v) =: xC(v) satisfies:

xC(v; π) = k ·

1 + πe
v−xC (v;π)

k

πe
v−xC (v;π)

k + 1 − 2π

 .

Define ϕ(v; π) := πe
v−xC (v;π)

k /
(
πe

v−xC (v;π)
k + 1 − 2π

)
. Then, the equilibrium firm

behavior is given by xC(v; π) = k · [1 + ϕ(v; π)] , where optimality requires that

(
1 + eϕ(v;π) 1 − 2π

πe
v−k

k

)
ϕ(v; π) = 1.

The above equation uniquely pins down ϕ(v; π) > 0 for fixed π ∈ (0, 1/2]: The
LHS is continuously increasing in ϕ, it goes to 0 as ϕ ↓ 0 and goes to ∞ as ϕ ↑ ∞.
This concludes the proof of the lemma.

Proof of Theorem 1

Proof. We start with the proof of the if and only if statement. The necessity proof
is as follows. As we argued in Lemma 2, in any competitive trading equilibrium,
the sellers charge a price xi(v) = xC(v) strictly above k for each v ∈ V . Now,
suppose by way of contradiction that a trading equilibrium exists but k ≥ kt, i.e.,
Eλ

[
ev/k−1

]
≤ 1. In equilibrium, we would have Eµ

[
e

v−x(v)
k

]
< Eλ

[
ev/k−1

]
≤ 1.

This is in contradiction with our hypothesis of on-path equilibrium trade.35 Thus,
k < kt is necessary for the existence of a competitive trading equilibrium.

We now turn to the sufficiency direction. We split the proof in two parts. First,

35From Lemma 1, the consumer’s trade engagement level with each firm would equal zero.
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we restrict attention to values of k for which trade occurs with probability 1. We
then consider the remaining parameter values. To this end, we need to introduce
some further notation. Let ke be the unique solution to Eλ

[
e2−v/ke

]
= 1. Notice

that
Eλ

[
e2−v/kt

]
> Eλ

[
e1−v/kt

]
= Eλ

[ 1
ev/kt−1

]
≥ 1

Eλ [ev/kt−1] = 1.

Thus, 0 < ke < kt.
Suppose first that k ≤ ke. Take xC(v) = 2k for all v ∈ V . Observe that this

configuration of prices is an equilibrium of the pricing game played by the firms
when they face a symmetric logit demand with π = 1/2. At the same time, from
Lemma 1, a symmetric trade engagement level π = 1/2 is consistent with this
configuration of prices if and only if Eλ

[
e2−v/k

]
≤ 1, or equivalently, k ≤ ke.

Therefore, a symmetric efficient equilibrium exists. Since a symmetric efficient
equilibrium is indeed a competitive trading equilibrium, we are done.

Now, consider the case where k ∈ (ke, kt), or equivalently, Eλ

[
e2−v/k

]
> 1 and

Eλ

[
ev/k−1

]
> 1. Define the functions ϕ = ϕ(v; p) and x = xC(v; p) as in Lemma

2 with π replaced by p. Let F = F (p) be defined as

F (p) := Eλ

 e
v−k

k · e−ϕ

2p · e v−k
k · e−ϕ + (1 − 2p)

 . (13)

Since the function F (·) satisfies F (p) = 1
p
E[βi(v, xC(v; p), xC(v; p))] for every

i ∈ I , a symmetric RVP trading equilibrium where trade occurs with probability
strictly between 0 and 1 exists if F (p∗) = 1 for some p∗ ∈ (0, 1/2).36 We prove
this by relying on the Intermediate Value Theorem, hence exploiting the continuity
of F (·) in p ∈ (0, 1/2]. In particular, we show that there exists 0 < p0 < p1 < 1/2
such that for all p ∈ (0, p0), we have F (p) > 1, and for all p ∈ (p1, 1/2), we have
F (p) < 1.

Existence of 0 < p1 < 1/2: We exploit the fact that F (·) is continuously dif-
ferentiable. This follows from the Implicit Function Theorem that guarantees that

36See Lemma 6 above.
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ϕ(v; p) is continuously differentiable in p ∈ (0, 1/2] for all v ∈ V .37 Given that V
is finite and ϕ(v; p) ↑ 1 as p ↑ 1/2, for every ε > 0 there exists a p̄1 ∈ (0, 1/2) such
that ϕ(v; p) > 1 − ε for all v ∈ V and p ∈ (p̄1, 1/2). Fix ε > 0 and δ > 0 small
enough so that Eλ

[
e2−ε−v/k

]
− δ > 1, and let p̄1 be the p-threshold corresponding

to ε.38 For every v ∈ V , define

A(v) := max
p∈[p̄1,1/2]

e1−v/k+ϕ(v;p) · ∂
∂p
ϕ(v; p) · Dmax(p)

Dmin(p)

where
Dmax(p) := max

v∈V

(
2p+ (1 − 2p) · eϕ(v;p)+1−v/k

)2
> 0

Dmin(p) := min
v∈V

(
2p+ (1 − 2p) · eϕ(v;p)+1−v/k

)2
> 0.

We make two observations.
Obs. 1: Each A(v) is a well-defined real number since it is the maximum value
of a continuous function on a compact support. Again by the finiteness of V , there
exists p̄2 ∈ (0, 1/2) such that (1 − 2p) · A(v) ≤ δ for all v ∈ V and p ∈ (p̄2, 1/2).

Obs. 2: SinceDmax(p), Dmin(p) → 1 as p ↑ 1/2, we have thatDmax(p)/Dmin(p) →
1 as p ↑ 1/2. Therefore, there exists p̄3 ∈ (0, 1/2) such that Dmax(p)/Dmin(p) ≤
1 + δ/2 for all p ∈ (p̄3, 1/2).

Now, let p̄ = max{p̄1, p̄2, p̄3} < 1/2. For all p ∈ (p̄, 1/2), we have:

F ′(p) = Eλ

2 ·
(
e1+ϕ(v;p)−v/k − 1

)
− (1 − 2p) · eϕ(v;p)+1−v/k · ∂

∂p
ϕ(v; p)

(2p+ (1 − 2p) · eϕ(v;p)+1−v/k)2


≥ Eλ

[
2

Dmax(p) · e1+ϕ(v;p)−v/k − 2
Dmin(p) − (1 − 2p) · e

ϕ(v;p)+1−v/k

Dmin(p) · ∂
∂p
ϕ(v; p)

]
37More formally, for ϕ ∈ (0, ∞), v ∈ V , and p ∈ (0, 1/2 + τ), let

G(p, ϕ, v) := ϕ ·
(

1 + eϕ · (1 − 2p)/
[
p · e

v−k
k

])
− 1.

For τ > 0 small enough, the assumptions of the Implicit Function Theorem are satisfied by G. Thus,
there exists continuously differentiable ϕ̄(v; p) on (0, 1/2 + τ) × V such that G(p, ϕ̄(v; p), v) = 0
for all v ∈ V and p ∈ (0, 1/2 + τ). Let ϕ̄(v; p) = ϕ(v; p) on V × (0, 1/2].

38Such ε, δ > 0 exist because Eλ

[
e2−v/k

]
> 1 by assumption.
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= 1
Dmax(p) · Eλ

[
2 · e1+ϕ(v;p)−v/k − Dmax(p)

Dmin(p)

(
2 + (1 − 2p) · eϕ(v;p)+1−v/k · ∂

∂p
ϕ(v; p)

)]

≥ 1
Dmax(p) · Eλ

[
2 · e1+ϕ(v;p)−v/k − 2 · Dmax(p)

Dmin(p) − (1 − 2p) · A(v)
]

≥ 2
Dmax(p) · Eλ

[
e1+ϕ(v;p)−v/k − 1 − δ

]
≥ 2
Dmax(p) · Eλ

[
e2−ε−v/k − 1 − δ

]
> 0,

where the first inequality comes from the fact that ∂
∂p
ϕ(v; p) ≥ 0.39 Since F (1/2) =

1 and F ′(p) > 0 for all p ∈ (0, 1/2) close to 1/2, the existence of p1 follows.
Existence of 0 < p0 < p1 < 1/2: Given that V is finite, ϕ(v; p) ↓ 0 and

2p · e v−k
k · e−ϕ + (1 − 2p) → 1 as p ↓ 0, for every ε > 0 there exists a p ∈ (0, 1/2)

such that ϕ(v; p) < ε and 2p · e v−k
k · e−ϕ + (1 − 2p) < 1 + ε for all v ∈ V and

p ∈ (0, p). Let ε > 0 be small enough so that Eλ

[
ev/k−1−ε

]
/(1 + ε) > 1. Such an

ε > 0 exists because Eλ

[
ev/k−1

]
> 1. For all p ∈ (0, p), we have:

F (p) = Eλ

 e
v−k

k · e−ϕ

2p · e v−k
k · e−ϕ + (1 − 2p)

 ≥
Eλ

[
e

v−k
k · e−ϕ

]
1 + ε

≥
Eλ

[
ev/k−1−ε

]
1 + ε

> 1.

Thus, a p0 ∈ (0, p1) with the desired properties exists. This concludes the proof
of existence of a competitive equilibrium.

Uniqueness: Once again, we distinguish between two cases. First, suppose k ≤
ke, or equivalently, Eλ

[
e2−v/k

]
≤ 1. From the proof of existence, we know that a

competitive efficient equilibrium exists. We want to show that no other symmetric
trading equilibrium can exist. For each p ∈ (0, 1/2] and v ∈ V , let ϕ = ϕ(v; p),
x = xC(v; p), and F = F (p) be defined as above. Note that F (1/2) = 1. To
prove that no other symmetric trading equilibrium exists, it is sufficient to show
that F (p) ̸= 1 for all p ∈ (0, 1/2). With this goal in mind, first note that ϕ(v; p) is
strictly increasing in p ∈ (0, 1/2] for every v ∈ V , and that ϕ(v; 1/2) = 1. Thus,
given that V is finite, when p is strictly below 1/2, there exists ε > 0 small enough
such that ϕ(v; p) < 1 − ε for all v ∈ V . Second, observe that Eλ

[
e2−c−v/k

]
< 1 for

39See the proof of Lemma 8.
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any constant c > 0. Now, fix p ∈ (0, 1/2) and its corresponding ε > 0. We have

F (p) = Eλ

 e
v−k

k · e−ϕ

2p · e v−k
k · e−ϕ + (1 − 2p)

 = Eλ

[
1

2p+ (1 − 2p) · eϕ+1−v/k

]

> Eλ

[
1

2p+ (1 − 2p) · e2−ε−v/k

]
≥ 1

2p+ (1 − 2p) · Eλ [e2−ε−v/k] > 1.

where the first strict inequality comes from ϕ = ϕ(v; p) < 1 − ε for all v ∈ V , the
weak inequality is an application of Jensen’s inequality, and the last inequality is
implied by Eλ

[
e2−ε−v/k

]
< 1. Hence, F (p) ̸= 1 for all p < 1/2 as required.

Now, consider the case where k ∈ (ke, kt). Suppose towards a contradiction that
there exist 0 < p∗ < p∗∗ < 1/2 such that F (p∗) = F (p∗∗) = 1. Define γ ∈ (0, 1)
implicitly by p∗∗ = γp∗ + (1 − γ)1/2. We have

F (p∗∗) = Eλ

[
1

2p∗∗ + (1 − 2p∗∗) · eϕ(v;p∗∗)+1−v/k

]

= Eλ

[
1

2γp∗ + 1 − γ + γ(1 − 2p∗) · eϕ(v;p∗∗)+1−v/k

]

< Eλ

[
1

1 − γ + γ (2p∗ + (1 − 2p∗) · eϕ(v;p∗)+1−v/k)

]
≤ 1.

The first inequality follows from the fact that p∗∗ > p∗ and that ϕ(v; p) is strictly
increasing in p ∈ (0, 1/2) for all v ∈ V . In order to prove the second inequality,

we define g(γ) := Eλ

[
1

1−γ+γ(2p∗+(1−2p∗)·eϕ(v;p∗)+1−v/k)

]
. Note that g(0) = 1 and

g(1) = F (p∗) = 1. It remains to show that g(γ) is convex for all γ ∈ [0, 1]. Taking
the second derivative, we get

g′′(γ) = Eλ

 2
(
2p∗ + (1 − 2p∗) · eϕ(v;p∗)+1−v/k − 1

)2

(1 − γ + γ (2p∗ + (1 − 2p∗) · eϕ(v;p∗)+1−v/k))3

 ≥ 0.

Thus, we reached the contradiction that F (p∗∗) < 1. We conclude that there is at
most one p ∈ (0, 1/2) such that F (p) = 1, and the proof of uniqueness.
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Proof of Lemma 3

Proof. From Lemma 2, we know that the firms price according to xC(v; πC) =
k · (1 + ϕ(v; πC)). Under collusion,40 for every v ∈ V , each active firm plays
a strategy σM(·|v) = δxM (v) such that xM(v; πM) = k ·

(
1 +W

(
πM

1−πM e
v/k−1

))
,

and W (·) is the Lambert function. Compared to the equilibrium price formula of
the competition model, we note that the only difference is that W

(
πM

1−πM e
v/k−1

)
is

replaced by ϕ(v; πC). Fix p ∈ (0, 1/2) arbitrarily. According to Lemma 2, ϕ(v; p)
is the unique solution to equation (5), where π is replaced by p. Note that (5) is
equivalent to p

1−2p
ev/k−1 = ϕ · p

1−2p
ev/k−1 + ϕeϕ. Therefore

2p
1 − 2pe

v/k−1 >
p

1 − 2pe
v/k−1 = ϕ(v; p)

(
p

1 − 2pe
v/k−1 + eϕ(v;p)

)
> ϕ(v; p)eϕ(v;p).

Applying the Lambert function on both sides yields ϕ(v; p) < W
(

2p
1−2p

ev/k−1
)
,

which implies the result.

Proof of Proposition 2

Proof. Fix k ∈ (0, kt), and let (µM , σM , βM) and (µC , βC , σC) be the unique sym-
metric equilibrium under collusion and competition respectively associated with the
cost parameter k. Set πM = EµM [βM

1 + βM
2 ] and πC = EµC [βC

i ] for each i ∈ I .
If k ≤ ke, the result follows from Proposition 3 and Corollary 1 of Ravid (2020).

In words, while an efficient equilibrium cannot exist under collusion, it is the only
competitive trading equilibrium outcome. Hence, 0 < πM < 1 = 2πC , as required.

Now assume that k ∈ (ke, kt). Let W (v; 2p) := W
(

2p
1−2p

ev/k−1
)

for all v ∈ V

and p ∈ (0, 1/2). From Lemma 3, we know ϕ(v; p) < W (v; 2p). Following the
proof of Theorem 1 in Ravid (2020), the overall equilibrium engagement level in
the collusion benchmark is given by πM = 2pM , where pM the unique solution in
(0, 1/2) to the equation:

G(2p) := Eλ

 e
v−k

k · e−W (v;2p)

2p · e v−k
k · e−W (v;2p) + (1 − 2p)

 = 1. (14)

40See the proof of Proposition 1, and Proposition 2 in Ravid (2020).
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Let F be defined as in the proof of Theorem 1. We have

1 = G(2pM) = Eλ

[
1

2pM + (1 − 2pM) · eW (v;2pM )+1−v/k

]

< Eλ

[
1

2pM + (1 − 2pM) · eϕ(v;pM )+1−v/k

]
= F (pM),

where the strict inequality follows from Lemma 3. From the proof of Theorem 1,
we conclude that pM < πC . This is equivalent to πM < 2πC .

Proof of Proposition 3

Proof. Follows directly from the proof of Theorem 1.

Proof of Corollary 1

Proof. Follows directly from the proof of Lemma 2.

Proof of Theorem 2

Preliminary analysis for the collusion benchmark. For each k ∈ (0, kt], let
FM

k : [0, 1) → R+ be defined as FM
k (p) := Eλ

[
1

p+(1−p)·eW (p,v,k)+1−v/k

]
. Again, we

abuse notation and writeW (p, v, k) forW
(

p
1−p

ev/k−1
)
, whereW (·) is the Lambert

function. We are interested in the solution pM(k) to FM
k (p) = 1. By the Implicit

Function Theorem, we know that whenever this solution exists, it is continuously
differentiable. In his Theorem 1, Ravid (2020) shows that pM(k) exists uniquely
in (0, 1) whenever k ∈ (0, kt). The following Lemma characterizes additional
properties that pM(k) satisfies as k ranges in (0, kt).

Lemma 7. We have:

(i) limk↑kt pM(k) = 0.

(ii) limk↑kt
∂

∂k
pM(k) = −Eλ

[
v

(kt)2 · ev/kt−1
]
/Eλ

[
2−e1−v/kt

e2·(1−v/kt)

]
.

Proof. (i): Recall from Ravid (2020) that FM
k (·) crosses the line y = 1 only once

from above.41 Therefore, it is sufficient to show that (#): for every p ∈ (0, 1), there

41This is shown by Ravid (2020) in the proof of Theorem 1.
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exists kp ∈ (0, kt) such that for all k strictly between kp and kt, FM
k (p) < 1.

Since the Lambert function W (·) is strictly increasing, W (p, v, k) is strictly de-
creasing in k for every p ∈ (0, 1) and v ∈ V . It further satisfies W (p, v, k) > 0 for
all p ∈ (0, 1), v ∈ V and k > 0. Fix p ∈ (0, 1) arbitrarily. Given the finiteness
of V , there exists cp > 0 such that W (p, v, k) > cp for all v ∈ V and k ∈ (0, kt).
Since Eλ

[
ev/kt−1

]
= 1, we have Eλ

[
ev/kt−1−cp

]
< 1. Therefore, continuity im-

plies that there exists kp strictly between 0 and kt so that Eλ

[
ev/k−1−cp

]
< 1 for all

k ∈ (kp, k
t). Fix any such k. We have:

FM
k (p) = Eλ

[
1

2p+ (1 − 2p) · eW (p,v,k)+1−v/k

]
≤ Eλ

[
1

2p+ (1 − 2p) · ecp+1−v/k

]
≤ 2p+ (1 − 2p) · Eλ

[
ev/k−1−cp

]
< 1.

Thus, (#) holds.
(ii): For each k ∈ (0, kt), we totally differentiate the equation FM

k (pM(k)) = 1 to
obtain:42

∂

∂k
pM(k) = −AM

BM

(15)

where

AM = Eλ

[
v · (1 − pM(k)) · eW (pM (k),v,k)+1−v/k

k2 ·D2
M · (1 +W (pM(k), v, k))

]
,

BM = Eλ

 1
D2

M

·

1 − eW (pM (k),v,k)+1−v/k + (1 − pM(k)) ·
eW (pM (k),v,k) ·W ′

(
pM (k)

1−pM (k)e
v/k−1

)
(1 − pM(k))2


 ,

and
DM = pM(k) + (1 − pM(k)) · eW (pM (k),v,k)+1−v/k.

As k ↑ kt, we know from (i) that pM(k) → 0. Therefore,AM → Eλ

[
v

(kt)2 · ev/kt−1
]

and BM → Eλ

[
2−e1−v/kt

e2·(1−v/kt)

]
.43 This concludes the proof of Lemma 7.

Preliminary analysis for the competition model. For each k ∈ (ke, kt], we
define FC

k : [0, 1/2) → R+ as FC
k (p) := Eλ

[
1

2p+(1−2p)·eϕ(v;p,k)+1−v/k

]
, where for

42To derive equation (18), we used the fact that W ′(x) = W (x)
x·(1+W (x)) for all x > 0.

43Here, we used the fact that W ′(x) = 1 as x ↓ 0.
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p > 0, we let ϕ(v; p, k) be defined as the unique solution to equation (5), and we
set ϕ(v; 0, k) := 0 for all v ∈ V and k ∈ (ke, kt]. Let pC(k) be a solution to
FC

k (p) = 1. From Theorem 1, we know that pC(k) exists and is unique for all
k ∈ (ke, kt). Again, by the Implicit Function theorem we know that pC(k) is con-
tinuously differentiable on (ke, kt). The next Lemma provides additional properties
that pC(k) satisfies.

Lemma 8. We have:

(i) limk↑kt pC(k) = 0.

(ii) limk↑kt
∂

∂k
pC(k) = −Eλ

[
v

(kt)2 · ev/kt−1
]
/Eλ

[
2(1−e1−v/kt )+1

e2·(1−v/kt)

]
.

Proof. (i): We show that (#): for every p ∈ (0, 1/2), there exists kp ∈ (ke, kt) such
that for all k strictly between kp and kt, FC

k (p) < 1. Given our proof of Theorem 1,
(#) implies that for all k sufficiently close to kt, pC(k) < p, proving the statement.

From equation (5), ϕ(v; p, k) is strictly decreasing in k for every p ∈ (0, 1/2)
and v ∈ V , and satisfies ϕ(v; p, k) > 0 for all p ∈ (0, 1/2), v ∈ V and k > 0.
Fix p ∈ (0, 1/2) arbitrarily. Given the finiteness of V , there exists cp > 0 such
that ϕ(v; p, k) > cp for all v ∈ V and k ∈ (ke, kt]. Since Eλ

[
ev/kt−1

]
= 1, we

have Eλ

[
ev/kt−1−cp

]
< 1. Therefore, continuity implies that there exists kp strictly

between ke and kt so that Eλ

[
ev/k−1−cp

]
< 1 for all k ∈ (kp, k

t). Fix any such k.
We have:

FC
k (p) = Eλ

[
1

2p+ (1 − 2p) · eϕ(v;p,k)+1−v/k

]
≤ Eλ

[
1

2p+ (1 − 2p) · ecp+1−v/k

]
≤ 2p+ (1 − 2p) · Eλ

[
ev/k−1−cp

]
< 1.

Thus, (#) holds.
(ii): We first totally differentiate equation (5) to find the partial derivatives of ϕ
with respect to p and k. That is, ϕp(v; p, k) := ∂

∂p
ϕ(v; p, k) and ϕk(v; p, k) :=

∂
∂k
ϕ(v; p, k). After some algebra, one can show that

ϕp(v; p, k) = 1 − ϕ(v; p, k)
(1 − 2p) ·

(
p+ eϕ(v;p,k) · (1 + ϕ(v; p, k)) 1−2p

ev/k−1

) ≥ 0, (16)
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ϕk(v; p, k) = − v

k2 · ϕ(v; p, k)eϕ(v;p,k)

p
1−2p

ev/k−1 + eϕ(v;p,k)(1 + ϕ(v; p, k)) ≤ 0. (17)

Note that, as k ↑ kt and, therefore, p → 0, we have ϕ → 0. Therefore, ϕp → ev/kt−1

and ϕk → 0 as k ↑ kt.
Next, we totally differentiate the equation FC

k (pC(k)) = 1 with respect to k > ke.
One can show that

∂

∂k
pC(k) = −AC

BC

(18)

where

AC = Eλ

[
1
D2

C

·
(

(1 − 2pC(k))eϕ(v;pC(k),k)+1−v/k ·
(
v

k2 + ϕk(v; pC(k), k)
))]

,

BC = Eλ

[
1
D2

C

·
(
2(1 − eϕ(v;pC(k),k)+1−v/k) + (1 − 2pC(k)) · eϕ(v;pC(k),k)+1−v/k · ϕp(v; pC(k), k)

)]
,

and
DC = 2pC(k) + (1 − 2pC(k)) · eϕ(v;pC(k),k)+1−v/k.

Letting k ↑ kt, we conclude that

∂

∂k
pC(k) → −Eλ

[
v

(kt)2 · ev/kt−1
]
/Eλ

[
2(1 − e1−v/kt) + 1

e2·(1−v/kt)

]

as required.

Concluding the proof of Theorem 2. We use L’Hopital’s rule to show that as
k ↑ kt, the ratio pB(k)/pM(k) is bounded above 1/2 strictly. Formally:

Lemma 9. There exists Θ > 0 such that

lim
k↑kt

pC(k)
pM(k) >

1
2 + Θ.

Proof. Note that limk↑kt
∂

∂k
pM(k) exists and is different from 0. Therefore, by
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L’Hopital’s rule

lim
k↑kt

pC(k)
pM(k) = lim

k↑kt

∂
∂k
pC(k)

∂
∂k
pM(k)

=
Eλ

[
2−e1−v/kt

e2·(1−v/kt)

]
Eλ

[
2(1−e1−v/kt )+1

e2·(1−v/kt)

] = 1

2 − Eλ[e2(v/kt−1)]
2Eλ[e2(v/kt−1)]−1

.

Since
2Eλ

[
e2(v/kt−1)

]
− 1 > Eλ

[
e2(v/kt−1)

]
− 1 ≥ 0

because of Jensen inequality, the conclusion of the lemma follows.

As the last step, note that as k ↑ kt, pM(k), pC(k) → 0. It follows that xM
k (v), xC

k (v) →
kt for all v ∈ V . Now, fix ε > 0 so small that 1 + 2(Θ − ε) > (kt + ε)/(kt − ε),
and let k̂ ∈ (ke, kt) be such that pC(k)/pM(k) > 1/2 + Θ − ε and xm

k (v) ∈
(kt − ε, kt + ε) for all k > k̂, v ∈ V , and m ∈ {C,M}. For all k > 0, we have that
2pC(k)(kt − ε) > pM(k)(kt + ε) if and only if

2 · p
C(k)
pM(k) >

kt + ε

kt − ε
. (19)

Notice that (19) holds by assumption as long as k ∈ (k̂, kt). Since by construction
we have ΠC(k) ≥ pC(k)(kt − ε) and pM(k)(k + ε) ≥ ΠM(k), we conclude that
2ΠC(k) > ΠM(k) for all k ∈ (k̂, kt) as required. Q.E.D.

Proof of Lemma 4

Proof. The proof of Lemma 4 relies on the following lemma.

Lemma 10. There exists threshold v∗ > 0 such that xM(v) > xC(v) iff v > v∗.

Proof of Lemma 10. Let πM be the overall equilibrium engagement level of the
consumer when the firms collude, and 2πC be the overall engagement level of the
consumer in the competitive trading equilibrium. For every v ∈ V , let WM(v) =
W
(

πM

1−πM e
v/k−1

)
and ϕC(v) = ϕ(v; πC) solving (5). Since xM(v) = k(1+WM(v))

and xC(v) = k(1 +ϕC(v)), it follows that xM(v) > xC(v) if and only if WM(v) >
ϕC(v). By the definition of the Lambert function, WM(v)eW M (v) = πM

1−πM e
v/k−1.
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Moreover, x 7→ xex is a strictly increasing function of x > 0. Therefore, WM(v) >
ϕC(v) if and only if

πM

1 − πM
ev/k−1 > ϕC(v)eϕC(v). (20)

From equation (5), we know that ϕC(v)eϕC(v) = 1−ϕC(v)
2 · 2πC

1−2πC e
v/k−1. Therefore,

(20) is equivalent to

1 − ϕC(v)
2 <

πM

1 − πM
· 1 − 2πC

2πC
. (21)

Because ϕC(v) is strictly increasing in v, the conclusion of the lemma follows.

Known results in rational inattention show that, in equilibrium,44

E[UM ] = max
π∈[0,1/2]

k · EµM

[
ln
(
2π · e

v−x
k + 1 − 2π

)]

E[UC ] = max
π∈[0,1/2]

k · EµC

[
ln
(
2π · e

v−x
k + 1 − 2π

)]
.

Consider the random variables Y C and Y M defined by Y C(v) := v − xC(v) and
Y M(v) = v − xM(v). Let GC and GM be the CDF of Y C and Y M respectively,
and define ω := Eλ[xM(v)] − Eλ[xC(v)]. By assumption, ω ≥ 0. Finally, denote
with u1 and u0 the maximal and minimal element in the support of Y C respectively.
From Lemma 10, we know that u0 ≤ Y M ≤ u1 with probability 1. Furthermore,
one can verify that ω ≥ 0 together with Lemma 10 imply

∫ ū

u
GC(y)dy ≤

∫ ū

u
GM(y)dy for all u ∈ [u0, u1].

This means that any expected utility maximizer with an increasing and convex
Bernoulli utility function w : [u0, u1] → R would prefer the lottery Y C over Y M

(see Theorem 4 in Meyer (1977)). Observe that for every π ∈ [0, 1/2], we have

k · EµM

[
ln
(
2π · e

v−x
k + 1 − 2π

)]
= k · E

[
ln
(

2π · e
Y M

k + 1 − 2π
)]
,

44See, e.g., Lemma 2 in Matějka and McKay (2015). See also Denti, Marinacci, and Montruc-
chio (2020).
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k · EµC

[
ln
(
2π · e

v−x
k + 1 − 2π

)]
= k · E

[
ln
(

2π · e
Y C

k + 1 − 2π
)]
.

Furthermore, the function y ∈ (0,+∞) 7→ ln
(
2π · ey/k + 1 − 2π

)
is strictly in-

creasing and strictly convex in y > 0 whenever π ∈ (0, 1/2). Therefore,

E[UM ] = max
π∈[0,1/2]

k · EµM

[
ln
(
2π · e

v−x
k + 1 − 2π

)]
= k · EµM

[
ln
(
πM · e

v−x
k + 1 − πM

)]
= k · E

[
ln
(
πM · e

Y M

k + 1 − πM
)]

≤ k · E
[
ln
(
πM · e

Y C

k + 1 − πM
)]

= k · EµC

[
ln
(
πM · e

v−x
k + 1 − πM

)]
< max

π∈[0,1/2]
k · EµC

[
ln
(
2π · e

v−x
k + 1 − 2π

)]
= E[UC ].

where the first inequality is implied by πM ∈ (0, 1), while the last strict inequality
is implied by the fact that the overall engagement level πM is not a best response to
µC . We conclude that E[UC ] > E[UM ] as required.

Proof of Proposition 4

Proof. First, we show that the threshold k̄ ≥ ke exists. To this goal, we use inequal-
ity (21) introduced earlier. Specifically, the proof of Theorem 2 shows that while
both πC and πM converge to 0 as k ↑ kt, we have limk↑kt

πC(k)
πM (k) = 1

2−
Eλ[e2(v/kt−1)]

2Eλ[e2(v/kt−1)]−1

.

Such limit is strictly less than 1 because Eλ

[
e2(v/kt−1)

]
>
(
Eλ

[
ev/kt−1

])2
due to

Jensen inequality. (Recall that Eλ

[
ev/kt−1

]
= 1 by definition.) Therefore, while

the LHS of inequality (21) converges to 1
2 because ϕC(v) ↓ 0 as k ↑ kt, the RHS

of (21) is converging to a limit strictly greater than 1/2. As a result, inequality (21)
is satisfied eventually (i.e., as k approaches kt from below) for all v ∈ V . The
existence of the threshold k̄ follows immediately from this observation.

We now show that Eλ[xM(v)] ≥ Eλ[xC(v)] for all k ∈ (0, ke]. To this goal, we
begin by showing that the aggregate engagement level under collusion is weakly
larger than the engagement level each competitive firm experience in the efficient
equilibrium. Formally:

Lemma 11. Suppose k ≤ ke. Then, πM ≥ 1/2.
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Proof. Ravid (2020) shows that the function FM(·) defined in the proof of Theorem
2 is strictly convex when k < kt, and satisfies FM(0) > 1 > FM(1−). This implies
that, if πM ∈ (0, 1) is the unique solution to FM(πM) = 1, we have FM(π) ≥ 1 if
and only if πM ≥ π. Therefore, it is sufficient to show that:45

1
2F

M(1/2) = Eλ

[
W (1/2, v)

W (1/2, v) + 1

]
≥ 1/2 (22)

whenever
Eλ

[
e1−v/k

]
≤ 1/e, (23)

where W (π, v) = W
(

π
1−π

ev/k−1
)
. Observe that we can interpret (22) as an ob-

jective function and (23) as a constraint set on the distribution over quality levels
λ ∈ ∆(R+). To simplify the problem, change variable from v to y = e1−v/k.

That is, let F := {F ∈ ∆(R+) : F is finitely supported}. We need to show that
V ∗ ≥ 1/2, where

V ∗ := inf
F ∈F

EF

[
W (1/y)

W (1/y) + 1

]
subject to EF [y] ≤ 1/e.

The function y 7→ H(y) := W (1/y)
W (1/y)+1 is strictly decreasing and strictly convex in

y ≥ 0. Therefore, V ∗ is achieved by the degenerate distribution F = δ1/e. Plugging
in y = 1/e in H(·), we get H(1/e) = 1/2, that is (22) holds. This shows that
πM ≥ 1/2, as required.

Given equations (4), the monopolist’s equilibrium pricing strategy, and the fact
that ϕC(v) = 1 for all v ∈ V when competitive trade is efficient, to complete the
proof of Proposition 4, it is sufficient to show that Eλ[W (πM , v)] ≥ 1, for all k ≤
ke. To this goal, we use the optimization approach introduced earlier once again.
Formally, define F := {F ∈ ∆(R+) : F is finitely supported}. Since πM ≥ 1/2
(Lemma 11), it is enough to argue that V ∗∗ ≥ 1, where

V ∗∗ := inf
F ∈F

EF [W (1/y)] subject to EF [y] ≤ 1/e.

45Observe that k ≤ ke if and only if (23) holds.
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The function y 7→ G(y) := W (1/y) is strictly decreasing and strictly convex.
Therefore, V ∗∗ is achieved at F = δ1/e. Since, G(1/e) = 1, we are done.

Proof of Lemma 5 (sketch)

Proof. Suppose (µ, σ, β) is a competitive trading equilibrium with N ≥ 2 firms.
That such equilibrium assessment must be symmetric follows from the same argu-
ments used for the duopoly model. From Milgrom and Roberts (1990), we know
that for every v ∈ V , each firm i ∈ I uses a pure strategy σi(·|v) = δx(v,N) that
solves

max
xi≥0

πe
v−xi

k

π
(
e

v−xi
k +∑

j ̸=i e
v−x(v,N)

k

)
+ 1 −Nπ

· xi

The result follows from a re-arranging of the FOCs. See the proof of Lemma 2.

Proof of Proposition 5 (sketch)

Proof. Part (i): Follows from a simple extension of the proof of Theorem 1.

Part (ii): Follows from a straightforward extension of the proof of Proposition 2.
Here, we show how the instrumental first step is extended.

Lemma 12 (Pricing effect for an arbitrary number of firms). Fix N1 > N2 ≥ 2
arbitrarily, and for every j ∈ {1, 2}, let ϕj > 0 be the unique solution to

ϕj

(
Nj − 1 + eϕj

1 −Njπ
j

πjev/k−1

)
= 1, (24)

where πj ∈ (0, 1/Nj]. If N1π
1 = N2π

2, then ϕ2 > ϕ1.

Proof. Equation (24) can be equivalently re-written as

πjev/k−1 = ϕj(Nj − 1)πjev/k−1 + (1 −Njπ
j)ϕje

ϕj .

Suppose by way of contradiction that ϕ2 ≤ ϕ1. Then, ϕ2e
ϕ2 ≤ ϕ1e

ϕ1 which, given
our assumption N1π

1 = N2π
2, implies π2(1 − ϕ2(N2 − 1)) ≤ π1(1 − ϕ1(N1 −

1)). This is equivalent to N1
N2

(1 − ϕ2(N2 − 1)) ≤ 1 − ϕ1(N1 − 1) which, in turn,
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implies ϕ2 ≥ N2(N1−1)
N1(N2−1)ϕ1 + N1−N2

N1(N2−1) > ϕ1, a contradiction since N1−N2
N1(N2−1) > 0 and

N2(N1−1)
N1(N2−1) > 1.

Part (iii): WithN ≥ 2 firms, the maximal price that can be sustained in a symmet-
ric equilibrium is x(v,N) = k · N

N−1 .46 Therefore, an efficient equilibrium exists if
and only if k ≤ ke(N), where ke(N) is the unique solution to Eλ

[
e

N
N−1 −v/k

]
= 1.

Part (iv): Fix N ≥ 2 arbitrarily and let k ∈ (ke(N), kt). For each p ∈ [0, 1/N),
define FC,N

k (p) as FC,N
k (p) := Eλ

[
1

Np+(1−Np)·eϕ(p,v,k,N)+1−v/k

]
where, for p > 0,

we let ϕ(p, v, k,N) be defined as the unique solution to equation (6), and we set
ϕ(0, v, k,N) := 0 for all v ∈ V and k ∈ (ke(N), kt). For fixed k, the consumer
trade engagement level with each firm in the competitive trading equilibrium is
given by the unique solution to FC,N

k (p) = 1. Denote with pC,N(k) such solution.
Because as k ↑ kt, offers are converging to kt irrespective of N , the crucial step to
prove (iv) is to show that, for N1 > N2 ≥ 2,

lim
k↑kt

pC,N1(k)
pC,N2(k) >

N2

N1
+ Θ, (25)

for some Θ > 0. Using the same arguments as in the proof of Theorem 2, one
obtains

lim
k↑kt

pC,N1(k)
pC,N2(k) =

Eλ

N2

(
1−e1−v/kt

)
+1

e2(1−v/kt)


Eλ

[
N1(1−e1−v/kt)+1

e2(1−v/kt)

] ,
which implies that (25) is satisfied.

46This price corresponds to π = 1/N , which generalizes the case π = 1/2 of the duopoly setting.
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