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1 Proofs for Section 2

Before proving Proposition 2, we establish the following lemma, which details

some characteristics of an optimal solution.

Lemma 12 Assume that the firm’s type is publicly observable. Then, there

exists a profit-maximizing equilibrium in which the agent never gets a rent,

that is,

• qbh(θt) + (1− q)bl(θt) = n(θt)c and

• w(θt) = 0 for every history θt.

Furthermore, equilibrium effort only depends on the current state, that is,

n(θt) = n(θt).

Proof: We shall first show that there exists an optimal equilibrium such

that U(θt) = 0 for all histories θt. If U(θ1) > 0, reduce w(θ1) by U(θ1). For

t > 1, assume to the contrary that, in an optimal equilibrium, U i(θt) > 0 for

some history θt and i ∈ {h, l}. Now, reduce wi(θt) by U i(θt) and increase the

respective bonus in the previous period, bi(θt), by δU i(θt). Since −bi(θt) +

δΠi(θt) and bi(θt) + δU i(θt) remain unchanged, this change leaves the agent’s

(IC) constraints as well as all of the principal’s constraints at history θt and

all predecessor histories unaffected. Furthermore, the principal’s profits at

history θt as well as in all predecessor histories remain unchanged. We can

thus without loss focus on equilibria such that U(θt) = 0 for all histories θt.
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Now, suppose that there exists a history θτ after which the (IC) constraint

does not bind. Note that a non-binding (IC) constraint implies that either

bh(θτ ) > 0 or bl(θτ ) > 0. Thus, there exists an ε > 0 such that, if either

bh(θτ ) is reduced by ε
q

or bl(θτ ) by ε
1−q , the (IC) constraint is still satisfied.

If w(θτ ) is at the same time increased by ε, the (DE) constraint for history

θτ is relaxed, and all constraints for all other histories θt are unaffected by

this change. This adjustment potentially increases profits if (DE) for history

θτ binds, and leaves profits unaffected if (DE) for history θτ is slack, hence is

optimal. Thus, we have shown that there exists an optimal equilibrium with

the property that w(θt) = 0, U(θt) = 0, and qbh(θt) + (1 − q)bl(θt) = n(θt)c

for all histories θt.

To prove the final part of the Lemma, we first rewrite the (DE) constraint:

−n(θt)c+ δ
(
qΠh(θt) + (1− q)Πl(θt)

)
≥ 0. (DE)

In addition, note that effort levels will never exceed the first best (oth-

erwise, a reduction would increase profits without violating any of the con-

straints). Now, assume that there are histories θτ̃ and θτ , with nh(θτ̃ ) >

nh(θτ ). If the profits being produced in the continuation play following
(
θτ , θh

)
are higher, it is possible to implement nh(θτ̃ ) with the continuation play fol-

lowing
(
θτ , θh

)
. In this case, the principal can therefore increase her profits

following history
(
θτ , θh

)
by increasing the current period’s effort level to

nh(θτ̃ ), while leaving the continuation play unchanged. Now, suppose that

it is not possible to implement nh(θτ̃ ) with the continuation play following(
θτ , θh

)
. This implies that the profits created by the continuation play follow-

ing
(
θτ , θh

)
are lower than the continuation play following

(
θτ̃ , θh

)
. Further-

more, because nh(θτ̃ ) is enforceable, it is possible to replace the continuation

play following
(
θτ , θh

)
with the continuation play following

(
θτ̃ , θh

)
, thereby

relaxing the (DE) constraint in τ . It thus becomes possible to increase nh(θτ )

to nh(θτ̃ ). This increases both the principal’s current and future profits. A

similar argument applies to the low state. Hence, equilibrium effort only de-

pends on the current state. �

Proof of Proposition 2: To ease the notational burden, we write nh ≡
n(θh) and nl ≡ n(θl). The Lagrangian for the firm’s problem can be written
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as

L =
(
θhg(nh)− nhc

)(
1 +

δq

1− δ

)
+
(
θlg(nl)− nlc

) δ(1− q)
1− δ

+ λDEh

[
−nhc+

δ

1− δ
[
q(θhg(nh)− nhc) + (1− q)(θlg(nl)− nlc)

]]
+ λDEl

[
−nlc+

δ

1− δ
[
q(θhg(nh)− nhc) + (1− q)(θlg(nl)− nlc)

]]
,

where λDEi denotes the Lagrange multiplier associated with the (DE)-constraint,

given the current type is θi ∈ {θl, θh}.
By strict concavity of g, the first-order conditions are both necessary and

sufficient for an optimum. By the Inada Conditions on g, optimal effort levels

are interior, and hence characterized by ∂L
∂ni

= 0, as well as λDEi
∂L

∂λDEi
= 0, for

both i ∈ {h, l}. One computes

∂L
∂nh

=
(
θhg′(nh)− c

) [
1 +

δ

1− δ
q(1 + λDEh + λDEl)

]
− λDEhc;

∂L
∂nl

=
(
θlg′(nl)− c

) δ

1− δ
(1− q)(1 + λDEh + λDEl)− λDElc.

As nh ≥ nl at an optimum, we know that λDEh = 0 implies λDEl = 0.

As our system of equations characterizing the solution
(
nh, nl, λDEh , λDEl

)
is

(jointly) continuous in
(
nh, nl, λDEh , λDEl , δ

)
, the solutions

(
nh, nl, λDEh , λDEl

)
can be written as continuous functions of δ. Thus, profits Πh and Πl are con-

tinuous in δ.

The left-hand sides of the (DEi) constraints are increasing in δ,1 hence

maximum enforceable effort increases in δ as well.

For δ → 1, (DEi) are satisfied for first-best effort levels, since θg(nFB(θ))−
nFB(θ)c > 0 for both θ ∈ {θh, θl}. Thus, there exists a δ̄ ∈ [0, 1) such that

λDEh = λDEl = 0 for all δ > δ̄. For δ = 0, no positive effort can be enforced.

Thus, δ̄ > 0. Moreover, by continuity of the (DEi)-constraints in δ, for every

pair of effort levels (nh, nl) between zero and the respective first-best effort

levels nFBl and nFBh , there exists a discount factor δ(nh, nl) such that the con-

straint (DEh) holds for δ ≥ δ(nh, nl) and is violated for δ < δ(nh, nl). Set

δ̄ = δ(nFBh , nFBl ). Since nFBl < nFBh , (DEl) holds with slackness at nl = nFBl

1This can be shown formally by an argument analogous to the one underlying the proof
of Lemma 8.
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for δ = δ̄. Let nh(δ) be defined by θhg′(nh(δ)) = c1−δ(1−q)
δq

; as g′ is continu-

ous, strictly decreasing and takes on all values in (0,∞), nh(δ) exists and is

unique; furthermore, the Inverse Function Theorem implies that it is a con-

tinuous function of δ. As the partial derivative of (DEh) with respect to nh

is always strictly negative at nh = nFBh , we have that nh(δ) < nFBh . Clearly,

the solution n̂h to the optimization problem in which only (DEh) is imposed

entails n̂h ∈ [nh(δ), nFBh ]. Direct computation shows the partial derivative of

(DEh) with respect to nh to be strictly negative on (nh(δ), nFBh ), while its

partial derivative with respect to δ is strictly positive and, since δ ≤ δ̄ < 1,

bounded. Therefore n̂h is a continuous function of δ, and thus, by continuity

of (DEl) in (nh, δ), there exists a δ ∈ (0, δ̄) such that (DEl) continues to hold

with slackness for all δ ∈ (δ, δ̄]. This implies nl = nFBl < nh < nFBh . For

δ ≤ δ, both (DE) constraints bind, and hence nh = nl. �

2 Proofs for Section 3 (Propositions 3-5)

Proof of Proposition 3: The (EC) constraint to enforce first-best effort

levels is given by

−nFB(θt)c+ δ
(
qΠh,FB + (1− q)Πl,FB

0

)
− δqg(nFBl )

(
θh − θl

)
≥ 0.

The left-hand side can be bounded from below by

− nFB(θt)c+ δqΠh,FB − δqg(nFBl )
(
θh − θl

)
≥− nFB(θt)c+ δq

(
θhg(nFBh )− nFBh c

)(1− δ (1− q)
1− δ

)
− δqg(nFBl )

(
θh − θl

)
.

Since θhg(nFBh )− nFBh c > 0 by assumption and because g(nFBl ) is finite, this

expression diverges to infinity as δ → 1. Since, by Lemma 8, (EC) constraints

are relaxed by larger values of δ, the claim follows. �

Proof of Proposition 4: Define δ ∈ (0, 1) as the smallest discount

factor such that (ECh) holds as an equality for first-best effort levels nh = nFBh
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and nli = nFBl , for all i ∈ N; i.e., δ is the smallest discount factor such that

−nFBh c+ δ
(
qΠh,FB + (1− q)Πl,FB

)
= δqg(nFBl )

(
θh − θl

)
.

Note that given first-best effort levels, (ECh) is continuous in δ. Furthermore,

δ > 0 follows from no effort being enforceable for δ = 0. Because nFBh > nFBl ,

all (ECl) constraints are slack at δ for first-best effort levels.

Now, consider the relaxed problem of maximizing Πh subject only to

(ECh). The Lagrange function for this problem is given by

L = Πh + λECh

[
− nhc+

δq

1− δ(1− q)
Πh + δ

((
θl − qθh

)
g(nl0)− (1− q)nl0c

)
+
∞∑
τ=1

(δ(1− q))τ+1 (θlg(nlτ )− nlτc
) ]

where Πh = 1−δ(1−q)
1−δ

(
θhg(nh)− nhc

)
+1−δ(1−q)

1−δ δ(1−q)
[
∞∑
i=0

(δ(1− q))i
(
θlg(nli)− nlic

)]
.

By our assumptions on g, the objective function and the constraint are twice

continuously differentiable in the choice variables
(
nh, nli

)
i∈N. If θl ≥ qθh, the

Lagrangian is strictly concave in the choice variables, and the first-order con-

ditions are necessary and sufficient for an optimum. If θl < qθh, the first-order

conditions are necessary for a global optimum.2

The first-order conditions for our reduced problem are given by

∂L
∂nh

=
(
θhg′(nh)− c

)(1− δ(1− q)
1− δ

+ λECh
δq

1− δ(1− q)

)
− cλECh = 0;

∂L
∂nl0

= δ(1−q)
(
θlg′(nl0)− c

) 1− δ(1− q)
1− δ

(1 + λECh)−λEChδqg′(nl0)
(
θh − θl

)
= 0;

2In this case, one can show that a global optimum exists and that it entails nh ∈ (0, nFB
h )

by substituting the binding (ECh) constraint into the objective. Indeed, considering nl0 as
a function of nh, one shows that this objective function is strictly concave in nh, strictly
increasing for nh close to 0, and, given that we can impose without loss that nl0 ≤ nFB

l by
Lemma 7, decreasing at nh = nFB

h . Of course, as the global optimum satisfies the first-order
conditions, the properties we derive from them apply to the optimum in this case as well.
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λECh[−nhc+
δq

1− δ(1− q)
Πh

+δ
((
θl − qθh

)
g(nl0)− (1− q)nl0c

)
+
∞∑
τ=1

(δ(1− q))τ+1 (θlg(nlτ )− nlτc
)
] = 0.

Furthermore, optimality requires ∂L
∂nli

= 0, implying θlg′(nli) = c, for all

i ≥ 1.

Thus, once (ECh) binds and hence λECh > 0, θhg′(nh)−c must be positive

for the respective first-order condition to hold; nh will thus be below its first-

best level. In addition, if nl0 > 0, θlg′(nl0)−c must be positive for the first-order

condition to hold, so that nl0 will be below its first-best level as well. Effort

levels nli are at their efficient level nFBl for all i ≥ 1.

Let nh(δ) be defined by θhg′(nh(δ)) = c1−δ(1−q)
δq

. As g′ is continuous,

strictly decreasing and takes on all values in (0,∞), nh(δ) exists and is unique;

furthermore, the Inverse Function Theorem implies that it is a continuous

function of δ. Moreover, define ñl(δ) by g′(ñl(δ)) = c(1−q)1−δ(1−q)
1−δ

[
1−δ(1−q(1−q))

1−δ θl − qθh
]−1

and nl(δ) by

nl(δ) =

{
ñl(δ) if 1−δ(1−q(1−q))

1−δ θl − qθh > 0

0 otherwise.

Again, as g′ is continuous, strictly decreasing and takes on all values in (0,∞),

nl(δ) exists and is unique; furthermore, the Inverse Function Theorem implies

that it is a continuous function of δ. Clearly, the solution (n̂h, n̂l0)(δ) to the

problem in which only (ECh) is imposed entails (n̂h, n̂l0)(δ) ∈ I, where I :=

[nh(δ), nFBh ]× [nl(δ), nFBl ].3 Direct computation shows the partial derivatives

of (ECh) with respect to nh and nl0 respectively to be strictly negative a.e. on

I, while, because δ ≤ δ̄ < 1, its partial derivative with respect to δ is bounded.

Hence, it is feasible to have a policy (n̂h, n̂l0) that is continuous in δ, implying

that the optimal profits Π̂h in this problem are a continuous function of δ. As

(nh, nl0) impacts the (ECli) constraints only via the profits Πh, and since these

constraints are continuous in Πh, all (ECli) constraints hold for the solutions

of this reduced problem in a neighborhood of δ.4 By the argument underlying

3One shows that nl < nFB
l (nh < nFB

h ) by showing that the partial derivative of (ECh)
with respect to nl0 (nh) is always strictly negative at nl0 = nFB

l (nh = nFB
h ).

4As the only exception, there is a direct impact of n̂l0 in (ECl0). Yet, as n̂l0 ≤ nFB
l ,
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the proof of Lemma 8, the (ECh) constraint becomes tighter as the discount

factor δ decreases. Thus, Π̂h(δ) is (weakly) increasing. We can thus take δ as

low as the discount factor at which the (ECli) constraints, i ≥ 1, just hold as

an equality for nli = nFBl , and nh = n̂h and nl0 = n̂l0, as characterized by the

Kuhn-Tucker system above.

It remains to show that nh > nFBl . Suppose to the contrary that nh ≤
nFBl . Yet this solution is dominated by n̂h = n̂l0 = nli = nFBl , which leads to

higher profits and is feasible since all (ECli)-constraints (for i ≥ 1) hold for

nli = nFBl even for the initial nh and nl0. �

Proof of Proposition 5: By definition of δ, some ECli (i ≥ 1) will bind

in some left-neighborhood of δ, while ECl0 remains slack. In this neighbor-

hood, the profit-maximizing nli (i ≥ 1) are obtained by maximizing Πl
1.

Thus, we maximize

Πl
1 =

∞∑
τ=1

(δ(1− q))τ−1
(
θlg(nlτ )− nlτc

)
+ δqΠh 1

1− δ(1− q)

subject to

−nlic+δqΠh (1 + δ(1− q))+δ
((
θl − qθh

)
g(nli+1)− (1− q)nli+1c

)
+δ2(1−q)2Πl

i+2 ≥ 0

for all i ≥ 1. We proceed in several steps.

Lemma 13 For any i ≥ 1, Πl
1 ≥ Πl

i.

Proof: Suppose to the contrary that Πl
j > Πl

1, for some j > 1. For all

i ≥ 1, replace ni by nj+i−1. (This operation is feasible because all (ECli) were

satisfied by assumption.) Thus, our previous Πl
1 cannot solve our maximiza-

tion problem. �

Lemma 14 nl1 ≥ nli for all i ≥ 1.

Proof: Suppose to the contrary that there is a j > 1 with nlj > nl1. Re-

place nlj with nl1 and the continuation play following nlj with the continuation

play following nl1. This is clearly feasible and (weakly) profitable (as Πl
j ≤ Πl

1

by Lemma 13). �

(ECl0) is slacker than the other (ECli) constraints, and thus continues to hold as well.
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Lemma 15 For all odd i ≥ 1, Πl
i ≥ Πl

i+2 and nli ≥ nli+2.

Proof: We proceed by induction over i. That Πl
3 ≤ Πl

1 follows from

Lemma 13. For the induction step, suppose that Πl
j ≥ Πl

j+2, for some odd

integer j. We have to show that Πl
j+2 ≥ Πl

j+4. Suppose to the contrary that

Πl
j+2 < Πl

j+4. Now, for all i ≥ j + 2, replace nli by nli+2. This is feasible

if nlj+1 ≤ nlj+3. Therefore, our operation increases Πl
j+2 and hence Πl

1. If

nlj+1 > nlj+3, by contrast, we distinguish two cases: (1.) If Πl
j+1 ≤ Πl

j+3, we

can replace nli by nli+2 for all i ≥ j + 1. This replacement is feasible and

weakly increases Πl
1. (2.) If, however, Πl

j+1 > Πl
j+3, we replace nli+2 by nli

for all i ≥ j + 1. This is feasible if nlj ≥ nlj+2. If, however, nlj < nlj+2, we

can replace nli+2 by nli for all i ≥ j. Because, by the induction hypothesis,

Πl
j ≥ Πl

j+2, this increases Πl
1.

Suppose that nlj < nlj+2 for some odd integer j. Replace all nli+2 by nli

for all i ≥ j. This is clearly feasible and (weakly) profitable (as Πl
j ≥ Πl

j+2).�

Lemma 16 For all even i ≥ 2, Πl
i ≤ Πl

i+2 and nli ≤ nli+2.

Proof: Suppose to the contrary that Πl
j+4 < Πl

j+2 for some even integer

j. Then, we can replace all nli+2 by nli for all i ≥ j + 2. This is feasible as

nlj+1 ≥ nlj+3 by Lemma 15. Suppose that nlj > nlj+2 for some even integer

j. Replace all nli by nli+2 for all i ≥ j. This is clearly feasible and (weakly)

profitable (as Πl
j+2 ≥ Πl

j). �

Lemma 17 nli 6= nli+2 ⇒ nlj 6= nlj+2∀j ≤ i.

Proof: Suppose to the contrary that nli 6= nli+2 but nlj = nlj+2 for some

integer j < i. Consider the biggest such integer j, i.e., nlj+1 6= nlj+3. First,

assume that j is even, i.e., j + 1 is odd and, by Lemma 15, nlj+1 > nlj+3.

Replace all nlι+2 by nlι for all ι ≥ j + 1. This is feasible as nlj = nlj+2 and

(weakly) profitable (as Πl
j+1 ≥ Πl

j+3). Second, assume that j is odd, i.e., j+ 1

is even and, by Lemma 16, nlj+1 < nlj+3. Replace all nlι by nlι+2 for all ι ≥ j+1.

This is feasible as nlj = nlj+2 and (weakly) profitable (as Πl
j+1 ≤ Πl

j+3). �

Lemma 18 nli = nli+2 ⇒ nlj = nlj+2∀j ≥ i.

Proof: Suppose to the contrary that nli = nli+2 but nlj 6= nlj+2 for some

integer j > i. Consider the smallest such integer j, i.e., nlj−1 = nlj+1. First,
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assume that j−1 is even, i.e., j is odd and, by Lemma 15, nlj > nlj+2. Replace

all nlι+2 by nlι for all ι ≥ j. This is feasible as nlj−1 = nlj+1 and (weakly)

profitable (as Πl
j ≥ Πl

j+2). Second, assume that j − 1 is odd, i.e., j is even

and, by Lemma 16, nlj < nlj+2. Replace all nlι by nlι+2 for all ι ≥ j. This is

feasible as nlj−1 = nlj+1 and (weakly) profitable (as Πl
j1 ≤ Πl

j+2). �

Lemma 19 nl1 = nl2 ⇒ nli = nl1∀i ≥ 1.

Proof: By Lemma 16, nl1 = nl2 ⇒ nlj = nl1 for all even j. Hence,

by Lemma 18, nlι = nlι+2 for all odd ι ≥ 3. Suppose to the contrary that

nl1 > nl3. Replace nl3 with nl1 and the continuation play following nl3 with the

continuation play following nl1. This is feasible and (weakly) profitable (as

Πl
j ≤ Πl

1 by Lemma 13). �

Lemma 20 Assume there is one i for which the (ECli) constraint is slack.

Then, the (ECli+1) constraint binds.

Proof: To the contrary, assume that the (ECli+1) constraint is slack.

Increase nli+1 by a small ε > 0. This is feasible and increases Πl
1. �

Lemma 21 Assume there is one odd i > 1 for which the (ECli) constraint is

slack. Then, nlj = nFBl ∀j ≥ 1.

Proof: Suppose (ECli) is slack for i odd, with i > 1. Then, there must

exist an optimum with ni+j = nj∀j ≥ 1. This implies that Πl
i+1 = Πl

1, Πl
i+2 =

Πl
2, ..., Πl

2i−1 = Πl
i−1. By Lemma 16, Πl

2 ≤ Πl
4 ≤ ... ≤ Πl

i+1 ≤ Πl
i+3 ≤ ....

Since Πl
i+1 = Πl

1 ≤ Πl
i+3 = Πl

3 ≤ Πl
i+5 = Πl

5 ≤ ... ≤ Πl
2i = Πl

i ≤ ... ≤ Πl
1,

Πl
j = Πl

1 for all even j.

By Lemma 15, we have Πl
1 ≥ Πl

3 ≥ ... ≥ Πl
i = Πl

2i = Πl
1, and hence

Πl
j = Πl

1 for all odd j. Thus, nlj = nl1 for all j ≥ 1. Therefore, the Lagrange

parameters satisfy λj = λj+1 = 0 for all j, and nl1 = nFBl . �

Lemma 21 implies that, in our left-neighborhood of δ, all odd-numbered

constraints will bind, i.e. the Lagrange parameters satisfyλj > 0 for all odd

integers j.

Lemma 22 Assume there is one even i for which the (ECli) constraint is

slack. Then, the (EClj) constraints are slack for any even j. Moreover, nlj =

nlj+2 = ... = nl1 for all odd j, and nlι = nlι+2 = ... = nl2 for any even ι.
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Proof: Suppose (ECli) is slack for i even. Then, there must exist an

optimum with ni+j = nj∀j ≥ 1. This implies that Πl
i+1 = Πl

1, Πl
i+2 =

Πl
2, ..., Πl

2i−1 = Πl
i−1. By Lemma 16, Πl

2 ≤ Πl
4 ≤ ... ≤ Πl

i ≤ Πl
i+2 = Πl

2, and

hence Πι = Πl
2 for all even ι. It follows that (EClι) is slack for all even ι.

Thus, nlι = nl2 for all even ι.

By Lemma 15, we have Πl
1 ≥ Πl

3 ≥ ... ≥ Πl
i+1 = Πl

1, and hence Πl
j = Πl

1

for all odd j. Thus, nlj = nl1 for all odd j. Therefore, the Lagrange parameters

λι = λι+2 = 0 for all even ι. �

The previous lemmata imply that there are two possibilities for an op-

timum. Either, all even (ECli) constraints are slack, in which case nlj = nl1

for all odd j and nlι = nl2 for all even ι. Otherwise, all (ECli) constraints will

bind. In the following, we characterize effort levels nli (i ≥ 1) for the latter

possibility.

Lemma 23 Assume all (ECli) constraints bind. Then, either nl1 = nl3 =

nl5 = ... and nl2 = nl4 = nl6 = ..., or nl1 > nl3 > nl5 > ... and nl2 < nl4 < nl6 < ....

Proof: To the contrary, assume that nlj+2 > nlj for j even, but that

nlj+3 = nlj+1. By Lemma 18, this implies that nlj+2 = nlj+4 = ... and nlj+3 =

nlj+5 = ..., and in particular also that Πl
j+2 = Πl

j+4. But then, (EClj) can not

bind, a contradiction. The same logic can be applied to show that nlj+2 < nlj

for j odd, but that nlj+3 = nlj+1, is not feasible. �

Lemma 24 nli > nlj ⇒ Πl
i ≥ Πl

j.

Proof: Suppose to the contrary that there exist integers i and j such

that nli > nlj yet Πl
i < Πl

j. Then,

Πl
j − Πl

i =
(
θlg(nlj)− cnlj

)
+ δqΠh + δ(1− q)Πl

j+1

−
[(
θlg(nli)− cnli

)
+ δqΠh + δ(1− q)Πl

i+1

]
=
[(
θlg(nlj)− cnlj

)
−
(
θlg(nli)− cnli

)]
+ δ(1− q)

(
Πl
j+1 − Πl

i+1

)
≥0.

Because nli > nlj,
[(
θlg(nlj)− cnlj

)
−
(
θlg(nli)− cnli

)]
< 0. Therefore,

Πl
j+1 − Πl

i+1 > 0. Hence, replacing the history nli by nlj and the continuation

play after nli by the continuation play after nlj is feasible, and also strictly

profitable. �
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Lemma 25 Suppose all (ECli) constraints bind. Then, supj∈N n
l
2j ≤ infj∈N n

l
2j−1.

Proof: Suppose to the contrary that supj∈N n
l
2j > infj∈N n

l
2j−1. Then, by

Lemmata 15 and 16, this implies lim supj∈N n
l
2j > lim infj∈N n

l
2j−1. Therefore,

there exists an integer i such that nl2i > nl2i−1 ≥ nl2i+1. By Lemma 24, this

implies that Πl
2i > Πl

2i+1. Yet, as all constraints (EClι), and in particular

(ECl2i − 2), are binding, nl2i > nl2i−1 and Πl
2i > Πl

2i+1 implies that nl2i−2 >

nl2i−1, which, by Lemma 24, implies Πl
2i−2 > Πl

2i−1. As furthermore Πl
2i ≥

Πl
2i−2 by Lemma 16 and all constraints, in particular (ECli−2) and (ECli−3),

are binding, we can conclude that nl2i−2 > nl2i−3 and thus, by Lemma 24,

Πl
2i−2 > Πl

2i−3. Iterating this argument finally yields nl2 > nl1, a contradiction

to Lemma 14. �

Lemma 26 nl1 = nl2 ⇔ qθh = θl.

Proof: Recall that for δ < δ, the values nli, i ≥ 1, can be obtained by

maximizing

Πl
1 =

∞∑
τ=1

(δ(1− q))τ−1
(
θlg(nlτ )− nlτc

)
+ δqΠh 1

1−δ(1−q) , s.t. (ECli) con-

straints for i ≥ 1, and treating Πh as a constant. The Lagrange function of

this problem is

L =
∞∑
τ=1

(δ(1− q))τ−1
(
θlg(nlτ )− nlτc

)
+ δqΠh 1

1− δ(1− q)

+ λ1

[
− nl1c+

δq

1− δ(1− q)
Πh + δ

((
θl − qθh

)
g(nl2)− (1− q)nl2c

)
+
∞∑
τ=3

(δ(1− q))τ−1
(
θlg(nlτ )− nlτc

) ]

+ λ2

[
− nl2c+

δq

1− δ(1− q)
Πh + δ

((
θl − qθh

)
g(nl3)− (1− q)nl3c

)
+
∞∑
τ=4

(δ(1− q))τ−2
(
θlg(nlτ )− nlτc

) ]
...

and first-order conditions are

11



∂L
∂nl1

=
(
θlg′(nl1)− c

)
− λ1c = 0

∂L
∂nl2

=δ(1− q)
(
θlg′(nl2)− c

)
+ λ1δ

((
θl − qθh

)
g′(nl2)− (1− q)c

)
− cλ2 = 0

∂L
∂nl3

= (δ(1− q))2
(
θlg′(nl3)− c

)
(1 + λ1)

+ λ2
[
δ
((
θl − qθh

)
g′(nl3)− (1− q)c

)]
− cλ3 = 0

∂L
∂nl4

= (δ(1− q))3
(
θlg′(nl4)− c

)(
1 + λ1 +

λ2
δ(1− q)

)
+ λ3δ

((
θl − qθh

)
g′(nl4)− (1− q)c

)
− cλ4 = 0

...

∂L
∂nl1

= 0 yields that nl1 < nFBl for λ1 > 0 which holds for δ < δ. Plugging

λ1 =
(θlg′(nl1)−c)

c
into ∂L

∂nl2
= 0 yields

δ(1− q)θl
(
g′(nl2)− g′(nl1)

)
+

(
θlg′(nl1)− c

)
c

δ
(
θl − qθh

)
g′(nl2)− cλ2 = 0.

Therefore qθh > θl implies nl1 > nl2. To show that qθh = θl ⇒ nl1 = nl2, we

first assume that λ2 = 0 and verify later that it holds.

If λ2 = 0, the condition gives nl1 = nl2. Furthermore, if λ2 = 0, Lemma 22

implies that nl1 = nl3 = ... and nl2 = nl4 = .... Then, Πl
1 =

(θlg(nl1)−nl1c)+δ(1−q)(θlg(nl2)−nl2c)
1−(δ(1−q))2 +

δqΠh 1
1−δ(1−q) , and the (binding) (ECl1) constraint equals

− nl1c+
δq

1− δ(1− q)
Πh + δ

((
θl − qθh

)
g(nl2)− (1− q)nl2c

)
+

(δ(1− q))2

1− (δ(1− q))2
[(
θlg(nl1)− nl1c

)
+ δ(1− q)

(
θlg(nl2)− nl2c

)]
= 0

12



Plugging

δq

1− δ(1− q)
Πh

=nl1c− δ
((
θl − qθh

)
g(nl2)− (1− q)nl2c

)
− (δ(1− q))2

1− (δ(1− q))2
[(
θlg(nl1)− nl1c

)
+ δ(1− q)

(
θlg(nl2)− nl2c

)]
into (ECl2) gives

(
g(nl1)− g(nl2)

)
δ
(
θl − qθh − qδ(1− q)

(
θh − θl

))
+ c
(
nl1 − nl2

)
≥ 0.

For qθh = θl and nl1 = nl2, the left hand side equals zero, hence (ECl2) is

satisfied. �

This concludes the proof of Proposition 5. �

3 Timing – Details

3.1 θt Revealed at Beginning of Period t

First, we analyze the case of public information. There, we consider a quasi-

stationary equilibrium in the sense that bonus and effort are only a function of

today’s type. The wage might be a function of today’s and yesterday’s type,

if it is used to provide incentives for yesterday’s effort. We use left and right

superscripts to describe wages (and profits) as functions of θt−1 (left) and θt

(right). For example, if the type in both periods is high, profit is hΠh and

wages are hwh. Profits can thus be written as

hΠh = θhg(nh)− bh − hwh + δΠ
h

lΠh = θhg(nh)− bh − lwh + δΠ
h

hΠl = θlg(nl)− bl − hwl + δΠ
l

lΠl = θlg(nl)− bl − lwl + δΠ
l
,
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with Π
h

= q hΠh+(1−q) hΠl and Π
l
= q lΠh+(1−q) lΠl. The agent’s utilities

are described accordingly.

We maximize Π
h
, subject to the following constraints:5

−nhc+ bh + δU
h ≥ 0 (ICh)

−nlc+ bl + δU
l ≥ 0 (ICl)

−bh + δΠ
h ≥ 0 (DEh)

−bl + δΠ
l ≥ 0. (DEl)

First, we show that it is weakly optimal only to use the bonus to provide

incentives, while setting wages equal to zero: If any fixed wages were strictly

positive, a reduction accompanied by a corresponding increase of the respec-

tive bonus would leave all constraints unaffected (for example, if hwh > 0,

reducing hwh by a small ε > 0 and increasing bh by δqε has no effect on ICh

and DEh) and not decrease profits. Furthermore, as in Lemma 12, we can

show that it is feasible and optimal to set bh = nhc and bl = nlc. Then, the

two remaining constraints are

−nhc+ δ
q
(
θhg(nh)− nhc

)
+ (1− q)

(
θlg(nl)− nlc

)
(1− δ)

≥ 0

−nlc+ δ
q
(
θhg(nh)− nhc

)
+ (1− q)

(
θlg(nl)− nlc

)
(1− δ)

≥ 0,

which are the same as in our main setting with public information. Therefore,

profit-maximizing effort levels are also characterized by Proposition 2, with

levels of the discount factor, δ and δ ( 0 < δ < δ < 1), such that nh = nFBh and

nl = nFBl for δ ≥ δ; nl = nFBl < nh < nFBh for δ < δ < δ; and nh = nl ≤ nFBl
for δ ≤ δ.

5Note that maximizing any other of the above profit streams would yield identical out-
comes because the equilibrium – as we will see below – is now sequentially efficient.
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3.2 θt+1 Revealed at Beginning of Period t

3.2.1 Public Types

We use superscripts to indicate equilibrium values as functions of this and

next period’s types. For example, nhh is equilibrium effort in case today’s

and tomorrow’s types are high, nhl is equilibrium effort if today’s type is high

and tomorrow’s type is low, and so on. By standard arguments, with public

information it is without loss to analyze equilibria where, after all histories,

actions depend only on today’s and tomorrow’s types. In the following, we

call these equilibria quasi-stationary.

Then, on-path profit streams can take one of the four values

Πhh = θhg(nhh)− whh − bhh + δΠ
h

Πhl = θhg(nhl)− whl − bhl + δΠ
l

Πlh = θlg(nlh)− wlh − blh + δΠ
h

Πll = θlg(nll)− wll − bll + δΠ
l
,

where Π
h ≡ qΠhh + (1 − q)Πhl and Π

l ≡ qΠlh + (1 − q)Πll. The agent’s

utilities are defined equivalently. Bonus payments are bounded by dynamic

enforcement constraints,

−bhh + δΠ
h ≥ 0 (DEhh)

−bhl + δΠ
l ≥ 0 (DEhl)

−blh + δΠ
h ≥ 0 (DElh)

−bll + δΠ
l ≥ 0, (DEll)

whereas effort levels are bounded by incentive compatibility constraints,

−nhhc+ bhh + δU
h ≥ 0 (IChh)

−nhlc+ bhl + δU
l ≥ 0 (IChl)

−nlhc+ blh + δU
h ≥ 0 (IClh)

−nllc+ bll + δU
l ≥ 0. (ICll)
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Now, although the bonus is a function of next period’s type, it is certain

at the time of the agent’s effort choice. This is different from the main part

of our paper, where next period’s type is revealed immediately before today’s

bonus is paid, and therefore uncertain at the time of the agent’s effort choice.

Furthermore, for reasons similar to above (Lemma 12), it is feasible and weakly

optimal to set whh = whl = wlh = wll = 0 and let (IC) constraints hold as

equalities. Therefore, bhh = nhhc, bhl = nhlc, blh = nlhc and bll = nllc.

Again, our objective is to maximize Π
h
, now subject to

−nhhc+ δΠ
h ≥ 0 (DEhh)

−nhlc+ δΠ
l ≥ 0 (DEhl)

−nlhc+ δΠ
h ≥ 0 (DElh)

−nllc+ δΠ
l ≥ 0. (DEll)

3.2.2 Private Types

With private types, we keep the notation from our analysis with public types

(proof of Lemma 1). Though this restriction is not without loss of generality

here, we continue to focus on the same kind of quasi-stationary equilibria as

with public types (that is, actions depend only on today’s and tomorrow’s

types), where fixed wages equal zero and (IC) constraints bind. We will show

below that, in contrast to before, the relevant truth-telling constraints can now

either be satisfied by a reduction of effort levels, or by an ex-ante payment

made to the agent. If these payments can be extracted by the principal at

the beginning of the game, such an agreement would indeed maximize the

principal’s profits.

Now, two types of truth-telling constraints arise. First, the principal

might misreport her type and then proceed with play as prescribed by equi-

librium (like in our main case). This yields the constraints

Πhh ≥ Π̃hl (TThh)

Πhl ≥ Π̃hh (TThl)

Πlh ≥ Π̃ll (TTlh)

Πll ≥ Π̃lh, (TTll)
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where

Π̃hh = θhg(nhh)− nhhc+ δ
[
q
(
θlg(nhh)− nhhc+ δΠ

h
)

+ (1− q)
(
θlg(nhl)− nhlc+ δΠ

l
)]

= Πhh − δ
(
θh − θl

) [
qg(nhh) + (1− q)g(nhl)

]
are the principal’s profits in case today’s type is high and tomorrow’s type is

low, but where she falsely reports tomorrow’s type to be high.

The respective values Π̃hl, Π̃lh and Π̃ll are obtained in similar fashion.

The second kind of truth-telling constraints prevent the principal from misre-

porting her type and subsequently shutting down.

These constraints are

θhg(nhh)− nhhc+ δΠ
h ≥ θhg(nhl) (TThh2)

θhg(nhl)− nhlc+ δΠ
l ≥ θhg(nhh) (TThl2)

θlg(nlh)− nlhc+ δΠ
h ≥ θlg(nll) (TTlh2)

θlg(nll)− nllc+ δΠ
l ≥ θlg(nlh) (TTll2)

Note that these kinds of constraints are not needed in our main case.

There, next period’s type is revealed after today’s effort and output have

been realized. They are thus sunk when the principal’s announces next pe-

riod’s type. Therefore, these constraints coincide with the respective dynamic

enforcement constraints.

Finally, (DE) constraints as specified in the proof to Lemma 1, the case

with public information, must hold.

4 Impermanent Shocks – Details

Besides the qh/ql notation introduced in the main text, we shall also write

q(θt) for the probability of next period’s type being high given the current-

period type θt. We focus on a subset of the parameter space for which our

solution is qualitatively similar to our previous results, with overshooting and

gradual recovery.

Here, the truth-telling and dynamic enforcement constraints amount to
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−bh(θt) + δΠh(θt) ≥ −bl(θt) + δΠ̃l(θt) (TTh)

−bl(θt) + δΠl(θt) ≥ −bh(θt) + δΠ̃h(θt) (TTl)

−bh(θt) + δΠh(θt) ≥ 0 (DEh)

−bl(θt) + δΠl(θt) ≥ 0, (DEl)

with

Πh(θt) =θhg(nh(θt))− wh(θt)

+ qh
(
−bhh(θt) + δΠhh(θt)

)
+ (1− qh)

(
−bhl(θt) + δΠhl(θt)

)
,

Πl(θt) =θlg(nl(θt))− wl(θt)

+ ql
(
−blh(θt) + δΠlh(θt)

)
+ (1− ql)

(
−bll(θt) + δΠll(θt)

)
,

Π̃l(θt) =θhg(nl(θt))− wl(θt)

+ qh
(
−blh(θt) + δΠlh(θt)

)
+ (1− qh)

(
−bll(θt) + δΠll(θt)

)
and

Π̃h(θt) =θlg(nh(θt))− wh(θt)

+ ql
(
−bhh(θt) + δΠhh(θt)

)
+ (1− ql)

(
−bhl(θt) + δΠhl(θt)

)
.

Note that our formulations of Π̃h(θt) and Π̃l(θt) again make use of the One-

deviation principle (see Hendon, Jacobsen, and Sloth (1996)).

Now, we maximize Π(θ1) subject to the (TTh), (DEl) and (IC) constraints

(and omit the (DEh) and (TTl) constraints).

Combining (TTh) and (DEl) yields the following (EC) constraints, which

are necessary (but may not be sufficient) for equilibrium:
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−qhbh(θt)−
(
1− qh

)
bl(θt) + δqh

(
Πh(θt)− Π̃l(θt)

)
+ δΠl(θt) ≥ 0, (ECh)

−qlbh(θt)−
(
1− ql

)
bl(θt) + δql

(
Πh(θt)− Π̃l(θt)

)
+ δΠl(θt) ≥ 0. (ECl)

It is straightforward to verify that, if δ is large enough, first-best effort

levels satisfy these constraints. In contrast to the case of iid shocks, (ECl)

might bind for higher discount factors than (ECh) constraints. This is because

autocorrelated shocks make not only first-best, but also implementable, effort

a function of today’s state of the world. We shall, however, focus on the case

that (ECh) binds before (ECl) does, as we did for permanent shocks.

While (ECl) constraints can thus be omitted, (TTh) constraints (which

constitute one part of (ECl) constraints) will bind for all subsequent histories.

Indeed, suppose to the contrary that there exists a subsequent history, θ̂t+τ ,

such that (TTh) at θ̂t+τ is slack, and (EC) binds. Increase bh(θ̂t+τ ) by some

ε > 0 and reduce w(θ̂t+τ ) by q(θ̂t+τ )ε. This relaxes the (EC) constraint at

history θt and leaves all other (EC) constraints unaffected.

From this observation, it follows that we can plug binding (TTh) con-

straints into (EC), and rewrite the latter as

− qhbh(θt)−
(
1− qh

)
bl(θt) + δ

(
qhΠh(θt) + (1− qh)Πl(θt)

)
≥δqh

(
θh − θl

) {
g(nl(θt)) + δ

(
qh − ql

) [
g(nll(θt)) + δ

(
qh − ql

) (
g(nlll(θt)) + ...

)]}
.

By the same argument as in the proof of Lemma 6, it follows that nh(θt) will

be the same for all θt. By the same token, low-type effort can be written as

nli, where the i indicates the number of consecutive low periods immediately

preceding period t along a given history θt.

Furthermore having (IC) constraints hold as equalities and using U(θt) =

0 for all θt, we solve

max
nh,nli

Πh

=
(
1− δ(1− ql)

) θhg(nh)− nhc+ δ(1− qh)
∑∞

i=0

(
δ(1− ql)

)i (
θlg(nli)− nlic

)
(1− δ) (1− δ (qh − ql))

,

(1)
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subject to

−nhc+ δqhΠh + δ
(
1− qh

)
Πl

0 ≥ δqh
(
θh − θl

) ∞∑
i=0

[
δ
(
qh − ql

)]i
g(nli) (ECh)

Proposition 9 The solution to the constrained maximization problem (1) has

the following features: There exists a δh < 1 such that

• for δ ≥ δh, nh = nFBh and nli = nFBl for all i;

• for discount factors in some left neighborhood of δh, nh < nFBh . Further-

more, for all i ∈ N, nli < nli+1 < nFBl , with lim
i→∞

nli = nFBl .

Proof: Note that

Πl
0 =

∞∑
i=0

(
δ(1− ql)

)i (
θlg(nli)− nlic

)
+ δql

(
θhg(nh)− nhc

)
+ δ(1− qh)

∑∞
i=0

(
δ(1− ql)

)i (
θlg(nli)− nlic

)
(1− δ) (1− δ (qh − ql))

and that the (ECh) constraint can be rewritten to

− nhc+ δΠh q
h − δ

(
qh − ql

)
1− δ(1− ql)

+ δ
(
1− qh

) ∞∑
i=0

(
δ(1− ql)

)i (
θlg(nli)− nlic

)
≥ δqh

(
θh − θl

) ∞∑
i=0

[
δ
(
qh − ql

)]i
g(nli) (ECh)

Denoting by λ the Lagrange parameter associated with the (ECh) con-

straint, the Lagrange function equals
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L =
(
1− δ(1− ql)

)
×
(
θhg(nh)− nhc

)
+ δ(1− qh)

∑∞
i=0

(
δ(1− ql)

)i (
θlg(nli)− nlic

)
(1− δ) (1− δ (qh − ql))

×

(
1 + δ

qh − δ
(
qh − ql

)
1− δ(1− ql)

λ

)

+ λ

[
− nhc+ δ

(
1− qh

) ∞∑
i=0

(
δ(1− ql)

)i (
θlg(nli)− nlic

)
−δqh

(
θh − θl

) ∞∑
i=0

[
δ
(
qh − ql

)]i
g(nli)

]
,

yielding first-order conditions

∂L
∂nh

=
(
θhg′(nh)− c

) (
1− δ(1− ql)

)
(1− δ) (1− δ (qh − ql))

(
1 + δ

qh − δ
(
qh − ql

)
1− δ(1− ql)

λ

)
−λc = 0

(2)

∂L
∂nli

=δi+1

{(
θlg′(nli)− c

)((1− δ(1− ql)) (1− qh)
(1− δ) (1− δ (qh − ql))

(
1− ql

)i
(1 + λ)

)

−λqh
(
qh − ql

)i (
θh − θl

)
g′(nli)

}
= 0 (3)

The existence of a δh, with λ = 0 for δ ≥ δh, follows from the enforce-

ability of first-best effort levels for δ → 1.

Now, consider a left neighborhood of δh where nFBh and nFBl do not satisfy

(ECh), and thus λ > 0. Condition (2) gives nh < nFBh , whereas (3) gives

nli < nFBl . Condition (3) also implies that lim
i→∞

nli = nFBl : Since
(
qh − ql

)i
< 1,

lim
i→∞

(
qh − ql

)i
= 0, hence lim

i→∞

(
θlg′(nli)− c

)
= 0.

To show that nli < nli+1, rewrite conditions (3) for nli and for nli+1 as

(
θlg′(nli)− c

) (1− δ(1− ql)) (1− qh)
(
1− ql

)i
(1− δ) (1− δ (qh − ql))

=− λ

[(
θlg′(nli)− c

) (1− δ(1− ql)) (1− qh)
(1− δ) (1− δ (qh − ql))

(
1− ql

)i − qh (qh − ql)i (θh − θl) g′(nli)
]
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(
θlg′(nli+1)− c

) (1− δ(1− ql)) (1− qh)
(
1− ql

)i+1

(1− δ) (1− δ (qh − ql))

=− λ

[(
θlg′(nli+1)− c

) (1− δ(1− ql)) (1− qh)
(1− δ) (1− δ (qh − ql))

(
1− ql

)i+1 − qh
(
qh − ql

)i+1 (
θh − θl

)
g′(nli+1)

]

Dividing the first by the second equality and reformulating yields the

necessary condition (
θlg′(nli+1)− c

)(
θlg′(nli)− c

) =

(
qh − ql

)
(1− ql)

g′(nli+1)

g′(nli)
.

As
(qh−ql)
(1−ql)

< 1, this implies
(θlg′(nli+1)−c)
(θlg′(nli)−c)

<
g′(nli+1)

g′(nli)
. This is equivalent to

g′(nli) > g′(nli+1), which yields nli+1 > nli due to the strict concavity of g(·).�

Proposition 9 suggests that recovery may be gradual and never complete,

as in the case of permanent shocks. The solution to the maximization un-

derlying this proposition constitutes an equilibrium for parameter values such

that the (ECl) and (TTl) constraints hold at the solution. While we can show

that this is the case for an open, non-empty, subset of the parameter space,

we leave a complete characterization of this subset outside the scope of this

paper.

Concerning the intuition of this result, recall that with persistent shocks,

falsely claiming that the type is low forces the principal to stick to announcing

the low state forever thereafter. This is not the case with persistent, imper-

manent, shocks. Indeed, by the One-deviation-principle (Hendon, Jacobsen,

and Sloth (1996)), the costs of a deviation today are increasing in the size

of tomorrow’s high-type bonus bh – because the likelihood of having to pay

bh is larger off the equilibrium path. Therefore, tomorrow’s high-type bonus

blh is set as high as feasible, bounded as it is by the respective truth-telling

constraint. This truth-telling constraint is again relaxed by a large high-type

bonus the day after tomorrow, bllh, and so on. In contrast to the iid case,

these consecutively binding truth-telling constraints make it optimal to dis-

tort later nli as well. Because of discounting and the decreasing difference

between on-path and off-path likelihoods of having to pay high-type bonuses,

these distortions decrease with i, and eventually vanish, as for permanent
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shocks.

5 Proofs for Section 4

Proof of Proposition 6: If the type is the principal’s private information,

additional truth-telling constraints, now imposed at the beginning of a period,

must hold:

θhg(nh)− bh − hwh + δΠ
h ≥ θhg(nl)− bl − hwl + δΠ

l
(TThh)

θhg(nh)− bh − lwh + δΠ
h ≥ θhg(nl)− bl − lwl + δΠ

l
(TTlh)

θlg(nl)− bl − hwl + δΠ
l ≥ θlg(nh)− bh − hwh + δΠ

h
(TThl)

θlg(nl)− bl − lwl + δΠ
l ≥ θlg(nh)− bh − lwh + δΠ

h
(TTll)

To show that these constraints can be omitted, we plug the results from

the case with public information, hwh = hwl = lwh = lwl = 0 and bh = nhc

and bl = nlc, into the conditions. Then, Π
h

= Π
l
=

q(θhg(nh)−nhc)+(1−q)(θlg(nl)−nlc)
(1−δ) ,

and the constraints become

θhg(nh)− nhc ≥ θhg(nl)− nlc (TThh)

θhg(nh)− nhc ≥ θhg(nl)− nlc (TTlh)

θlg(nl)− nlc ≥ θlg(nh)− nhc (TThl)

θlg(nl)− nlc ≥ θlg(nh)− nhc (TTll)

which are satisfied for the respective effort levels. �

Proof of Lemma 1: It is immediate that Π
h ≥ Π

l
, i.e. that a high type

is associated with higher profits. Therefore, θt+1 = θh allows for a credible

promise of a higher bonus, and therefore for the implementation of a higher

effort level, in period t. The desired effort levels if today’s type is high (nhh

and nhl) are also larger than if today’s type is low. If the discount factor

is sufficiently close to 1, none of the constraints bind and first-best levels

nhh = nhl = nFBh and nll = nlh = nFBl can be implemented. For a lower

discount factor, (DEhl) will eventually bind, and nhl < nhh = nFBh . For even

lower discount factors, (DEhh) and/or (DEll) will at some point bind as well.

This yields the result. �

23



Proof of Proposition 7: First, we show that nhh = nhl ≡ nh and

nlh = nll ≡ nl. To do so, we omit (TT) constraints and solve the problem

only subject to (TT2) and (DE) constraints. Then, we show that the solution

to this relaxed problem also satisfies (TT) constraints.

The reduced problem maximizes Π
h
, subject to

−nhhc+ δΠ
h ≥ 0 (DEhh)

−nhlc+ δΠ
l ≥ 0 (DEhl)

−nlhc+ δΠ
h ≥ 0 (DElh)

−nllc+ δΠ
l ≥ 0. (DEll)

θhg(nhh)− nhhc+ δΠ
h ≥ θhg(nhl) (TThh2)

θhg(nhl)− nhlc+ δΠ
l ≥ θhg(nhh) (TThl2)

θlg(nlh)− nlhc+ δΠ
h ≥ θlg(nll) (TTlh2)

θlg(nll)− nllc+ δΠ
l ≥ θlg(nlh) (TTll2)

Note that effort is never above the respective first-best effort level. Now,

assume to the contrary that nhh > nhl. If (DEhl) binds, plugging−nhlc+δΠl
=

0 into (TThl2) yields θhg(nhl) ≥ θhg(nhh) which is violated for nhh > nhl. If

(DEhl) does not bind, increase nhl by a small ε > 0. This operation increases

Π
h
, relaxes (TThl2), and does not violate (TThh2), (DEhl) or any other

constraint. Continue until either nhh = nhl or (DEhl) binds. In the latter case,

recall that (TThl2) is violated for a binding (DEhl) constraint and nhh > nhl.

Next, assume nhh < nhl. If (DEhh) binds, plugging −nhhc + δΠ
h

= 0

into (TThh2) yields θhg(nhh) ≥ θhg(nhl) which is violated for nhh < nhl. If

(DEhh) does not bind, increase nhh by a small ε > 0. This operation increases

Π
h
, relaxes (TThh2), and does not violate (TThl2) and (DEhh) or any other

constraint. Continue until either nhh = nhl or (DEhh) binds. In the latter

case, recall that (TThh2) is violated for a binding (DEhh) constraint and

nhh > nhl.

Thus, we have shown that nhh = nhl ≡ nh in this reduced problem.

Accordingly, it can be shown that nlh = nll ≡ nl. Taking this into account,
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the remaining constraints in the reduced problem are

−nhc+ δΠ
h ≥ 0 (DEhh)

−nhc+ δΠ
l ≥ 0 (DEhl)

−nlc+ δΠ
h ≥ 0 (DElh)

−nlc+ δΠ
l ≥ 0. (DEll)

Together with Π
h

=
(
θhg(nh)− nhc

)
+ δqΠ

h
+ δ(1 − q)Π

l
and Π

l
=(

θlg(nl)− nlc
)

+ δqΠ
h

+ δ(1 − q)Π
l
, this implies that nh ≥ nl and Π

h
>

Π
l
, which allows us to omit (DEhh) and (DElh), and leaves the remaining

constraints

−nhc+ δΠ
l ≥ 0 (DEh)

−nlc+ δΠ
l ≥ 0. (DEl)

Therefore, effort levels to this constrained maximization problem are

given by discount factors, δ and δ, with 0 < δ < δ < 1, with

nh = nFBh and nl = nFBl for δ ≥ δ

nl = nFBl < nh < nFBh for δ < δ < δ

nl = nh ≤ nFBl for δ ≤ δ

To complete the proof, we have to show that these effort levels do not

violate any of the (TT) constraints. These amount to

(
θhg(nhh)− nhhc+ δΠ

h
)
−
(
θhg(nhl)− nhlc+ δΠ

l
)

− δ
(
θh − θl

) [
qg(nlh) + (1− q)g(nll)

]
≥ 0 (TThh)

−
[(
θhg(nhh)− nhhc+ δΠ

h
)
−
(
θhg(nhl)− nhlc+ δΠ

l
)]

+ δ
(
θh − θl

) [
qg(nhh) + (1− q)g(nhl)

]
≥ 0 (TThl)

(
θlg(nlh)− nlhc+ δΠ

h
)
−
(
θlg(nll)− nllc+ δΠ

l
)

− δ
(
θh − θl

) [
qg(nlh) + (1− q)g(nll)

]
≥ 0 (TTlh)

25



−
[(
θlg(nlh)− nlhc+ δΠ

h
)
−
(
θlg(nll)− nllc+ δΠ

l
)]

+ δ
(
θh − θl

) [
qg(nhh) + (1− q)g(nhl)

]
≥ 0. (TTll)

Plugging nhh = nhl = nh and nlh = nll = nl into the (TT) constraints, re-

arranging and making use of Π
h − Π

l
=
(
θhg(nh)− nhc

)
−
(
θlg(nl)− nlc

)
,

yields an equivalence of (TThh) and (TTlh), as well as of (TThl) and (TTll).

Therefore, the remaining (TT) constraints are

δ
[(
θhg(nh)− nhc

)
−
(
θhg(nl)− nlc

)]
≥ 0 (TThh)

δ
[(
θlg(nh)− nhc

)
−
(
θlg(nl)− nlc

)]
≤ 0 (TThl)

For δ > δ, these conditions hold strictly (the latter because nFBl maxi-

mizes θlg(nl)− nlc), for δ ≤ δ and hence nl = nh they hold as equalities. �

Proof of Proposition 8: We first omit (DEl) constraints and show ex

post that they hold at the solutions of the relaxed problem. Denoting by λ

the Lagrange parameter associated with the (ECh) constraint, the Lagrange

function equals

L =
θhg(nh)− nhc+ δ(1− q)

∑∞
i=0 δ

i
(
θlg(nli)− nlic

)
1− δq

(1 + δqλ)

+ λ

[
−nhc+

∞∑
i=0

δi+1
[(

(1− q) θl −
(
θh − θl

)
qi+1

)
g(nli)− (1− q)nlic

]]
,

yielding first-order conditions

∂L
∂nh

=
θhg′(nh)− c

1− δq
(1 + δqλ)− λc = 0 (4)

∂L
∂nli

=δi+1

{(
θlg′(nli)− c

)((1− q)
1− δq

(1 + δqλ) + λ (1− q)
)

−λqi+1
(
θh − θl

)
g′(nli)

}
= 0 (5)

δ < δh implies λ > 0. Hence, condition (4) gives nh < nFBh , whereas (5)

gives nli < nFBl . Condition (5) also implies that lim
i→∞

nli = nFBl : Since q < 1,
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lim
i→∞

qi+1 = 0, hence θlg′(nli)− c = 0.

To show that nli < nli+1, rewrite conditions (5) for nli and for nli+1 as(
θlg′(nli)− c

) (1−q)
1−δq = −λ

[
(1−q)
1−δq

(
θlg′(nli)− c

)
− qi+1

(
θh − θl

)
g′(nli)

]
(
θlg′(nli+1)− c

) (1−q)
1−δq = −λ

[
(1−q)
1−δq

(
θlg′(nli+1)− c

)
− qi+2

(
θh − θl

)
g′(nli+1)

]
.

Dividing the first by the second equality yields the necessary condition

θlg′(nli)− c
θlg′(nli+1)− c

=

(1−q)
1−δq

(
θlg′(nli)− c

)
− qi+1

(
θh − θl

)
g′(nli)

(1−q)
1−δq

(
θlg′(nli+1)− c

)
− qi+2 (θh − θl) g′(nli+1)

,

which becomes

qi+1
(
θh − θl

) g′(nli)
(
θlg′(nli+1)− c

)
−
(
θlg′(nli)− c

)
qg′(nli+1)(

θlg′(nli+1)− c
) [ (1−q)

1−δq

(
θlg′(nli+1)− c

)
− qi+2 (θh − θl) g′(nli+1)

] = 0

The denominator of this expression must be different from zero:(
θlg′(nli+1)− c

)
> 0 because nli+1 < nFBl . The term in squared brackets

must be strictly negative: It captures the partial derivative of the left hand side

of the (ECh) constraint with respect to nli+1. If it were positive, a larger value

of nli+1 (which is feasible) would relax the (ECh) constraint, contradicting

that it binds. Therefore, the term is zero if and only if its numerator is zero,

yielding (
θlg′(nli+1)− c

)(
θlg′(nli)− c

) = q
g′(nli+1)

g′(nli)
.

As q < 1, this implies
(θlg′(nli+1)−c)
(θlg′(nli)−c)

<
g′(nli+1)

g′(nli)
. This is equivalent to

g′(nli) > g′(nli+1), which yields nli+1 > nli due to the strict concavity of g(·).
Finally, note that the derived nli satisfy all (DEli) constraints, −nlic +

δΠl
i+1 ≥ 0. Since nli+1 > nli∀i, Πl

i+1 >
θlg(nli)−nlic

1−δ , hence it is sufficient to show

that

−nlic+δ
θlg(nli)−nlic

1−δ ≥ 0, that is −nlic+δθlg(nli) ≥ 0, holds. Because δ ≥ δl,

this condition would hold for nli = nFBl . Because g(·) is strictly increasing and

concave, and because g(0) = 0, −nFBl c+ δθlg(nFBl ) ≥ 0 implies that this also

holds for all nli < nFBl . �
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6 Proofs for Appendix A

Proof of Lemma 2: Adding (DEl) and (TTh) gives −bh(θt) + δΠh(θt) ≥
δg(nl(θt))

(
θh − θl

)
. Since the right hand side is positive, this implies (DEh).�

Proof of Lemma 3: Assume there is a history θτ where both constraints

bind simultaneously even though nh(θτ ) 6= nl(θτ ). Then, (TTh) implies

bh(θτ ) = bl(θτ )+δΠh(θτ )−δΠ̃l(θτ ). Plugging this into the binding (TTl) con-

straint yields

g(nl(θτ ))
(
θh − θl

)
= g(nh(θτ ))

(
θh − θl

)
. Since θh − θl > 0 and g is strictly

increasing, this contradicts the claim that both constraints bind for nh(θτ ) 6=
nl(θτ ). �

Proof of Lemma 4: We start with proving the first two parts. Suppose

to the contrary that there exists a history θt of length t ≥ 1 and an equi-

librium such that, following history θt, the principal is strictly better off in

this equilibrium than in any equilibrium satisfying points 1.-2. We show by

construction that this cannot be the case.

1. Assume that, in an optimal equilibrium, U i(θt) > 0, i ∈ {h, l} for some

history θt of length t. Reduce wi(θt) by U i(θt) and increase the respective

bonus in the previous period, bi(θt), by δU i(θt). Since −bi(θt) + δΠi(θt)

and bi(θt) + δU i(θt) remain unchanged, this change leaves the agent’s

(IC) and (IR) constraints as well as all of the principal’s constraints

at history θt and all predecessor histories unaffected. Furthermore, the

principal’s profits at history θt as well as in all predecessor histories

remain unchanged. Repeat this step for all histories of length t and of

length t+ 1.

2. Assume that Πh(θt) < Π̃l(θt). Replace play after (θt, θh) by play after

(θt, θl). This leads to on-path profits of Π̂h(θt) = Π̃l(θt). Set bhnew(θt) =

blnew(θt) = n(θt)c, while increasing w(θt) by δq
(

Π̂h(θt)− Πh(θt)
)

+

q
(
bhold(θ

t)− bhnew(θt)
)

+ (1− q)
(
blold(θ

t)− blnew(θt)
)
.(By Step 1. and the

fact that (IC) at history θt holds, this increase is weakly larger than

qδ
(

Π̂h(θt)− Πh(θt)
)

.) (TTh), (TTl) and (IC) at history θt now hold

with equality. Previous constraints remain unchanged, with the excep-

tion of previous (IC)-constraints, which are relaxed. It remains to be
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shown that the (DEl)-constraint at history θt continues to hold. As the

proof of Lemma 5 shows, the fact that (DEl) and (TTh) previously held

at history θt, together with Step 1, implies

−n(θt)c+ δ
{
q
[
Πh(θt)− Π̃l(θt)

]
Πl(θt)

}
≥ 0.

As Πh(θt) < Π̃l(θt), this implies −n(θt)c+ δΠl(θt) ≥ 0, which was to be

shown.

Furthermore, we can show (for later use) that, for histories θt such that

nh(θt) ≤ nl(θt), Πl(θt) ≥ Π̃h(θt). To the contrary, assume that Πl(θt) <

Π̃h(θt). Replace play after (θt, θl) by play after (θt, θh). This leads to on-

path profits of Π̂l(θt) = Π̃h(θt). Set bhnew(θt) = blnew(θt) = n(θt)c, while

increasing w(θt) by δ(1− q)
(

Π̂l(θt)− Πl(θt)
)

+ q
(
bhold(θ

t)− bhnew(θt)
)

+ (1−
q)
(
blold(θ

t)− blnew(θt)
)
. (TTh), (TTl) and (IC) at history θt now hold with

equality. Previous constraints remain unchanged, with the exception of pre-

vious (IC) and (IR) constraints, which are relaxed. It remains to be shown

that (DEl)-constraint at history θt continues to hold. As the proof of Lemma

2 shows, the fact that (DEl) and (TTh) previously held at history θt, together

with Step 1, implies

−n(θt)c+ δ
{
q
[
Πh(θt)− (θh − θl)g(nl(θt))

]
+ (1− q)Πl(θt)

}
≥ 0.

As Πl(θt) < Πh(θt)− (θh − θl)g(nh(θt)) = Π̃h(θt), this implies

−n(θt)c + δΠh(θt) ≥ δ(θh − θl)
(
qg(nl(θt) + (1− q)g(nh(θt))

)
.

As nh(θt) ≤ nl(θt), this implies −n(θt)c + δΠh(θt) ≥ δ(θh − θl)g(nh(θt)),

or −n(θt)c+ δΠ̂l(θt) ≥ 0, which was to be shown.

After Operation 2., we have to repeat Operations 1. As Operations 1.

leave profits and effort levels unchanged, there is no need to repeat Operation

2. after that. Furthermore, we can repeat these operations for all histories

of length t and after that for all histories of length t − 1, t − 2, · · · . Finally,

assume U(θ1) > 0. Reducing w(θ1) by U(θ1) increases Π(θ1) and only affects

the agent’s first-period (IR) constraint, which continues to hold.

To show that bh(θt) ≥ bl(θt) for all histories θt, assume to the contrary

that there exists a history θt such that bh(θt) < bl(θt). Because of part 2, this

implies that (TTh) is slack. Increase bh(θt) by a small ε > 0 and reduce bl(θt)

by q
1−qε. This leaves all (IC) constraints unaffected and relaxes the (DEl)
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and (TTl) constraints at history θt. (TTh) is tightened, while nonetheless

remaining slack as long as bh(θt) < bl(θt). Finally, all constraints and profits

at predecessor histories remain unchanged.

We now show that the (TTl) constraint can be omitted and the (IC)

constraint will bind. If nh(θt) ≤ nl(θt), it immediately follows from the fact

that bh(θt) ≥ bl(θt) and Πl(θt) ≥ Π̃h(θt) that (TTl) can be omitted. So

suppose that nh(θt) > nl(θt), and suppose that the (TTl) constraint binds.

By Lemma 3, this implies that the (TTh) constraint is slack. We can therefore

increase bh(θt) by a small ε > 0 while decreasing w(θt) by qε. This leaves

all previous constraints and profits unaffected yet relaxes the current (IC)

and (TTl) constraints (while tightening the current (TTh) constraint and

leaving the current (DEl) constraint unaffected). Now suppose that the (IC)

constraint is slack. If bl(θt) > 0, we can decrease bh(θt) > 0 and bl(θt) > 0

by some ε > 0, while increasing w(θt) by ε. This leaves all previous profits

as well as all previous and current constraints unaffected, with the exception

of the current (DEl)-constraint, which is relaxed. If now bl(θt) = 0 and the

(IC) and (TTl) constraints are slack, we can decrease bh(θt) by some ε > 0,

while increasing w(θt) by ε
q
. This leaves all previous constraints and profits

unaffected, yet relaxes the current (TTh) constraint (while tightening the

current (TTl) and (IC) constraints and leaving the current (DEl) constraint

unaffected). If bl(θt) = 0 and the (TTl) constraint binds, we can replace play

after (θt, θl) by play after (θt, θh) while setting bhnew(θt) = blnew(θt) = n(θt)c

and increasing w(θt) by (1 − q)(Πl
new(θt) − Πl

old(θ
t)) + qbhold(θ

t) − n(θt)c. As

Πl
new(θt) = Π̃h(θt) ≥ Π̃h(θt) − bhold(θ

t)

δ
= Πl

old(θ
t), and bhold(θ

t) ≥ n(θt)c by the

(IC) constraint, the increase in w(θt) is positive. Therefore, previous (IC)

and (IR) constraints are relaxed while all other previous constraints remain

unaffected by our change. Furthermore, the current (TTh), (TTl) and (IC)

constraints all hold with equality by construction. It remains to show that the

current (DEl) constraint continues to hold, i.e. that −n(θt)c + δΠl
new(θt) =

−n(θt)c + δΠ̃h(θt) ≥ 0. Yet, the binding (TTl) implies that δΠl
old(θ

t) =

−bhold(θt) + δΠ̃h(θt) ≥ 0, which implies that the current (DEl) constraint will

hold after our change, as bhold(θ
t) ≥ n(θt)c

q
≥ n(θt)c by the (IC) constraint.

Because U(θt) = w(θt) − n(θt)c + qbh(θt) + (1 − q)bl(θt) = 0, a binding

(IC) constraint implies that w(θt) = 0 for all histories θt. �

Proof of Lemma 5: By Lemma 4, we can without loss focus on equi-

30



libria in which

n(θt)c = qbh(θt) + (1− q)bl(θt) (6)

at every history θt. Using (6) and multiplying (TTh) with q and adding it to

(DEl) yields (EC).

To prove that (EC) implies (TTh) and (DEl) given (6), assume that we

are at an optimum satisfying the properties of Lemma 4 and that (EC) holds.

We shall now show that it is always possible to find non-negative bonus pay-

ments bh(θt) and bl(θt) such that (6) holds, and that (DEl) and (TTh) are both

satisfied. Toward this purpose, we set bl(θt) = min
{
δΠl(θt), n(θt)c

}
≥ 0.

First suppose that n(θt)c ≤ δΠl(θt). In this case, we set bh(θt) = n(θt)c.

Now, (DEl) will trivially hold (with slackness if n(θt)c < δΠl(θt)). Using

bh(θt) = n(θt)c in (TTh) yields δΠh(θt) ≥ δg(nl(θt))
(
θh − θl

)
+δΠl(θt), which

is implied by the second part of Lemma 4. Now suppose that n(θt)c > δΠl(θt).

In this case, we set bh(θt) = 1
q

[
n(θt)c− δ(1− q)Πl(θt)

]
> 0. Clearly, (DEl)

will trivially hold with equality (because bl(θt) = δΠl(θt)). Substituting bh(θt)

into (TTh) yields 1
q

times (EC). �

Proof of Lemma 6: Consider an optimum satisfying the properties of

Lemmas 4 and 5. Suppose that there exists a history θt such that Πh(θt) <

maxθ̂τΠ
h(θ̂τ ). Replace the continuation play following

(
θt, θh

)
by the contin-

uation play following
(
θ̃, θh

)
, where θ̃ ∈ argmaxθ̂τΠ

h(θ̂τ ). By virtue of our iid

assumption, this is feasible. This increases profits and relaxes some (EC) con-

straints without tightening any previous ones. This establishes that Πh(θt) =

Π
h

for all θt (if two different continuation plays lead to argmaxθ̂τΠ
h(θ̂τ ), we

select one to be played after all histories
(
θt, θh

)
). Therefore, there exists an

optimum in which for any history θt, nh(θt) = nh and nl(θt) = nli(θt). �

Proof of Lemma 7:

Consider an optimum satisfying the properties of Lemmas 4, 5 and 6.

Suppose there exists a history θt such that n(θt) > nFB(θt). Reduce n(θt) by

a small ε > 0. This increases profits and relaxes the (EC) constraints at all

predecessor histories. �

Proof of Lemma 8: Consider a given discount factor δ̂ and the as-

sociated sequence of optimal actions
(
nh(δ̂), nli(δ̂)

)
i∈N

. We first show that

a higher δ relaxes (EC) constraints; i.e., for any discount factor δ̃ > δ̂, pre-
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viously optimal actions nh(δ̂) and nli(δ̂) continue to satisfy the (EC) con-

straints. We show this by induction over the number of periods, starting

from the first period, in which the discount factor rises from δ̂ to δ̃. First,

suppose only the discount factor between the first and the second period

rises. The (EC) constraint in the first period can be written as −nhc +

δq
[
Πh − g(nl0)

(
θh − θl

)]
+ δ(1 − q)Πl

0 ≥ 0. In Lemma 4 we showed that, at

our optimum, Πh(θt) ≥ Πl(θt) + g(nl(θt))
(
θh − θl

)
for all histories θt. Since

Πl(θt) ≥ 0, the term in square brackets is non-negative. Hence, (EC) in period

1 becomes slacker, and the actions that were optimal at the discount factor

δ̂ can still be enforced at the higher discount factor δ̃. By Lemma 7, these

actions lead to (weakly) higher profits. The argument for the induction step

is analogous. �

7 Proofs for Appendix B

Proof of Lemma 9: Suppose to the contrary that a policy σ =
(
nh, nli

)
i∈N

such that nh < supi∈N n
l
i =: n̄l is optimal. Then, as n(θt) ≤ nFB(θt), the pol-

icy σ̂ =
(
n̂h, n̂li

)
i∈N given by n̂h = n̂li = n̄l, ŵh = ŵli = 0, and b̂h = b̂li = n̄c, for

all i ∈ N leads to higher profits Π̂h > Πh and Π̂l ≥ Πl
i (i ∈ N), where Π̂h (Πh)

and Π̂l (Πl
i) are the profits associated with policy σ̂ (σ), respectively. As policy

σ satisfies all (DEli)-constraints, we have that −nlic+ δΠ̂l ≥ −nlic+ δΠl
i ≥ 0.

This implies −n̄lc+ δΠ̂l ≥ 0, i.e., the policy σ̂ satisfies all (DEli)-constraints.

Moreover, (TTh) and (TTl) hold with equality. This is a contradiction to

policy σ being optimal. �

Proof of Lemma 10: Lemma 9 implies that, if both (TTh) and (TTl)

bind, nh = nlτ = n̄ for all τ ∈ N. In this case, bh = bl0 ≥ n̄c.

Now, if there exists a τ ∈ N such that nh > nlτ , Lemma 9 implies that
g(nh)
1−δq >

∑∞
τ=0(δq)

τg(nlτ ). Suppose that (TTl) binds. As g(nh)
1−δq >

∑∞
τ=0(δq)

τg(nlτ ),

(TTh) is slack. We can therefore increase bh by a small ε > 0 while decreasing

wh by qε. This leaves all constraints and profits unaffected yet relaxes the

(IC) and (TTl) constraints (while tightening the (TTh) constraint and leaving

the (DEli) constraints unaffected). Now suppose that the (IC) constraint is

slack. If bl0 > 0, we can decrease bh > 0 and bl0 > 0 by some ε > 0, while

increasing wh by ε. This leaves profits as well as all constraints unaffected,
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with the exception of the (DEl0)-constraint, which is relaxed. If now bl0 = 0

and the (IC) and (TTl) constraints are slack, we can decrease bh by some

ε > 0, while increasing wh by ε
q
. This leaves all constraints and profits unaf-

fected, yet relaxes the (TTh) constraint (while tightening the (TTl) and (IC)

constraints and leaving the (DEl0) constraint unaffected). If bl0 = 0 and the

(TTl) constraint binds, we can replace nlτ by nh for all τ ∈ N while setting

bhnew = blτ,new = nhc. The (TTh), (TTl) and (IC) constraints all hold with

equality by construction. It remains to show that the (DEli) constraints con-

tinue to hold, i.e. that −n̄c + δΠl
i,new = −n̄c + δΠ̃h ≥ 0. Yet, the binding

(TTl) implies that δΠl
0,old = −bhold(θt) + δΠ̃h(θt) ≥ 0, which implies that the

(DEli) constraints will hold after our change, as bhold ≥ nhc
q
≥ nhc by the (IC)

constraint.

Because Uh = wh − nhc + qbh + (1− q)bl0 = 0, a binding (IC) constraint

implies that wh = 0. By the same token, U l
τ = wlτ −nlτc+ blτ+1 = 0, a binding

(IC) constraint implies that wlτ = 0 for all τ ∈ N. �

Proof of Lemma 11: Suppose the discount factor rises from δ̂ to δ̃ > δ̂.

The actions that were optimal at δ̂ continue to satisfy all (DEli) for δ̃. By

Lemma 7, these actions lead to weakly higher profits. It thus only remains to

show that (ECh) is relaxed as δ increases. For this, we compute the derivative

D of (ECh) with respect to δ, which works out as

D = q

[
Πh + δΠh′ − (θh − θl)

∞∑
i=0

(1 + i)(δq)ig(nli)

]
+ (1− q)

[
Πl

0 + δΠl′

0

]
.

As

Πh =
1

1− δq
[
θhg(nh)− nhc+ δ(1− q)Πl

0

]
,

we have

Πh′ =
1− q
1− δq

[Πl
0 + δΠl′

0 ] +
q

(1− δq)2
[
θhg(nh)− nhc+ δ(1− q)Πl

0

]
.

Furthermore, as

Πl
0 =

∞∑
i=0

δi
(
θlg(nli)− nlic

)
,
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we have

Πl
0 + δ(1− δq)Πl′

0 =
∞∑
i=0

(1 + (1− δq)i)δi
(
θlg(nli)− nlic

)
.

Inserting this gives us

(1− δq)2D = q(θhg(nh)−nhc) + (1− q)
∞∑
i=0

(1 + (1− δq)i) δi
(
θlg(nli)− nlic

)
− q(θh − θl)(1− δq)2

∞∑
i=0

(1 + i)(δq)ig(nli).

To show that D ≥ 0, it is sufficient to show that

q(θhg(nh)−nhc)+(1−q)
∞∑
i=0

(1 + (1− δq)i) δi
(
θlg(nli)− nlic

)
−q(θh−θl)g(n̄l) ≥ 0,

where we have used that
∑∞

i=0(1 + i)(δq)i = 1
(1−δq)2 and supi∈N n

l
i =: n̄l. We

can rewrite this as

q

[
θh(g(nh)− g(n̄l))−

(
nh −

∞∑
i=0

(1 + (1− δq)i)δinli

)
c

+θl

(
g(n̄l)−

∞∑
i=0

(1 + (1− δq)i)δig(nli)

)]

+
∞∑
i=0

(1 + (1− δq)i)δi(θlg(nli)− nlic) ≥ 0.

By Lemma 9, we know that nh ≥ n̄l; by Lemma 7, this implies that

θhg(nh)− nhc ≥ θhg(n̄l)− n̄lc. Thus, it is sufficient for D ≥ 0 that

q

[
θlg(n̄l)− n̄lc−

∞∑
i=0

(1 + (1− δq)i)δi(θlg(nli)− nlic)

]
+
∞∑
i=0

(1+(1−δq)i)δi(θlg(nli)−nlic) ≥ 0,

which was to be shown. �
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