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1 Existence in the baseline model

We need to examine whether both schools choosing effort level e∗S as defined in (10) is an equilibrium of the

game in which both schools simultaneously choose efforts and then households allocate their children across

schools in the manner discussed in the text. The analysis in the text establishes that, when school B chooses

e∗S , effort level e∗S satisfies the first order necessary condition for maximizing school A’s payoff

EA(eA − e∗S)− γ e
2
A

2
,

subject to the constraints that eA − e∗S +αµ is positive and eA − e∗S +αµ/2 is less than c. These constraints

guarantee that school A’s enrollment is given by

EA(eA − e∗S) =
1

2

[
1 +

∆q(eA − e∗S)

c

]
,

where ∆q(eA−e∗S) is as defined in (6). They also guarantee that ∆q(eA−e∗S) ∈ (0, c). Similarly, the analysis

in the text establishes that, when school A chooses e∗S , effort level e∗S satisfies the first order necessary

condition for maximizing school B’s payoff

EB(e∗S − eB)− γ e
2
B

2
,

subject to the constraints that e∗S − eB + αµ is positive and e∗S − eB + αµ/2 is less than c.

To establish that both schools choosing effort level e∗S is an equilibrium we have to check that, for each

school, e∗S is a genuine best response to the other school choosing e∗S . As noted in the text, there are two

distinct sets of issues to worry about. First, for each school, is e∗S a global maximum in the set of effort levels

that give rise to a school quality differential described by (6)? Second, for each school, does e∗S dominate

effort levels that would generate a negative school quality differential which would not be described by (6)?

1.1 First set of issues

We begin with the first set of issues. The first step is to explore the properties of the equilibrium quality

differential (6). We have that for all ∆e ∈ [−αµ, c − αµ/2] the first and second derivatives of the quality

differential are

∆q′(∆e) =
1

2
+

c+ ∆e

2

√
(c+ ∆e)

2
+ 4αµc

> 0 (A1)
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and

∆q′′(∆e) =
2αµc(

(c+ ∆e)
2

+ 4αµc
) 3

2

> 0. (A2)

Thus, the equilibrium quality differential is an increasing and convex function of the schools’ effort differential.

When school A chooses effort level e∗S , ∆e will be greater than −αµ if eB ∈ [0, e∗S + αµ]. Thus, school

B’s payoff on this interval is

1

2
[1− ∆q(e∗S − eB)

c
]− γ e

2
B

2
.

Given (A2), this payoff is concave. Accordingly, since e∗S satisfies the first order condition (9), e∗S is optimal

in the set of effort levels [0, e∗S + αµ].

Matters are more complicated for school A. When school A chooses effort level e∗S , ∆e will belong to the

interval [−αµ, c− αµ/2] if eA ∈ [max{0, e∗S − αµ}, e∗S + c− αµ/2]. Thus, school A’s payoff on this interval is

1

2
[1 +

∆q(eA − e∗S)

c
]− γ e

2
A

2
.

The second derivative of this payoff function is

1

2
[
∆q′′(eA − e∗S)

c
]− γ,

which, given (A2), is not obviously negative. School A’s second order condition is satisfied at eA = e∗S if

αµ(
c2 + 4αµc

) 3
2

≤ γ

Obviously, it is straightforward to impose assumptions under which this is true. For concavity over the whole

interval, we need that

∆q′′(eA − e∗S) ≤ 2cγ

over the relevant range. From (A2), this requires that for all eA

αµ ≤ γ
(

(c+ eA − e∗S)
2

+ 4αµc
) 3

2

.

Notice that provided that c + eA − e∗S > 0, the right hand side of this inequality is increasing in eA. Since

eA ≥ e∗S − αµ, the right hand side will be increasing in eA if αµ < c. Under this assumption, a sufficient
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condition for concavity is that

αµ

(c+ αµ)
3 ≤ γ.

This holds if

c ≥ 3

√
αµ

γ
− αµ. (A3)

1.2 Second set of issues

To address the second set of issues, we need to first describe the schools’ payoff functions when ∆e + αµ

is negative and the quality differential is negative. To this end, assume that households anticipate that the

quality of school A will be lower than that of school B, so that ∆q = qA − qB < 0. Then, all households in

neighborhood B will use school B and households in neighborhood A will use school B if their costs are less

than −∆q and school A otherwise. It follows that

sA =
µ

2

and that

sB = −µ
2

[
∆q
c + 1

1− ∆q
c

]
.

Using (1), this means that, if households have rational expectations, ∆q must satisfy the equation

∆q = ∆e+ α

(
µ

1− ∆q
c

)
.

This is a quadratic equation with solution

∆q−(∆e) =
c+ ∆e−

√
(c−∆e)

2 − 4αµc

2
. (A4)

The solution will lie in the interval [−c, 0] if ∆e + αµ is non-positive and if ∆e + αµ/2 is greater than or

equal to −c. Given this, with effort levels eA and eB such that ∆e lies in the range [−c − αµ/2,−αµ], the

two schools will anticipate enrollments of

EA(∆e) =
1

2

[
1 +

∆q−(∆e)

c

]
,

and

EB(∆e) =
1

2

[
1− ∆q−(∆e)

c

]
.
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We need to understand whether either school has an incentive to deviate from choosing effort level e∗S to

choosing an effort level such that ∆e ends up in the range [−c− αµ/2,−αµ]. Key to this are the properties

of the equilibrium quality differential (A4). Differentiating, we have that:

∆q′−(∆e) =
1

2
+

c−∆e

2

√
(c−∆e)

2 − 4αµc
> 0 (A5)

and that

∆q′′−(∆e) =
2αµc(

(c−∆e)
2 − 4αµc

) 3
2

> 0 (A6)

Thus, the equilibrium quality differential continues to be increasing and convex in the range in which it is

negative. Note further that

lim
∆e↗−αµ

∆q−(∆e) = lim
∆e↘−αµ

∆q(∆e) = 0

and that

lim
∆e↗−αµ

∆q′−(∆e) =
1

2
+

c+ αµ

2 |c− αµ|
>

1

2
+

c− αµ
2 (c+ αµ)

= lim
∆e↘−αµ

∆q′(∆e). (A7)

The first equality implies that the equilibrium quality differential is continuous at the point at which it

switches from negative to positive. The second inequality implies that it has a kink at the switch point: in

particular, its slope jumps down.

Now consider the incentives of school A to deviate to choosing an effort level such that ∆e ends up in

the range [−c−αµ/2,−αµ]. This requires that school A reduce its effort level. The lowest effort level it can

choose is zero, so that if e∗S is less than αµ, then such an effort level does not exist. From (10), note that e∗S

is less than αµ if

1

γ

[
1

4
√
c2 + 4cαµ

+
1

4c

]
< αµ.

A sufficient condition for this is that

c >
1

2γαµ
. (A8)

If e∗S exceeds αµ, we need to consider the behavior of school A’s payoff function for effort levels eA on the

interval [0, e∗S − αµ]. The first and second derivatives of school A’s payoff function on this interval are

∆q′−(eA − e∗S)

2c
− γeA
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and

∆q′′−(eA − e∗S)

2c
− γ.

Note that school A’s payoff must be increasing at eA = 0 since

∆q′−(−e∗S)

2c
> 0.

Under (A3), it is also increasing at eA = e∗S − αµ. This follows from the facts that

∆q′−(−αµ)

2c
− γ (e∗S − αµ) >

∆q′(−αµ)

2c
− γ (e∗S − αµ) > 0.

However, this does not rule out the possibility that there is a maximum in the interval (0, e∗S − αµ). If this

maximum occurs at ẽA ∈ (0, e∗S − αµ), it would have to be the case that

∆q′−(ẽA − e∗S)

2c
− γẽA = 0

and that

∆q′′−(ẽA − e∗S)

2c
< γ.

We could rule out the possibility of such a maximum by trying to find conditions under which for all

eA ∈ (0, e∗S − αµ)

∆q′−(eA − e∗S)

2c
− γeA > 0.

Alternatively, we could allow for the possibility that such a maximum exists but try to find conditions under

which the payoff associated with this maximum is less than the equilibrium payoff. Both strategies are

difficult and the simplest resolution to the problem is just to assume (A8) holds, so that this range does not

arise. However, it should be noted that simulations suggest that school A has no incentive to drop its effort

level even when this range arises.

Now consider the incentives of school B to deviate to choosing an effort level such that ∆e ends up in the

range [−c − αµ/2,−αµ]. This requires that it increase its effort level. The relevant range of effort levels is

[e∗S + αµ, e∗S + c+ αµ/2]. For effort levels in this range, the first and second derivatives of school B’s payoff

function are

∆q′−(e∗S − eB)

2c
− γeB ,
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and

−
∆q′′−(e∗S − eB)

2c
− γ.

From (A6), we see that the second derivative is negative, implying that school B’s payoff function is concave

on the interval [e∗S + αµ, e∗S + c + αµ/2]. This is convenient, but it does not rule out the possibility that

deviating to an effort level in the interval [e∗S +αµ, e∗S + c+αµ/2] is desirable, since from (A7) we know that

∆q′−(−αµ) exceeds ∆q′(−αµ). If

∆q′−(−αµ)

2c
− γ (e∗S + αµ) > 0, (A9)

then school B’s payoff function will be increasing on the first part of the interval [e∗S + αµ, e∗S + c + αµ/2].

If (A9) holds, then the optimal effort level in the interval [e∗S + αµ, e∗S + c+ αµ/2] occurs at ẽB where

∆q′−(e∗S − ẽB)

2c
− γẽB = 0.

We can rule out the possibility of such a maximum by finding conditions under which (A9) does not hold.

Under the assumption that αµ < c, we have from (A5) that

∆q′−(−αµ) =
1

2
+

c+ αµ

2(c− αµ)
.

Using (A1), we obtain

∆q′−(−αµ)−∆q′(−αµ) =
c+ αµ

2(c− αµ)
− c− αµ

2 (c+ αµ)
=

4cαµ

2(c2 − (αµ)
2
)
. (A10)

Now note that for all c the first order condition (9) implies that

∆q′(0)

2c
= γe∗S .

Thus, given that ∆q′(∆e) is convex, we have that for all c

∆q′(−αµ)

2c
− γ (e∗S + αµ) <

∆q′(0)

2c
− γ (e∗S + αµ) = −γαµ.

Thus, if (
∆q′−(−αµ)

2c
− γ (e∗S + αµ)

)
−
(

∆q′(−αµ)

2c
− γ (e∗S + αµ)

)
< γαµ,
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then (
∆q′−(−αµ)

2c
− γ (e∗S + αµ)

)
<

(
∆q′(−αµ)

2c
− γ (e∗S + αµ)

)
+ γαµ < 0.

Now, from (A10), we have that

(
∆q′−(−αµ)

2c
− γ (e∗S + αµ)

)
−
(

∆q′(−αµ)

2c
− γ (e∗S + αµ)

)
=

αµ

(c2 − (αµ)
2
)

Moreover,

αµ

(c2 − (αµ)
2
)
< γαµ⇔

√
1

γ
+ (αµ)

2
< c.

Thus, if √
1

γ
+ (αµ)

2
< c, (A11)

then (A9) does not hold. Even when this condition does not hold, a simulation analysis reveals that school

B is not better off deviating to a higher effort level.

1.3 A sufficient condition for existence

Summarizing all this and collecting together inequalities (A3), (A8), and (A11), we have the following

proposition.

Proposition Suppose that

c ≥ max

{
αµ, 3

√
αµ

γ
− αµ, 1

2γαµ
,

√
1

γ
+ (αµ)

2

}
.

Then, both schools choosing effort level e∗S as defined in (10) is an equilibrium of the game in which both

schools simultaneously choose efforts and then households allocate their children across schools in the manner

discussed in the text.
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2 Solutions for model with Tiebout choice

2.1 Solution of equation (23)

Equation (23) has solution

x(∆e) =


√

[(δA + δB) (ξ − µ) + 2µ (β (δB − δA) + δA)]
2

+ 8µ (δB + δA) (∆e+ αµ+ b)δAδB

+2µ (β (δB − δA) + δA)− (δA + δB) (ξ − µ)


4µ (δB + δA)

. (A12)

Equation (A12) provides a closed form solution for the equilibrium size of neighborhood A for any given school

effort levels. This equation captures the expected relationships between the demand and supply of housing and

equilibrium neighborhood size. To see this, suppose that δA = δA ≡ δ (i.e., the elasticity of housing supply is

the same in both neighborhoods). In this case, equation (A12) can be written x(4e) = 1
2 +

√
ξ2+4µδv−ξ

4µ , where

v = 4e+αµ+b captures the relative value of neighborhood A (i.e., the difference in effort, composition and the

non-school amenity). If this value is zero then x = 1
2 (i.e., the population is split equally into neighborhoods

A and B). If this value is positive then the size of neighborhood A is increasing in the elasticity of housing

supply δ and decreasing in households’ sensitivity to price differences ξ.

2.2 Solution for e∗T

Computing the derivative x′(0) from (A12) and substituting into (26), the equilibrium effort level with

Tiebout choice but no school choice is

e∗T ≡
1

γ

 δAδB√
[(δA + δB) (ξ − µ) + 2µ (β (δB − δA) + δA)]

2
+ 8µ (δB + δA) (αµ+ b)δAδB

 . (A13)

2.3 Derivation of condition to make x(0) = 1/2

Given (A12), we require that

√
[(δA + δB) (ξ − µ) + 2µ (β (δB − δA) + δA)]

2
+ 8µ (δB + δA) (αµ+ b)δAδB

+2µ (β (δB − δA))− (δA + δB) (ξ − µ) = 2µδB ,
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or, equivalently,

√
[(δA + δB) (ξ − µ) + 2µ (β (δB − δA) + δA)]

2
+ 8µ (δB + δA) (αµ+ b)δAδB

= (δA + δB) (ξ − µ)− 2µ (β (δB − δA)− δB) .

Squaring both sides and cancelling, we get

(δA + δB) (ξ − µ) 4µ (β (δB − δA) + δA) + [2µ (β (δB − δA) + δA)]
2

+ 8µ (δB + δA) (αµ+ b)δAδB

= − (δA + δB) (ξ − µ) 4µ (β (δB − δA)− δB) + [2µ (β (δB − δA)− δB)]
2
.

Further manipulation reveals

(δA + δB) (ξ − µ) 2 (β (δB − δA) + δA) + 2µ
[
2β (δB − δA) δA + δ2

A

]
+ 4 (δB + δA) (αµ+ b)δAδB

− (δA + δB) (ξ − µ) 2 (β (δB − δA)− δB) + 2µ
[
δ2
B − 2β (δB − δA) δB

]
.

This implies that

(δA + δB) (ξ − µ) 2 (2β − 1) (δB − δA) + 2µ
[
2β (δB − δA) (δA + δB)−

(
δ2
B − δ2

A

)]
+4 (δB + δA) (αµ+ b)δAδB = 0,

which reduces to

(ξ − µ) (2β − 1) (δB − δA)− µ [(1− 2β) (δB − δA)] + 2(αµ+ b)δAδB = 0.

This implies that

ξ =
2(αµ+ b)δAδB

(1− 2β) (δB − δA)
,

which is (27).

2.4 Solutions for x(∆q) and ∆q(x,∆e)

In light of (24), the solution of equation (31), given a school quality differential ∆q, is

x(∆q) =


√

[(δA + δB) (ξ − µ) + 2µ (β (δB − δA) + δA)]
2

+ 8µ (δB + δA) ((1− ∆q
2c )∆q + b)δAδB

+2µ (β (δB − δA) + δA)− (δA + δB) (ξ − µ)


4µ (δB + δA)

. (A14)
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Following the same steps that led to (5), the quality differential, given x and ∆e, is

∆q(x,∆e) =

√
(xc+ ∆e(1− x))

2
+ 4αµcx(1− x)− (xc−∆e(1− x))

2(1− x)
. (A15)

2.5 Existence and uniqueness with Tiebout and school choice

Define the function

ϕ(x; ∆e) = x− x(∆q(x,∆e)),

where the functions x(∆q) and ∆q(x,∆e) are defined in (A14) and (A15). For existence, we need to show

that there exists a solution to the equation ϕ(x; ∆e) = 0. Note that when x is close to zero, then the

composition of school A is entirely determined by the switchers. Accordingly, there is no difference between

the composition of the two schools and thus ∆q(0,∆e) = ∆e. Since x(∆e) ≥ β, it follows that ϕ(0; ∆e) < 0.

Now consider what is happening at the other end of the distribution. If x is close to one, then almost

everyone is in neighborhood A. The type therefore converges to the average type 0. The remaining types in

neighborhood B are close to the worst types. Thus, they are of type −µ. It follows that it should be the

case that ∆q(1,∆e) = ∆e+αµ. But with this quality differential x(∆q(1,∆e)) ≤ 1− β. Thus, ϕ(1; ∆e) > 0.

Existence follows from continuity. A sufficient condition for uniqueness is that at any solution point of the

equation ϕ(x; ∆e) = 0, we have that

∂ϕ(x; ∆e)

∂x
= 1− x′(∆q(x,∆e))∂∆q(x,∆e)

∂x
> 0.

2.6 Calculating the derivatives with Tiebout and school choice

Totally differentiating the system (32), we obtain:

 1 −x′(∆q∗)

−∂∆q(x∗,∆e)
∂x 1


 dx∗

d∆q∗

 =

 0

∂∆q(x∗,∆e)
∂∆e


d∆e

d∆e

 .
By Cramer’s Rule

dx∗(0)

d∆e
=

x′(∆q∗)∂∆q(x∗,0)
∂∆e

1− x′(∆q∗)∂∆q(x∗,0)
∂x

,

and

d∆q∗(0)

d∆e
=

∂∆q(x∗,0)
∂∆e

1− x′(∆q∗)∂∆q(x∗,0)
∂x

.
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2.7 Solution for e∗ST

Substituting the derivatives just obtained into (35), the equilibrium effort level with school and Tiebout

choice is

e∗ST ≡
1

γ

(1− ∆q∗(0)

c

)(
x′(∆q∗(0))∂∆q(x∗(0),0)

∂∆e

1− x′(∆q∗(0))∂∆q(x∗(0),0)
∂x

)
+ (1− x∗(0))

 ∂∆q(x∗(0),0)
∂∆e

c
(

1− x′(∆q∗(0))∂∆q(x∗(0),0)
∂x

)


(A16)

The derivatives in this expression can all be calculated from (A14) and (A15), but the resulting expressions

are cumbersome so we do not report these here.

3 Welfare calculations for model with Tiebout choice

3.1 Without school choice

Average consumer welfare, WA and WB , can be written as:

WA =
1

x

1

2µ

ˆ µ

µ−2µx

[qA + b− (ξ − s)PA] ds,

WB =
1

1− x
1

2µ

ˆ µ−2µx

−µ
[qB − (ξ − s)PB ] ds.

Substituting for qA, we can write

WA =
1

x

1

2µ

ˆ µ

µ−2µx

[
e∗T + α

µ

2
+ b− (ξ − s)PA

]
ds

=
[
e∗T + α

µ

2
+ b− ξPA

]
+

1

x

PA
2µ

ˆ µ

µ−2µx

sds

=
[
e∗T + α

µ

2
+ b− ξPA

]
+ 4µPA (1− x) .

Similarly, substituting for qB , we have

WB =
1

1− x
1

2µ

ˆ µ−2µx

−µ
[qB − (ξ − s)PB ] ds

=
[
e∗T − α

µ

2
− ξPB

]
+

1

1− x
PB
2µ

ˆ µ−2µx

−µ
sds

=
[
e∗T − α

µ

2
− ξPB

]
− 4µPBx.
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In neighborhood A, housing supplier surplus can be written as

HSA =
1

2
(PAQA + βPA) =

1

2
δAP

2
A + βPA.

For neighborhood B we have

HSB =
1

2
δBP

2
B + βPB .

3.2 With school choice

The expression for average consumer welfare for neighborhood A is the same as above. For neighborhood B

it is different because some families will be using school A:

WA =
1

x

1

2µ

ˆ µ

µ−2µx

[qA + b− (ξ − s)PA] ds = [qA + b− ξPA] + 4µPA (1− x) .

WB =
1

1− x
1

2µ

ˆ µ−2µx

−µ

[ˆ ∆q

0

(qA − c)
dc

c
+

ˆ c

∆q

qB
dc

c
− (ξ − s)PB

]
ds

= [qB − ξPB ]− 4µPBx+
(∆q)

2

2c
.

Finally, the housing supplier surplus for both neighborhoods stays the same as above.

3.3 The welfare impact of school choice with Tiebout choice

To compute the welfare change for residents in each neighborhood we need to take into account that some

of them will be moving from neighborhood A to neighborhood B when school choice becomes available.

We will denote quantities with school choice with superscript ST , and quantities without school choice-with

superscript T . The average welfare changes below are computed for the residents that reside in a given

neighborhood before the school choice becomes available. (These welfare changes do not take into account

changes in housing supplier surplus, which are straightforward to compute and are added when reporting the

results in the paper.)

We have that xT > xST . It follows that average welfare change for original residents of neighborhood A
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can be derived as follows:

xT∆WA =
1

2µ

ˆ µ

µ−2µxST

[
qSTA + b− (ξ − s)PSTA

]
ds+

1

2µ

ˆ µ−2µxST

µ−2µxT

[ˆ ∆qST

0

(
qSTA − c

) dc
c

+

ˆ c

∆qST
qSTB

dc

c
− (ξ − s)PSTB

]
ds−

{
xT
[
qTA + b− ξPTA

]
+ 4µPTAx

T
(
1− xT

)}
= xST

[
qSTA + b− ξPSTA

]
+
(
xT − xST

) [
qSTB +

(
∆qST

)2
2c

]
+ 4µPSTA · xST

(
1− xST

)
+

4µPSTB ·
(
xT − xST

) (
1− xT − xST

)
−
{
xT
[
qTA + b− ξPTA

]
+ 4µPTAx

T
(
1− xT

)}
.

The expression for welfare changes for original residents of neighborhood B is simpler, as all of them stay

put:

∆WB =

{[
qSTB − ξPSTB

]
− 4µPSTB xT +

(
∆qST

)2
2c

}

−

{[
qTB − ξPTB

]
− 4µPTBx

T +

(
∆qT

)2
2c

}
.

4 Solving for equilibrium in model with capacity constraints

Our solution procedure has three steps. We first construct functions EA(∆e), EB(∆e), and ∆q(∆e) for all

∆e ∈ R. Second, we construct the region [αL, αU ] where a pure strategy equilibrium does not exist. Third,

for this region, we conjecture what a mixed strategy equilibrium looks like and provide conditions that are

necessary and sufficient for our conjecture to be true.

Step 1. Functions EA(∆e), EB(∆e), and ∆q(∆e) for ∆e ≥ −αµ have already been constructed in the

main text. We now need to construct them for ∆e < −αµ. Recall that in Section 1.2 of this Appendix

we constructed these quantities, but without taking into account the capacity constraint in school B. The

question is when the enrollment in school B, as derived in Section 1.2, will exceed E :

EB(∆e) =
1

2

[
1− ∆q−(∆e)

c

]
> E.

Substituting for ∆q−(∆e) from (A4), the inequality above becomes

√
(c−∆e)

2 − 4αµc−∆e− c
4c̄

> E − 1

2
,

13



which, after some straightforward manipulation, can be written as

∆e < −
(
2E − 1

)
c− αµ

2E
.

When the condition above holds, school B enrollment is E and school A’s is (1 − E), which implies that

sA = µ
2 and sB = µ

2
E−1
E

. It follows that, with capacity constraints, ∆q(∆e) for ∆e < −αµ can be written as

∆q(∆e) =


c+∆e−

√
(c−∆e)2−4αµc

2 if ∆e ≥ −
(
2E − 1

)
c− αµ

2E

∆e+ αµ

2E
if ∆e < −

(
2E − 1

)
c− αµ

2E

.

Furthermore,

EA(∆e) =


1
2

[
1 + ∆q(∆e)

c

]
if ∆e ≥ −

(
2E − 1

)
c− αµ

2E

1− E if ∆e < −
(
2E − 1

)
c− αµ

2E

,

and

EB(∆e) =


1
2

[
1− ∆q(∆e)

c

]
if ∆e ≥ −

(
2E − 1

)
c− αµ

2E

E if ∆e < −
(
2E − 1

)
c− αµ

2E

.

This concludes Step 1.

Step 2. Next step is to figure out the region where a pure strategy equilibrium does not exist: [αL, αU ].

The lower bound of this region, αL, is the value of α at which, if school A exerts equilibrium effort as predicted

by the baseline model, then school B is indifferent between exerting equilibrium effort and exerting zero effort.

The upper bound, αU , is the lowest value of α for which zero effort by both schools is an equilibrium. We

construct it by checking whether, assuming school A puts in zero effort, there is a positive effort level that

makes school B better off than if it put in zero effort.

Step 3. Next we conjecture what a mixed strategy equilibrium would look like. Define πA(πB) as the

probability that school A(B) puts in zero effort. An equilibrium consists of four objects: (πA, πB , eA, eB). A

candidate (πA, πB , eA, eB) is an equilibrium iff the following conditions are true:

eA = arg max
e

{
πBEA(e) + (1− πB)EA(e− eB)− γ e

2

2

}
eB = arg max

e

{
πAEB(−e) + (1− πA)EB(eA − e)− γ

e2

2

}

14



and

πBEA(eA) + (1− πB)EA(eA − eB)− γ e
2
A

2
= πBEA(0) + (1− πB)EA(−eB)

πAEB(−eB) + (1− πA)EB(eA − eB)− γ e
2
B

2
= πAEB(0) + (1− πA)EB(eA)

The first two simply state that given the other school strategies eA and eB are best responses. The last

two state that putting in zero effort is also a best response. These conditions constitute a system of four

equations in four unknowns. For each value of α ∈ [αL, αU ], we solve this system using numerical methods.

The resulting solution is the conjectured mixed strategy equilibrium.

5 Solving the model with costs varying by socio-economic status

Suppose the anticipated quality differential ∆q is non-negative. Then, households in neighborhood B will

use school A if they are mobile and their costs are less than ∆q. Accordingly, the fraction of households

exercising choice is (1−λ)∆q/2c which is independent of θ. What depends on θ is the average socio-economic

status of these households. Consider some type s residing in neighborhood B (i.e., belonging to the interval

[−µ, 0]). The probability that this type will exercise choice is [1− λ+ θ(µ/2 + s)] ∆q/c. The probability

density of these types in the set of those exercising choice is therefore [1− λ+ θ(µ/2 + s)] /(1 − λ). With

some work (see the next section), it can be shown that this implies that the average type in the set of those

exercising choice is

−µ
2

+
θµ2

12 (1− λ)
. (A17)

Note that this is increasing in θ. This in turn implies that the average socio-economic status of school A’s

students is

sA =
µ

2

[
1− (1− λ)∆q

c + ∆q
c
θµ
6

1 + (1− λ)∆q
c

]
, (A18)

and that of school B’s students is

sB = −µ
2

[
1 +

∆q
c
θµ
6

1− (1− λ)∆q
c

]
. (A19)

Using (1), this means that, if households correctly anticipate other households’ decisions, ∆q must satisfy

the equation

∆q = ∆e+
αµ

1 + (1− λ)∆q
c

+
αµ∆q

c
θµ
6

1−
(

(1− λ)∆q
c

)2 . (A20)
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This gives rise to a cubic equation. It is possible that this equation has two positive solutions in the

relevant range (i.e., satisfying ∆q < c). In such a situation, there are two possible equilibrium quality

differentials. One involves a low quality differential and few students from the less affluent neighborhood

exercising choice. The other involves a high quality differential and more students switching schools. This

multiplicity is possible because the high socio-economic students are leaving the school in the less affluent

neighborhood and hence lowering its quality when they leave. Because they are of lower socio-economic

status than the students in the affluent neighborhood, they also lower the quality of school A. However, the

reduction in the quality of school A can be smaller than the reduction in the quality of school B and this

is what underlies the multiplicity. Nonetheless, this is only a possibility and does not arise in the numerical

example analyzed in the paper.

Given all this, with effort levels eA and eB , the two schools will anticipate enrollments of

EA(∆e) =
1

2

[
1 + (1− λ)

∆q(∆e)

c

]
, (A21)

and

EB(∆e) =
1

2

[
1− (1− λ)

∆q(∆e)

c

]
. (A22)

The equilibrium effort levels will be identical and given by

e∗A = e∗B =
1

γ

[
(1− λ)

2

∆q′(0)

c

]
. (A23)

Computing the derivative from (A20), we find that the equilibrium effort level is e∗V (effort under school

choice with costs varying by socio-economic status) which is defined to equal

e∗V ≡
1

γ

 1− λ

2

(
c+ αµ(1−λ)

(1+(1−λ)
∆q(0)
c )

2 −
αµ θµ6

(
1+((1−λ)

∆q(0)
c )

2
)

(
1−((1−λ)

∆q(0)
c )

2
)2

)
 . (A24)

Given (A24), the equilibrium qualities of the two schools under school choice (q∗A, q
∗
B) will be given by

q∗A = e∗V +
αµ

2

[
1− (1− λ)∆q(0)

c + ∆q(0)
c

θµ
6

1 + (1− λ)∆q(0)
c

]
, (A25)

and

q∗B = e∗V −
αµ

2

[
1 +

∆q(0)
c

θµ
6

1− (1− λ)∆q(0)
c

]
. (A26)
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6 Derivations for the model with costs varying by socio-economic

status

6.1 Derivation of (A17)

Given the discussion in the text, the average type is

ˆ 0

−µ
s

[
1− λ+ θ(µ2 + s)

1− λ

]
ds

µ

=

ˆ 0

−µ

[
s

(
1− λ+ θ µ2
µ (1− λ)

)
+ s2

(
θ

µ (1− λ)

)]
ds

=

[
s2

2

(
1− λ+ θ µ2
µ (1− λ)

)
+
s3

3

(
θ

µ (1− λ)

)]s=0

s=−µ

= −
[
µ2

2

(
1− λ+ θ µ2
µ (1− λ)

)
− µ3

3

(
θ

µ (1− λ)

)]
= −µ

2
+

θµ2

12 (1− λ)
.

6.2 Derivation of (A18) and (A19)

For (A18), note that we have that

sA =

1
2

[
µ
2

]
+ 1−λ

2
∆q
c

[
−µ2 + θµ2

(12)(1−λ)

]
1
2 + 1−λ

2
∆q
c

=
µ

2

[
1− (1− λ)∆q

c

1 + (1− λ)∆q
c

]
+ (1− λ)

∆q

c

[
θµ2

(12) (1− λ)

]

=
µ

2

[
1− (1− λ)∆q

c

1 + (1− λ)∆q
c

]
+

∆q
c

[
θµ2

12

]
1 + (1− λ)∆q

c

=
µ

2

[
1− (1− λ)∆q

c + ∆q
c
θµ
6

1 + (1− λ)∆q
c

]

For (A19), note that we have that

(1− λ)
∆q

c

(
−µ

2
+

θµ2

(12) (1− λ)

)
+

(
λ+ (1− λ)

(
1− ∆q

c

))
sB = −µ

2
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Thus,

sB =
−µ2 − (1− λ)∆q

c

(
−µ2 + θµ2

(12)(1−λ)

)
λ+ (1− λ)

(
1− ∆q

c

)
= −µ

2
−

∆q
c

(
θµ2

12

)
λ+ (1− λ)

(
1− ∆q

c

)
= −µ

2

1 +

∆q
c

(
θµ
6

)
λ+ (1− λ)

(
1− ∆q

c

)


= −µ
2

λ+ (1− λ)
(

1− ∆q
c

)
+ ∆q

c

(
θµ
6

)
λ+ (1− λ)

(
1− ∆q

c

)


= −µ
2

1− (1− λ)∆q
c + ∆q

c

(
θµ
6

)
1− (1− λ)∆q

c


= −µ

2

1 +

∆q
c

(
θµ
6

)
1− (1− λ)∆q

c


6.3 Derivation of (A20)

∆q = ∆e+ α

(
µ

2

[
1− (1− λ)∆q

c + ∆q
c
θµ
6

1 + (1− λ)∆q
c

+ 1 +
∆q
c
θµ
6

1− (1− λ)∆q
c

])

= ∆e+ α

(
µ

2

[
2 + ∆q

c
θµ
6

1 + (1− λ)∆q
c

+
∆q
c
θµ
6

1− (1− λ)∆q
c

])

= ∆e+ α

µ
2

2
(

1− (1− λ)∆q
c

)
+ ∆q

c
θµ
6

(
1− (1− λ)∆q

c

)
+ ∆q

c
θµ
6

(
1 + (1− λ)∆q

c

)
(

1 + (1− λ)∆q
c

)(
1− (1− λ)∆q

c

)


= ∆e+ αµ

 1− (1− λ)∆q
c + ∆q

c
θµ
6(

1 + (1− λ)∆q
c

)(
1− (1− λ)∆q

c

)


= ∆e+
αµ

1 + (1− λ)∆q
c

+
αµ∆q

c
θµ
6

1−
(

(1− λ)∆q
c

)2 .

7 Multiple neighborhoods

This sub-section illustrates how to extend our benchmark model to allow for multiple neighborhoods. The

key simplifying assumption is that, under school choice, it is feasible for each household to attend only one

school outside their neighborhood. Moreover, this feasible alternative school varies across households within
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a neighborhood. These assumptions mean that each household in a neighborhood faces a simple binary

choice, which keeps things tractable. Nonetheless, since households within each neighborhood are choosing

between different alternatives, schools can obtain enrollees from multiple neighborhoods and are therefore

effectively competing with all schools in the community. In the exposition to follow, we focus on the case

of three neighborhoods to reduce the algebraic burden. However, it should be clear that the approach will

generalize to larger numbers.

7.1 The model with three neighborhoods

Assume the same set-up as in the benchmark model, but now suppose that the community is divided into

three neighborhoods, A, B, and C, each containing 1/3 of the population. There are three schools serving

the community, one in each neighborhood, and the school in neighborhood J ∈ {A,B,C} is referred to as

school J . Neighborhoods are stratified, so that households of types [µ/3, µ] live in neighborhood A; types

[−µ/3, µ/3] in neighborhood B; and types [−µ,−µ/3] in neighborhood C.

Each household can freely send its child to the school in its own neighborhood. In addition, under choice,

it can use one of the two schools in the other neighborhoods at a cost. Specifically, one half of the households

in neighborhood A can send their child to school B while incurring a cost cB and the other half to school

C at a cost cC . These costs are independently and uniformly distributed on the interval [0, c]. Similarly, one

half of the households in neighborhood B (C) can send their child to school A at a cost cA and the other

half can use school C (B) at a cost cC (cB).

Households’ payoffs are the same as those in the benchmark model. For example, a household living in

neighborhood A with a cost cB (cC) obtains a payoff qA from using school A, and a payoff qB − cB (qC − cC)

from using school B (C) where qJ again refers to the quality of school J . A school’s quality depends on

school effort and the average socio-economic status of its children as before. Moreover, schools’ payoffs and

the timing of the interaction between schools and households are also identical to their counterparts in the

benchmark model.

7.2 Impact of school choice

We now explain how we can use this extended model to analyze the impact of school choice. Under a no-

choice policy in which households must enroll their children in their neighborhood school, schools continue

to have no incentive to put in effort, so school qualities just depend on the neighborhood’s socio-economic

status. Accordingly, school A’s quality is 2αµ/3, school B’s is zero, and school C’s is −2αµ/3. Hence, a

household living in neighborhood A obtains a payoff 2αµ/3, a household living in neighborhood B obtains a
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payoff 0, and a household living in neighborhood C obtains a payoff −2αµ/3.

To understand what happens under choice, we follow the same strategy as for the benchmark model.

Thus, we first analyze the second stage of the interaction where, knowing school effort levels, households

simultaneously choose where to enroll their children. Then, we study the first stage where schools choose

effort levels taking into account their implications for enrollment.

In the second stage, a household who lives in neighborhood J and has access to school I, will use school

I if and only if qI − qJ exceeds cI . Assuming that households anticipate that the quality of school A will be

higher than that of school B and that the quality of school B will be higher than that of school C, households

in neighborhood A will use school A, households in B will use schools A and B, and households in C will

use schools A, B, and C. With a little work, it can be shown that the average socio-economic status of the

children enrolling in the three schools are

sA = 2µ
3

[
2c̄−qA+qC

2c̄+2qA−qB−qC

]
sB = − 2µ

3
qB−qC

2c̄+2qB−qA−qC

sC = − 2µ
3

. (A27)

Using the fact that qJ = eJ + αsJ , it follows that:

eA = qA − α 2µ
3

2c̄−qA+qC
2c̄+2qA−qB−qC

eB = qB + α 2µ
3

qB−qC
2c̄+2qB−qA−qC

eC = qC + α 2µ
3

(A28)

System of equations (A28) implicitly defines the school qualities (qA, qB , qC) as a function of the schools’

effort levels (eA, eB , eC). This system has the convenient property that the partial derivatives of school quality

with respect to school effort (i.e., ∂qI/∂eJ) can be expressed as functions of (qA, qB , qC) only. As an example,

consider the impact on qualities of a change in school A’s effort eA. The third equation of system (A28)

implies that ∂qC/∂eA = 0. Totally differentiating the first two equations then implies that ∂qA/∂eA and

∂qB/∂eA must satisfy the following two equations:

1 =
∂qA
∂eA

+ α
2µ

3

∂qA
∂eA

2c̄+ 2qA − qB − qC
+ α

2µ

3

2c̄− qA + qC

(2c̄+ 2qA − qB − qC)
2

[
2
∂qA
∂eA

− ∂qB
∂eA

]
.

0 =
∂qB
∂eA

+ α
2µ

3

∂qB
∂eA

2c̄+ 2qB − qA − qC
− α2µ

3

qB − qC
(2c̄+ 2qB − qA − qC)2

[
2
∂qB
∂eA

− ∂qA
∂eA

]
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These are two linear equations that define ∂qA/∂eA and ∂qB/∂eA as functions of (qA, qB , qC).

Turning to the first stage, the schools’ enrollments are given by

EA = 1
3

[
1 + 1

2
2qA−qB−qC

c̄

]
EB = 1

3

[
1 + 1

2
2qB−qA−qC

c̄

]
EC = 1

3

[
1 + 1

2
2qC−qA−qB

c̄

] . (A29)

Using the first order conditions for the schools’ maximization problems, it follows that the equilibrium effort

levels (e∗A, e
∗
B , e

∗
C) must satisfy the following conditions:

e∗A = 1
6γc̄

[
2∂qA∂eA

− ∂qB
∂eA

]
e∗B = 1

6γc̄

[
2∂qB∂eB

− ∂qA
∂eB

]
e∗C = 1

6γc̄

[
2− ∂qB

∂eC
− ∂qA

∂eC

] . (A30)

Combining (A28) and (A30) we obtain

1
6γc̄

[
2∂qA∂eA

− ∂qB
∂eA

]
= qA − α 2µ

3
2c̄−qA+qC

2c̄+2qA−qB−qC

1
6γc̄

[
2∂qB∂eB

− ∂qA
∂eB

]
= qB + α 2µ

3
qB−qC

2c̄+2qB−qA−qC

1
6γc̄

[
2− ∂qB

∂eC
− ∂qA

∂eC

]
= qC + α 2µ

3

. (A31)

As already observed, the partial derivatives ∂qI/∂eJ for all I, J can be expressed as functions of (qA, qB , qC)

only. Thus, system (A31) provides three equations in the three equilibrium school qualities (qA, qB , qC).

Obviously, given our assumptions on the rankings of the schools, we need a solution that satisfies qA > qB >

qC . Given such a solution, the associated equilibrium effort levels can then be obtained from (A28).

While system (A31) is too complicated to permit analytical results, it can readily be solved numerically

for the equilibrium school qualities under choice.1 We can then compute the impact of school choice on

school quality and household welfare just as we did for the benchmark model. The changes in school quality

and household welfare in the three neighborhoods are defined in the obvious ways. Figure A1 illustrates our

findings. It assumes the same underlying parameter values as does Figure 1. Note that the aggregate impacts

of choice, along with the impacts on the most and least affluent schools and neighborhoods, are identical to

those illustrated in Figure 1. The additional complication concerns what happens to the middle neighborhood

- B. Basically, when peer preferences or neighborhood inequality are strong, it suffers in the same way as

1Of course, this procedure for finding equilibrium does not account for the possibility of deviations in effort levels that
change the quality ranking of the three schools. While we do not expect that such deviations will be desirable, finding sufficient
conditions to rule them out as we did for the benchmark model would obviously be much more involved and we do not attempt
that here.
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Figure A1: The impact of school choice in the model with three neighborhoods
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does the most affluent neighborhood, although it is not as adversely impacted. Note also that the school

effort levels are no longer symmetric once α is positive. This reflects the fact that the schools are competing

over different groups of marginal students.2 Interestingly, it is the school in the middle neighborhood that

puts in the most effort and the school in the most affluent neighborhood that puts in the least.

2School A is competing to attract students from schools B and C; school B is competing to attract students from school C
and retain students who can attend school A; and school C is competing to retain students who can attend schools A and B.
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