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A Sunspot equilibrium in the baseline model without fiscal stabi-

lization policy

A.1 Proof of Proposition 1

To prove Proposition 1 on the necessary and sufficient conditions for existence of the sunspot equi-
librium, it is useful to proceed in four steps. Each step is associated with an auxiliary proposition.
Let

A= —BA(1 - pn), (A.1)
B = k* + M1~ Bpn), (A.2)
0= gyt 80— o)~ o (A3)
D=t ;/fL) (1=ppL+B(1—pu))—(1—-pL)=-1-C, (A4)
and
E:= AD — BC. (A.5)

Proposition A.1 There exists a vector {ymg,TH,im,yr, 7L,ir} that solves the system of linear
equations (8)—(13).

Proof: Rearranging the system of equations (8)—(13) and eliminating yz and yz,, we obtain two

unknowns for 7z and 77, in two equations

A B
C D

WL]:[KQTF*]. (A.6)
TH r"

For what follows, it is useful to show that E = 0 is generically inconsistent with existence of
the sunspot equilibrium. Since B > 0, we can always write 7y = x2/Bn* — A/Bm. Plugging this
into Cry, + Dy = r™ and multiplying both sides by B, we get Dx?1* — Em;, = Br™. Since the
right-hand side of this equation is strictly positive, £ = 0 is inconsistent with the existence of the

sunspot equilibrium for generic 7*.

Hence, we can invert the matrix on the left-hand-side of (A.6)



T 1 D -B k2™
= . A7
[ TH AD-BC | —C A r ] (A7)
Thus,
Ck? , A,
T™TH = —Tﬂ' -+ ET (AS)
and )
D B

From the Phillips curves in both states, we obtain

= BB —pm) ~ (L= B)C) | 5r(L—pm)

L - (A.10)

and

- k (Bpr, — 1; (1-H)C) . (1= Fpr)s’+ (1 5)&— B + B —pm))A (A.11)

Proposition A.2 Suppose equations (8)—(13) are satisfied. Then Ayp + (kmp —7*) < 0 if and only
if (1) £ >0 and 7 > —'{QL(QI_@T” or (i1)) E <0 and m* < —"QL(;_B)W,

K K

Proof: Using (A.9) and (A.11), we have

Ayr + k(mp, — ) = (A.12)

WA= B+ B —p)) (R A —B)Tn>
E K2 i

Notice that (k2 + A (1 — Bpr + B(1 —pr)))x > 0, and WT” > 0. Thus, if £ > 0 and
™ > —WTTL, then \yp + k(mp — 7*) < 0. Similarly, if £ < 0 and 7* < —WT”, then

Ayr + k(mp, — %) < 0.

“24’)‘(1*5) n
[{2 T .

Proposition A.3 Suppose equations (8)-(13) are satisfied, E > 0 and 7* > —
Then i > 0 if and only if pr. — (1 — py) — W (1—pprL+B(1—pu)) >0.

Proof: iy is given by

1—pu

ig = (yr —ym) +pamg + (1 — pp)mr +r"

(11— — l=pr+l-py (1 _ + B(1 — K2 —
(b= (1= pn) = E( fpu+ B0~ i) (W*JFWM), (A.13)

K



where in the second row we made use of (A.8)—(A.11).

Proposition A.4 Suppose equations (8)—(13) are satisfied, E < 0 and 7* < —WT”. Then
i < 0.

Proof: First, substitute equations (A.1), (A.2), and (A.4) into equation (A.5) to obtain

E=pBA\1-pg) — (¥ +A(1-5))C. (A.14)
Hence, £ < 0 implies C' > 0.
Corollary A.1 C < 0 implies E > 0.

Next, note that

1_pL+1_pH(1—er+ﬂﬂ—pH»:—{ﬁﬁl—mﬂl_ﬁmr+M1_pH)+H¢
RO RO

pr—(1—pH)—

Hence, C' > 0 implies py, — (1 — pg) — % (1 —Bpr+B(1—pg)) <O0.
Corollary A.2 p;, — (1 —pg) — I_I’L,ﬁ% (1 = Bpr + B(1 —pg)) > 0 implies C < 0.

From equation (A.13), it follows that py — (1 — pgr) — 22LE1PH (1 — Bp; + (1 —py)) <0, E <0

9 KO
and 7% < -2 0 +)l;(21_5) r’

imply ¢fy < 0.

We are now ready to proof Proposition 1. For notational convenience, define

1—pL+ﬂm—pH(
RO

Qpr,pH,K,0,8) =pr — (1 —pu) — 1= Bpr + B(1 —pu))- (A.15)

K2+ (1-5)

K2

Proof of “if” part: Suppose that Q(-) > 0 and 7" > — r’. According to Proposition A.1
there exists a vector {yg, 7w, i1, YL, 7L, i} that solves equations (8)—(13). According to Corollary
A2, Q(-) > 0 implies C' < 0. According to Corollary A.1, C' < 0 implies £ > 0. According
to Proposition A.2, £ > 0 and 7* > —WT”

—SEEE Q) > 0 implies i > 0.

imply A\yp + k(mrp, — ) < 0. According to
Proposition A.3, given £ > 0 and 7* >

Proof of “only if” part: Suppose that the vector {yg, 7, i, yr, 7,05} solves (8)—(13), and
satisfies \yr + k(wp, — 7*) < 0 and iy > 0. According to Proposition A.2, A\yy, + k(wp — %) < 0

implies that either (i) £ > 0 and 7* > —WT” or (ii) £ < 0 and 7* < —WT”. Ac-
_“24’)‘(1*/8),'077,
> .

cording to Proposition A.4, (ii) is inconsistent with i > 0. Hence, E > 0 and 7* > -

According to Proposition A.3, given £ > 0 and 7* > —Wr", i > 0 implies Q(-) > 0.



A.2 Proof of Proposition 2

The allocations and prices in the sunspot equilibrium are given by

(C+Dr* . &+ X1-Bpr) ,
T — — ™ — T

E E

_ KB =1-(01=8)0) , (1=Bpr)s’+(1=B)1=PBpr+B1—pu)A ,

yL = E ™ —
- —CRQTF* A _pH)T"
B E
o = U= p) —0=9)C) o el )

Assuming 7* = 0 and A > 0, it holds

_ K2+ M1 — Bpu)

T, = E r'" <0
(- Bp)Rt + (L= B)(L - B+ B —pr)A ,
YL =
kE
Ty = _ﬁ/\(lE_pH)rn <0
Y = ﬁﬁ'(lE_’ pH)rn >0

When py < 1, mg < 0 and yg > 0.

A.3 Proof of Proposition 3

Keeping in mind that —1 < C' < 0 in the sunspot equilibrium, it holds,

o+ E

<0

om*

and

on* EE >0
Oyu _ Bl —pn)— (1-B)C
or* F

A.4 Proof of Lemma 1

If 70 exists, it holds —CT"QWO — WT” = 0. Solving for 7°, one obtains

A1 —
7_(0:_6 ( pH),rn,

Cr2

4

dyr ~ B(l—-pr)+(1-8)(C+1)
E

Kk <0,

k> 0.

(A.16)
(A.17)
(A.18)

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)



where C' < 0, and hence 7° > 0.
A.5 Proof of Proposition 4

Note first that

1—py
1—pr+1—pu

EV = (7@{ + S\yé—) +

! 1[ L pL (+nd)|,  (a2)

1-pB2|1l-pL+1-ppg

where V' is defined in equation (3).

Assuming \ = A, the partial derivative of EV with respect to 7* is

OBV _ ! {[(,& +A(1=B)%) (1= pu)(C +1)* + (1= pL)C?)

ot (1-8)1—pL+1—py)E?
+AB(1 —pr)(1 —pr)(1 — Bpr + 1 — ﬂpH)} KA+ P\ (K*+ X1 —B)) (1 - Bpr + B(1 —pr))
BA—pr)+ (1 =B)(C+1)+ (K*+ X1 =B+ B*(1—prL+1—ppn)))s*(C+1)

~ (BR)M(1 = pp)| (1 - pH)w}.

Note that all terms in the square brackets which are multiplied by 7* are positive. In the square
brackets which are multiplied by 7" all terms are positive except for the last one, —(8k)?A(1—pr) <

0.

GEV. _

The first-order necessary condition for the welfare-maximizing inflation target is 5=

Solving for 7*, one obtains

P
T ==

1—pg AN(R2 X0 =8) (1= Bpr + B0 —pm)) (B —pr) + (1= BC + 1) + (k2 + 31 = B+ 821 —pp +1—pm))) K2(C+ 1) = (Br)2X(1 —p)
w2 (R2Z+2Q =82 (A —pa)(C+1)2+ (1 -pL)0%) + 281 —pu)(L —pL)(1 — BpL + 1 — BrH)

2 ) — . . . . .
Note that 7** > —%(Qlﬁ)r" whenever existence condition (22) is satisfied. Specifically,

K2+ (1-p)

T > —=——5—=r" if and only if

(P + 210 =) {(x*+ X1 = B)C[(1 —pr+1—pu)C +1—pul }
> [(52 + A1 = 8)) AB(1 = B)(A = prr) + (Br)*A(L = pr)] [(1 = pr + 1 = p)C + 1 = pa],
where (1 —pr, +1—pg)C+1—pg =—(1—pr)QpL, pu, k,0, ) < 0. Hence, the left-hand side of

the inequality is positive and the right-hand side is negative, so that the inequality is satisfied.

Next, we show that 7** < 7%, This requires



pr A (K2 +X(1=8)) (1 = Bpr + B0 — pm) (B —pr) + (1 = BA(C + D) + (k2 + X1 = B+ 821 —pp +1 - pr))) K2(C+ 1) = (B0)?X(1 — p1)
c (:2+ 31— $2) (1 = pu)(C+ D2 + (1 = p1)C2) + X6(1 — pu)(1 = pr)(1 = BpL + 1 — Bpp) ’

which can be rewritten as

BARI (1= pr)(1 = B)C% + BA*(1 = B)*(1 = pL)C% + BA (k% +X(1 = B)%) (1 = pu)(C + D) + (BN)?(1 — pL)(A — pr)(L = BpL + 1 — Bpa)

> (Br)*X(1 = pr)(L = p)C + 1° (% + X1 = Bpm)) C + [k (1 = Bpr) + X1 = B)(1 = Bpr, + 1= Bp)] [B(1 = pr) + (1 = B)(C + D] AC.
Note that all terms on the left-hand side of the inequality sign are strictly positive and all terms
on the right-hand side are strictly negative. This completes the proof.

A.6 Proof of Proposition 6

Suppose 7* = 0 and py < 1. It holds

onp :ﬂHQ(l —pu)(1 —pr) ko + (1 = Bpr, + B(1 — py))

X E? o >0
dyr,  B(1—pr)(1 —pr) ko + (1 —B)(1 - Bpr + B —pu)) ,
= ' >0
O\ E2 Ko
org  Br*(1—pw) ko + (1= Bpr + B(1 —pu))| .
N B2 Qpr,pH, K, 0,8) + (1 —pm) e <0
Oyw Bl —pu) [, oo+ (= B)(A = Bpr+ B —pu))| «
a)\ - E2 (]‘ ﬁ)Q(vapH)K'aUaﬁ)+(]‘ pH) KO r <O
A.7 Proof of Proposition 7
Note first that
EV = — - Y 2| A.26
1_B2[1_pL+1_pH(7TH+ yH)Jr1—pL+1—pH(7rLJr vi) (4.26)

where V' is defined in equation (3).

Assuming 7* = 0, the partial derivative of EV with respect to A is



— rm)2
ag/ - B)B((l(l— pri)l —)PH)E3 { [5,4;2(1 = pL)C + (1 = Bpr)(C + 1)

+ A1 =81 = Bpr+ (1 —pr)) (1= B)(C +1)+ B(1 —pr)) |A
+ Bk [(1 = pr)(1 —pu)BA — (1 = pr)(1 = B)CA] + £*(C +1)

+A(L = Bp)R? (L= B)(C + 1) + B —pr)) }

Note that since (C'+ 1) > 0 and C < 0, all terms in curly brackets are positive except for
the very first one, Bx%(1 — pr)C < 0. Also note that since in the sunspot equilibrium E > 0, the
term in front of the curly brackets is positive for any A > 0. Since the only negative term in curly

OBV > 0, and therefore \* > 0.

brackets is multiplied by A, A =0

Furthermore, if

k2B(1—pr)C+K*(1—=Bpu) (C+1)+A(1-B) (1 — Bpr + B(L — pu)) ((C + 1)(1 = B) + B(1 — pr)) > 0,

then ag—AV > (0 for all A > 0. Hence, in this case no interior solution for \* exists and A\* = oc.
If instead

k2B(1—pr)C+r*(1=Bpr ) (C+1)+A(1=8) (1 = Bpr + B(L — pu)) (C +1)(1 = B) + B(1 — pr)) <0,
then

A=

B [(lpr)(lpr)ﬁXf(lpr B)CA] + K" (C + 1) + A1 = Bpr)w® (1 = B)(C +1) + B(1 — pr))
#2B(1 —pr)C + k*(1 — Bpu)(C ) +A(1 - )(1—BPL+5(1—pH))((C+1)(1—5)+B(1—pL))

In this case, \* > X if

(Br)*(1=pL)X (C + 1 — pu) +x° (k* + (1 = Bpa)X) (C+D+ (w3 (1 = Bpr) + (1 = HXA = Bpr + B(1 = pu))) (BL —pr) + (1= B)(C+1)X >0
<0

A.8 Proof of Proposition 8

Let Xg|y=5 r+=#+ denote the outcome of variable X € {m,y} in state S € {H, L} of the sunspot
equilibrium when A = ) and 7* = #* ,and X SA=A =0 when A = A and 7* = 0. We need to show
that Xg\_5 r—s+ = XS\)\:S\ g for all X xS and any A>0.

*=T7



High-state inflation:

o O B —pr) A=A o
A=A = [BAQ = pr) = (52 + A1 = B)CT [BA(1 — pu) — (2 + A(1 — B))C]
o /Bx(l _le rn
BA1 = pu) — (K + A(1 = B))C
_ /85‘(1 _pH) rn
BA(L —pr) — (K2 + A1 - B))C
=T H|x=Am*=0
High-state output:
oo — KB —pm) — (1= B)C) BA—pm)(A=N) "
HP=AT=R 2 1BN1 = prr) — (k2 + M1 = B))CT [BA(1 — p) — (k2 + A(1 — B))C]
_ Bﬁ(l — pHE rn
BAL —pu) — (k2 + A(1 = B))C
S B/{'(l — pHZ rn
BA(L —pm) — (K2 + A(1 = B))C
=Y x=37m*=0
Low-state inflation:
o Di? Bl-p)O-N
HAA = BN~ pir) — (2 + (L~ B)CT [BA(1 — par) — (5 + A(1 - A))C]
. H2+5\(1 _BpH) rn
BA1 = pr) — (K2 + A1 = B))C
_ K2 4+ 5\(1 — BpH) o
BAL = pi) — (82 + A(1 = B))C
T LA=Am*=0

Low-state output:

o R(Bpr—1-(1-pB)0) B(L—pr)(A =) n
VINAT =2 TN — prr) — (+2 + AL — B)C] [BA(L — prr) — (v2 + A1 — B))C]
K= Bp) + A1 = B) (1 = Bpr + B(L = pn))
BA(1 —pr) — (k2 + A(1 - §))C
_ F(1=Bpr) + A= 8) (1= Bpr + B(L—pn))
BA1 —pr) — (K2 + A1 — B)C

=YL a=Am =0




A.9 Numerical example

This subsection provides a numerical example of the sunspot equilibrium in the model without

fiscal policy. One period is assumed to correspond to one quarter, and the parameterisation follows
Table 1.

Figure A.1 plots the region of existence for the sunspot equilibrium in the (pg,pr) space (black

area), and the region of existence for the fundamental equilibrium in the (p];I, p{) space (gray

area).5?

Figure A.1: Existence regions for sunspot equilibrium and fundamental equilibrium
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Figure A.2 shows how allocations and welfare in the sunspot equilibrium depend on the central
bank’s inflation target 7*. We set pr, = 0.9375 and py = 0.98. In this particular example, the

optimal inflation target is negative.

B The no-sunspot equilibrium in the baseline model without fiscal
stabilization policy: Case where condition (23) is violated
When condition (23) is violated, i.e. when the inflation target 7* is sufficiently negative for a given

value of A, the sunspot equilibrium fails to exist. In this section, we characterize the remaining

no-sunspot equilibrium.

52In case of the fundamental equilibrium, the condition for equilibrium existence depends on the value of the
natural real rate in the low-fundamental state, r7. The region of existence is shrinking in the absolute value of r7.



Figure A.2: Allocations and welfare as a function of 7*
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Note: Dash-dotted vertical lines indicate the case where the central bank has the same objective function as society
as a whole, i.e. 7 = 0. Solid vertical lines indicate the welfare-maximizing inflation target. The welfare gain/loss is

expressed relative to the welfare level achieved when the inflation target is zero (in percent).

B.1 Allocation and prices

We first show that the no-sunspot equilibrium features a binding lower bound on nominal interest
rates, deflation, and a negative output gap.
Given that the sunspot shock does not affect agents’ decisions in no-sunspot equilibria, we can

abstract from the confidence states. The equilibrium conditions read:

T =Ky + Bm (B.1)
i=m4+r" (B.2)
0 =i[r(m —7") + \y] (B.3)

where k(T —7*) + Ay =0if i > 0 and k(r —7*) + Ay < 0if i = 0.

Suppose, first, that ¢ > 0. Solving the system of equations under this assumption, we obtain

K2

R * B.4
i=r"+ A= D) T (B.4)
When condition (23) does not hold, equation (B.4) implies ¢ < 0, which contradicts the initial

assumption that ¢ > 0.

10



Hence, in the no-sunspot equilibrium, we must have ¢ = 0. Solving the system of equations

under this assumption, we obtain

T=—r"<0 (B.5)

y=——1r"<0. (B.6)

Note that this no-sunspot equilibrium is unique, and that the equilibrium values of output and

inflation do not depend on the value of the inflation target.

B.2 Proof of Proposition 5

To show that unconditional welfare EV; in the no-sunspot equilibrium with an inflation target low
enough such that condition (23) fails to hold is lower than in the sunspot equilibrium with an
optimized inflation target, we proceed as follows.

First, note that the policy functions for inflation and the output gap associated with the sunspot
equilibrium are continuous functions of the inflation target 7* on the domain that includes = =
—WT” as a boundary. Second, for 7 — m, the function values of the policy functions
associated with the sunspot equilibrium converge to the function values of the policy functions

associated with the no-sunspot equilibrium when 7* < w. That is

lim 7 (7*) = —r" (B.7)
T* =T
. * 1- n

Wl*lglﬂyL(ﬂ )= —Tﬁr (B.8)

ﬂl*lglﬂﬂ'[-[(ﬂ' )=-—r (B.9)
1—

lim yg(n*) = —Jr”, (B.10)

T* =T K

where 7z, (7*), yr(7*), 7 (7*) and yg(7*) are defined in equations (A.16) — (A.19).

Finally, note that when deriving the welfare-maximizing inflation target in Section A.5 to proof
Proposition 4, we do not restrict the domain for 7* to exclude w. Given that we show in Section
A5 that the welfare-maximizing inflation target is strictly larger than m as long as (22)—the other
condition for existence of the sunspot equilibrium—is satisfied, society prefers being in the sunspot
equilibrium with an optimized inflation target over being in the no-sunspot equilibrium with an

inflation target 7* < .

11



C Policy problem in the baseline model with fiscal stabilization

policy

At the beginning of time, society delegates monetary and fiscal policy to a discretionary policy-

maker. The objective function of the policymaker is given by

J -
—§Et25j (77 + Asi iy + Aggirs) » (C.1)

Jj=0

MF __
V; =

where for \j = 5\9, the policymaker’s objective function coincides with society’s objective function.

The optimization problem of a generic policymaker acting under discretion is as follows. Each
period t, she chooses the inflation rate, the modified output gap, government spending, and the
nominal interest rate to maximize its objective function (C.1) subject to the behavioral constraints
of the private sector and the lower bound constraint, with the policy functions at time ¢ + 1 taken
as given. Since the model features no endogenous state variable, the policymaker solves a sequence

of static optimization problems

1 _
max —= (77 + Az} + \gg7) (C.2)
Tty Tt gt 2t 2
subject to
Tt = KTt + BEtﬂ't—&-l (C?))
wt = Egwepr + (1= T) (g — 8e41) — 0 (it — Eemepr — 1) (C.4)
1t >0 (C.5)

The consolidated first order conditions are

(H?Tt + S\ZL‘t)Z't =0
KT + S\‘Tt S 0
1t >0

gt + (1 = T)(km + Axy) =0

together with the private sector behavioral constraints.

12



D Sunspot equilibrium in the baseline model with fiscal stabiliza-
tion policy
D.1 Proof of Proposition 9

To proof Proposition 9 on the necessary and sufficient condition for existence of the sunspot equi-
librium, it is useful to proceed in three steps. Each step is associated with an auxiliary proposition.
Let

(1-T)?

C = XC + (K* + M1 - Bpr)) (1—p1), (D.1)
D:=)\,D — Mﬂu —p1)?, (D.2)
and
E:=AD - BC
B~ LR (2 50— ) [ 4 31— B+ B0 —pu))] . (D)

RO

where A, B,C, D and E are defined in (A.1)-(A.5).

Proposition D.1 There exists a vector {xmg,TH, i, g, L, 7L, L, gL} that solves the system of
linear equations (33)-(40).

Proof: Rearranging the system of equations (33)—(40) and eliminating x g, ig, gg, =1, iz, and gr,

we obtain two unknowns for 7z and 7y, in two equations

Lo 0
TH ] B [ Agr™ ] ' (D-4)

For what follows, it is useful to show that E = 0 is inconsistent with existence of the sunspot

A B
C D

equilibrium. Since B > 0, we can always write 7y = —A/Bmy,. Plugging this into Crp + Dy =
Agr™ and multiplying both sides by B, we get —Eny, = BAgr™. Since the right-hand side of this
equation is strictly positive for Ay > 0, F = 0 is inconsistent with the existence of the sunspot

equilibrium. Hence, we can invert the matrix on the left-hand-side of (D.4)

0 ] . (D.5)
Thus,

Agr™ (D.6)



and
T = —=— A" D.7
L B g ( )

From the Phillips curves in both states, we obtain

Br(1 jPH)

TH = 7 Agr" (D.8)
and ) _
o = -0+ (= D=+ 50 g, D)
K

Using the target criterion for fiscal policy in the low-confidence state (39), we obtain

(1-1) (% + A1 = 8)) (% + AL = Bpo + B —pu))) 0

= _ D.10
9L = (D.10)
Using the consumption Euler equation in the high-confidence state (33), we obtain
, 1 —pu 2 Y 1 (23 1 — Bpr + B(1 — pu)
S 1-
iH [ 7 ()\g </<c + A+ (k°+ A1 -0)) .
(1 — F)2 2 0 3(1 _ 2 (1 _ n
e (k* + A1 = B)) (v + A1 = Bpr + B —pm))) || (D.11)

Finally, from equations (35) and (40), we have gy = 0, and iy, = 0.

Proposition D.2 Suppose equations (33)-(40) are satisfied. Then Az + kmp < 0 if and only if
E>0.

Proof: Using (D.7) and (D.9), we have
(52 + A(L = B)) (5* + A1 = Bpr + B — pn)))
KE

Notice that Agr™ > 0 and (k? + A(1 — ) (k* + A(1 — Bpr + B(1 — p))) > 0. Thus, if \wp+rmy <
0, then E > 0. Similarly, if £ > 0, then Az, + k7p, < 0.

\rp + KT = — Agr™ (D.12)

Proposition D.3 Suppose equations (33)-(40) are satisfied and E > 0. Then iz > 0 if and only if
XL, pH, K0, B) — (1 — F)Ql_pﬂﬁw (k% 4+ A(1 = Bpr + B(1 — pu))| > 0, where Q-) is defined
in (A.15).

Proof: First, notice that iy is given by

14



ig =———(er —zu + 1 =D)gn —g1)) +prmm + (1 —pa)rp + 1"
K2+ A1 —8))r" 1—pr+1— -
:( (E )) )‘QQ(pLﬂpHv’%?U?B)_(l_FV pLKJU PL (’124‘)\(1—,8[)[,4-5(1—])[{))) s
(D.13)
. . (52+5\(1fﬁ))r" .
where in the second row we made use of (D.6)—(D.10). Notice also that ~———=—— > 0. Thus, if

E
XUpL,PH, K, O, 6)—(1—1“)2% [fiz + A1 - Bpr + B(1 —pH))] > 0 then iz > 0. Similarly,

if i > 0 then \gQ(pr, pa, k,0,8) — (1 — F)zw [HQ + A1 - Bpr + B(1 —pH))] > 0.
We are now ready to proof Proposition 9. For notational convenience, define

~ 1 — P +1 — pH
Q(pL7pHaK‘>O—7/BaF7)‘g) = )‘gQ(pLapH)Kjvaa 6)_(1_1—‘)2 LHJ [

K2+ X1 — Bpr, + B(1 — pu))]
(D.14)

Proof of “if” part: Suppose that Q() > 0. According to Proposition D.1 there exists a vector
{xmg, 7y, ig, 90,20, 7L, 0L, g1} that solves equations (33)—(40). Notice that

(R + A1 = B)() =E — (1 - pa) [Ag (Fﬁ TR (4 (1 gy LA+ B0 ‘pH))

RO

1-1)2
La-ry2
KO

(" +A(1 = £) (" + AL — Bpr + B(L — pn))) } :

Hence, Q() > 0 implies £ > 0. According to Proposition D.2, E > 0 implies Az, + xmr, < 0.
According to Proposition D.3, given E > 0, Q(-) > 0 implies iz > 0.

Proof of “only if” part: Suppose that the vector {xp,7p,ip, 9, €L, 7,01, gL} solves (33)—(40),

and satisfies Az, + k7, < 0 and ig > 0. According to Proposition D.2, Azy, 4+ xmr, < 0 implies
E > 0. According to Proposition D.3, E > 0 and iz > 0 imply Q(-) > 0.

D.2 Proof of Proposition 10

In the sunspot equilibrium, allocations and prices are given by
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KA 5\(1~— Bpu)

T = 7 )\gT‘n <0
vy = A= Bpo)R? 4 (1 B)(;j— Bpr +B(1 — pH))XAng <0
K
gy <D (2 +A0 = 8) (52 + A0 = fpe + B —p)) g
B kE
Ty =— ﬂ)\(lEij))\grn <0
Ty :@‘ﬁ(lEij))\ng >0
9 =0,

where E > 0 is defined in equation (D.3). When pg <0, 7y <0 and g > 0.

D.3 Proof of Proposition 11

In the sunspot equilibrium, it holds

(D.15)
(D.16)
(D.17)
(D.18)

(D.19)

(D.20)

or, (K2 + A1 = Bpr)) (1 —T)* (ko) (1 — pr)(k* + X1 = B)) [£* + A1 — Bpr + B(1 — pr))]
N, fo2 "
Z‘”j’; — [W(1— Bpz) + M1~ A)(1 — Bps + B(1 - py)]
L (L= D2(k0) (1= pr)(5* + A1 = B)) [+* + A1 = Bpr + BA—pr))]
KkE2
dgr,  (1=T)(K*+ A1 —=B)) (" + A1 = Bpr + B(1 —pH)))E "
Ag kE2 "
and

Omp _ BA1 —pr)(1 —T)?*(ko) (1 — pr) (k2 + M1 — B)) [+* + A(L — Bpr + B(1 — pn))]

r" >0

N E?
Oz Pr(l—py)(1 —T)*(ko) ' (1 —pr)(s* + A1 = B)) [s* + A(1 - Bpr + B(1 — pn))]
ONg E?

When pyr < 1, 95 > 0 and G5 < 0.

D.4 Comparison with an exogenous increase in government spending

r < 0.

In our analysis of fiscal stabilization policy, government spending is an endogenous variable set

by an optimizing policymaker.

A more common approach in the literature on fiscal policy in

expectations-driven liquidity traps is to treat the fiscal policy instrument as an exogenous variable
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(e.g. Mertens and Ravn, 2014; Bilbiie, 2018). We therefore provide a brief comparison of these two
approaches.

Suppose that government spending follows an exogenous process that is perfectly correlated
with the sunspot shock, i.e. g; = gr if & = & and g; = g if & = €, where gr, > gy = 0. For this
case, the definition of the sunspot equilibrium has to be slightly modified.

Definition 5 The sunspot equilibrium in the model with the sunspot shock and exogenous fiscal
policy is given by a vector {xm,mm,ig,xr,7L,ir} that solves the system of linear equations (33),
(34), (36), (37), (38), (40), and satisfies the inequality constraints (41) and (42).

Assuming that the high-confidence state is absorbing (py = 1), the low-confidence-state AD

and AS curves in the model with exogenous fiscal stabilization policy are given by

AD-sunspot g-ex: x; = min [( "+ (1— F)gL> + L, —=TL (D.21)

1 =pr
1—
AS-sunspot g-ex: zp = ﬂm; (D.22)
K

Figure D.1 compares the effects of a reduction in Ay—which in equilibrium results in an increase
in g;—on the AD-AS curves in the model with endogenous fiscal stabilization policy to those of
an increase in gy, in the model with exogenous fiscal policy interventions. For the baseline, it is
assumed that A\; = oo in the model with endogenous fiscal policy and gr, = 0 in the model with
exogenous fiscal policy. Hence, in the baseline, the low-state AD curve is the same whether fiscal
policy is endogenous or exogenous. The sunspot equilibrium outcomes for inflation and the output
gap in the baseline are represented by the intersection of the AD curve (red solid line) with the AS
curve (blue solid line), marked by point S. When considering an increase in low-state government
spending in the model with exogenous fiscal policy, we calibrate the stimulus to be of the same
size as the equilibrium increase in government spending that occurs in the model with endogenous
fiscal policy in response to the reduction in Ag.

In the model with endogenous fiscal stabilization policy a change in A, affects the slope of the
AD curve to the left of the kink. A reduction in A; makes the AD curve flatter (red dashed line).
In the model with exogenous fiscal policy interventions, a change in low-state government spending
instead affects the intercept term in the AD curve and results in a level shift to the left of the kink.
An increase in low-state government spending shifts the AD curve upwards (green dashed line).
While the sunspot equilibria in the two models are observationally equivalent by construction (see
point S’), the two AD curves are not observationally equivalent. Since an exogenous increase in
low-state government spending does not affect the slope of the AD curve, a policy intervention of

this type is in general unsuited to eliminate the sunspot equilibrium.
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Figure D.1: Low-confidence state AD-AS curves: Endogenous vs exogenous fiscal policy
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Note: Solid lines: Ay = oo (fiscal policy endogenous), g = 0 (fiscal policy exogenous); red dashed line: A\, = A\y/10
(fiscal policy endogenous); green dashed line: gr = 4 (fiscal policy exogenous). Inflation is expressed in annualized

terms.

D.5 Numerical example

This subsection provides a numerical example of how allocations and welfare depend on the relative
weight that the policymaker’s objective function puts on government spending stabilization A,. The
parameterisation follows Table 1 except that we account for a non-zero steady-state government
spending to output ratio of 0.2, which implies that the inverse of the elasticity of the marginal
utility of private consumption with respect to output ¢ becomes 0.4. The inverse of the elasticity
of the marginal utility of public consumption with respect to output v is set to 0.1, as in Section
5. This implies 5\9 = 0.0082. In addition, p;, = 0.9375 and py = 0.98.
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Figure D.2: Allocations and welfare as a function of A\,
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Note: Dash-dotted vertical lines indicate the case where the policymaker has the same objective function as society
as a whole, i.e. Ay = Ag. The welfare gain/loss is expressed relative to the welfare level achieved when A\, = Xy (in

percent).

E Fundamental equilibrium in the baseline model with fiscal sta-
bilization policy
E.1 Existence of the fundamental equilibrium

Proposition 13 The fundamental equilibrium in the model with government spending and a two-

state natural real rate shock exists if and only if

Ef <1 —pr)% [Ag (/{2 + A+ (K2 + X1 - B))

1— Bp} + B(1 —ply)
RO
N (1-T)°
RO

(52 + M1 = 8)) (52 +X(1 - Bpf, + (1 —pﬁ;»)] (E.1)

KO

~ _ . f _ _
where Y = \,B — Ca G ) (k*+ A1 -0)) [I@Q + (1 - Bpl + 801 —pr))]

To proof Proposition 13, we proceed again in three steps. Each step is associated with an

auxiliary proposition.

Proposition E.1 There exists a vector {xg, 7, i, 90, L, TL,iL,95} that solves the system of
linear equations (35), (36), (39), (40), and (43)-(46).
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Proof: Let

AT = —BA1 - ply), (E.2)
B = &%+ (1 - 8p))), (E.3)
. |
ot = WP gt 1 51— o)~ (.4)
. f
D/ = —“Ulfﬂu — Bpl + B —pl)) - (A —p)) =-1-C", (E.5)
and
Ef .= A'DI — B/ CY. (E.6)

Rearranging the system of equations and eliminating xy, if, g, x1, i1, and g, we obtain two

unknowns for 7z and 77, in two equations

Af Bt 0
2 - : (E.7)
¢ DI || T Ay
where
~ - 1-T)2
¢F =200 + (w430 - ) Sy, (E.8)
RO
_ B o 2
DI = \,DI - ﬁAQ(l —p})% (E.9)

RO

Define Ef := ATDf — BfC/. For what follows, it is useful to show that EJf =0 is inconsistent
with existence of the fundamental equilibrium. Since B > 0, we can always write 7 = —Af /B frp.
Plugging this into Clrp + Diny = Agr7 and multiplying both sides by B, we get —Efr, =
Bf Agr7. Since the right-hand side of this equation is strictly negative for A\, > 0, Ef =0is
inconsistent with the existence of the fundamental equilibrium. Hence, we can invert the matrix
on the left-hand-side of (E.7)

Df —Bf
Lo Z % - 0 . (E.lO)
TH AfDf —BfCt | —Cf  Af AgTh
Thus,

A
TH of gL ( )

and ;

- B .

T — F)\QTL. (E12)
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From the Phillips curves in both states, we obtain

.

oH = Wxgrz (E.13)

and ~

(1= Bph)R? + (1= B)(1 = Bpl + B — pl))A
B

Using the target criterion for fiscal policy in the low-confidence state (39), we obtain

Ty = )\grz. (E.14)

(1-T) (k2 + X1 = 8)) (k2 + X1 = Bpl + B(1 —ply)
g1 = ( )(mjf o t >rg. (E.15)

Using the consumption Euler equation in the high-confidence state (43), we obtain

7 f f
i =l = 7" (Ag (nz T R (L et —m))
12 - B
L a Mr) (k% + A(1 = B)) (52 + (1 - Bpl,+B(1 - pr))) >rg. (E.16)

Finally, from equations (35) and (40), we have gy = 0, and iy, = 0.

Proposition E.2 Suppose equations (35), (36), (39), (40), and (43)-(46) are satisfied. Then
e, + k< 0 if and only if Ef < 0.

Proof: Using (E.12) and (E.14), we have

(+2 + 31 = 8) (52 + X1 ~ Bp] + 51— b))
RET

\op + KT = — AgTT (E.17)

Notice that Agr? < 0 and (k2 + A(1 — j3)) (/@2 +A(1 - Bp£ +5(1 —pj;))) > 0. Thus, if Azp +
krp, < 0, then Ef < 0. Similarly, if Ef < 0, then A\zp, + s < 0.

Proposition E.3 Suppose equations (35), (36), (39), (40), and (43)(46) are satisfied and E <
0. Then iz > 0 if and only if Ef < Ef,

, [Ag (W2 A+ (62 4 A1 — o)) F2 02 ) O (24 3 (1-5)) (w2 + A1 = pf + (1= )

‘hi

where Ef = (1-pl)Z

r

3

Ko

T

Proof: First, notice that iy is given by
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i :1_% (L —2zm+ (1 =T)(gn — g1)) +pr7rH +(1 —p];I)WL + 7y
L—pj . . 1 - Bp} + B(1 - pl,
=r — EfH Ag<n2+A—%oﬁ—+Au-5» PrL Kf( PH)>
—1)2 3 -
U 3 8 (w2 4+ 30— o+ 80— ) ]rz, (E-18)

The term in square brackets is strictly positive, r% > 0, r7 < 0 and Ef < 0. Thus, if Ef < Ef
then g > 0. Similarly, if i57 > 0 then El < Ef.

We are now ready to proof Proposition 13.

Proof of “if” part: Suppose that E/ < Ef. According to Proposition E.1 there exists a vector
{xm, 7, ig, 91,20, 7L, 1L, g1} that solves equations (35), (36), (39), (40), and (43)—(46). Notice
that Ef < 0. Hence, Ef < Ef implies £ < 0. According to Proposition E.2, Ef < 0 implies
\xr, + kmp < 0. According to Proposition E.3, given Ef <0, Ef < Ef implies i > 0.

Proof of “only if” part: Suppose that the vector {xy,7H,im, 9,20, 71,41, 91} solves (35),

(36), (39), (40), (43)-(46), and satisfies Azy, + k7, < 0 and i > 0. According to Proposition E.2,

Az, + k< 0 implies BT < 0. According to Proposition E.3, Ef <0andig >0 imply Ef < Ef.

E.2 Allocations and prices

In the fundamental equilibrium, allocations and prices are given by:

K2+ A1 — Bp{{)

T = — 77 AgTT <0 (E.19)
! ! £y
oy = (L= PppR” + (1~ 5)%f— Py + B0 =)Ao (E.20)
K
(1=1) (k2 + A1 = 8)) (w2 + X1 = Bpf, + 8L~ p}y)))
gL = = r7 >0 (E.21)
kES
(1 — of
wH:—w@EMﬁ%@go (E.22)
1o
xH:&“EfWUfzzo (E.23)
g =0. (E.24)

Whenpr<1, g < 0and zg > 0.
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E.3 Effects of a marginal change in },

The partial derivatives of the policy functions with respect to A, are

oy (A1 = Bp))(1 = T)2(50) M1 = p])(52 + M1 = B)) |2+ X(1 = Bp] + B = )|
N, (E1)? <0

S5 = [0 = Br]) + 31 = 8)(1 = 8] + A1~ o)
(1= T)(r0) (1 = pL)(52 + A1 = 8)) [w2 + M1 = Bpf + B0 = p])]
X H(Ef)Q rr <0
ogr (=D (2 +A0-8) (2 + A0 - Bpf + B0 -pp))
N K(BT)? o
and

ory PML=ph)(1 = D)2(r0) 1 (1= pL) (k2 + A1 = 8) |52 + M1 = Bpl, + B0 —pf))|

8)\9 = (Ef)Q T <
den  Br(L=pf)(L=T)2(ko) 7 (1 = pr)(k? + X(1 = B)) [K2 + (L = Bpf + B0 - pfy))|
Dy, (BT =0

Whenpr<1,%rTZ’<0and%zTZ>0.

F Extension: Model with fundamental and sunspot shocks

In the main body of the paper, we separately consider optimal policy design in the model with
a sunspot shock alone, and contrast it with that in the model with a fundamental shock alone.
Another way to understand the implication of a sunspot shock on optimal policy design is to
examine the implication of introducing a sunspot shock to a model with a fundamental shock for
optimal policy design. In this section, we extend our log-linearized baseline model to a model with
both fundamental and sunspot shocks. Considering an equilibrium with both fundamental-driven
and expectations-driven liquidity traps, we first analyze monetary policy design in the absence of

fiscal stabilization policy, and then consider the design of fiscal stabilization policy.

F.1 Setup without fiscal stabilization policy

The model, society’s objective function, and the central bank’s objective function are identical to
those described in the main text. The only difference is that the model features both a sunspot

shock and a natural real rate shock.
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The transition probabilities for the fundamental (natural real rate) shock are:

Prob (ryy = riylry = 1) = vl (F.1)
Prob (rf'y = rilry =17) = pf, (F.2)

and the transition probabilities for the sunspot shock are:

Prob ({41 = €mlé& = €n) = pH (F.3)
Prob ({41 = &1l& = &) = pr (F.4)

These two shocks are uncorrelated. Let x7; denote x in the I-state for the fundamental shock
and the J-state for the sunspot shock.
The equilibrium with both shocks is defined as a vector {ygm, THm, iHH, YLH, TLH, iLH, YHL,

THL, iHL, YLL, TLL, iLL} that solves
High-confidence block:

YHH = [prHyHH + (1= pl)pryee + pl (1= pr)ywn + (1 — pl) (1 - pH)yLL}

+o [pf;pHWHH +(1 _p{{)pHWLH —|-pr(1 —pu)mHL + (1 — pﬁ;)(l — pH)TLL — iHH + T"H]

(F.5)

THH = KYHH + [prPHWHH + (1 —PfH)pHWLH +p{q(1 —pu)maL + (1 —pg)(l - pH)WLL}

0= I{(WHH — 7T*) + )\yHH
tgg >0
YLH = {(1 - p{)pHyHH + pépHyLH +(1- pé)(l — PH)YHL + p{(l - pH)yLL:|

+o {(1 — oD )prmEn + phpamre + (1= ph) (= pa)wms +p) (1 — pu)mos —ing + Tf}

irg =0 (F.ll
0>I{(7TLH—7T*)+>\yLH (F.12
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Low-confidence block:

YHL = [pr(l —pr)yae + (1 — pr)(l —PL)YLH +prpLyHL + (1 - pr)pLyLL}

+o [Pfl(l —pp)mam + (1 —ph) (1= pr)mm + phypromn + (1 — pl)peres — imr + 7“?;}
(F.13)
THL = kyHL + B [pf{(l —pr)mn + (1= ply) (1 — pr)mr + phprrmr + (1 - pr)meL} (F.14)
igL =0 (F.15)
0> wk(rgr —7°) + A\ymrL (F.16)

yLL = [(1 — ) = pr)yrm + 0L (1= pr)yra + (1 — ph)prysr +p{pLyLL}

+o [(1 — I = pr)mam + p) (1= pr)mpe + (1 — ph)prmwn + phprmrn —inn + TE}

(F.17)

L = KyrL + B {(1 — (= pr)maE + pi (1= pr)mpe + (1 — ph)prmwms + pipLWLL} (F.18)
(F.19)

(F.20)

trr =0

0> k(mrL — ) + AyLL
Once alloactions are computed, one can solve for Vg, Vg, Vir, VoL using,

Vir =ugw + 6 [PZPHVHH +(1— pr)pHVLH +PfH(1 —pr)Var + (1 —P{{)(l _pH)VLL]

(F.21)
Vig =urg + 5 {(1 — )PV + phpaVir + (1 — ph) (1 = per)Var +ph (1 — pH)VLL} (F.22)
Vur =unr + 3 [p{q(l —pr)Van + (1= i) = pp)Veg + phpr Vi + (1 — p;ﬁpLVLL} (F.23)
VL =urr + B {(1 - p{)(l — o)V + p{(l —pr)Vom + (1 — p{)pLVHL +p£pLVLL} (F.24)

Note that welfare is measured by the unconditional expectation of the value function. In the

model with both shocks, we can show that welfare is given by

_ 1 1—p] 1-pL 1-pl 1-pg
W= 7 7 UHH 7 7 ULH
1-p 1—pL+1—pH1—PL+1—PH l—pL+1—pH1—PL+1—pH
1-p 1 - pn 1-p} 1 pn

UHL +
1—p£—|—1—p{{1—pL+1—pH 1—p£—|—1—p£{1—pL+1—pH

F.2 Monetary policy frameworks
F.2.1 A non-zero inflation target

Figure F.1 shows welfare as a function of the inflation target 7* in (i) the fundamental equilibrium

of the model with the fundamental shock only (left panel), (ii) the sunspot equilibrium of the model
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with the sunspot shock only (middle panel), and (iii) the equilibrium defined above in the model

with both fundamental and sunspot shocks (right panel). The parameterization is identical to the

Figure F.1: Optimal inflation target in the model with a fundamental shock only, the model with
a sunspot shock only, and the model with both shocks
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baseline parameterization used in the main body of the paper. For the transition probabilities, we
use pg = 0.99, pr = 0.95, pr = 0.99, and p{ = 0.86. Consistent with the results shown in Nakata
and Schmidt (2019a), the optimal inflation target is positive in the model with a fundamental
shock only. As shown in the main body of the paper, in the sunspot equilibrium of the model
with the sunspot shock only, the optimal inflation target can be negative or positive, depending
on parameter values. In the example considered here, the optimal inflation target is negative. The
right panel shows that the introduction of the sunspot shock to the model with a fundamental
shock lowers the optimal inflation target compared to the case with a fundamental shock only, but
the optimal target remains strictly positive.

As shown in the main body of the text, the optimal inflation target can be positive in the sunspot
equilibrium of the model with the sunspot shock alone when both py and pj, are sufficiently close
to one. When the persistence of both confidence states is very high, adding the sunspot shock to
the model with the fundamental shock increases the optimal inflation target (in the equilibrium
defined above) compared to the value of the optimal target in the model with the fundamental
shock only. Figure F.2 shows for which pairs of pyr and py, the optimal inflation target is higher in
the equilibrium with both shocks than in the fundamental equilibrium with the fundamental shock

only.??

53Note that, while we vary the values of py and pr, we keep the transition probabilities of the fundamental shock,
as well as all other parameter values, unchanged.
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Figure F.2: The effect of introducing a sunspot shock on the optimal inflation target
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Note: The black area indicates pairs of py and p; under which the optimal inflation target is higher in the model
with both shocks than in the model with a fundamental shock only. The red area indicates pairs of py and pr, under
which the optimal inflation target is the same across the model with both shocks and the model with a fundamental
shock only. The blue area indicates pairs of pg and pr, under which the optimal inflation target is lower in the model
with both shocks than in the model with a fundamental shock only. We keep the transition probability matrix for

the fundamental shock unchanged as we vary py and pr..

F.2.2 Inflation conservatism

Figure F.3 shows welfare as a function of the relative weight on output gap stabilization in the
policymaker’s objective function A in (i) the fundamental equilibrium of the model with the fun-
damental shock only (left panel), (ii) the sunspot equilibrium of the model with the sunspot shock
only (middle panel), and (iii) the equilibrium defined above in the model with both fundamental
and sunspot shocks (right panel). Consistent with the results in Nakata and Schmidt (2019a), the
optimal weight on the output gap term is zero in the model with the fundamental shock only. For
the discussion that follows it is useful to note that this is a corner solution and that, if there were
no lower bound on A imposed, the optimal A would be negative.’* Let us call the unconstrained
optimal value of A the shadow optimal weight. On the other hand, as shown in the main body of
the paper and in the left panel of Figure F.3, the optimal value of A is strictly above zero in the
sunspot equilibrium of the model with the sunspot shock only. When we introduce the sunspot
shock to the model with the fundamental shock, we would expect that the (shadow) optimal A
becomes an average of the (shadow) optimal A in the model with a fundamental shock only and
the optimal A in the model with a sunspot shock only. This is indeed the case. As shown in the

right panel of Figure F.3, for our baseline calibration, the optimal A is strictly positive, but smaller

5*We impose X to be non-negative because a central bank objective function that values output volatility is
unrealistic.
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Figure F.3: Optimal inflation conservatism in the model with a fundamental shock only, the model
with a sunspot shock only, and the model with both shocks
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In each panel, the thin black vertical line indicates X, the society’s weight on the output gap volatility term.

than in the sunspot equilibrium of the model with the sunspot shock only.
Figure F.4 shows that for a sufficiently high value of py—higher than in our baseline calibration—
the optimal A is zero in the model with both shocks, reflecting the fact that the shadow optimal A

is negative in this case.

F.3 Setup with fiscal stabilization policy

We now extend the analysis to include fiscal stabilization policy. The model, society’s objective
function, the central bank’s objective function are the same as in the main text. The only difference
is that the model features both a sunspot shock and a natural real rate shock. The structure of
these two shocks is the same in the previous subsection.

The equilibrium with fiscal stabilization policy and occasional liquidity traps is defined as a

vector {Tym, THH, iHH, YHH, CLH, TLH, |LH, YLH, THL, THL, 'HL, JHL, TLL, TLL, iLL, gL} that
solves the following system of linear equations
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Figure F.4: The effect of introducing a sunspot shock on the optimal degree of inflation conservatism
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Note: The black area indicates pairs of py and pr under which the optimal A is higher in the model with both
shocks than in the model with a fundamental shock only. The red area indicates pairs of py and pr, under which the
optimal ) is the same across the model with both shocks and the model with a fundamental shock only. We keep the

transition probability matrix for the fundamental shock unchanged as we vary pg and pr.

g = (1 —D)gun
+p{[pH wpg — (1 =T)gum) + (1 — p{;)pH [vreg — (1 =T)gru]
+p(1—pr) [war — (1= T)gur] + (1 — pi) (1 — par) [vor — (1 — gL

+o [prPHTFHH + (1 - pr)pHWLH +pr(1 —pa)mEL + (1 — pr)(l —PpH)TLL — iHH + TZ}
(F.26)
THH = KTHH + 3 [p{{pHﬂ'HH + (1 — pr)pHﬂ'LH + pr(l —pu)maL + (1 — p{{)(l - pH)T"LL}
(F.27)
Mg = —(1=T) (kmmn + Aerm) (F.28)
0=kmug + \egy (F.29)
i >0 (F.30)
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rrg = (1 -T)gru
+ (1= p)pwr [eam — (1= D)gua) + phpw lere — (1 - T)gru)
+ (1 —p)Q = pu) [zgr — (1= D)gur] +ph(1—pr) [z — (1 - D)gr)

+o [(1 — p{)pHWHH + pépHWLH +(1- P{)(l — PH)THL +p{(1 — PH)TLL — iLH + TE]
(F.31)
TLH = KTrg + 3 [(1 — pé)pHWHH +p£pH7TLH +(1— p{)(l — PH)THL +p£(1 - pH)WLL}
(F.32)
Mg = —(1=T) (kmrg + Azpy) (F.33)
0> KTy + ALy (F.34)
iy =0 (F.35)

rhr = (1-T)gur
+ph (L= pr) [erm — (1= D)gun] + (1 — pl) (1 = pr) [epr — (1= D)gru]
+phpr [t — (1= Dgur) + (1 = phpr [zrn — (1 - Dgrr)

+o [p{{(l —p)mam + (1 —pi) (0 = pr)mrm + phprman + (1 — pl)prrrn — inr + T?{}

(F.36)
THL = kTHL + [Pf{(l —p)mrn + (1= pl) (1 — pr)rrg + phpramr + (1 —pf{)pLﬂLL}
(F.37)
Aogrr = —(1 =) (k7L + Azpr) (F.38)
0> kL + A\rhL (F.39)
igr, =0 (F.40)
= (1-T)grL
+ (1 =p))(A = pp) [egr — (1= D)grn) + pL(1 = pr) [opy — (1 - T)grn)
+(1— pé)PL [wgr — (1 —T)gur] +p{pL [z — (1 —=T)grL]
+o [(1 — o] = pr)mam + ph (1 —pr)mom + (1 — ph)prrmr + phprmon — v + Tf}
(F.41)
TLL = kxpL + B [(1 —p]) (A = pr)mrw + ph(L— pr)wom + (1 — pl)proa + pépLﬂ'LL} (F.42)
Aggrr = —(1=T) (kmrp + Azrr) (F.43)
0> KkrLL + ATLL (F.44)
irr, =0 (F.45)

Once allocations are computed, the value function and welfare can be computed in a manner
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similar to that described in the subsection on the model without fiscal stabilization policy.

F.4 Fiscal policy design

Figure F.5 shows welfare as a function of the relative weight on government spending stabiliza-
tion in the policymaker’s objective function A4 in (i) the fundamental equilibrium of the model
with the fundamental shock only (left panel), (ii) the sunspot equilibrium of the model with the
sunspot shock only (middle panel), and (iii) the equilibrium defined above in the model with both
fundamental and sunspot shocks (right panel). The parameterization is identical to the baseline pa-
rameterization used in the main body of the paper, and the transition probabilities are pg = 0.99,

pr, = 0.95, pr = 0.99, and p{ = 0.86, as in the case without fiscal stabilization policy. Consistent

Figure F.5: Optimal fiscal activism in the model with a fundamental shock only, the model with a
sunspot shock only, and the model with both shocks
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In each panel, the thin black vertical line indicates Ay, the society’s weight on the government spending volatility

term.

with the results in Schmidt (2017), in the model with the fundamental shock only, the optimal value
of Ay is lower than the weight on the government spending term in society’s objective function 5\9.
As shown in the main body of the paper, it is optimal to put a very large value on the govern-
ment spending stabilization term in the sunspot equilibrium of the model with the sunspot shock
model—conditional on the existence of the sunspot equilibrium—to prevent the use of government
spending as a stabilization tool. When we introduce a sunspot shock to the model with a funda-
mental shock, we would expect that the optimal )\, is somewhere in between the two values from
the two single-shock models. This is indeed the case. Furthermore, in our example the optimal A,
in the model with both shocks is slightly larger than 5\9.

Figure F.6 shows that the optimal A, is higher in the model with both shocks than in the model

with a fundamental shock alone for any pairs of py and pr.
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Figure F.6: The effect of introducing a sunspot shock on the optimal degree of fiscal activism
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Note: The black area indicates pairs of pg and pr under which the optimal A4 is higher in the model with both shocks
than in the model with a fundamental shock only. We keep the transition probability matrix for the fundamental

shock unchanged as we vary py and pr.

G Extension: A fully non-linear model

This section provides a generic description of the fully non-linear model that is used for the analyses
presented in Section 6 of the paper and in Sections H and I. The description is generic in the
sense that it allows for time variation in government spending and a fundamental shock. When
considering the model variant without fiscal stabilization policy, government spending is assumed to
be constant (at zero). When considering the model variant with a sunspot shock only, the discount

factor shock is assumed to be constant (at one).

G.1 Private sector block of the model

We describe the generic model where government spending is non-zero and potentially time-varying.

Representative household. The representative household maximizes expected lifetime utility

[e9) t—1 1—1 1+ 1-1
C, °—1 H, ™ G,
Vo=E t S : - t t G.1
0 OZ:B [H s 1 XY1+7]+XG1—1 ; (G.1)
t=0 s=—1 o v
subject to a sequence of budget constraints
P,Cy + EiQt 1By < WiH; + By—1 — P,T; + P.D, (G.2)

and a no-Ponzi game condition. The household obtains utility from private consumption C; and
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from the provision of public goods G; and dislikes labor H;. d; is a discount factor shock that
alters the weight of felicity in period ¢t + 1 relative to felicity in period t. When abstracting from
fundamental shocks, d; = 1 for all £. The household has access to state-contingent, one-period,
nominal assets B;. She earns labor income W;H;, where W; is the nominal wage rate, pays lump-
sum taxes Ty and receives dividend payments from the intermediate-goods-producing firms D;. The
last two variables are expressed in real terms.

The first-order necessary conditions to the optimization problem are given by

=

C_E
Ry = BB, (G.3)

t
1
wy = xy H'Cy (G.4)

as well as the transversality condition
lim Et(Qt,TBT) = 0, (G5)
T—o0

_1
where Q7 = pr—t [Hg;l 55} CTT/PT is the stochastic discount factor between periods ¢t and T' > ¢,
C, 7 /P

Rt_1 = EtQt++1, II; = P;/P,_; is the gross inflation rate between periods t—1 and ¢, and wy = W;/P;
is the real wage rate.
Firms. The final consumption good is produced under perfect competition using the following

technology
[

; = (/Olift(j)e?fdj)e_l, (G.6)

where § > 1 and Y; (j) denotes the intermediate input j.
The market for intermediate goods exhibits monopolistic competition. Expenditure minimiza-

tion by the producer of the final good results in the following demand for intermediate good j

Y: (§) = (Pt (j)>_9Yt, (@.7)

1
-0

where P, (j) denotes the price charged by firm j and P, = ( fol P (j )179 dj) represents the price

for the final consumption good.

Intermediate goods are produced using labor

Yi(j) = He (4) - (G.8)

The intermediate-goods-producing firms are owned by the representative household and face quadratic

price adjustment costs. In period ¢, firm j chooses the price of good j, P:(j), to maximize expected
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discounted profits

E¢ ;Qt,tﬂ Y (5) (L4 )P (5) — Wi) — 4 (m - (H*)h> Piy(Co + Geyy)
(G.9)

subject to (G.7). The parameter v denotes a constant production subsidy that eliminates the

distortions arising from monopolistic competition, and G; is government consumption. We allow
for (partial) indexation of price changes to the central bank’s inflation target II*, where h € [0, 1].

The first-order necessary condition for the optimization problem of firm j in period t is

(1= )1+ )Yi) + bwr Vi) — 6 ( Bla)__ (H*)h) v 6y

Pi(j) Pi_1(j) Pi-1(5)
1
C..5 P Piii(y) n\ Pir1(7) Pt
+ B&,E Latd < Iyt ) o+ G =0. G.10
POk Pra oo\ ) ( Ry (it ) (610

We assume that all firms are symmetric, P,(j) = P, for all j. Hence, Y;(j) = Y; for all j and
H; =Y;, where H; = fol Hy(j)dj. Equation (G.10) can then be written as a New Keynesian Phillips

curve

1
nee_1y_ @ £yh Cir1\ \h
Yo Y0 =1) = £ | (1 = ()" ) 1(Cy + Go) = 0B (=5 ) 7 (Mo = (1)") Wea (G + Gig) |
t
(G.11)
where the real wage rate has been substituted out using the representative household’s labor supply
condition (G.4) and the production subsidy satisfies 1 4+ v = %.

Aggregate resource constraint. Total output is used for private consumption, for government

spending and for price adjustments
Y, =Ci+G ¢( k)
t=Cr+ t+§ Iy — (IT)" ) (Cy + Gy). (G.12)

G.2 The policy problem of the benevolent policymaker

Policy is Ricardian. Each period ¢, the discretionary policymaker chooses the gross inflation rate
II;, output Y;, private consumption C;, government spending Gy, and the gross nominal interest
rate R; to maximize household welfare subject to the consumption Euler equation, the resource
constraint, the Phillips curve and the lower bound constraint, with the policy functions at time
t+ 1 taken as given. Since the model features no endogenous state variable, the policymaker solves

a sequence of static optimization problems. Formally
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max - Xy
I1:,Y:,C,G¢,Re 1 — % 1+n 1-— %

subject to

Y, = (C, + G) (1 4 % (1, - (H*)h)2>

((Ht — ()" ) T(Cy + Gy) — BOE (Cg ! ) - (TTes1 = (1)) Ty (o + Gt+1)>

|-

1
Y, (XYYZ]C; - 1) =
R, >1

The first order conditions are

1 9
o

;s _1G EE _ O (0 ek \2\ \RC L (XY ylin i1 @ (0
Cy ;Tt)\t (1+2<Ht (H)> Ay +(7Yt C; E(Ht (H))Ht

1
C c X
+ o0l (Ct—it-1> c! (Ht—H — (I )h> i1 (Crpr + Gt+1)))\fc =0

1
Xy Yy = A — (XY(l +n)Y'Cf — 1> A =0

1
(11 = (") (G 4+ GOAC + 5 (21 = (1)) (Co + GATC =0
1
C,°
;zf AEE _\EB —
_1 2
X6G; ¥ — (1 + g (- (") ) RO - % (e = ()" ) IAPC =0

together with the private sector behavioral constraints. AFF AFC APC ALB are the Lagrange

multipliers associated with the constraints.

H Extension: Analyses based on the fully non-linear model with-

out fiscal stabilization policy

This section presents analyses based on the fully non-linear version of the baseline model without
fiscal stabilization policy. The model is described in Section G. Here, we consider the case without

fiscal stabilization policy, and assume Gy = 0 for all ¢.
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H.1 Monetary policy frameworks

We consider the two monetary policy frameworks that are also analyzed in the main body of the
paper, a non-zero inflation target and inflation conservatism. The central bank has the following

objective

— 1+n —
VtCB _ (1 - a) 1 Nt [_ (Ht 1

)2
T % XY L o 2)} + BthtVtgrjlgv (H.1)

where a € [0,1] and IT* are policy parameters to be set by society when designing the central
bank’s objective function. When o = 0, the central bank’s objective function coincides with
society’s objective function (77).

When we analyze the effect of alternative degrees of inflation conservatism, we will set IT* = 1
and vary . When we analyze the effect of alternative values of the inflation target, we will set
a =1 and vary IT*.

The problem of the central bank under discretion at time ¢ is to maximize V,“F subject to
the private-sector equilibrium conditions—summarized in the previous section—taking as give the
value and policy functions at time ¢ + 1.

Let AFE AP c )\fc, and AP be the Lagrange multipliers on the Euler equation, the Phillips
Curve, the aggregate resource constraint, and the lower bound constraint, where A*? > 0 when the
LB

lower bound is binding, and = 0 otherwise. The first order necessary conditions of the central

bank’s problem under discretion are given by

oL _1 1 14 _
go 0=0-a0 7 -0 R7IAPP
1 . _1 1. 14
0= Do e e v bor e
- (1 G - arye) e (H2)
oL G
oy ¢ 0= —(l—apa ¥ 00 7N
— (L4 oy YA + AfC (H.3)
oL ) Sk ol
o ¢ 0=—o(l -1 )+¢(2Ht—(H )h) G, A
— B(I, — (IT))CARC (H4)
oL -1
G 0= —ClTRAPE 38 (H15)
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H.2 Sunspot shock and sunspot equilibrium

As in the semi-loglinear model, we assume that the sunspot shock follows a two-state Markov pro-
cess, & € (§1,&m). We refer to state £ and {p as the low- and high-confidence state, respectively.
In the model with a sunspot shock, we set dg = d;, = 1, because there is no fundamental shock.
Let py and pr be the persistence of high and low confidence states. We use py and pr, to denote
the persistence of high- and low-confidence states, respectively.

The sunspot equilibrium with occasionally liquidity traps is defined as a vector {Cy, Yy, g,
Ry, NEFPAPC NRC N\LB Vi, VEB, Cp, Yy, Uy, R, NEE, NPCONRC O NLB "y VOBY satisfying
the following system of non-linear equations and inequality constraints:

(For the high-confidence state)

_1
o

Cy” Ry = B0 [pnCy Tt + (1= pa)Cp 711, (EL6)

_1 _1
6 (I = () Ty Gy ™ + 0V — Oy V™

_1 _1
= B3 [prro (I = (1)) W Cyy * + (L= par)o (M — (") 0y 7). ()
2
Yy =Cy + % [HH - (H*)h} CH, (H.8)
RH > 1. (HQ)
-+ 1 21 1 ke
=(1—a)Cy° — =Cp° 'R;y'AE
g
1 _1 1. _1_
(1= el — (M) )1y M +0Yn(— Oy AC
- (14 G- ) g (1.10)
-1\ pPC
0=—-(1—-a)xyYy+0C,;" My
— (1L +m)Oxy YpAEC + ARC (H.11)

0=—a(ly —II*) + ¢ <2HH — (H*)h> c}ﬁAﬁc
— ¢(Ily — ()M Oy AEC (H.12)

_1
0=—Cy° RANEE + \EP (H.13)
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0=\P
(For the low-confidence state)

1 1 1
C7 Ryt = B0 |(1 = po)Cy It +pCp 7T,

¢ (HL - (H*)h> .07 4 0YLC,7 — Oxy YT
= oL, [(1 —pL)o (HH - (H*)h) HHC}{_% +pLo <HL - (H*)h> HLC;/_%},
Y =Cr + % [HL - (H*)hr Cr,
R =1.

-+ 1 21, 4. EE
0= (].—Oé)CL — ECL RL )\L

1 _1 1 1
+ (1= 2o, = DILC s APC 4 0YL(=—)Cy 7 APC

- (14 S - arye) age

_1
0=—(1—a)xyY/ +0C; 7 \°
— (14 n)0xy YA 4 \EC

0= —a(ll; —II*) + ¢ <2HL - (H*)h> ClTaRe
— ¢(II, — (IT)")CLATC

_1
0=—C, 7R 2\FF L \EB

0 < \EP
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(H.14)

(H.15)

(H.16)

(H.17)

(H.18)

(H.19)

(H.20)

(H.21)

(H.22)

(H.23)



Vi =ug + BpuVu + B(1 — pu)VL

Vi =ur+B(1—pr)Vu + BrLVe
Vig? =GP + BprVig® + B~ p) VP
VEP =ufP + 81— pr)VEP + BprVEP,

where u is the period utility flow of households and u® B is the period utility flow of the central
bank.
Welfare is measured by the unconditional expectations of society’s value function. In the model

with a sunspot shock, welfare is given by

1 1—pL 1—py

W= upg +
1-p|1-pL+1—py 1—pr+1—pg

ur, (H.28)

H.3 Fundamental shock and fundamental equilibrium

As in the semi-loglinear model, we assume that the fundamental shock follows a two-state Markov
process, 0; € (0r,0r) with oy = 1 and do > % We refer to state 65, and dy as the low- and
high-fundamental state, respectively. We will also refer to the low- and high-fundamental states as
the crisis and normal states, respectively. Let pc and py be the persistence of crisis and normal
states.

The fundamental equilibrium with occasional liquidity traps is defined as a vector {Cyn, Yn, IIx,
Ry, \EENRC NRC NEB Vv, VEB, Cc, Yo, Tle, Re, NEF, NEC, NEC) NEP, Vo, VSPY satisfying
the following system of non-linear equations and inequality constraints:

(For the normal (high-fundamental) state)

1 _1
[eg

_1 _1
Cn” Ry' = B0n [pNCy TR + (1= pv)Co TG, (H.29)

* 1—1 _1
& (HN —m )h) INCh 7 4+ 0YNCy7 — Oxy Y AT

= 8o [pro (T — (1)) MNCh 7+ (1—pa)é (11 - (17)") nccé*ﬂ, (H.30)
Yy = COn + % [HN - (H*)h}2 Oy, (H.31)
Ry > 1. (H.32)
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_1 1 14 _1\EE
0=(1-a)Cy" —=Cyx° R'AN
g
1 . 1 1, 14
- Doty - (I eR AR+ ova - Dons g

- (1 + %(HN - (H*)h)2> ARe

_1
0=—(1—a)xyYQ +0Cy" A\C
— (1+n)0xy YAARC + ARC

_1
0= —a(lly — I*) + ¢ <2HN - (H*)h> Ox 7 ARC
— ¢(ITy — 1)OnARE

-1
0=—Cn" RPN + A5

0= 3"
(For the crisis (low-fundamental) state)

_1 _1 _1
Co.7 R;' = Bic [(1 — pe)Cye I +pcccvng,1},

¢ (Ho - (H*)h) HcCé_ﬁ +0YcCy, v _ Oxy YA+
— ¢ [(1 - pe)o (T — (1)) TINCy * + oo (Tle - (1)) TeCl 7],

Yo =Co+ % [HC - (H*)h}2 Ce,

Reo = 1.

_1 1 11 A\EE
0=01-a)Cc” = —Cc” RoAc
o
1 * -1 1 19
(1= 2)o(Ile — ()" MeCr” A + Yo (- )Ca™ A

( + Siie - (ry?) A

1\3&
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(H.33)

(H.34)

(H.35)

(H.36)

(H.37)

(H.38)

(H.39)

(H.40)

(H.41)

(H.42)



_1
0=—(1—a)xyYZ+0C,7\EC
— (1 +n)0xy YINEC + 2\EC (H.43)

* * -2
0= —a(lle —II*) + ¢ (2110 (1 )h) Ch 7 AEC

— (Il — (IT)")CeAEC (H.44)
_1

0=—Cpr” RANEF + 2P (H.45)

0 < \LP (H.46)

VN =un + BpnVN + B(1 — pNn)Ve (H.47)
Vo =uc + B(1 —pc)Vn + BpcVe (H.48)
VP = ulP + Bpn VP + B(1 - p)VEP (H.49)
VEP = ugP + B(1 = pe)V® + BpoVE”? (H.50)

Welfare is measured by the unconditional expectations of society’s welfare function. In the

model with a fundamental shock, welfare is given by

1 1—pc 1—pnN

W = un +
1—5[1—pc+1—PN M T pe+1-pw

uc) (H.51)

H.4 Parameter values and model solution

The calibration of the parameters that are unrelated to the shocks is the same as in the main body
of the paper (see Table 1), except that we set the discount factor § equal to 0.99375 (rather than
0.9975), which facilitates the solution of the model with the fundamental shock. As in Section 6 of
the paper, we calibrate the price-adjustment cost parameter ¢ such that the slope of the Phillips
curve, when log-linearized around the intended steady state, is identical to the one in the baseline
model setup, and we set yy = 1. When assessing the effect of alternative inflation targets on
allocations and welfare, we set the indexation parameter h equal to 0.5. For the sunspot shock, we
assume py = 0.995 and pr, = 0.99. For the fundamental shock, we assume py = 0.99, pc = 0.75,
and we have oy = 1, dc = 1.025. All the takeaways from the non-linear analysis are robust to
alternative parameter values. We solve the system of non-linear equations using Matlab’s fsolve

function.
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H.5 Results: Inflation target

Figure H.1 shows how allocations in high- and low-confidence states vary with the inflation target
in the sunspot equilibrium of the non-linear model with a sunspot shock. Consistent with the
analysis based on the baseline semi-loglinear model, in the sunspot equilibrium, a higher inflation
target increases inflation and consumption in the high-confidence state and decreases inflation and
consumption in the low-confidence state. Higher (more positive) inflation in the high-confidence
state and lower (more negative) inflation in the low-confidence state both contribute to an increase
in the amount of resources used for price adjustment. Higher consumption above the efficient
level—and inefficiently high labor supply associated with it—in the high-confidence state and lower
consumption below the efficient level—and inefficiently low labor supply associated with it—in the
low-confidence state are both associated with welfare reductions.

These considerations contribute to making the optimal inflation target negative, as shown in
Figure H.2. This welfare result is consistent with the result in the semi-loglinear model that the
optimal inflation target can be negative in the model with a sunspot shock, as discussed in the
main text.

Figure H.3 shows how allocations in high- and low-fundamental states vary with the inflation
target in the non-linear model with a fundamental shock. Also consistent with the analysis based
on the semi-loglinear model, in the model with a fundamental shock, a higher inflation target
increases inflation in the high-fundamental state and increases inflation (mitigate deflation) in the
low-fundamental state. Because a higher inflation target in the high-fundamental state is associated
with higher price adjustment costs, society faces a trade-off when choosing the value of the inflation
target.

All in all, the optimal inflation target is positive, as shown in Figure H.4. The optimality of a
positive inflation target in the non-linear model is consistent with the result in the semi-logilinear

model described in the main text.

H.6 Results: Inflation conservatism

Figure H.5 shows how allocations in high- and low-confidence states vary with the degree of inflation
conservatism in the sunspot equilibrium of the non-linear model with a sunspot shock. Consistent
with the analysis based on the semi-loglinear model, in the sunspot equilibrium, a higher weight
on the inflation volatility term increases inflation in the high-confidence state and lowers inflation
in the low-confidence state. As a result, the welfare implication of putting more weight on the
inflation volatility term is ambiguous.

Under our parameterization, the optimal weight on the inflation volatility falls short of one, as
shown in Figure H.6. This welfare result is consistent with the result in the semi-loglinear model
that it is not optimal to put a full weight on the inflation volatility term, as shown in the main
text.

Figure H.7 shows how allocations in high- and low-fundamental states vary with the degree of

inflation conservatism in the non-linear model with a fundamental shock. Also consistent with the
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Figure H.1: Allocations in the non-linear model with a sunspot shock:
The effects of non-zero inflation target
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Note: The horizon axis shows the (net) inflation target (annualized percent). Inflation and the policy rate (both in
net terms) are expressed as annualized percent. Consumption and output are expressed as percentage deviation from

the efficient steady state.

analysis based on the semi-loglinear model, in the model with a fundamental shock, a higher weight
on the inflation volatility term increases inflation in both high- and low-fundamental states.
Welfare increases as the weight on the inflation volatility term increases, and the optimal design
is to focus on the inflation volatility only, as shown in Figure H.8. The optimality of a strict inflation-
conservative central bank in the non-linear model is consistent with the result in the semi-loglinear

model.
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Figure H.2: Welfare in the non-linear model with a sunspot shock:
The effects of non-zero inflation target
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I Extension: Analyses based on the fully non-linear model with

fiscal stabilization policy

This section presents analyses based on the fully non-linear version of the baseline model with fiscal

stabilization policy. The model is described in Section G.
1.1 Policy framework

The monetary-fiscal policymaker has the following objective

1—1 1+

c, -1 N, G
W = () | BT et eS| al -
-2 1+n 1--=

(G — G*)?
2

] +BOEVYT (L)

where G* is the efficient level of government spending that would prevail at the efficient steady
state, and a € [0,1] is the parameter governning the degree of fiscal activism. If a = 0, the
policymaker has the same objective function as society. A higher o means that the policymaker
cares more about stabilizing government spending around its efficient steady state. That is, a
higher o means that the policymaker is less fiscally active. If a = 1, the policymaker only cares
about the stabilization of the government spending.®®

The problem of the policymaker under discretion at time # is to maximize V,M¥ subject to the
private-sector equilibrium conditions—summarized in Section G—taking as given the value and

policy functions at time ¢ + 1.

55Note that, because a € [0, 1], the most fiscally active case we consider in this formualtion is when « = 0, that
is, when the policymaker’s objective function is the same as that of society.
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Figure H.3: Allocations in the non-linear model with a fundametal shock:
The effects of non-zero inflation target
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Note: The horizon axis shows the inflation target (annualized percent). Inflation and the policy rate are expressed as

annualized percent. Consumption and output are expressed as percentage deviation from the efficient steady state.

Let APE, AP c, )\ﬁc, and AP be the Lagrange multipliers on the Euler equation, the Phillips

Curve, the aggregate resource constraint, and the lower bound constraint. The first order necessary
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Figure H.4: Welfare in the non-linear model with a fundametal shock:
The effects of non-zero inflation target
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conditions of the monetary-fiscal policymaker’s problem under discretion are given by
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Figure H.5: Allocations in the non-linear model with a sunspot shock:

The effects of inflation conservatism
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Note: The horizon axis shows the value of «. Inflation and the policy rate are expressed as annualized percent.

Consumption and output are expressed as percentage deviation from the efficient steady state.

oL ~% p—2\EE | \LB
TRt N 0 = _Ct Rt )\t + )\t (16)
If the lower bound constraint is binding,
0= )P (L.7)
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Figure H.6: Welfare in the non-linear model with a sunspot shock:
The effects of inflation conservatism

Welfare
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Otherwise,
0 < \EB (1.8)

1.2 Sunspot shock and sunspot equilibrium

The process governing the sunspot shock is the same as in the model without fiscal stabilization
policy.

The sunspot equilibrium with occasional liquidity traps is defined as a vector {Cy, Yu, Gm,
Oy, Ry, AEENEC NEC O NEB vy VEB. Cp, Yi, G, 11, Ry, NEE, APC ARG A\LB vy, vEBY
satisfying the following system of non-linear equations and inequality constraints:

(For the high-confidence state)

_1 _1 _1

Cu” Ryt = B|pnCpy T + (1 = pir)C 711, (L9)
_1 _1
¢ (Mg — 1)Uy (Ch + Gu)Cp” +0YuCpr™ — Oxy Y5
_1 _1

=Blpu¢ (Mg — 1) (Cy + Gg)Cyx® + (1 —pr)e (U — 1)L (CL + GL)C;, 0]7 (I.10)
YH:CH+GH+§[HH—1]2(CH+GH), (1.11)
Ry > 1. (1.12)
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Figure H.7: Allocations in the non-linear model with a fundamental shock:
The effects of inflation conservatism
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Note: The horizon axis shows the value of a. Inflation and the policy rate are expressed as annualized percent.

Consumption and output are expressed as percentage deviation from the efficient steady state.
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Figure H.8: Welfare in the non-linear model with a fundamental shock:
The effects of inflation conservatism
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Once allocations are computed, one can solve for Vi, Vi, Vg B VLC B using

Vi =ug + BpaVe + B(1 — pu)Vi (1.29)
VL =ur +B(1—pL)Vu + BpLVL (1.30)
Vig? = ufP + BprVig® + B~ p) VP (L31)
VEP =uf® + B —pr)VE" + Bpr V" (1.32)

Welfare is measured by the unconditional expectations of society’s value function. In the model

with a sunspot shock, welfare is given by

1 1—pL 1 —pu
= ug +
1-8|[1-pL+1—pH 1—pr+1—pg

w Uy, (1.33)

1.3 Fundamental shock and fundamental equilibrium

The process governing the fundamental shock is the same as in the model without fiscal stabilization
policy.

The fundamental equilibrium with occasional liquidity traps is defined as a vector {Cy, Yu,
Gn, Oy, Ry, NGEAEC, AR NEB Vv, V$B, Ce, Yo, Ge, Tle, Ro, NEF, NEC, NEC) ALB, Ve,
Vg BY satisfying the following system of non-linear equations and inequality constraints:

(For the normal (high-fundamental) state)

1 _1
[ed

_1 _1
Cn” Ry' = Bon [pnCy TRt + (1= p) o TG, (1.34)

_1 _1
¢ (My — 1) TN (Cn + GN)Cx7 + 0YNCy7 — Oxy Y

= fBén|pn¢ (IIy — 1) N (Cn + GN)C'XJé + (1 =pn)¢ (e — 1) Ile(Ce + GC)CE%]’ (1.35)

YN:CN+GN+§[HN—1]2 (CN+GN), (1.36)

Ry > 1. (1.37)

_1 1 -1 4

1 _1 1, —1_
+ (1= )o(Ily — DINCR7 A + 0¥ (——)Cy " ARE
- <1 + %(HN - 1)2> ARe (1.38)
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_1
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— (L n)Oxy YINES + AEC (1.49)
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_1
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0 < A\&P (1.53)

Once allocations are computed, one can solve for Vi, Vi, V]g B Vg B using,

Vv =un + BpnVN + B(1 —pn)Ve (I.54)
Vo =uc + B(1 —pc)Vn + BpcVe (1.55)
Vi$P = ulP + Bpn VP + 81— py)VEP (1.56)
VEP =GP + B(1 = po) VP + BpcVE"? (L.57)

Welfare is measured by the unconditional expectations of society’s value function. In the model

with a fundamental shock, welfare is given by

1 1 —pc 1—pN

W = un +
1-8|1-pc+1—pN l1-pc+1—pN

UC (1.58)

I.4 Parameter values and model solution

The calibration of the parameters that are unrelated to the shocks is the same as in the main body
of the paper (see Table 1), except that we set the discount factor § equal to 0.99375 (rather than
0.9975), which facilitates the solution of the model with the fundamental shock. As in Section 6 of
the paper, we calibrate the price-adjustment cost parameter ¢ such that the slope of the Phillips
curve, when log-linearized around the intended steady state, is identical to the one in the baseline
model setup, and we set xy and x¢g such that total output equals one in the intended steady state,

and the steady-state ration of government spending to output equals 0.2. When assessing the effect
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of alternative inflation targets on allocations and welfare, we set the indexation parameter h equal
to 0.5. For the sunspot shock, we assume pg = 0.995 and p;, = 0.99. For the fundamental shock,
we assume py = 0.99, pc = 0.75, and we have dy = 1, ¢ = 1.025. All the takeaways from the
non-linear analysis are robust to alternative parameter values. We solve the system of non-linear

equation using Matlab’s fsolve function.

I.5 Results: Fiscal activism

Figure 1.1 shows how allocations in high- and low-confidence states vary with the relative weight on
the government spending stabilization term « in the sunspot equilibrium of the non-linear model
with a sunspot shock. Consistent with the analysis based on the baseline semi-loglinear model,
in the sunspot equilibrium, a higher weight on the government spending stabilization term (less
fiscal activism) results in a less aggressive use of government spending as a stabilization tool at the
lower bound, higher inflation (less deflation) in the low-confidence state and higher inflation (less
deflation) in the high-confidence state.

Thus, conditional on the existence of the sunspot equilibrium, it is optimal to focus on mini-
mizing the volatility in government spending, as shown in Figure [.2. This result is consistent with
the result in the semi-loglinear model shown in the main text.

Figure 1.3 shows how allocations in high- and low-fundamental states vary with « in the non-
linear model with a fundamental shock. Also consistent with the analysis based on the semi-
loglinear model, in the model with a fundamental shock, a higher weight on the government spending
stabilization term lowers government spending and inflation in the low-fundamental state, and
increases the deflationary bias in the high-fundamental state.

Welfare declines as the weight on the government spending stabilization increases, and the

optimal weight is zero, as shown in Figure 1.4.
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Note: The horizon axis shows the value of «. Inflation and the policy rate are expressed as annualized percent.

Consumption, output, and government spending are expressed as percentage deviation from the efficient steady

state.

Figure I.1: Allocations in the non-linear model with a sunspot shock:

The effects of fiscal activism
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Figure 1.2: Welfare in the non-linear model with a sunspot shock:
The effects of fiscal activism
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Figure 1.3: Allocations in the non-linear model with a fundamental shock:

The effects of fiscal activism
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Note: The horizon axis shows the value of «. Inflation and the policy rate are expressed as annualized percent.

Consumption, output, and government spending are expressed as percentage deviation from the efficient steady

state.
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Figure 1.4: Welfare in the non-linear model with a fundamental shock:

The effects of fiscal activism
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