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A Sunspot equilibrium in the baseline model without fiscal stabi-

lization policy

A.1 Proof of Proposition 1

To prove Proposition 1 on the necessary and sufficient conditions for existence of the sunspot equi-

librium, it is useful to proceed in four steps. Each step is associated with an auxiliary proposition.

Let

A := −βλ(1− pH), (A.1)

B := κ2 + λ(1− βpH), (A.2)

C :=
(1− pL)

σκ
(1− βpL + β(1− pH))− pL, (A.3)

D := −(1− pL)

σκ
(1− βpL + β(1− pH))− (1− pL) = −1− C, (A.4)

and

E := AD −BC. (A.5)

Proposition A.1 There exists a vector {yH , πH , iH , yL, πL, iL} that solves the system of linear

equations (8)–(13).

Proof: Rearranging the system of equations (8)–(13) and eliminating yH and yL, we obtain two

unknowns for πH and πL in two equations

[
A B

C D

][
πL

πH

]
=

[
κ2π∗

rn

]
. (A.6)

For what follows, it is useful to show that E = 0 is generically inconsistent with existence of

the sunspot equilibrium. Since B > 0, we can always write πH = κ2/Bπ∗ −A/BπL. Plugging this

into CπL + DπH = rn and multiplying both sides by B, we get Dκ2π∗ − EπL = Brn. Since the

right-hand side of this equation is strictly positive, E = 0 is inconsistent with the existence of the

sunspot equilibrium for generic π∗.

Hence, we can invert the matrix on the left-hand-side of (A.6)
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[
πL

πH

]
=

1

AD −BC

[
D −B
−C A

][
κ2π∗

rn

]
. (A.7)

Thus,

πH = −Cκ
2

E
π∗ +

A

E
rn (A.8)

and

πL =
Dκ2

E
π∗ − B

E
rn. (A.9)

From the Phillips curves in both states, we obtain

yH =
κ (β(1− pH)− (1− β)C)

E
π∗ +

βκ(1− pH)

E
rn (A.10)

and

yL =
κ (βpL − 1− (1− β)C)

E
π∗ − (1− βpL)κ2 + (1− β)(1− βpL + β(1− pH))λ

κE
rn. (A.11)

Proposition A.2 Suppose equations (8)–(13) are satisfied. Then λyL+(κπL−π∗) < 0 if and only

if (i) E > 0 and π∗ > −κ2+λ(1−β)
κ2 rn or (ii) E < 0 and π∗ < −κ2+λ(1−β)

κ2 rn.

Proof: Using (A.9) and (A.11), we have

λyL + κ(πL − π∗) = −κ
2 + λ (1− βpL + β(1− pH))

E
κ

(
π∗ +

κ2 + λ(1− β)

κ2
rn
)
. (A.12)

Notice that (κ2 + λ (1− βpL + β(1− pH)))κ > 0, and κ2+λ(1−β)
κ2 rn > 0. Thus, if E > 0 and

π∗ > −κ2+λ(1−β)
κ2 rn, then λyL + κ(πL − π∗) < 0. Similarly, if E < 0 and π∗ < −κ2+λ(1−β)

κ2 rn, then

λyL + κ(πL − π∗) < 0.

Proposition A.3 Suppose equations (8)–(13) are satisfied, E > 0 and π∗ > −κ2+λ(1−β)
κ2 rn.

Then iH > 0 if and only if pL − (1− pH)− 1−pL+1−pH
κσ (1− βpL + β(1− pH)) > 0.

Proof: iH is given by

iH =
1− pH
σ

(yL − yH) + pHπH + (1− pH)πL + rn

=

(
pL − (1− pH)− 1−pL+1−pH

κσ (1− βpL + β(1− pH))
)
κ2

E

(
π∗ +

κ2 + λ(1− β)

κ2
rn
)
, (A.13)
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where in the second row we made use of (A.8)–(A.11).

Proposition A.4 Suppose equations (8)–(13) are satisfied, E < 0 and π∗ < −κ2+λ(1−β)
κ2 rn. Then

iH < 0.

Proof: First, substitute equations (A.1), (A.2), and (A.4) into equation (A.5) to obtain

E = βλ(1− pH)−
(
κ2 + λ(1− β)

)
C. (A.14)

Hence, E < 0 implies C > 0.

Corollary A.1 C < 0 implies E > 0.

Next, note that

pL−(1−pH)− 1− pL + 1− pH
κσ

(1− βpL + β(1− pH)) = −C−(1−pH)
1− βpL + β(1− pH) + κσ

κσ
.

Hence, C > 0 implies pL − (1− pH)− 1−pL+1−pH
κσ (1− βpL + β(1− pH)) < 0.

Corollary A.2 pL − (1− pH)− 1−pL+1−pH
κσ (1− βpL + β(1− pH)) > 0 implies C < 0.

From equation (A.13), it follows that pL− (1−pH)− 1−pL+1−pH
κσ (1− βpL + β(1− pH)) < 0, E < 0

and π∗ < −κ2+λ(1−β)
κ2 rn imply iH < 0.

We are now ready to proof Proposition 1. For notational convenience, define

Ω(pL, pH , κ, σ, β) ≡ pL − (1− pH)− 1− pL + 1− pH
κσ

(1− βpL + β(1− pH)) . (A.15)

Proof of “if” part: Suppose that Ω(·) > 0 and π∗ > −κ2+λ(1−β)
κ2 rn. According to Proposition A.1

there exists a vector {yH , πH , iH , yL, πL, iL} that solves equations (8)–(13). According to Corollary

A.2, Ω(·) > 0 implies C < 0. According to Corollary A.1, C < 0 implies E > 0. According

to Proposition A.2, E > 0 and π∗ > −κ2+λ(1−β)
κ2 rn imply λyL + κ(πL − π∗) < 0. According to

Proposition A.3, given E > 0 and π∗ > −κ2+λ(1−β)
κ2 rn, Ω(·) > 0 implies iH > 0.

Proof of “only if” part: Suppose that the vector {yH , πH , iH , yL, πL, iL} solves (8)–(13), and

satisfies λyL + κ(πL − π∗) < 0 and iH > 0. According to Proposition A.2, λyL + κ(πL − π∗) < 0

implies that either (i) E > 0 and π∗ > −κ2+λ(1−β)
κ2 rn or (ii) E < 0 and π∗ < −κ2+λ(1−β)

κ2 rn. Ac-

cording to Proposition A.4, (ii) is inconsistent with iH > 0. Hence, E > 0 and π∗ > −κ2+λ(1−β)
κ2 rn.

According to Proposition A.3, given E > 0 and π∗ > −κ2+λ(1−β)
κ2 rn, iH > 0 implies Ω(·) > 0.
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A.2 Proof of Proposition 2

The allocations and prices in the sunspot equilibrium are given by

πL = −(C + 1)κ2

E
π∗ − κ2 + λ(1− βpH)

E
rn (A.16)

yL =
κ (βpL − 1− (1− β)C)

E
π∗ − (1− βpL)κ2 + (1− β)(1− βpL + β(1− pH))λ

κE
rn (A.17)

πH = −Cκ
2

E
π∗ − βλ(1− pH)

E
rn (A.18)

yH =
κ (β(1− pH)− (1− β)C)

E
π∗ +

βκ(1− pH)

E
rn (A.19)

Assuming π∗ = 0 and λ > 0, it holds

πL = −κ
2 + λ(1− βpH)

E
rn < 0

yL = −(1− βpL)κ2 + (1− β)(1− βpL + β(1− pH))λ

κE
rn < 0

πH = −βλ(1− pH)

E
rn ≤ 0

yH =
βκ(1− pH)

E
rn ≥ 0

When pH < 1, πH < 0 and yH > 0.

A.3 Proof of Proposition 3

Keeping in mind that −1 < C < 0 in the sunspot equilibrium, it holds,

∂πL
∂π∗

= −C + 1

E
κ2 < 0 (A.20)

∂yL
∂π∗

= −β(1− pL) + (1− β)(C + 1)

E
κ < 0, (A.21)

and

∂πH
∂π∗

= −C
E
κ2 > 0 (A.22)

∂yH
∂π∗

=
β(1− pH)− (1− β)C

E
κ > 0. (A.23)

A.4 Proof of Lemma 1

If π0 exists, it holds −Cκ2

E π0 − βλ(1−pH)
E rn = 0. Solving for π0, one obtains

π0 = −βλ(1− pH)

Cκ2
rn, (A.24)
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where C < 0, and hence π0 > 0.

A.5 Proof of Proposition 4

Note first that

EV = − 1

1− β
1

2

[
1− pL

1− pL + 1− pH
(
π2
H + λ̄y2

H

)
+

1− pH
1− pL + 1− pH

(
π2
L + λ̄y2

L

)]
, (A.25)

where V is defined in equation (3).

Assuming λ = λ̄, the partial derivative of EV with respect to π∗ is

∂EV

∂π∗
=− 1

(1− β)(1− pL + 1− pH)E2

{[ (
κ2 + λ̄(1− β)2

) (
(1− pH)(C + 1)2 + (1− pL)C2

)
+ λ̄β(1− pH)(1− pL)(1− βpL + 1− βpH)

]
κ2π∗ +

[
λ̄
(
κ2 + λ̄(1− β)

)
(1− βpL + β(1− pH))

(β(1− pL) + (1− β)(C + 1)) +
(
κ2 + λ̄(1− β + β2(1− pL + 1− pH))

)
κ2(C + 1)

− (βκ)2λ̄(1− pL)
]
(1− pH)rn

}
.

Note that all terms in the square brackets which are multiplied by π∗ are positive. In the square

brackets which are multiplied by rn all terms are positive except for the last one, −(βκ)2λ̄(1−pL) <

0.

The first-order necessary condition for the welfare-maximizing inflation target is ∂EV
∂π∗ = 0.

Solving for π∗, one obtains

π
∗∗

= −
1− pH
κ2

λ̄
(
κ2 + λ̄(1− β)

)
(1− βpL + β(1− pH )) (β(1− pL) + (1− β)(C + 1)) +

(
κ2 + λ̄(1− β + β2(1− pL + 1− pH ))

)
κ2(C + 1)− (βκ)2λ̄(1− pL)(

κ2 + λ̄(1− β)2
) (

(1− pH )(C + 1)2 + (1− pL)C2
)

+ λ̄β(1− pH )(1− pL)(1− βpL + 1− βpH )
r
n

Note that π∗∗ > −κ2+λ̄(1−β)
κ2 rn whenever existence condition (22) is satisfied. Specifically,

π∗∗ > −κ2+λ̄(1−β)
κ2 rn if and only if

(
κ2 + λ̄(1− β)

) {
(κ2 + λ̄(1− β)2)C [(1− pL + 1− pH)C + 1− pH ]

}
>
[(
κ2 + λ̄(1− β)

)
λ̄β(1− β)(1− pH) + (βκ)2λ̄(1− pH)

]
[(1− pL + 1− pH)C + 1− pH ] ,

where (1− pL + 1− pH)C + 1− pH = −(1− pL)Ω(pL, pH , κ, σ, β) < 0. Hence, the left-hand side of

the inequality is positive and the right-hand side is negative, so that the inequality is satisfied.

Next, we show that π∗∗ < π0. This requires
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−
βλ̄

C
> −

λ̄
(
κ2 + λ̄(1− β)

)
(1− βpL + β(1− pH )) (β(1− pL) + (1− β)(C + 1)) +

(
κ2 + λ̄(1− β + β2(1− pL + 1− pH ))

)
κ2(C + 1)− (βκ)2λ̄(1− pL)(

κ2 + λ̄(1− β)2
) (

(1− pH )(C + 1)2 + (1− pL)C2
)

+ λ̄β(1− pH )(1− pL)(1− βpL + 1− βpH )
,

which can be rewritten as

βλ̄κ
2
(1− pL)(1− β)C

2
+ βλ̄

2
(1− β)

2
(1− pL)C

2
+ βλ̄

(
κ
2

+ λ̄(1− β)
2
)

(1− pH )(C + 1)
2

+ (βλ̄)
2
(1− pL)(1− pH )(1− βpL + 1− βpH )

> (βκ)
2
λ̄(1− pL)(1− pH )C + κ

2
(
κ
2

+ λ̄(1− βpH )
)
C +

[
κ
2
(1− βpL) + λ̄(1− β)(1− βpL + 1− βpH )

]
[β(1− pL) + (1− β)(C + 1)] λ̄C.

Note that all terms on the left-hand side of the inequality sign are strictly positive and all terms

on the right-hand side are strictly negative. This completes the proof.

A.6 Proof of Proposition 6

Suppose π∗ = 0 and pH < 1. It holds

∂πL
λ

=
βκ2(1− pH)(1− pL)

E2

κσ + (1− βpL + β(1− pH))

κσ
rn > 0

∂yL
∂λ

=
βκ(1− pH)(1− pL)

E2

κσ + (1− β)(1− βpL + β(1− pH))

κσ
rn > 0

∂πH
∂λ

=− βκ2(1− pH)

E2

[
Ω(pL, pH , κ, σ, β) + (1− pH)

κσ + (1− βpL + β(1− pH))

κσ

]
rn < 0

∂yH
∂λ

=− βκ(1− pH)

E2

[
(1− β)Ω(pL, pH , κ, σ, β) + (1− pH)

κσ + (1− β)(1− βpL + β(1− pH))

κσ

]
rn < 0

A.7 Proof of Proposition 7

Note first that

EV = − 1

1− β
1

2

[
1− pL

1− pL + 1− pH
(
π2
H + λ̄y2

H

)
+

1− pH
1− pL + 1− pH

(
π2
L + λ̄y2

L

)]
, (A.26)

where V is defined in equation (3).

Assuming π∗ = 0, the partial derivative of EV with respect to λ is
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∂EV

∂λ
=

β ((1− pH)rn)2

(1− β)(1− pL + 1− pH)E3

{[
βκ2(1− pL)C + κ2(1− βpH)(C + 1)

+ λ̄(1− β)(1− βpL + β(1− pH)) ((1− β)(C + 1) + β(1− pL))
]
λ

+ βκ2
[
(1− pL)(1− pH)βλ̄− (1− pL)(1− β)Cλ̄

]
+ κ4(C + 1)

+ λ̄(1− βpL)κ2 ((1− β)(C + 1) + β(1− pL))

}
.

Note that since (C + 1) > 0 and C < 0, all terms in curly brackets are positive except for

the very first one, βκ2(1 − pL)C < 0. Also note that since in the sunspot equilibrium E > 0, the

term in front of the curly brackets is positive for any λ ≥ 0. Since the only negative term in curly

brackets is multiplied by λ, ∂EV
∂λ |λ=0

> 0, and therefore λ∗ > 0.

Furthermore, if

κ2β(1−pL)C+κ2(1−βpH)(C+1)+λ̄(1−β) (1− βpL + β(1− pH)) ((C + 1)(1− β) + β(1− pL)) ≥ 0,

then ∂EV
∂λ > 0 for all λ ≥ 0. Hence, in this case no interior solution for λ∗ exists and λ∗ =∞.

If instead

κ2β(1−pL)C+κ2(1−βpH)(C+1)+λ̄(1−β) (1− βpL + β(1− pH)) ((C + 1)(1− β) + β(1− pL)) < 0,

then

λ∗ = −
βκ2

[
(1− pL)(1− pH)βλ̄− (1− pL)(1− β)Cλ̄

]
+ κ4(C + 1) + λ̄(1− βpL)κ2 ((1− β)(C + 1) + β(1− pL))

κ2β(1− pL)C + κ2(1− βpH)(C + 1) + λ̄(1− β) (1− βpL + β(1− pH)) ((C + 1)(1− β) + β(1− pL))

In this case, λ∗ > λ̄ if

(βκ)
2
(1−pL)λ̄ (C + 1− pH )︸ ︷︷ ︸

<0

+κ
2
(
κ
2

+ (1− βpH )λ̄
)

(C+1)+
(
κ
2
(1− βpL) + (1− β)λ̄(1− βpL + β(1− pH ))

)
(β(1− pL) + (1− β)(C + 1)) λ̄ > 0

A.8 Proof of Proposition 8

Let XS|λ=λ̄,π∗=π̂∗ denote the outcome of variable X ∈ {π, y} in state S ∈ {H,L} of the sunspot

equilibrium when λ = λ̄ and π∗ = π̂∗, and XS|λ=λ̂,π∗=0 when λ = λ̂ and π∗ = 0. We need to show

that XS|λ=λ̄,π∗=π̂∗ = XS|λ=λ̂,π∗=0 for all X × S and any λ̂ ≥ 0.
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High-state inflation:

πH|λ=λ̄,π∗=π̂∗ =− Cκ2

[βλ̄(1− pH)− (κ2 + λ̄(1− β))C]

β(1− pH)(λ̄− λ̂)

[βλ̂(1− pH)− (κ2 + λ̂(1− β))C]
rn

− βλ̄(1− pH)

βλ̄(1− pH)− (κ2 + λ̄(1− β))C
rn

=− βλ̂(1− pH)

βλ̂(1− pH)− (κ2 + λ̂(1− β))C
rn

=πH|λ=λ̂,π∗=0

High-state output:

yH|λ=λ̄,π∗=π̂∗ =
κ (β(1− pH)− (1− β)C)

[βλ̄(1− pH)− (κ2 + λ̄(1− β))C]

β(1− pH)(λ̄− λ̂)

[βλ̂(1− pH)− (κ2 + λ̂(1− β))C]
rn

+
βκ(1− pH)

βλ̄(1− pH)− (κ2 + λ̄(1− β))C
rn

=
βκ(1− pH)

βλ̂(1− pH)− (κ2 + λ̂(1− β))C
rn

=yH|λ=λ̂,π∗=0

Low-state inflation:

πL|λ=λ̄,π∗=π̂∗ =
Dκ2

[βλ̄(1− pH)− (κ2 + λ̄(1− β))C]

β(1− pH)(λ̄− λ̂)

[βλ̂(1− pH)− (κ2 + λ̂(1− β))C]
rn

− κ2 + λ̄(1− βpH)

βλ̄(1− pH)− (κ2 + λ̄(1− β))C
rn

=− κ2 + λ̂(1− βpH)

βλ̂(1− pH)− (κ2 + λ̂(1− β))C
rn

=πL|λ=λ̂,π∗=0

Low-state output:

yL|λ=λ̄,π∗=π̂∗ =
κ(βpL − 1− (1− β)C)

[βλ̄(1− pH)− (κ2 + λ̄(1− β))C]

β(1− pH)(λ̄− λ̂)

[βλ̂(1− pH)− (κ2 + λ̂(1− β))C]
rn

− κ2(1− βpL) + λ̄(1− β) (1− βpL + β(1− pH))

βλ̄(1− pH)− (κ2 + λ̄(1− β))C
rn

=− κ2(1− βpL) + λ̂(1− β) (1− βpL + β(1− pH))

βλ̂(1− pH)− (κ2 + λ̂(1− β))C
rn

=yL|λ=λ̂,π∗=0
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A.9 Numerical example

This subsection provides a numerical example of the sunspot equilibrium in the model without

fiscal policy. One period is assumed to correspond to one quarter, and the parameterisation follows

Table 1.

Figure A.1 plots the region of existence for the sunspot equilibrium in the (pH , pL) space (black

area), and the region of existence for the fundamental equilibrium in the (pfH , p
f
L) space (gray

area).52

Figure A.1: Existence regions for sunspot equilibrium and fundamental equilibrium
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Figure A.2 shows how allocations and welfare in the sunspot equilibrium depend on the central

bank’s inflation target π∗. We set pL = 0.9375 and pH = 0.98. In this particular example, the

optimal inflation target is negative.

B The no-sunspot equilibrium in the baseline model without fiscal

stabilization policy: Case where condition (23) is violated

When condition (23) is violated, i.e. when the inflation target π∗ is sufficiently negative for a given

value of λ, the sunspot equilibrium fails to exist. In this section, we characterize the remaining

no-sunspot equilibrium.

52In case of the fundamental equilibrium, the condition for equilibrium existence depends on the value of the
natural real rate in the low-fundamental state, rnL. The region of existence is shrinking in the absolute value of rnL.
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Figure A.2: Allocations and welfare as a function of π∗
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Note: Dash-dotted vertical lines indicate the case where the central bank has the same objective function as society

as a whole, i.e. π∗ = 0. Solid vertical lines indicate the welfare-maximizing inflation target. The welfare gain/loss is

expressed relative to the welfare level achieved when the inflation target is zero (in percent).

B.1 Allocation and prices

We first show that the no-sunspot equilibrium features a binding lower bound on nominal interest

rates, deflation, and a negative output gap.

Given that the sunspot shock does not affect agents’ decisions in no-sunspot equilibria, we can

abstract from the confidence states. The equilibrium conditions read:

π = κy + βπ (B.1)

i = π + rn (B.2)

0 = i[κ(π − π∗) + λy] (B.3)

where κ(π − π∗) + λy = 0 if i > 0 and κ(π − π∗) + λy < 0 if i = 0.

Suppose, first, that i > 0. Solving the system of equations under this assumption, we obtain

i = rn +
κ2

κ2 + λ(1− β)
π∗. (B.4)

When condition (23) does not hold, equation (B.4) implies i ≤ 0, which contradicts the initial

assumption that i > 0.
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Hence, in the no-sunspot equilibrium, we must have i = 0. Solving the system of equations

under this assumption, we obtain

π = −rn < 0 (B.5)

y = −1− β
κ

rn < 0. (B.6)

Note that this no-sunspot equilibrium is unique, and that the equilibrium values of output and

inflation do not depend on the value of the inflation target.

B.2 Proof of Proposition 5

To show that unconditional welfare EVt in the no-sunspot equilibrium with an inflation target low

enough such that condition (23) fails to hold is lower than in the sunspot equilibrium with an

optimized inflation target, we proceed as follows.

First, note that the policy functions for inflation and the output gap associated with the sunspot

equilibrium are continuous functions of the inflation target π∗ on the domain that includes π ≡
−κ2+λ(1−β)

κ2 rn as a boundary. Second, for π∗ → π, the function values of the policy functions

associated with the sunspot equilibrium converge to the function values of the policy functions

associated with the no-sunspot equilibrium when π∗ ≤ π. That is

lim
π∗→π

πL(π∗) = −rn (B.7)

lim
π∗→π

yL(π∗) = −1− β
κ

rn (B.8)

lim
π∗→π

πH(π∗) = −rn (B.9)

lim
π∗→π

yH(π∗) = −1− β
κ

rn, (B.10)

where πL(π∗), yL(π∗), πH(π∗) and yH(π∗) are defined in equations (A.16) – (A.19).

Finally, note that when deriving the welfare-maximizing inflation target in Section A.5 to proof

Proposition 4, we do not restrict the domain for π∗ to exclude π. Given that we show in Section

A.5 that the welfare-maximizing inflation target is strictly larger than π as long as (22)—the other

condition for existence of the sunspot equilibrium—is satisfied, society prefers being in the sunspot

equilibrium with an optimized inflation target over being in the no-sunspot equilibrium with an

inflation target π∗ ≤ π.
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C Policy problem in the baseline model with fiscal stabilization

policy

At the beginning of time, society delegates monetary and fiscal policy to a discretionary policy-

maker. The objective function of the policymaker is given by

VMF
t = −1

2
Et

∞∑
j=0

βj
(
π2
t+j + λ̄x2

t+j + λgg
2
t+j

)
, (C.1)

where for λg = λ̄g, the policymaker’s objective function coincides with society’s objective function.

The optimization problem of a generic policymaker acting under discretion is as follows. Each

period t, she chooses the inflation rate, the modified output gap, government spending, and the

nominal interest rate to maximize its objective function (C.1) subject to the behavioral constraints

of the private sector and the lower bound constraint, with the policy functions at time t+ 1 taken

as given. Since the model features no endogenous state variable, the policymaker solves a sequence

of static optimization problems

max
πt,xt,gt,it

−1

2

(
π2
t + λ̄x2

t + λgg
2
t

)
(C.2)

subject to

πt = κxt + βEtπt+1 (C.3)

xt = Etxt+1 + (1− Γ)(gt − gt+1)− σ (it − Etπt+1 − rnt ) (C.4)

it ≥ 0 (C.5)

The consolidated first order conditions are

(κπt + λ̄xt)it = 0 (C.6)

κπt + λ̄xt ≤ 0 (C.7)

it ≥ 0 (C.8)

λggt + (1− Γ)(κπt + λ̄xt) = 0 (C.9)

together with the private sector behavioral constraints.
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D Sunspot equilibrium in the baseline model with fiscal stabiliza-

tion policy

D.1 Proof of Proposition 9

To proof Proposition 9 on the necessary and sufficient condition for existence of the sunspot equi-

librium, it is useful to proceed in three steps. Each step is associated with an auxiliary proposition.

Let

C̃ := λgC +
(
κ2 + λ̄(1− βpL)

) (1− Γ)2

κσ
(1− pL), (D.1)

D̃ := λgD − βλ̄
(1− Γ)2

κσ
(1− pL)2, (D.2)

and

Ẽ :=AD̃ −BC̃

=λgE −
(1− Γ)2(1− pL)

κσ

(
κ2 + λ̄(1− β)

) [
κ2 + λ̄(1− βpL + β(1− pH))

]
, (D.3)

where A,B,C,D and E are defined in (A.1)–(A.5).

Proposition D.1 There exists a vector {xH , πH , iH , gH , xL, πL, iL, gL} that solves the system of

linear equations (33)–(40).

Proof: Rearranging the system of equations (33)–(40) and eliminating xH , iH , gH , xL, iL and gL,

we obtain two unknowns for πH and πL in two equations

[
A B

C̃ D̃

][
πL

πH

]
=

[
0

λgr
n

]
. (D.4)

For what follows, it is useful to show that Ẽ = 0 is inconsistent with existence of the sunspot

equilibrium. Since B > 0, we can always write πH = −A/BπL. Plugging this into C̃πL + D̃πH =

λgr
n and multiplying both sides by B, we get −ẼπL = Bλgr

n. Since the right-hand side of this

equation is strictly positive for λg > 0, Ẽ = 0 is inconsistent with the existence of the sunspot

equilibrium. Hence, we can invert the matrix on the left-hand-side of (D.4)

[
πL

πH

]
=

1

AD̃ −BC̃

[
D̃ −B
−C̃ A

][
0

λgr
n

]
. (D.5)

Thus,

πH =
A

Ẽ
λgr

n (D.6)
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and

πL =
−B
Ẽ
λgr

n. (D.7)

From the Phillips curves in both states, we obtain

xH =
βκ(1− pH)

Ẽ
λgr

n (D.8)

and

xL = −(1− βpL)κ2 + (1− β)(1− βpL + β(1− pH))λ̄

κẼ
λgr

n. (D.9)

Using the target criterion for fiscal policy in the low-confidence state (39), we obtain

gL =
(1− Γ)

(
κ2 + λ̄(1− β)

) (
κ2 + λ̄(1− βpL + β(1− pH))

)
κẼ

rn. (D.10)

Using the consumption Euler equation in the high-confidence state (33), we obtain

iH =

[
1− 1− pH

Ẽ

(
λg

(
κ2 + λ̄+ (κ2 + λ̄(1− β))

1− βpL + β(1− pH)

κσ

)

+
(1− Γ)2

κσ
(κ2 + λ̄(1− β))

(
κ2 + λ̄(1− βpL + β(1− pH))

))]
rn. (D.11)

Finally, from equations (35) and (40), we have gH = 0, and iL = 0.

Proposition D.2 Suppose equations (33)–(40) are satisfied. Then λ̄xL + κπL < 0 if and only if

Ẽ > 0.

Proof: Using (D.7) and (D.9), we have

λ̄xL + κπL = −
(
κ2 + λ̄(1− β)

) (
κ2 + λ̄(1− βpL + β(1− pH))

)
κẼ

λgr
n (D.12)

Notice that λgr
n > 0 and

(
κ2 + λ̄(1− β)

) (
κ2 + λ̄(1− βpL + β(1− pH))

)
> 0. Thus, if λ̄xL+κπL <

0, then Ẽ > 0. Similarly, if Ẽ > 0, then λ̄xL + κπL < 0.

Proposition D.3 Suppose equations (33)–(40) are satisfied and Ẽ > 0. Then iH > 0 if and only if

λgΩ(pL, pH , κ, σ, β)− (1− Γ)2 1−pL+1−pH
κσ

[
κ2 + λ̄(1− βpL + β(1− pH))

]
> 0, where Ω(·) is defined

in (A.15).

Proof: First, notice that iH is given by

14



iH =
1− pH
σ

(xL − xH + (1− Γ)(gH − gL)) + pHπH + (1− pH)πL + rn

=

(
κ2 + λ̄(1− β)

)
rn

Ẽ

[
λgΩ(pL, pH , κ, σ, β)− (1− Γ)2 1− pL + 1− pL

κσ

(
κ2 + λ̄(1− βpL + β(1− pH))

)]
,

(D.13)

where in the second row we made use of (D.6)–(D.10). Notice also that
(κ2+λ̄(1−β))rn

Ẽ
> 0. Thus, if

λgΩ(pL, pH , κ, σ, β)−(1−Γ)2 1−pL+1−pH
κσ

[
κ2 + λ̄(1− βpL + β(1− pH))

]
> 0 then iH > 0. Similarly,

if iH > 0 then λgΩ(pL, pH , κ, σ, β)− (1− Γ)2 1−pL+1−pH
κσ

[
κ2 + λ̄(1− βpL + β(1− pH))

]
> 0.

We are now ready to proof Proposition 9. For notational convenience, define

Ω̃(pL, pH , κ, σ, β,Γ, λg) = λgΩ(pL, pH , κ, σ, β)−(1−Γ)2 1− pL + 1− pH
κσ

[
κ2 + λ̄(1− βpL + β(1− pH))

]
(D.14)

Proof of “if” part: Suppose that Ω̃(·) > 0. According to Proposition D.1 there exists a vector
{xH , πH , iH , gH , xL, πL, iL, gL} that solves equations (33)–(40). Notice that

(κ2 + λ̄(1− β))Ω̃(·) =Ẽ − (1− pH)

[
λg

(
κ2 + λ̄+ (κ2 + λ̄(1− β))

1− βpL + β(1− pH)

κσ

)

+
(1− Γ)2

κσ
(κ2 + λ(1− β))

(
κ2 + λ(1− βpL + β(1− pH))

) ]
.

Hence, Ω̃(·) > 0 implies Ẽ > 0. According to Proposition D.2, Ẽ > 0 implies λ̄xL + κπL < 0.

According to Proposition D.3, given Ẽ > 0, Ω̃(·) > 0 implies iH > 0.

Proof of “only if” part: Suppose that the vector {xH , πH , iH , gH , xL, πL, iL, gL} solves (33)–(40),

and satisfies λ̄xL + κπL < 0 and iH > 0. According to Proposition D.2, λ̄xL + κπL < 0 implies

Ẽ > 0. According to Proposition D.3, Ẽ > 0 and iH > 0 imply Ω̃(·) > 0.

D.2 Proof of Proposition 10

In the sunspot equilibrium, allocations and prices are given by
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πL =− κ2 + λ̄(1− βpH)

Ẽ
λgr

n < 0 (D.15)

xL =− (1− βpL)κ2 + (1− β)(1− βpL + β(1− pH))λ̄

κẼ
λgr

n < 0 (D.16)

gL =
(1− Γ)

(
κ2 + λ̄(1− β)

) (
κ2 + λ̄(1− βpL + β(1− pH))

)
κẼ

rn > 0 (D.17)

πH =− βλ̄(1− pH)

Ẽ
λgr

n ≤ 0 (D.18)

xH =
βκ(1− pH)

Ẽ
λgr

n ≥ 0 (D.19)

gH =0, (D.20)

where Ẽ > 0 is defined in equation (D.3). When pH < 0, πH < 0 and xH > 0.

D.3 Proof of Proposition 11

In the sunspot equilibrium, it holds

∂πL
∂λg

=
(κ2 + λ̄(1− βpH))(1− Γ)2(κσ)−1(1− pL)(κ2 + λ̄(1− β))

[
κ2 + λ̄(1− βpL + β(1− pH))

]
Ẽ2

rn > 0

∂xL
∂λg

=
[
κ2(1− βpL) + λ̄(1− β)(1− βpL + β(1− pH))

]
×

(1− Γ)2(κσ)−1(1− pL)(κ2 + λ̄(1− β))
[
κ2 + λ̄(1− βpL + β(1− pH))

]
κẼ2

rn > 0

∂gL
λg

= −
(1− Γ)

(
κ2 + λ̄(1− β)

) (
κ2 + λ̄(1− βpL + β(1− pH))

)
κẼ2

Ern < 0

and

∂πH
∂λg

=
βλ̄(1− pH)(1− Γ)2(κσ)−1(1− pL)(κ2 + λ̄(1− β))

[
κ2 + λ̄(1− βpL + β(1− pH))

]
Ẽ2

rn ≥ 0

∂xH
∂λg

= −
βκ(1− pH)(1− Γ)2(κσ)−1(1− pL)(κ2 + λ̄(1− β))

[
κ2 + λ̄(1− βpL + β(1− pH))

]
Ẽ2

rn ≤ 0.

When pH < 1, ∂πH
∂λg

> 0 and ∂xH
∂λg

< 0.

D.4 Comparison with an exogenous increase in government spending

In our analysis of fiscal stabilization policy, government spending is an endogenous variable set

by an optimizing policymaker. A more common approach in the literature on fiscal policy in

expectations-driven liquidity traps is to treat the fiscal policy instrument as an exogenous variable
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(e.g. Mertens and Ravn, 2014; Bilbiie, 2018). We therefore provide a brief comparison of these two

approaches.

Suppose that government spending follows an exogenous process that is perfectly correlated

with the sunspot shock, i.e. gt = gL if ξt = ξL and gt = gH if ξt = ξH , where gL > gH = 0. For this

case, the definition of the sunspot equilibrium has to be slightly modified.

Definition 5 The sunspot equilibrium in the model with the sunspot shock and exogenous fiscal

policy is given by a vector {xH , πH , iH , xL, πL, iL} that solves the system of linear equations (33),

(34), (36), (37), (38), (40), and satisfies the inequality constraints (41) and (42).

Assuming that the high-confidence state is absorbing (pH = 1), the low-confidence-state AD

and AS curves in the model with exogenous fiscal stabilization policy are given by

AD-sunspot g-ex: xL = min

[(
σ

1− pL
rn + (1− Γ)gL

)
+

σpL
1− pL

πL,−
κ

λ̄
πL

]
(D.21)

AS-sunspot g-ex: xL =
1− βpL

κ
πL (D.22)

Figure D.1 compares the effects of a reduction in λg—which in equilibrium results in an increase

in gL—on the AD-AS curves in the model with endogenous fiscal stabilization policy to those of

an increase in gL in the model with exogenous fiscal policy interventions. For the baseline, it is

assumed that λg = ∞ in the model with endogenous fiscal policy and gL = 0 in the model with

exogenous fiscal policy. Hence, in the baseline, the low-state AD curve is the same whether fiscal

policy is endogenous or exogenous. The sunspot equilibrium outcomes for inflation and the output

gap in the baseline are represented by the intersection of the AD curve (red solid line) with the AS

curve (blue solid line), marked by point S. When considering an increase in low-state government

spending in the model with exogenous fiscal policy, we calibrate the stimulus to be of the same

size as the equilibrium increase in government spending that occurs in the model with endogenous

fiscal policy in response to the reduction in λg.

In the model with endogenous fiscal stabilization policy a change in λg affects the slope of the

AD curve to the left of the kink. A reduction in λg makes the AD curve flatter (red dashed line).

In the model with exogenous fiscal policy interventions, a change in low-state government spending

instead affects the intercept term in the AD curve and results in a level shift to the left of the kink.

An increase in low-state government spending shifts the AD curve upwards (green dashed line).

While the sunspot equilibria in the two models are observationally equivalent by construction (see

point S′), the two AD curves are not observationally equivalent. Since an exogenous increase in

low-state government spending does not affect the slope of the AD curve, a policy intervention of

this type is in general unsuited to eliminate the sunspot equilibrium.
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Figure D.1: Low-confidence state AD-AS curves: Endogenous vs exogenous fiscal policy
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Note: Solid lines: λg = ∞ (fiscal policy endogenous), gL = 0 (fiscal policy exogenous); red dashed line: λg = λ̄g/10

(fiscal policy endogenous); green dashed line: gL = 4 (fiscal policy exogenous). Inflation is expressed in annualized

terms.

D.5 Numerical example

This subsection provides a numerical example of how allocations and welfare depend on the relative

weight that the policymaker’s objective function puts on government spending stabilization λg. The

parameterisation follows Table 1 except that we account for a non-zero steady-state government

spending to output ratio of 0.2, which implies that the inverse of the elasticity of the marginal

utility of private consumption with respect to output σ becomes 0.4. The inverse of the elasticity

of the marginal utility of public consumption with respect to output ν is set to 0.1, as in Section

5. This implies λ̄g = 0.0082. In addition, pL = 0.9375 and pH = 0.98.
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Figure D.2: Allocations and welfare as a function of λg
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percent).

E Fundamental equilibrium in the baseline model with fiscal sta-

bilization policy

E.1 Existence of the fundamental equilibrium

Proposition 13 The fundamental equilibrium in the model with government spending and a two-

state natural real rate shock exists if and only if

Ẽf <(1− pfH)
rnL
rnH

[
λg

(
κ2 + λ̄+ (κ2 + λ̄(1− β))

1− βpfL + β(1− pfH)

κσ

)

+
(1− Γ)2

κσ
(κ2 + λ̄(1− β))

(
κ2 + λ̄(1− βpfL + β(1− pfH))

)]
(E.1)

where Ẽf ≡ λgEf −
(1−Γ)2(1−pfL)

κσ

(
κ2 + λ̄(1− β)

) [
κ2 + λ̄(1− βpfL + β(1− pfH))

]
.

To proof Proposition 13, we proceed again in three steps. Each step is associated with an

auxiliary proposition.

Proposition E.1 There exists a vector {xH , πH , iH , gH , xL, πL, iL, gL} that solves the system of

linear equations (35), (36), (39), (40), and (43)–(46).
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Proof: Let

Af := −βλ̄(1− pfH), (E.2)

Bf := κ2 + λ̄(1− βpfH), (E.3)

Cf :=
(1− pfL)

σκ
(1− βpfL + β(1− pfH))− pfL, (E.4)

Df := −
(1− pfL)

σκ
(1− βpfL + β(1− pfH))− (1− pfL) = −1− Cf , (E.5)

and

Ef := AfDf −BfCf . (E.6)

Rearranging the system of equations and eliminating xH , iH , gH , xL, iL and gL, we obtain two

unknowns for πH and πL in two equations

[
Af Bf

C̃f D̃f

][
πL

πH

]
=

[
0

λgr
n
L

]
, (E.7)

where

C̃f := λgC
f +

(
κ2 + λ̄(1− βpfL)

) (1− Γ)2

κσ
(1− pfL), (E.8)

D̃f := λgD
f − βλ̄(1− Γ)2

κσ
(1− pfL)2. (E.9)

Define Ẽf := Af D̃f −Bf C̃f . For what follows, it is useful to show that Ẽf = 0 is inconsistent

with existence of the fundamental equilibrium. Since B > 0, we can always write πH = −Af/BfπL.

Plugging this into C̃fπL + D̃fπH = λgr
n
L and multiplying both sides by Bf , we get −ẼfπL =

Bfλgr
n
L. Since the right-hand side of this equation is strictly negative for λg > 0, Ẽf = 0 is

inconsistent with the existence of the fundamental equilibrium. Hence, we can invert the matrix

on the left-hand-side of (E.7)

[
πL

πH

]
=

1

Af D̃f −Bf C̃f

[
D̃f −Bf

−C̃f Af

][
0

λgr
n
L

]
. (E.10)

Thus,

πH =
Af

Ẽf
λgr

n
L (E.11)

and

πL =
−Bf

Ẽf
λgr

n
L. (E.12)
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From the Phillips curves in both states, we obtain

xH =
βκ(1− pfH)

Ẽf
λgr

n
L (E.13)

and

xL = −
(1− βpfL)κ2 + (1− β)(1− βpfL + β(1− pfH))λ̄

κẼf
λgr

n
L. (E.14)

Using the target criterion for fiscal policy in the low-confidence state (39), we obtain

gL =
(1− Γ)

(
κ2 + λ̄(1− β)

) (
κ2 + λ̄(1− βpfL + β(1− pfH))

)
κẼf

rnL. (E.15)

Using the consumption Euler equation in the high-confidence state (43), we obtain

iH =rnH −
1− pfH
Ẽf

(
λg

(
κ2 + λ̄+ (κ2 + λ̄(1− β))

1− βpfL + β(1− pfH)

κσ

)

+
(1− Γ)2

κσ
(κ2 + λ̄(1− β))

(
κ2 + λ̄(1− βpfL + β(1− pfH))

))
rnL. (E.16)

Finally, from equations (35) and (40), we have gH = 0, and iL = 0.

Proposition E.2 Suppose equations (35), (36), (39), (40), and (43)–(46) are satisfied. Then

λ̄xL + κπL < 0 if and only if Ẽf < 0.

Proof: Using (E.12) and (E.14), we have

λ̄xL + κπL = −

(
κ2 + λ̄(1− β)

) (
κ2 + λ̄(1− βpfL + β(1− pfH))

)
κẼf

λgr
n
L (E.17)

Notice that λgr
n
L < 0 and

(
κ2 + λ̄(1− β)

) (
κ2 + λ̄(1− βpfL + β(1− pfH))

)
> 0. Thus, if λ̄xL +

κπL < 0, then Ẽf < 0. Similarly, if Ẽf < 0, then λ̄xL + κπL < 0.

Proposition E.3 Suppose equations (35), (36), (39), (40), and (43)–(46) are satisfied and Ẽf <

0. Then iH > 0 if and only if Ẽf < Ẽ
f
,

where Ẽ
f ≡ (1−pfH)

rnL
rnH

[
λg

(
κ2 + λ̄+ (κ2 + λ̄(1− β))

1−βpfL+β(1−pfH)

κσ

)
+ (1−Γ)2

κσ (κ2+λ̄(1−β))
(
κ2 + λ̄(1− βpfL + β(1− pfH))

)]
.

Proof: First, notice that iH is given by
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iH =
1− pfH
σ

(xL − xH + (1− Γ)(gH − gL)) + pfHπH + (1− pfH)πL + rnH

=rnH −
1− pfH
Ẽf

[
λg

(
κ2 + λ̄+ (κ2 + λ̄(1− β))

1− βpfL + β(1− pfH)

κσ

)

+
(1− Γ)2

κσ
(κ2 + λ̄(1− β))

(
κ2 + λ̄(1− βpfL + β(1− pfH))

)]
rnL, (E.18)

The term in square brackets is strictly positive, rnH > 0, rnL < 0 and Ẽf < 0. Thus, if Ẽf < Ẽ
f

then iH > 0. Similarly, if iH > 0 then Ẽf < Ẽ
f
.

We are now ready to proof Proposition 13.

Proof of “if” part: Suppose that Ẽf < Ẽ
f
. According to Proposition E.1 there exists a vector

{xH , πH , iH , gH , xL, πL, iL, gL} that solves equations (35), (36), (39), (40), and (43)–(46). Notice

that Ẽ
f
< 0. Hence, Ẽf < Ẽ

f
implies Ẽf < 0. According to Proposition E.2, Ẽf < 0 implies

λ̄xL + κπL < 0. According to Proposition E.3, given Ẽf < 0, Ẽf < Ẽ
f

implies iH > 0.

Proof of “only if” part: Suppose that the vector {xH , πH , iH , gH , xL, πL, iL, gL} solves (35),

(36), (39), (40), (43)–(46), and satisfies λ̄xL + κπL < 0 and iH > 0. According to Proposition E.2,

λ̄xL + κπL < 0 implies Ẽf < 0. According to Proposition E.3, Ẽf < 0 and iH > 0 imply Ẽf < Ẽ
f
.

E.2 Allocations and prices

In the fundamental equilibrium, allocations and prices are given by:

πL =−
κ2 + λ̄(1− βpfH)

Ẽf
λgr

n
L < 0 (E.19)

xL =−
(1− βpfL)κ2 + (1− β)(1− βpfL + β(1− pfH))λ̄

κẼf
λgr

n
L < 0 (E.20)

gL =
(1− Γ)

(
κ2 + λ̄(1− β)

) (
κ2 + λ̄(1− βpfL + β(1− pfH))

)
κẼf

rnL > 0 (E.21)

πH =−
βλ̄(1− pfH)

Ẽf
λgr

n
L ≤ 0 (E.22)

xH =
βκ(1− pfH)

Ẽf
λgr

n
L ≥ 0 (E.23)

gH =0. (E.24)

When pfH < 1, πH < 0 and xH > 0.
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E.3 Effects of a marginal change in λg

The partial derivatives of the policy functions with respect to λg are

∂πL
∂λg

=
(κ2 + λ̄(1− βpfH))(1− Γ)2(κσ)−1(1− pfL)(κ2 + λ̄(1− β))

[
κ2 + λ̄(1− βpfL + β(1− pfH))

]
(Ẽf )2

rnL < 0

∂xL
∂λg

=
[
κ2(1− βpfL) + λ̄(1− β)(1− βpfL + β(1− pfH))

]
×

(1− Γ)2(κσ)−1(1− pfL)(κ2 + λ̄(1− β))
[
κ2 + λ̄(1− βpfL + β(1− pfH))

]
κ(Ẽf )2

rnL < 0

∂gL
λg

= −
(1− Γ)

(
κ2 + λ̄(1− β)

) (
κ2 + λ̄(1− βpfL + β(1− pfH))

)
κ(Ẽf )2

EfrnL,

and

∂πH
∂λg

=
βλ̄(1− pfH)(1− Γ)2(κσ)−1(1− pfL)(κ2 + λ̄(1− β))

[
κ2 + λ̄(1− βpfL + β(1− pfH))

]
(Ẽf )2

rnL ≤ 0

∂xH
∂λg

= −
βκ(1− pfH)(1− Γ)2(κσ)−1(1− pL)(κ2 + λ̄(1− β))

[
κ2 + λ̄(1− βpfL + β(1− pfH))

]
(Ẽf )2

rnL ≥ 0.

When pfH < 1, ∂πH
∂λg

< 0 and ∂xH
∂λg

> 0.

F Extension: Model with fundamental and sunspot shocks

In the main body of the paper, we separately consider optimal policy design in the model with

a sunspot shock alone, and contrast it with that in the model with a fundamental shock alone.

Another way to understand the implication of a sunspot shock on optimal policy design is to

examine the implication of introducing a sunspot shock to a model with a fundamental shock for

optimal policy design. In this section, we extend our log-linearized baseline model to a model with

both fundamental and sunspot shocks. Considering an equilibrium with both fundamental-driven

and expectations-driven liquidity traps, we first analyze monetary policy design in the absence of

fiscal stabilization policy, and then consider the design of fiscal stabilization policy.

F.1 Setup without fiscal stabilization policy

The model, society’s objective function, and the central bank’s objective function are identical to

those described in the main text. The only difference is that the model features both a sunspot

shock and a natural real rate shock.
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The transition probabilities for the fundamental (natural real rate) shock are:

Prob
(
rnt+1 = rnH |rnt = rnH

)
= pfH (F.1)

Prob
(
rnt+1 = rnL|rnt = rnL

)
= pfL, (F.2)

and the transition probabilities for the sunspot shock are:

Prob (ξt+1 = ξH |ξt = ξH) = pH (F.3)

Prob (ξt+1 = ξL|ξt = ξL) = pL (F.4)

These two shocks are uncorrelated. Let xIJ denote x in the I-state for the fundamental shock

and the J-state for the sunspot shock.

The equilibrium with both shocks is defined as a vector {yHH , πHH , iHH , yLH , πLH , iLH , yHL,

πHL, iHL, yLL, πLL, iLL} that solves

High-confidence block:

yHH =
[
pfHpHyHH + (1− pfH)pHyLH + pfH(1− pH)yHL + (1− pfH)(1− pH)yLL

]
+ σ

[
pfHpHπHH + (1− pfH)pHπLH + pfH(1− pH)πHL + (1− pfH)(1− pH)πLL − iHH + rnH

]
(F.5)

πHH = κyHH + β
[
pfHpHπHH + (1− pfH)pHπLH + pfH(1− pH)πHL + (1− pfH)(1− pH)πLL

]
(F.6)

0 = κ(πHH − π∗) + λyHH (F.7)

iHH > 0 (F.8)

yLH =
[
(1− pfL)pHyHH + pfLpHyLH + (1− pfL)(1− pH)yHL + pfL(1− pH)yLL

]
+ σ

[
(1− pfL)pHπHH + pfLpHπLH + (1− pfL)(1− pH)πHL + pfL(1− pH)πLL − iLH + rnL

]
(F.9)

πLH = κyLH + β
[
(1− pfL)pHπHH + pfLpHπLH + (1− pfL)(1− pH)πHL + pfL(1− pH)πLL

]
(F.10)

iLH = 0 (F.11)

0 > κ(πLH − π∗) + λyLH (F.12)
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Low-confidence block:

yHL =
[
pfH(1− pL)yHH + (1− pfH)(1− pL)yLH + pfHpLyHL + (1− pfH)pLyLL

]
+ σ

[
pfH(1− pL)πHH + (1− pfH)(1− pL)πLH + pfHpLπHL + (1− pfH)pLπLL − iHL + rnH

]
(F.13)

πHL = κyHL + β
[
pfH(1− pL)πHH + (1− pfH)(1− pL)πLH + pfHpLπHL + (1− pfH)pLπLL

]
(F.14)

iHL = 0 (F.15)

0 > κ(πHL − π∗) + λyHL (F.16)

yLL =
[
(1− pfL)(1− pL)yHH + pfL(1− pL)yLH + (1− pfL)pLyHL + pfLpLyLL

]
+ σ

[
(1− pfL)(1− pL)πHH + pfL(1− pL)πLH + (1− pfL)pLπHL + pfLpLπLL − iLL + rnL

]
(F.17)

πLL = κyLL + β
[
(1− pfL)(1− pL)πHH + pfL(1− pL)πLH + (1− pfL)pLπHL + pfLpLπLL

]
(F.18)

iLL = 0 (F.19)

0 > κ(πLL − π∗) + λyLL (F.20)

Once alloactions are computed, one can solve for VHH , VLH , VHL, VLL using,

VHH = uHH + β
[
pfHpHVHH + (1− pfH)pHVLH + pfH(1− pH)VHL + (1− pfH)(1− pH)VLL

]
(F.21)

VLH = uLH + β
[
(1− pfL)pHVHH + pfLpHVLH + (1− pfL)(1− pH)VHL + pfL(1− pH)VLL

]
(F.22)

VHL = uHL + β
[
pfH(1− pL)VHH + (1− pfH)(1− pL)VLH + pfHpLVHL + (1− pfH)pLVLL

]
(F.23)

VLL = uLL + β
[
(1− pfL)(1− pL)VHH + pfL(1− pL)VLH + (1− pfL)pLVHL + pfLpLVLL

]
(F.24)

Note that welfare is measured by the unconditional expectation of the value function. In the

model with both shocks, we can show that welfare is given by

W =
1

1− β

[ 1− pfL
1− pfL + 1− pfH

1− pL
1− pL + 1− pH

uHH +
1− pfH

1− pfL + 1− pfH

1− pL
1− pL + 1− pH

uLH

+
1− pfL

1− pfL + 1− pfH

1− pH
1− pL + 1− pH

uHL +
1− pfH

1− pfL + 1− pfH

1− pH
1− pL + 1− pH

uLL

]
(F.25)

F.2 Monetary policy frameworks

F.2.1 A non-zero inflation target

Figure F.1 shows welfare as a function of the inflation target π∗ in (i) the fundamental equilibrium

of the model with the fundamental shock only (left panel), (ii) the sunspot equilibrium of the model
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with the sunspot shock only (middle panel), and (iii) the equilibrium defined above in the model

with both fundamental and sunspot shocks (right panel). The parameterization is identical to the

Figure F.1: Optimal inflation target in the model with a fundamental shock only, the model with
a sunspot shock only, and the model with both shocks

baseline parameterization used in the main body of the paper. For the transition probabilities, we

use pH = 0.99, pL = 0.95, pfH = 0.99, and pfL = 0.86. Consistent with the results shown in Nakata

and Schmidt (2019a), the optimal inflation target is positive in the model with a fundamental

shock only. As shown in the main body of the paper, in the sunspot equilibrium of the model

with the sunspot shock only, the optimal inflation target can be negative or positive, depending

on parameter values. In the example considered here, the optimal inflation target is negative. The

right panel shows that the introduction of the sunspot shock to the model with a fundamental

shock lowers the optimal inflation target compared to the case with a fundamental shock only, but

the optimal target remains strictly positive.

As shown in the main body of the text, the optimal inflation target can be positive in the sunspot

equilibrium of the model with the sunspot shock alone when both pH and pL are sufficiently close

to one. When the persistence of both confidence states is very high, adding the sunspot shock to

the model with the fundamental shock increases the optimal inflation target (in the equilibrium

defined above) compared to the value of the optimal target in the model with the fundamental

shock only. Figure F.2 shows for which pairs of pH and pL the optimal inflation target is higher in

the equilibrium with both shocks than in the fundamental equilibrium with the fundamental shock

only.53

53Note that, while we vary the values of pH and pL, we keep the transition probabilities of the fundamental shock,
as well as all other parameter values, unchanged.
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Figure F.2: The effect of introducing a sunspot shock on the optimal inflation target
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Note: The black area indicates pairs of pH and pL under which the optimal inflation target is higher in the model

with both shocks than in the model with a fundamental shock only. The red area indicates pairs of pH and pL under

which the optimal inflation target is the same across the model with both shocks and the model with a fundamental

shock only. The blue area indicates pairs of pH and pL under which the optimal inflation target is lower in the model

with both shocks than in the model with a fundamental shock only. We keep the transition probability matrix for

the fundamental shock unchanged as we vary pH and pL.

F.2.2 Inflation conservatism

Figure F.3 shows welfare as a function of the relative weight on output gap stabilization in the

policymaker’s objective function λ in (i) the fundamental equilibrium of the model with the fun-

damental shock only (left panel), (ii) the sunspot equilibrium of the model with the sunspot shock

only (middle panel), and (iii) the equilibrium defined above in the model with both fundamental

and sunspot shocks (right panel). Consistent with the results in Nakata and Schmidt (2019a), the

optimal weight on the output gap term is zero in the model with the fundamental shock only. For

the discussion that follows it is useful to note that this is a corner solution and that, if there were

no lower bound on λ imposed, the optimal λ would be negative.54 Let us call the unconstrained

optimal value of λ the shadow optimal weight. On the other hand, as shown in the main body of

the paper and in the left panel of Figure F.3, the optimal value of λ is strictly above zero in the

sunspot equilibrium of the model with the sunspot shock only. When we introduce the sunspot

shock to the model with the fundamental shock, we would expect that the (shadow) optimal λ

becomes an average of the (shadow) optimal λ in the model with a fundamental shock only and

the optimal λ in the model with a sunspot shock only. This is indeed the case. As shown in the

right panel of Figure F.3, for our baseline calibration, the optimal λ is strictly positive, but smaller

54We impose λ to be non-negative because a central bank objective function that values output volatility is
unrealistic.
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Figure F.3: Optimal inflation conservatism in the model with a fundamental shock only, the model
with a sunspot shock only, and the model with both shocks

In each panel, the thin black vertical line indicates λ̄, the society’s weight on the output gap volatility term.

than in the sunspot equilibrium of the model with the sunspot shock only.

Figure F.4 shows that for a sufficiently high value of pH—higher than in our baseline calibration—

the optimal λ is zero in the model with both shocks, reflecting the fact that the shadow optimal λ

is negative in this case.

F.3 Setup with fiscal stabilization policy

We now extend the analysis to include fiscal stabilization policy. The model, society’s objective

function, the central bank’s objective function are the same as in the main text. The only difference

is that the model features both a sunspot shock and a natural real rate shock. The structure of

these two shocks is the same in the previous subsection.

The equilibrium with fiscal stabilization policy and occasional liquidity traps is defined as a

vector {xHH , πHH , iHH , gHH , xLH , πLH , iLH , gLH , xHL, πHL, iHL, gHL, xLL, πLL, iLL, gLL} that

solves the following system of linear equations
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Figure F.4: The effect of introducing a sunspot shock on the optimal degree of inflation conservatism
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Note: The black area indicates pairs of pH and pL under which the optimal λ is higher in the model with both

shocks than in the model with a fundamental shock only. The red area indicates pairs of pH and pL under which the

optimal λ is the same across the model with both shocks and the model with a fundamental shock only. We keep the

transition probability matrix for the fundamental shock unchanged as we vary pH and pL.

xHH = (1− Γ)gHH

+ pfHpH [xHH − (1− Γ)gHH ] + (1− pfH)pH [xLH − (1− Γ)gLH ]

+ pfH(1− pH) [xHL − (1− Γ)gHL] + (1− pfH)(1− pH) [xLL − (1− Γ)gLL]

+ σ
[
pfHpHπHH + (1− pfH)pHπLH + pfH(1− pH)πHL + (1− pfH)(1− pH)πLL − iHH + rnH

]
(F.26)

πHH = κxHH + β
[
pfHpHπHH + (1− pfH)pHπLH + pfH(1− pH)πHL + (1− pfH)(1− pH)πLL

]
(F.27)

λggHH = −(1− Γ)
(
κπHH + λ̄xHH

)
(F.28)

0 = κπHH + λ̄xHH (F.29)

iHH > 0 (F.30)
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xLH = (1− Γ)gLH

+ (1− pfL)pH [xHH − (1− Γ)gHH ] + pfLpH [xLH − (1− Γ)gLH ]

+ (1− pfL)(1− pH) [xHL − (1− Γ)gHL] + pfL(1− pH) [xLL − (1− Γ)gLL]

+ σ
[
(1− pfL)pHπHH + pfLpHπLH + (1− pfL)(1− pH)πHL + pfL(1− pH)πLL − iLH + rnL

]
(F.31)

πLH = κxLH + β
[
(1− pfL)pHπHH + pfLpHπLH + (1− pfL)(1− pH)πHL + pfL(1− pH)πLL

]
(F.32)

λggLH = −(1− Γ)
(
κπLH + λ̄xLH

)
(F.33)

0 > κπLH + λ̄xLH (F.34)

iLH = 0 (F.35)

xHL = (1− Γ)gHL

+ pfH(1− pL) [xHH − (1− Γ)gHH ] + (1− pfH)(1− pL) [xLH − (1− Γ)gLH ]

+ pfHpL [xHL − (1− Γ)gHL] + (1− pfH)pL [xLL − (1− Γ)gLL]

+ σ
[
pfH(1− pL)πHH + (1− pfH)(1− pL)πLH + pfHpLπHL + (1− pfH)pLπLL − iHL + rnH

]
(F.36)

πHL = κxHL + β
[
pfH(1− pL)πHH + (1− pfH)(1− pL)πLH + pfHpLπHL + (1− pfH)pLπLL

]
(F.37)

λggHL = −(1− Γ)
(
κπHL + λ̄xHL

)
(F.38)

0 > κπHL + λ̄xHL (F.39)

iHL = 0 (F.40)

xLL = (1− Γ)gLL

+ (1− pfL)(1− pL) [xHH − (1− Γ)gHH ] + pfL(1− pL) [xLH − (1− Γ)gLH ]

+ (1− pfL)pL [xHL − (1− Γ)gHL] + pfLpL [xLL − (1− Γ)gLL]

+ σ
[
(1− pfL)(1− pL)πHH + pfL(1− pL)πLH + (1− pfL)pLπHL + pfLpLπLL − iLL + rnL

]
(F.41)

πLL = κxLL + β
[
(1− pfL)(1− pL)πHH + pfL(1− pL)πLH + (1− pfL)pLπHL + pfLpLπLL

]
(F.42)

λggLL = −(1− Γ)
(
κπLL + λ̄xLL

)
(F.43)

0 > κπLL + λ̄xLL (F.44)

iLL = 0 (F.45)

Once allocations are computed, the value function and welfare can be computed in a manner
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similar to that described in the subsection on the model without fiscal stabilization policy.

F.4 Fiscal policy design

Figure F.5 shows welfare as a function of the relative weight on government spending stabiliza-

tion in the policymaker’s objective function λg in (i) the fundamental equilibrium of the model

with the fundamental shock only (left panel), (ii) the sunspot equilibrium of the model with the

sunspot shock only (middle panel), and (iii) the equilibrium defined above in the model with both

fundamental and sunspot shocks (right panel). The parameterization is identical to the baseline pa-

rameterization used in the main body of the paper, and the transition probabilities are pH = 0.99,

pL = 0.95, pfH = 0.99, and pfL = 0.86, as in the case without fiscal stabilization policy. Consistent

Figure F.5: Optimal fiscal activism in the model with a fundamental shock only, the model with a
sunspot shock only, and the model with both shocks

In each panel, the thin black vertical line indicates λ̄g, the society’s weight on the government spending volatility

term.

with the results in Schmidt (2017), in the model with the fundamental shock only, the optimal value

of λg is lower than the weight on the government spending term in society’s objective function λ̄g.

As shown in the main body of the paper, it is optimal to put a very large value on the govern-

ment spending stabilization term in the sunspot equilibrium of the model with the sunspot shock

model—conditional on the existence of the sunspot equilibrium—to prevent the use of government

spending as a stabilization tool. When we introduce a sunspot shock to the model with a funda-

mental shock, we would expect that the optimal λg is somewhere in between the two values from

the two single-shock models. This is indeed the case. Furthermore, in our example the optimal λg

in the model with both shocks is slightly larger than λ̄g.

Figure F.6 shows that the optimal λg is higher in the model with both shocks than in the model

with a fundamental shock alone for any pairs of pH and pL.
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Figure F.6: The effect of introducing a sunspot shock on the optimal degree of fiscal activism

Note: The black area indicates pairs of pH and pL under which the optimal λg is higher in the model with both shocks

than in the model with a fundamental shock only. We keep the transition probability matrix for the fundamental

shock unchanged as we vary pH and pL.

G Extension: A fully non-linear model

This section provides a generic description of the fully non-linear model that is used for the analyses

presented in Section 6 of the paper and in Sections H and I. The description is generic in the

sense that it allows for time variation in government spending and a fundamental shock. When

considering the model variant without fiscal stabilization policy, government spending is assumed to

be constant (at zero). When considering the model variant with a sunspot shock only, the discount

factor shock is assumed to be constant (at one).

G.1 Private sector block of the model

We describe the generic model where government spending is non-zero and potentially time-varying.

Representative household. The representative household maximizes expected lifetime utility

V0 = E0

∞∑
t=0

βt

[
t−1∏
s=−1

δs

]C1− 1
σ

t − 1

1− 1
σ

− χY
H1+η
t

1 + η
+ χG

G
1− 1

ν
t

1− 1
ν

 , (G.1)

subject to a sequence of budget constraints

PtCt + EtQt,t+1Bt ≤WtHt +Bt−1 − PtTt + PtDt (G.2)

and a no-Ponzi game condition. The household obtains utility from private consumption Ct and
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from the provision of public goods Gt and dislikes labor Ht. δt is a discount factor shock that

alters the weight of felicity in period t + 1 relative to felicity in period t. When abstracting from

fundamental shocks, δt = 1 for all t. The household has access to state-contingent, one-period,

nominal assets Bt. She earns labor income WtHt, where Wt is the nominal wage rate, pays lump-

sum taxes Tt and receives dividend payments from the intermediate-goods-producing firms Dt. The

last two variables are expressed in real terms.

The first-order necessary conditions to the optimization problem are given by

R−1
t = βδtEt

C
− 1
σ

t+1

C
− 1
σ

t

Π−1
t+1 (G.3)

wt = χYH
η
t C

1
σ
t , (G.4)

as well as the transversality condition

lim
T→∞

Et(Qt,TBT ) = 0, (G.5)

where Qt,T ≡ βT−t
[∏T−1

s=t δs

]
C
− 1
σ

T /PT

C
− 1
σ

t /Pt

is the stochastic discount factor between periods t and T ≥ t,

R−1
t = EtQt,t+1, Πt = Pt/Pt−1 is the gross inflation rate between periods t−1 and t, and wt = Wt/Pt

is the real wage rate.

Firms. The final consumption good is produced under perfect competition using the following

technology

Yt =

(∫ 1

0
Yt (j)

θ−1
θ dj

) θ
θ−1

, (G.6)

where θ > 1 and Yt (j) denotes the intermediate input j.

The market for intermediate goods exhibits monopolistic competition. Expenditure minimiza-

tion by the producer of the final good results in the following demand for intermediate good j

Yt (j) =

(
Pt (j)

Pt

)−θ
Yt, (G.7)

where Pt (j) denotes the price charged by firm j and Pt ≡
(∫ 1

0 Pt (j)1−θ dj
) 1

1−θ
represents the price

for the final consumption good.

Intermediate goods are produced using labor

Yt (j) = Ht (j) . (G.8)

The intermediate-goods-producing firms are owned by the representative household and face quadratic

price adjustment costs. In period t, firm j chooses the price of good j, Pt(j), to maximize expected
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discounted profits

Et

∞∑
l=0

Qt,t+l

[
Yt+l(j) ((1 + ν)Pt+l(j)−Wt+l)−

φ

2

(
Pt+l(j)

Pt+l−1(j)
− (Π∗)h

)2

Pt+l(Ct+l +Gt+l)

]
(G.9)

subject to (G.7). The parameter ν denotes a constant production subsidy that eliminates the

distortions arising from monopolistic competition, and Gt is government consumption. We allow

for (partial) indexation of price changes to the central bank’s inflation target Π∗, where h ∈ [0, 1].

The first-order necessary condition for the optimization problem of firm j in period t is

(1− θ)(1 + ν)Yt(j) + θwt
Pt
Pt(j)

Yt(j)− φ
(

Pt(j)

Pt−1(j)
− (Π∗)h

)
Pt

Pt−1(j)
(Ct +Gt)

+ βδtEt

C− 1
σ

t+1

Pt+1

Pt

C
− 1
σ

t

φ

(
Pt+1(j)

Pt(j)
− (Π∗)h

)
Pt+1(j)Pt+1

Pt(j)2
(Ct+1 +Gt+1)

 = 0. (G.10)

We assume that all firms are symmetric, Pt(j) = Pt for all j. Hence, Yt(j) = Yt for all j and

Ht = Yt, where Ht =
∫ 1

0 Ht(j)dj. Equation (G.10) can then be written as a New Keynesian Phillips

curve

Yt(χY Y
η
t C

1
σ
t −1) =

φ

θ

[(
Πt − (Π∗)h

)
Πt(Ct +Gt)− βδtEt

(
Ct+1

Ct

)− 1
σ (

Πt+1 − (Π∗)h
)

Πt+1(Ct+1 +Gt+1)

]
,

(G.11)

where the real wage rate has been substituted out using the representative household’s labor supply

condition (G.4) and the production subsidy satisfies 1 + ν = θ
θ−1 .

Aggregate resource constraint. Total output is used for private consumption, for government

spending and for price adjustments

Yt = Ct +Gt +
φ

2

(
Πt − (Π∗)h

)2
(Ct +Gt). (G.12)

G.2 The policy problem of the benevolent policymaker

Policy is Ricardian. Each period t, the discretionary policymaker chooses the gross inflation rate

Πt, output Yt, private consumption Ct, government spending Gt, and the gross nominal interest

rate Rt to maximize household welfare subject to the consumption Euler equation, the resource

constraint, the Phillips curve and the lower bound constraint, with the policy functions at time

t+ 1 taken as given. Since the model features no endogenous state variable, the policymaker solves

a sequence of static optimization problems. Formally

34



max
Πt,Yt,Ct,Gt,Rt

C
1− 1

σ
t − 1

1− 1
σ

− χY
Y 1+η
t

1 + η
+ χG

G
1− 1

ν
t − 1

1− 1
ν

subject to

C
− 1
σ

t

Rt
= βδtEt

C
− 1
σ

t+1

Πt+1

Yt = (Ct +Gt)

(
1 +

φ

2

(
Πt − (Π∗)h

)2
)

Yt

(
χY Y

η
t C

1
σ
t − 1

)
=
φ

θ

((
Πt − (Π∗)h

)
Πt(Ct +Gt)− βδtEt

(
Ct+1

Ct

)− 1
σ (

Πt+1 − (Π∗)h
)

Πt+1(Ct+1 +Gt+1)

)
Rt ≥ 1

The first order conditions are

C
− 1
σ

t − 1

σ

C
− 1
σ
−1

t

Rt
λEEt −

(
1 +

φ

2

(
Πt − (Π∗)h

)2
)
λRCt +

(χY
σ
Y 1+η
t C

1
σ
−1

t − φ

θ

(
Πt − (Π∗)h

)
Πt

+
βφ

θσ
δtEt

(
Ct
Ct+1
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θ

(
2Πt − (Π∗)h

)
(Ct +Gt)λ
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C
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σ

t

R2
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χGG
− 1
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(

1 +
φ

2

(
Πt − (Π∗)h

)2
)
λRCt − φ

θ

(
Πt − (Π∗)h

)
Πtλ

PC
t = 0

together with the private sector behavioral constraints. λEEt , λRCt , λPCt , λLBt are the Lagrange

multipliers associated with the constraints.

H Extension: Analyses based on the fully non-linear model with-

out fiscal stabilization policy

This section presents analyses based on the fully non-linear version of the baseline model without

fiscal stabilization policy. The model is described in Section G. Here, we consider the case without

fiscal stabilization policy, and assume Gt = 0 for all t.
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H.1 Monetary policy frameworks

We consider the two monetary policy frameworks that are also analyzed in the main body of the

paper, a non-zero inflation target and inflation conservatism. The central bank has the following

objective

V CB
t = (1− α)

C1− 1
σ

t − 1

1− 1
σ

− χY
N1+η
t

1 + η

+ α

[
−(Πt −Π∗)2

2

]
+ βδtEtV

CB
t+1 , (H.1)

where α ∈ [0, 1] and Π∗ are policy parameters to be set by society when designing the central

bank’s objective function. When α = 0, the central bank’s objective function coincides with

society’s objective function (??).

When we analyze the effect of alternative degrees of inflation conservatism, we will set Π∗ = 1

and vary α. When we analyze the effect of alternative values of the inflation target, we will set

α = 1 and vary Π∗.

The problem of the central bank under discretion at time t is to maximize V CB
t subject to

the private-sector equilibrium conditions—summarized in the previous section—taking as give the

value and policy functions at time t+ 1.

Let λEEt , λPCt , λRCt , and λLBt be the Lagrange multipliers on the Euler equation, the Phillips

Curve, the aggregate resource constraint, and the lower bound constraint, where λLBt > 0 when the

lower bound is binding, and λLBt = 0 otherwise. The first order necessary conditions of the central

bank’s problem under discretion are given by

∂L

∂Ct
: 0 = (1− α)C

− 1
σ

t − 1

σ
C
− 1
σ
−1

t R−1
t λEEt

+ (1− 1

σ
)φ(Πt − (Π∗)h)ΠtC

− 1
σ

t λPCt + θYt(−
1

σ
)C
− 1
σ
−1

t λPCt

−
(

1 +
φ

2
(Πt − (Π∗)h)2

)
λRCt (H.2)

∂L

∂Yt
: 0 = −(1− α)χY Y

η
t + θC

− 1
σ

t λPCt

− (1 + η)θχY Y
η
t λ

PC
t + λRCt (H.3)

∂L

∂Πt
: 0 = −α(Πt −Π∗) + φ

(
2Πt − (Π∗)h

)
C

1− 1
σ

t λPCt

− φ(Πt − (Π∗)h)Ctλ
RC
t (H.4)

∂L

∂Rt
: 0 = −C−

1
σ

t R−2
t λEEt + λLBt (H.5)
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H.2 Sunspot shock and sunspot equilibrium

As in the semi-loglinear model, we assume that the sunspot shock follows a two-state Markov pro-

cess, ξt ∈ (ξL, ξH). We refer to state ξL and ξH as the low- and high-confidence state, respectively.

In the model with a sunspot shock, we set δH = δL = 1, because there is no fundamental shock.

Let pH and pL be the persistence of high and low confidence states. We use pH and pL to denote

the persistence of high- and low-confidence states, respectively.

The sunspot equilibrium with occasionally liquidity traps is defined as a vector {CH , YH , ΠH ,

RH , λEEH ,λPCH , λRCH , λLBH , VH , V CB
H , CL, YL, ΠL, RL, λEEL , λPCL , λRCL , λLBL , VL, V CB

L } satisfying

the following system of non-linear equations and inequality constraints:

(For the high-confidence state)

C
− 1
σ

H R−1
H = βδH

[
pHC

− 1
σ

H Π−1
H + (1− pH)C

− 1
σ

L Π−1
L

]
, (H.6)

φ
(

ΠH − (Π∗)h
)

ΠHC
1− 1

σ
H + θYHC

− 1
σ

H − θχY Y 1+η
H

= βδH

[
pHφ

(
ΠH − (Π∗)h

)
ΠHC

1− 1
σ

H + (1− pH)φ
(

ΠL − (Π∗)h
)

ΠLC
1− 1

σ
L

]
, (H.7)

YH = CH +
φ

2

[
ΠH − (Π∗)h

]2
CH , (H.8)

RH > 1. (H.9)

0 = (1− α)C
− 1
σ

H − 1

σ
C
− 1
σ
−1

H R−1
t λEEH

+ (1− 1

σ
)φ(ΠH − (Π∗)h)ΠHC

− 1
σ

H λPCH + θYH(− 1

σ
)C
− 1
σ
−1

H λPCH

−
(

1 +
φ

2
(ΠH − (Π∗)h)2

)
λRCH (H.10)

0 = −(1− α)χY Y
η
H + θC

− 1
σ

H λPCH

− (1 + η)θχY Y
η
Hλ

PC
H + λRCH (H.11)

0 = −α(ΠH −Π∗) + φ
(

2ΠH − (Π∗)h
)
C

1− 1
σ

H λPCH

− φ(ΠH − (Π∗)h)CHλ
RC
H (H.12)

0 = −C−
1
σ

H R−2
H λEEH + λLBH (H.13)
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0 = λLBH (H.14)

(For the low-confidence state)

C
− 1
σ

L R−1
L = βδL

[
(1− pL)C

− 1
σ

H Π−1
H + pLC

− 1
σ

L Π−1
L

]
, (H.15)

φ
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)

ΠLC
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σ
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σ

L − θχY Y 1+η
L

= βδL
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(
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ΠHC
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H + pLφ
(
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)

ΠLC
1− 1

σ
L

]
, (H.16)

YL = CL +
φ

2

[
ΠL − (Π∗)h

]2
CL, (H.17)

RL = 1. (H.18)

0 = (1− α)C
− 1
σ

L − 1

σ
C
− 1
σ
−1

L R−1
L λEEL

+ (1− 1

σ
)φ(ΠL − 1)ΠLC

− 1
σ

L λPCL + θYL(− 1

σ
)C
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L λPCL

−
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φ

2
(ΠL − (Π∗)h)2

)
λRCL (H.19)

0 = −(1− α)χY Y
η
L + θC

− 1
σ

L λPCL

− (1 + η)θχY Y
η
Lλ

PC
L + λRCL (H.20)

0 = −α(ΠL −Π∗) + φ
(

2ΠL − (Π∗)h
)
C

1− 1
σ

L λPCL

− φ(ΠL − (Π∗)h)CLλ
RC
L (H.21)

0 = −C−
1
σ

L R−2
L λEEL + λLBL (H.22)

0 < λLBL (H.23)
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VH = uH + βpHVH + β(1− pH)VL (H.24)

VL = uL + β(1− pL)VH + βpLVL (H.25)

V CB
H = uCBH + βpHV

CB
H + β(1− pH)V CB

L (H.26)

V CB
L = uCBL + β(1− pL)V CB

H + βpLV
CB
L , (H.27)

where u is the period utility flow of households and uCB is the period utility flow of the central

bank.

Welfare is measured by the unconditional expectations of society’s value function. In the model

with a sunspot shock, welfare is given by

W =
1

1− β

[
1− pL

1− pL + 1− pH
uH +

1− pH
1− pL + 1− pH

uL

]
(H.28)

H.3 Fundamental shock and fundamental equilibrium

As in the semi-loglinear model, we assume that the fundamental shock follows a two-state Markov

process, δt ∈ (δL, δH) with δN = 1 and δC > 1
β . We refer to state δL and δH as the low- and

high-fundamental state, respectively. We will also refer to the low- and high-fundamental states as

the crisis and normal states, respectively. Let pC and pN be the persistence of crisis and normal

states.

The fundamental equilibrium with occasional liquidity traps is defined as a vector {CN , YN , ΠN ,

RN , λEEN ,λPCN , λRCN , λLBN , VN , V CB
N , CC , YC , ΠC , RC , λEEC , λPCC , λRCC , λLBC , VC , V CB

C } satisfying

the following system of non-linear equations and inequality constraints:

(For the normal (high-fundamental) state)

C
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σ

N R−1
N = βδN

[
pNC

− 1
σ

N Π−1
N + (1− pN )C
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σ

C Π−1
C

]
, (H.29)
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(
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)
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σ
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N − θχY Y 1+η
N

= βδN
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)

ΠCC
1− 1

σ
C

]
, (H.30)

YN = CN +
φ

2

[
ΠN − (Π∗)h

]2
CN , (H.31)

RN > 1. (H.32)
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0 = (1− α)C
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N − 1

σ
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σ
−1

N R−1
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N λPCN

− (1 + η)θχY Y
η
Nλ

PC
N + λRCN (H.34)

0 = −α(ΠN −Π∗) + φ
(

2ΠN − (Π∗)h
)
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1− 1
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N λPCN

− φ(ΠN − 1)CNλ
RC
N (H.35)

0 = −C−
1
σ

N R−2
N λEEN + λLBN (H.36)

0 = λLBN (H.37)

(For the crisis (low-fundamental) state)
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C R−1
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[
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YC = CC +
φ

2
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]2
CC , (H.40)

RC = 1. (H.41)

0 = (1− α)C
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σ
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σ
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−1

C R−1
C λEEC

+ (1− 1

σ
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−
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φ

2
(ΠC − (Π∗)h)2
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0 = −(1− α)χY Y
η
C + θC

− 1
σ

C λPCC

− (1 + η)θχY Y
η
Cλ

PC
C + λRCC (H.43)

0 = −α(ΠC −Π∗) + φ
(

2ΠC − (Π∗)h
)
C

1− 1
σ

C λPCC

− φ(ΠC − (Π∗)h)CCλ
RC
C (H.44)

0 = −C−
1
σ

C R−2
C λEEC + λLBC (H.45)

0 < λLBC (H.46)

VN = uN + βpNVN + β(1− pN )VC (H.47)

VC = uC + β(1− pC)VN + βpCVC (H.48)

V CB
N = uCBN + βpNV

CB
N + β(1− pN )V CB

C (H.49)

V CB
C = uCBC + β(1− pC)V CB

N + βpCV
CB
C (H.50)

Welfare is measured by the unconditional expectations of society’s welfare function. In the

model with a fundamental shock, welfare is given by

W =
1

1− β
[ 1− pC
1− pC + 1− pN

uN +
1− pN

1− pC + 1− pN
uC
]

(H.51)

H.4 Parameter values and model solution

The calibration of the parameters that are unrelated to the shocks is the same as in the main body

of the paper (see Table 1), except that we set the discount factor β equal to 0.99375 (rather than

0.9975), which facilitates the solution of the model with the fundamental shock. As in Section 6 of

the paper, we calibrate the price-adjustment cost parameter φ such that the slope of the Phillips

curve, when log-linearized around the intended steady state, is identical to the one in the baseline

model setup, and we set χY = 1. When assessing the effect of alternative inflation targets on

allocations and welfare, we set the indexation parameter h equal to 0.5. For the sunspot shock, we

assume pH = 0.995 and pL = 0.99. For the fundamental shock, we assume pN = 0.99, pC = 0.75,

and we have δN = 1, δC = 1.025. All the takeaways from the non-linear analysis are robust to

alternative parameter values. We solve the system of non-linear equations using Matlab’s fsolve

function.
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H.5 Results: Inflation target

Figure H.1 shows how allocations in high- and low-confidence states vary with the inflation target

in the sunspot equilibrium of the non-linear model with a sunspot shock. Consistent with the

analysis based on the baseline semi-loglinear model, in the sunspot equilibrium, a higher inflation

target increases inflation and consumption in the high-confidence state and decreases inflation and

consumption in the low-confidence state. Higher (more positive) inflation in the high-confidence

state and lower (more negative) inflation in the low-confidence state both contribute to an increase

in the amount of resources used for price adjustment. Higher consumption above the efficient

level—and inefficiently high labor supply associated with it—in the high-confidence state and lower

consumption below the efficient level—and inefficiently low labor supply associated with it—in the

low-confidence state are both associated with welfare reductions.

These considerations contribute to making the optimal inflation target negative, as shown in

Figure H.2. This welfare result is consistent with the result in the semi-loglinear model that the

optimal inflation target can be negative in the model with a sunspot shock, as discussed in the

main text.

Figure H.3 shows how allocations in high- and low-fundamental states vary with the inflation

target in the non-linear model with a fundamental shock. Also consistent with the analysis based

on the semi-loglinear model, in the model with a fundamental shock, a higher inflation target

increases inflation in the high-fundamental state and increases inflation (mitigate deflation) in the

low-fundamental state. Because a higher inflation target in the high-fundamental state is associated

with higher price adjustment costs, society faces a trade-off when choosing the value of the inflation

target.

All in all, the optimal inflation target is positive, as shown in Figure H.4. The optimality of a

positive inflation target in the non-linear model is consistent with the result in the semi-logilinear

model described in the main text.

H.6 Results: Inflation conservatism

Figure H.5 shows how allocations in high- and low-confidence states vary with the degree of inflation

conservatism in the sunspot equilibrium of the non-linear model with a sunspot shock. Consistent

with the analysis based on the semi-loglinear model, in the sunspot equilibrium, a higher weight

on the inflation volatility term increases inflation in the high-confidence state and lowers inflation

in the low-confidence state. As a result, the welfare implication of putting more weight on the

inflation volatility term is ambiguous.

Under our parameterization, the optimal weight on the inflation volatility falls short of one, as

shown in Figure H.6. This welfare result is consistent with the result in the semi-loglinear model

that it is not optimal to put a full weight on the inflation volatility term, as shown in the main

text.

Figure H.7 shows how allocations in high- and low-fundamental states vary with the degree of

inflation conservatism in the non-linear model with a fundamental shock. Also consistent with the
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Figure H.1: Allocations in the non-linear model with a sunspot shock:
The effects of non-zero inflation target

Note: The horizon axis shows the (net) inflation target (annualized percent). Inflation and the policy rate (both in

net terms) are expressed as annualized percent. Consumption and output are expressed as percentage deviation from

the efficient steady state.

analysis based on the semi-loglinear model, in the model with a fundamental shock, a higher weight

on the inflation volatility term increases inflation in both high- and low-fundamental states.

Welfare increases as the weight on the inflation volatility term increases, and the optimal design

is to focus on the inflation volatility only, as shown in Figure H.8. The optimality of a strict inflation-

conservative central bank in the non-linear model is consistent with the result in the semi-loglinear

model.
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Figure H.2: Welfare in the non-linear model with a sunspot shock:
The effects of non-zero inflation target

I Extension: Analyses based on the fully non-linear model with

fiscal stabilization policy

This section presents analyses based on the fully non-linear version of the baseline model with fiscal

stabilization policy. The model is described in Section G.

I.1 Policy framework

The monetary-fiscal policymaker has the following objective

VMF
t = (1− α)

C1− 1
σ

t − 1

1− 1
σ

− χY
N1+η
t

1 + η
+ χG

G
1− 1

ν
t − 1

1− 1
ν

+ α

[
−(Gt −G∗)2

2

]
+ βδtEtV

MF
t+1 (I.1)

where G∗ is the efficient level of government spending that would prevail at the efficient steady

state, and α ∈ [0, 1] is the parameter governning the degree of fiscal activism. If α = 0, the

policymaker has the same objective function as society. A higher α means that the policymaker

cares more about stabilizing government spending around its efficient steady state. That is, a

higher α means that the policymaker is less fiscally active. If α = 1, the policymaker only cares

about the stabilization of the government spending.55

The problem of the policymaker under discretion at time t is to maximize VMF
t subject to the

private-sector equilibrium conditions—summarized in Section G—taking as given the value and

policy functions at time t+ 1.

55Note that, because α ∈ [0, 1], the most fiscally active case we consider in this formualtion is when α = 0, that
is, when the policymaker’s objective function is the same as that of society.
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Figure H.3: Allocations in the non-linear model with a fundametal shock:
The effects of non-zero inflation target

Note: The horizon axis shows the inflation target (annualized percent). Inflation and the policy rate are expressed as

annualized percent. Consumption and output are expressed as percentage deviation from the efficient steady state.

Let λEEt , λPCt , λRCt , and λLBt be the Lagrange multipliers on the Euler equation, the Phillips

Curve, the aggregate resource constraint, and the lower bound constraint. The first order necessary
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Figure H.4: Welfare in the non-linear model with a fundametal shock:
The effects of non-zero inflation target

conditions of the monetary-fiscal policymaker’s problem under discretion are given by

∂L

∂Ct
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− 1
σ

t − 1

σ
C
− 1
σ
−1

t R−1
t λEEt

− 1

σ
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t λPCt
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σ
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1

σ
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−
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)
λRCt (I.2)

∂L

∂Yt
: 0 = −(1− α)χY Y

η
t + θC

− 1
σ

t λPCt

− (1 + η)θχY Y
η
t λ

PC
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t λPCt
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t λPCt
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∂L

∂Gt
: 0 = (1− α)χGG
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−
(
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φ

2
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)
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Figure H.5: Allocations in the non-linear model with a sunspot shock:
The effects of inflation conservatism

Note: The horizon axis shows the value of α. Inflation and the policy rate are expressed as annualized percent.

Consumption and output are expressed as percentage deviation from the efficient steady state.

∂L

∂Rt
: 0 = −C−

1
σ

t R−2
t λEEt + λLBt (I.6)

If the lower bound constraint is binding,

0 = λLBL (I.7)
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Figure H.6: Welfare in the non-linear model with a sunspot shock:
The effects of inflation conservatism

Otherwise,

0 ≤ λLBL (I.8)

I.2 Sunspot shock and sunspot equilibrium

The process governing the sunspot shock is the same as in the model without fiscal stabilization

policy.

The sunspot equilibrium with occasional liquidity traps is defined as a vector {CH , YH , GH ,

ΠH , RH , λEEH ,λPCH , λRCH , λLBH , VH , V CB
H , CL, YL, GL, ΠL, RL, λEEL , λPCL , λRCL , λLBL , VL, V CB

L }
satisfying the following system of non-linear equations and inequality constraints:

(For the high-confidence state)

C
− 1
σ

H R−1
H = β

[
pHC

− 1
σ

H Π−1
H + (1− pH)C

− 1
σ

L Π−1
L

]
, (I.9)

φ (ΠH − 1) ΠH(CH +GH)C
− 1
σ

H + θYHC
− 1
σ

H − θχY Y 1+η
H

= β
[
pHφ (ΠH − 1) ΠH(CH +GH)C

− 1
σ

H + (1− pH)φ (ΠL − 1) ΠL(CL +GL)C
− 1
σ

L

]
, (I.10)

YH = CH +GH +
φ

2
[ΠH − 1]2 (CH +GH), (I.11)

RH > 1. (I.12)
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Figure H.7: Allocations in the non-linear model with a fundamental shock:
The effects of inflation conservatism

Note: The horizon axis shows the value of α. Inflation and the policy rate are expressed as annualized percent.

Consumption and output are expressed as percentage deviation from the efficient steady state.
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Figure H.8: Welfare in the non-linear model with a fundamental shock:
The effects of inflation conservatism

0 = −(1− α)χY Y
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Hλ

PC
H + λRCH (I.14)
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φ

2
(ΠH − 1)2

)
λRCH (I.16)

0 = −C−
1
σ

H R−2
H λEEH + λLBH (I.17)

0 = λLBH (I.18)

(For the low-confidence state)

C
− 1
σ

L R−1
L = β

[
(1− pL)C

− 1
σ

H Π−1
H + pLC

− 1
σ

L Π−1
L

]
, (I.19)
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φ (ΠL − 1) ΠL(CL +GL)C
− 1
σ

L + θYLC
− 1
σ

L − θχY Y 1+η
L

= β
[
(1− pL)φ (ΠH − 1) ΠH(CH +GH)C

− 1
σ

H + pLφ (ΠL − 1) ΠL(CL +GL)C
− 1
σ

L

]
, (I.20)

YL = CL +GL +
φ

2
[ΠL − 1]2 (CL +GL), (I.21)

RL = 1. (I.22)

0 = (1− α)C
− 1
σ

L − 1

σ
C
− 1
σ
−1

L R−1
L λEEL

− 1

σ
φ(ΠL − 1)ΠLGLC

− 1
σ
−1

L λPCL

+ (1− 1

σ
)φ(ΠL − 1)ΠLC

− 1
σ

L λPCL + θYL(− 1

σ
)C
− 1
σ
−1

L λPCL

−
(

1 +
φ

2
(ΠL − 1)2

)
λRCL (I.23)

0 = −(1− α)χY Y
η
L + θC

− 1
σ

L λPCL

− (1 + η)θχY Y
η
Lλ

PC
L + λRCL (I.24)

0 = φ (2ΠL − 1)C
1− 1

σ
L λPCL

+ φ (2ΠL − 1)GLC
− 1
σ

L λPCL

− φ(ΠL − 1)(CL +GL)λRCL (I.25)

0 = (1− α)χGG
− 1
ν

L − α(GL −G∗) + φ (ΠL − 1) ΠLC
− 1
σ

L λPCL

−
(

1 +
φ

2
(ΠL − 1)2

)
λRCL (I.26)

0 = −C−
1
σ

L R−2
L λEEL + λLBL (I.27)

0 < λLBL (I.28)
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Once allocations are computed, one can solve for VH , VL, V CB
H , V CB

L using

VH = uH + βpHVH + β(1− pH)VL (I.29)

VL = uL + β(1− pL)VH + βpLVL (I.30)

V CB
H = uCBH + βpHV

CB
H + β(1− pH)V CB

L (I.31)

V CB
L = uCBL + β(1− pL)V CB

H + βpLV
CB
L (I.32)

Welfare is measured by the unconditional expectations of society’s value function. In the model

with a sunspot shock, welfare is given by

W =
1

1− β

[
1− pL

1− pL + 1− pH
uH +

1− pH
1− pL + 1− pH

uL

]
(I.33)

I.3 Fundamental shock and fundamental equilibrium

The process governing the fundamental shock is the same as in the model without fiscal stabilization

policy.

The fundamental equilibrium with occasional liquidity traps is defined as a vector {CN , YN ,

GN , ΠN , RN , λEEN ,λPCN , λRCN , λLBN , VN , V CB
N , CC , YC , GC , ΠC , RC , λEEC , λPCC , λRCC , λLBC , VC ,

V CB
C } satisfying the following system of non-linear equations and inequality constraints:

(For the normal (high-fundamental) state)

C
− 1
σ

N R−1
N = βδN

[
pNC

− 1
σ

N Π−1
N + (1− pN )C

− 1
σ

C Π−1
C

]
, (I.34)

φ (ΠN − 1) ΠN (CN +GN )C
− 1
σ

N + θYNC
− 1
σ

N − θχY Y 1+η
N

= βδN

[
pNφ (ΠN − 1) ΠN (CN +GN )C

− 1
σ

N + (1− pN )φ (ΠC − 1) ΠC(CC +GC)C
− 1
σ

C

]
, (I.35)

YN = CN +GN +
φ

2
[ΠN − 1]2 (CN +GN ), (I.36)

RN > 1. (I.37)

0 = (1− α)C
− 1
σ

N − 1

σ
C
− 1
σ
−1

N R−1
N λEEN

− 1

σ
φ(ΠN − 1)ΠNGNC

− 1
σ
−1

N λPCN

+ (1− 1

σ
)φ(ΠN − 1)ΠNC

− 1
σ

N λPCN + θYN (− 1

σ
)C
− 1
σ
−1

N λPCN

−
(

1 +
φ

2
(ΠN − 1)2

)
λRCN (I.38)

52



0 = −(1− α)χY Y
η
N + θC

− 1
σ

N λPCN

− (1 + η)θχY Y
η
Nλ

PC
N + λRCN (I.39)

0 = φ (2ΠN − 1)C
1− 1

σ
N λPCN

+ φ (2ΠN − 1)GNC
− 1
σ

N λPCN

− φ(ΠN − 1)(CN +GN )λRCN (I.40)

0 = (1− α)χGG
− 1
ν

N − α(GN −G∗) + φ (ΠN − 1) ΠNC
− 1
σ

N λPCN

−
(

1 +
φ

2
(ΠN − 1)2

)
λRCN (I.41)

0 = −C−
1
σ

N R−2
N λEEN + λLBN (I.42)

0 = λLBN (I.43)

(For the crisis (low-fundamental) state)

C
− 1
σ

C R−1
C = βδC

[
(1− pC)C

− 1
σ

N Π−1
N + pCC

− 1
σ

C Π−1
C

]
, (I.44)

φ (ΠC − 1) ΠC(CC +GC)C
− 1
σ

C + θYCC
− 1
σ

C − θχY Y 1+η
C

= βδC

[
(1− pC)φ (ΠN − 1) ΠN (CN +GN )C

− 1
σ

N + pCφ (ΠC − 1) ΠC(CC +GC)C
− 1
σ

C

]
, (I.45)

YC = CC +GC +
φ

2
[ΠC − 1]2 (CC +GC), (I.46)

RC = 1. (I.47)

0 = (1− α)C
− 1
σ

C − 1

σ
C
− 1
σ
−1

C R−1
C λEEC

− 1

σ
φ(ΠC − 1)ΠCGCC

− 1
σ
−1

C λPCC

+ (1− 1

σ
)φ(ΠC − 1)ΠCC

− 1
σ

C λPCC + θYC(− 1

σ
)C
− 1
σ
−1

C λPCC

−
(

1 +
φ

2
(ΠC − 1)2

)
λRCC (I.48)
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0 = −(1− α)χY Y
η
C + θC

− 1
σ

C λPCC

− (1 + η)θχY Y
η
Cλ

PC
C + λRCC (I.49)

0 = φ (2ΠC − 1)C
1− 1

σ
C λPCC

+ φ (2ΠC − 1)GCC
− 1
σ

C λPCC

− φ(ΠC − 1)(CC +GC)λRCC (I.50)

0 = (1− α)χGG
− 1
ν

C − α(GC −G∗) + φ (ΠC − 1) ΠCC
− 1
σ

C λPCC

−
(

1 +
φ

2
(ΠC − 1)2

)
λRCC (I.51)

0 = −C−
1
σ

C R−2
C λEEC + λLBC (I.52)

0 < λLBC (I.53)

Once allocations are computed, one can solve for VN , VC , V CB
N , V CB

C using,

VN = uN + βpNVN + β(1− pN )VC (I.54)

VC = uC + β(1− pC)VN + βpCVC (I.55)

V CB
N = uCBN + βpNV

CB
N + β(1− pN )V CB

C (I.56)

V CB
C = uCBC + β(1− pC)V CB

N + βpCV
CB
C (I.57)

Welfare is measured by the unconditional expectations of society’s value function. In the model

with a fundamental shock, welfare is given by

W =
1

1− β

[
1− pC

1− pC + 1− pN
uN +

1− pN
1− pC + 1− pN

uC

]
(I.58)

I.4 Parameter values and model solution

The calibration of the parameters that are unrelated to the shocks is the same as in the main body

of the paper (see Table 1), except that we set the discount factor β equal to 0.99375 (rather than

0.9975), which facilitates the solution of the model with the fundamental shock. As in Section 6 of

the paper, we calibrate the price-adjustment cost parameter φ such that the slope of the Phillips

curve, when log-linearized around the intended steady state, is identical to the one in the baseline

model setup, and we set χY and χG such that total output equals one in the intended steady state,

and the steady-state ration of government spending to output equals 0.2. When assessing the effect
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of alternative inflation targets on allocations and welfare, we set the indexation parameter h equal

to 0.5. For the sunspot shock, we assume pH = 0.995 and pL = 0.99. For the fundamental shock,

we assume pN = 0.99, pC = 0.75, and we have δN = 1, δC = 1.025. All the takeaways from the

non-linear analysis are robust to alternative parameter values. We solve the system of non-linear

equation using Matlab’s fsolve function.

I.5 Results: Fiscal activism

Figure I.1 shows how allocations in high- and low-confidence states vary with the relative weight on

the government spending stabilization term α in the sunspot equilibrium of the non-linear model

with a sunspot shock. Consistent with the analysis based on the baseline semi-loglinear model,

in the sunspot equilibrium, a higher weight on the government spending stabilization term (less

fiscal activism) results in a less aggressive use of government spending as a stabilization tool at the

lower bound, higher inflation (less deflation) in the low-confidence state and higher inflation (less

deflation) in the high-confidence state.

Thus, conditional on the existence of the sunspot equilibrium, it is optimal to focus on mini-

mizing the volatility in government spending, as shown in Figure I.2. This result is consistent with

the result in the semi-loglinear model shown in the main text.

Figure I.3 shows how allocations in high- and low-fundamental states vary with α in the non-

linear model with a fundamental shock. Also consistent with the analysis based on the semi-

loglinear model, in the model with a fundamental shock, a higher weight on the government spending

stabilization term lowers government spending and inflation in the low-fundamental state, and

increases the deflationary bias in the high-fundamental state.

Welfare declines as the weight on the government spending stabilization increases, and the

optimal weight is zero, as shown in Figure I.4.
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Figure I.1: Allocations in the non-linear model with a sunspot shock:
The effects of fiscal activism

Note: The horizon axis shows the value of α. Inflation and the policy rate are expressed as annualized percent.

Consumption, output, and government spending are expressed as percentage deviation from the efficient steady

state.
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Figure I.2: Welfare in the non-linear model with a sunspot shock:
The effects of fiscal activism
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Figure I.3: Allocations in the non-linear model with a fundamental shock:
The effects of fiscal activism

Note: The horizon axis shows the value of α. Inflation and the policy rate are expressed as annualized percent.

Consumption, output, and government spending are expressed as percentage deviation from the efficient steady

state.
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Figure I.4: Welfare in the non-linear model with a fundamental shock:
The effects of fiscal activism
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