
Online Appendix for “Efficiency and Incidence of Taxa-
tion with Free Entry and Love-of-Variety Preferences”

A Specific Taxation and Ad Valorem and Results

Proof. Marginal Excess Burden Formula for specific tax dW
dt
.

Let the total welfare to be the sum of consumer surplus, profits and government tax

revenues.

W (p(t), t, J(t)) = u(QL(t), J(t))− (p(t)(1 + τ) + t)QL(t)︸ ︷︷ ︸
CS

+ p(t)QL(t)− J(t)c
(
QL(t)
J(t)

)
− J(t)F︸ ︷︷ ︸

Jπ

+ tQL(t) + p(t)τQ︸ ︷︷ ︸
R

By totally differentiating WL(t) = W (p(t), t, J(t)) with respect to t (and keeping τ constant)

we obtain

dWL

dt
= ∂u

∂Q
(Q0, J0)− c′(q0)

)
dQL

dt
+ ∂u

∂J
(Q0, J0)− c(q0)− F + q0c

′(q0)
)
dJ

dt

= (p0(1 + θττ0) + θtt0 − c′(q0)) dQL

dt
+ (Λ0 + π0 − [p0 − c′(q0)] ∗ q0) dJ

dt
(1)

where we used the first-order approximation from Chetty, Looney and Kroft (2009) ∂u
∂J

(Q0, J0) =

p0(1 + θττ0) + θtt0, we used our definition of variety effect Λ0 = ∂u
∂J

(Q0, J0) and profits

π0 = p0q0 − c(q0)− F . When t0 = 0, p0 = c′(q∗) and Λ0 = −π0, we get dWL

dt
= 0 which is the

first-best outcome.

Proof. Lemma 1.

Let π = pq − c(q) = 0 be the free-entry condition of firms. When τ is constant, then
dπ
dt

= 0 implies that(p−mc)dq
dt

= −q dp
dt

and so p−mc
p

= − q/t
p/t

dp
dt
dq
dt

.

If t is now constant, then dπ
dτ

= 0 implies (p−mc) dq
dτ

= −q dp
dτ

and so p−mc
p

= − q/τ
p/τ

dp
dτ
dq
dτ

.
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Proof. Proposition 1.

Let ∆ =
[
2− νq

J
+ ε∗D−

νq
J

εS
νq
J

+
νq
J

εms

]
− εDΛ

(p(1+τ)+t)q

(
1 + ε∗D−

νq
J

εS
νq
J

+ 1
εms

)
+
(
1− νq

J

)
εD

JQ
p(1+τ)+t

∂2P
∂J∂Q

.1

The firm stability conditions ∂2πj
∂p2
j
< 0 and ∂πj

∂J
< 0, are respectively equivalent to 1 + ε∗D−

νq
J

εS
+

νq
J

εms
> 0 and ∆ > 0, where ε∗D = p(1+θτ τ)

p(1+τ)+tεD. Here, ∆ and ε∗D are written in the general form

that depends on both the specific tax rate t and the ad valorem tax rate τ .

By Lemma 1, we have dPS
dt

= 0. Therefore substituting this into equation (1) we obtain:

dW

dt
= Λ0

dJ

dt
−Q0

dp

dt
+ (θtt0 + p0θττ0) dQL

dt

From the behavioral equation of consumers wtp(Q, J) ≡ P (Q, J) = p(1 + θττ) + θtt, we

have

mwtp(Q, J)dQ
dt

+ ∂P

∂J

dJ

dt
= dp

dt
(1 + θττ) + θt (2)

In addition, from the free-entry condition, (p−mc)dq
dt

= −q dp
dt
, and firm’s first-order condition,

p−mc = −mwtp(Q, J)Q νq
J(1+θτ τ) , we have

mwtp(Q, J)νq
dq

dt
= (1 + θττ)dp

dt
(3)

Combining this with the behavioral equation above, and letting mwtp(Q, J) = mwtp(Q) for

simplicity, we have

mwtp(Q)νq
dq

dt
= mwtp(Q)dQ

dt
+ ∂P

∂J

dJ

dt
− θt

= mwtp(Q)
(
J
dq

dt
+ q

dJ

dt

)
+ ∂P

∂J

dJ

dt
− θt (4)

where the second line follows from substituting dQ
dt

= J dq
dt

+ q dJ
dt
. Therefore,

dq

dt
=
θt −

(
∂P
∂J

+ q ∗mwtp(Q)
)
dJ
dt

mwtp(Q)(J − νq)
(5)

1This becomes ∆ =
[
2− νq

J + ε∗
D− νq

J

εS
νq
J

+
νq
J

εms

]
− ΛεD

(p(1+τ)+t)q

(
1 + ε∗

D− νq
J

εS
νq
J

+ 1
εms

)
under parallel demands.
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Using now dq
dt

= ∂q
∂t

+ ∂q
∂J

dJ
dt

(note that ∂q
∂t

= dq
dt

∣∣∣
J
) we can get

dJ

dt
=

θt − (J − νq)mwtp(Q)∂q
∂t

∂P
∂J

+ q ∗mwtp(Q) + (J − νq)mwtp(Q) ∂q
∂J

(6)

From Kroft et al. (2020), we have

∂q

∂t
= dq

dt

∣∣∣∣∣
J

= 1
Jmwtp(Q)

(
ρSRt + θt − 1

)
= ωSRt θt
Jmwtp(Q) (7)

where ρSRt = 1 − (1− ωSR) θt and ωSR = 1

1+
ε∗
D

−
νq
J

εS
+

νq
J
εms

, where ε∗D = p(1+θτ τ)
p(1+τ)+tεD (short-run

passthrough is taken from Kroft et al. (2020)).

Finally, fix t, and differentiate the first-order condition (p−mc)(1+θττ)+mwtp(Q, J)Qνq
J

=

wtp(Q, J)− θtt−mc(1 + θττ) +mwtp(Q, J)Qνq
J

= 0 with respect to J to get:

∂P

∂J
+mwtp(Q)

(
q + J

∂q

∂J

)
−c′′(q)(1+θττ) ∂q

∂J
+ ∂q

∂J
mwtp(Q)νq+qνqmwtp′(Q)

(
q + J

∂q

∂J

)
+ ∂2P

∂J∂Q
qνq = 0

where we have assumed that ∂ν
∂J

= 0. Further simplifying yields:

∂q

∂J
= −

∂P
∂J

+ ∂2P
∂J∂Q

qνq +mwtp(Q)q + q2νqmwtp
′(Q)

(J + νq)mwtp(Q)− c′′(q)(1 + θττ) + Jqνqmwtp′(Q) (8)

Rearranging equation (8), the denominator is equal to J ∗mwtp(Q)∗
(

1 + ε∗D−
νq
J

εS
+

νq
J

εms

)
, and

so we get:

∂q

∂J
= − ωSR

J ∗mwtp(Q)

(
∂P

∂J
+ νq
J
Q

∂2P

∂J∂Q

)
− q

J
ωSR

(
1− νq

J
+

νq
J

εms

)
(9)

Note:

ωSR ∗
νq
J
∗ q ∗mwtp(Q) ∗∆ = ∂P

∂J

(
1− ωSR

(
1− νq

J

))
− ωSR

νq
J

(
1− νq

J

)
∂2P

∂J∂Q
Q

+ q ∗mwtp(Q)
(

1− ωSR
(

1− νq
J

)(
1− νq

J
+

νq
J

εms

))
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Substituting equation (9) and equation (7) into equation (6), we get:

dJ

dt
= θt

1− ωSR
(
1− νq

J

)
ωSR

νq
J

∆



and substituting dJ
dt

into equation (5), we obtain:

dq

dt
= θt
J ∗mwtp(Q)

(1− 1
εms

∆

)

Finally, from equation (3) and the expression for dq
dt

we have:

ρt = 1 +mwtp(Q, J)νq
dq

dt

=
∆ + νq

J
θt
(
1− 1

εms

)
∆

Proof. Corollary 1.

The proof is immediate by setting θt = θτ = 1, Λ0 = 0 and t0 = τ0 = 0 into the conditions

of Proposition 1.

Proof. Proposition 2

Consider a change in the tax from τ0 to τ1. A first-order approximation to the marginal

excess burden of taxation is:

dW

dτ
= (p0(1 + θττ0) + θtt0 − c′(q0))dQL

dτ︸ ︷︷ ︸
Quantity effect

+ (Λ0 + π0 − [p0 − c′(q0)] ∗ q0)dJ
dτ︸ ︷︷ ︸

Diversity effect

(10)

Under Lemma 1, the marginal excess burden of taxation is given by:

dW

dτ
= Λ0

dJ

dτ
−Q0

dp

dτ
+ (θtt0 + p0θττ0) dQL

dτ
(11)
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Willingness-to-pay with ad valorem taxes takes the form wtp(Q) = p(1+θττ), somwtp(Q)dQ
dτ

+
∂P
∂J

dJ
dτ

= dp
dτ

(1 + θττ) + pθτ . We have the free entry-condition (p − mc) dq
dτ

= −q dp
dτ
, and the

firm’s first-order condition p−mc = − νq
J(1+θτ τ)mwtp(Q)Q. Therefore, we have:

νq ∗mwtp(Q)dq
dτ

= (1 + θττ) dp
dτ

(12)

which implies:
dq

dτ
=
pθτ −

(
∂P
∂J

+ q ∗mwtp(Q)
)
dJ
dτ

mwtp(Q)
(
1− νq

J

) (13)

Using now dq
dτ

= ∂q
∂τ

+ ∂q
∂J

dJ
dτ

(Here ∂q
∂τ

= dq
dτ

∣∣∣
J
). we get

dJ

dτ
=

pθτ +
(
νq − J

)
mwtp(Q) ∂q

∂τ

∂P
∂J

+ q ∗mwtp(Q) +
(
J − νq

)
∂q
∂J

(14)

We also have
∂q

∂τ
= dq

dτ

∣∣∣∣∣
J

= 1
Jmwtp(Q) (θτmc ∗ ωSR)

where ρSRτ = 1−
(
1− ωSRmcp

)
θτ and ωSR = 1

1+
ε∗
D

−
νq
J

εS
+

νq
J
εms

. Moreover,

∂q

∂J
= − ωSR

J ∗mwtp(Q)

(
∂P

∂J
+ ∂2P

∂J∂Q
qνq

)
− qωSR

J

(
1− νq

J
+

νq
J

εms

)
(15)

Therefore, substituting ∂q
∂τ

and ∂q
∂J

into equation (14)we have

dJ

dτ
= θτ

 p−mc ∗ ωSR
(
1− νq

J

)
ωSR ∗ νqJ ∗ q ∗mwtp(Q) ∗∆



= pθτ


(

1 + ε∗D−
νq
J

εS
+

νq
J

εms

)
−
(

1−
νq
J

ε∗D

)(
1− νq

J

)
νq
J
∗ q ∗mwtp(Q) ∗∆



= − pθτJεD
p(1 + τ) + t

1 + 1
ε∗D
−

νq
J

ε∗D
+ ε∗D−

νq
J

εS
νq
J

+ 1
εms

∆

 (16)
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Recall ∆ =
[
2− νq

J
+ ε∗D−

νq
J

εS
νq
J

+
νq
J

εms

]
− εDJ

∂P
∂J

(p(1+τ)+t)

(
1 + ε∗D−

νq
J

εS
νq
J

+ 1
εms

)
+
(
1− νq

J

)
εD

JQ
p(1+τ)+t

∂2P
∂J∂Q

.

Substituting equation (16) into equation (13), then:

dq

dτ
= −θτωSR
Jmwtp(Q)


∂P
∂J

(p−mc) + q ∗mwtp(Q)
(
p
(

1− νq
J

+
νq
J

εms

)
−mc

)
ωSR

νq
J

∆



= −pθτ
Jmwtp(Q)


νq
J

ε∗D
− νq

J
+

νq
J

εms
− J ∂P

∂J
εD

((1+τ)p+t)

νq
J

ε∗D
νq
J

∆



Finally,

ρτ = 1
p

1 + τ

1 + θττ
νqmwtp(Q)dq

dτ
+ 1

= −νq
J

θτ (1 + τ)
(1 + θττ)


∂P
∂J

(
p−mc
p

)
+ q ∗mwtp(Q)

(
p−mc
p
− νq

J
+

νq
J

εms

)
νq
J

∆

+ 1

=
νq
J

∆− νq
J
θτ (1+τ)
(1+θτ τ)

(
p−mc
p
− νq

J
+

νq
J

εms

)
+ J ∂P

∂J
εD

((1+τ)p+t)

(
νq
J
θτ (1+τ)
(1+θτ τ)

p−mc
p

)
νq
J

∆

Using p−mc
p

=
νq
J

ε∗D
, we obtain:

ρτ =
∆ + νq

J
θτ (1+τ)
(1+θτ τ)

[
1− 1

ε∗D
− 1

εms
+ J ∂P

∂J

(1+τ)p+t

(
εD
ε∗D

)]
∆
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Derivation of ∆

Let ∆ =
[
2− νq

J
+ ε∗D−

νq
J

εS
νq
J

+
νq
J

εms

]
−
(

1 + ε∗D−
νq
J

εS
νq
J

+ 1
εms

)
εD

J
p(1+τ)+t

∂P
∂J

+
(
1− νq

J

)
εD

JQ
p(1+τ)+t

∂2P
∂J∂Q

,

we show that ∆ = −Jε∗D
pq

∂π
∂J
.

Proof. The effect of taxes on entry is derived by using the implicit function theorem on the

long-run entry condition π(q(J, t, τ0), J, t, τ0) = 0, and the first-order condition of the firm
∂π
∂q

= 0, so that dJ
dτ

= −
∂π
∂τ
∂π
∂J

. Therefore

∂π

∂J
= −

∂π
∂t
dJ
dt

=
pθτ q−mwtp(Q)∗Q∗(1− νq

J ) ∂q∂τ
1+θτ τ

pθτ−mwtp(Q)∗J∗(1− νq
J ) ∂q∂τ

∂P
∂J

+q∗mwtp(Q)+mwtp(Q)∗J∗(1− νq
J ) ∂q∂J

= q

1 + θττ

(
∂P

∂J
+ q ∗mwtp(Q) +mwtp(Q) ∗ J ∗

(
1− νq

J

)
∂q

∂J

)

= q

1 + θττ
mwtp(Q)Q 1

J
(∆)

= q(p(1 + τ) + t)
1 + θττ

mwtp(Q)Q
p(1 + τ) + t

1
J

(∆)

= − 1
ε∗D

pq

J
(∆)

Corollary. A1. Consider the case of full-optimization (θτ = θt = 1), homogeneous products

(Λ0 = 0) and no pre-existing taxes (τ0 = t0 = 0). The marginal excess burden and pass-
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through formulas are given respectively by:

dW

dτ
= −Q0

dp

dτ
(17)

ρτ =
2 +

ε∗D−
νq
J0

εS
νq
J0
−

νq
J0
ε∗D

2− νq
J0

+
ε∗D−

νq
J0

εS
νq
J0

+
νq
J0
εms

(18)

1
p0

dJ

dτ
= −JεD

p0


1 +

ε∗D−
νq
J0

εS
νq
J0

+ 1
εms

+
1− νq

J0
ε∗D

2− νq
J0

+
ε∗D−

νq
J0

εS
νq
J0

+
νq
J0
εms

 (19)

Proof. Corollary A1.

The proof is immediate by setting θτ = θt = 1, Λ0 = 0 and τ0 = t0 = 0 into the conditions

of Proposition 2.

Lemma. A1. For fixed τ . The effect of competition on prices and output is given respectively

by:

∂p

∂J
=
[
∂P

∂J
− p+ t

JεD

(
1 + J

q

∂q

∂J

)]
J

q

∂q

∂J
= −ωSR

[
1− νq

J

(
1− 1

εms

)
− JεD

(1 + τ)p+ tq

∂P

∂J

]

Thus, in the case of constant marginal cost (εS =∞), ∂p
∂J
< 0 if and only if 1

εms

ΛεD
(p+t)q < 1

and there is business stealing
(
∂q
∂J
< 0

)
whenever ΛεD

(p+t)q + νq
J

(
1− 1

εms

)
< 1.

For fixed t. The effect of competition on prices and output is given respectively by:

∂p

∂J
= 1

1 + θττ

[
∂P

∂J
− p (1 + τ)

JεD

(
1 + J

q

∂q

∂J

)]
J

q

∂q

∂J
= −ωSR

[
1− νq

J

(
1− 1

εms

)
− JεD

(1 + τ)p+ t

∂P

∂J

]

Thus, in the case of constant marginal cost (εS =∞), ∂p
∂J
< 0 if and only if

(
1
εms

)
εD

p(1+τ)J
∂P
∂J

<

1 and there is business stealing
(
∂q
∂J
< 0

)
whenever εD

(1+τ)pJ
∂P
∂J

+ νq
J

(
1− 1

εms

)
< 1. Further-

more, assuming parallel demands ∂P
∂J

= Λ
Q
.
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Proof. Lemma A1. Unit Taxes:

From the behavioral equation wtp(Q) = P (Q, J) = p + θt, we can express price as a

function of J and t. Then we have

p(J, t) = P (Q(J, t), J)− θt

Therefore,

∂p

∂J
= ∂P

∂J
+mwtp(Q, J)∂Q

∂J

= ∂P

∂J
+ q ∗mwtp(Q, J) +mwtp(Q, J) ∗ J ∗ ∂q

∂J

=
[
∂P

∂J
− p+ t

JεD

(
1 + J

q

∂q

∂J

)]

From the proof of Proposition 1, we also have that:

∂q

∂J
= −

Λ
Q

+mwtp(Q)q + q2νqmwtp
′(Q)

(J + νq)mwtp(Q)− c′′(q) + Jqνqmwtp′(Q)

= − ωSRΛ
JQ ∗mwtp(Q) −

q

J
ωSR

(
1− νq

J
+

νq
J

εms

)

Therefore,

∂p

∂J
=
[

Λ
Q
− p+ t

JεD

(
1 + J

q

∂q

∂J

)]
J

q

∂q

∂J
= −ωSR

[
1− νq

J

(
1− 1

εms

)
− ΛεD

(p+ t)q

]

Ad valorem:

The proof is analogous to Lemma 2. The only modification is that the behavioral equation

for ad valorem taxation p(J, t) = P (Q(J,t),J)
1+θτ τ implies a rescaling is needed for ∂p

∂J
.
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B Comparison between Ad Valorem and Specific Tax-
ation

We begin by considering the reduced-form effects of taxes in order to compare ad valorem

to specific taxation. Throughout we will make use of the definitions εD = − p(1+τ)+t
Qmwtp(Q) ,

ε∗D = p(1+θτ τ)
p(1+τ)+tεD, and ∆ =

[
2− νq

J
+ ε∗D−

νq
J

εS
νq
J

+
νq
J

εms

]
−
(

1 + ε∗D−
νq
J

εS
νq
J

+ 1
εms

)
εD

J
(p(1+τ)+t)q

∂P
∂J

+(
1− νq

J

)
εD

JQ
p(1+τ)+t

∂2P
∂J∂Q

> 0 for the stability condition:

ρt =
∆ + θt

νq
J

(
1− 1

εms

)
∆

ρτ =
∆ + νq

J
θτ (1+τ)
(1+θτ τ)

(
1− 1

εms
+ 1

ε∗D

(
JεD

(p(1+τ)+t)
∂P
∂J − 1

))
∆

dq

dt
= − θtqεD

p(1 + τ) + t

(
1− 1

εms

∆

)

dq

dτ
= − θτpqεD

p(1 + τ) + t

1− 1
εms
− 1

ε∗D
+ JεD

(p(1+τ)+t)
∂P
∂J

1
ε∗D

∆


dJ

dt
= − θtJεD

p(1 + τ) + t

1 + ε∗D−
νq
J

εS
νq
J

+ 1
εms

∆


dJ

dτ
= − θτpJεD

p(1 + τ) + t

1 + 1
ε∗D
−

νq
J
ε∗D

+ ε∗D−
νq
J

εS
νq
J

+ 1
εms

∆


dQ

dt
= − θtQεD

p(1 + τ) + t

2 + ε∗D−
νq
J

εS
νq
J

∆


dQ

dτ
= − θτpQεD

p(1 + τ) + t

2 + ε∗D−
νq
J

εS
νq
J

+
(

JεD
(p(1+τ)+t)

∂P
∂J −

νq
J

)
1
ε∗D

∆


dW

dt
= ΛdJ

dt
+ θtt

dQ

dt
−Qdp

dt
dW

dτ
= ΛdJ

dτ
+ θττp

dQ

dτ
−Qdp

dτ
dR

dt
= Q+ t

dQ

dt
dR

dτ
= pQ+ τp

dQ

dτ
+ τQ

dp

dτ

OA-10



Proof. Proposition 3. Rewrite ρτ as:

ρτ =

[
2 + ε∗D−

νq
J

εS
νq
J

−
(
1− θτ (1+τ)

(1+θτ τ)

)(
νq
J
−

νq
J

εms

)]
∆

−
JεD

p(1+τ)+t
∂P
∂J

(
1 + ε∗D−

νq
J

εS
νq
J

+ 1
εms

)
+ θτ (1+τ)

(1+θτ τ)

νq
J

ε∗D

[
JεD

p(1+τ)+t
∂P
∂J
− 1

]
∆

Then, observe that for θt = θτ (1+τ)
(1+θτ τ) (for example if θt = θτ and τ = 0) then

ρτ − ρt =
θτ (1+τ)
(1+θτ τ)

νq
J

ε∗D

[
JεD

p(1+τ)+t
∂P
∂J
− 1

]
∆

so

ρτ > ρt ⇔
JεD

p(1 + τ) + t

∂P

∂J
> 1⇔ Λ

Q
+ q ∗mwtp(Q) > 0

We now consider the marginal cost of public funds (MCPF) starting from zero initial

taxes.

R = τpQ+ tQ

MCPFt = −
ΛdJ
dt

+ θtt
dQ
dt
−Qdp

dt

Q+ tdQ
dt

= −Λ
Q

dJ

dt
+ dp

dt

= −Λ
Q

dJ

dt
+ ρt − 1

MCPFτ = −
ΛdJ
dτ

+ θττp
dQ
dτ
−Q dp

dτ

pQ+ τpdQ
dτ

+ τQ dp
dτ

= − Λ
pQ

dJ

dτ
+ ρτ − 1
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Furthermore,
dJ

dt
= θt

∂P
∂J

+ q ∗mwtp(Q)
+

1− 1
νq
J

∂P
∂J

+ q ∗mwtp(Q)
dp

dt

dJ

dτ
= pθτ

∂P
∂J

+ q ∗mwtp(Q)
+ (1 + θττ)

1− 1
νq
J

∂P
∂J

+ q ∗mwtp(Q)
dp

dτ

and when taxes are zero, we get:

dJ

dt
= θt

∂P
∂J

+ q ∗mwtp(Q)
+

1− 1
νq
J

∂P
∂J

+ q ∗mwtp(Q)
(ρt − 1)

dJ

dτ
= pθτ

∂P
∂J

+ q ∗mwtp(Q)
+

1− 1
νq
J

∂P
∂J

+ q ∗mwtp(Q)
p(ρτ − 1)

and so

MCPFt = −Λ
Q

θt
∂P
∂J

+ q ∗mwtp(Q)
+ (ρt − 1)

1− Λ
Q

1− 1
νq
J

∂P
∂J

+ q ∗mwtp(Q)


MCPFτ = −Λ

Q

θτ
∂P
∂J

+ q ∗mwtp(Q)
+ (ρτ − 1)

1− Λ
Q

1− 1
νq
J

∂P
∂J

+ q ∗mwtp(Q)



Assuming θt = θτ and τ = t = 0, and ∂P
∂J

= Λ
Q
, note that 1− Λ

Q

1− 1
νq
J

Λ
Q

+q∗mwtp(Q) =

 q∗mwtp(Q)+
Λ
Q
νq
J

Λ
Q

+q∗mwtp(Q)

.
Therefore:

sign(MCPFτ −MCPFt) = sign

(ρτ − ρt) ∗
q ∗mwtp(Q) +

Λ
Q
νq
J

Λ
Q

+ q ∗mwtp(Q)


= sign

q ∗mwtp(Q) +
Λ
Q
νq
J


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Finally, observe:

sign

(
1
p

dJ

dτ
− dJ

dt

)
= sign

(ρτ − ρt) ∗
1− 1

νq
J

∂P
∂J

+ q ∗mwtp(Q)


< 0

C Microfoundations for Demand

In this section, we provide the microfoundation for parallel demands. First, we introduce a

class of continuous choice models that are nested by our utility function.

Preferences. Let the representative consumer’s utility function given by

uJ(q1, . . . , qJ ,m) = hJ(q1, . . . , qJ) +m

for any hJ : {1, . . . , J} → R which is symmetric in all its arguments, continuously differen-

tiable, strictly quasi-concave and h(0, . . . , 0) = 0 and where the linear good m is interpreted

as money.

Demand. The consumer’s problem is

max uJ(q1, . . . , qJ ,m) = hJ(q1, . . . , qJ) +m (20)

subject to m+
J∑
j=1

pjqj = y.

When the consumer is facing symmetric prices pj = p for all j, we can transform the prob-

lem as follows. Define HJ(Q) = hJ
(
Q
J
, . . . , Q

J

)
where we interpret Q as aggregate demand.
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The new problem then is given by

u∗(p, J, y) = max
Q

HJ(Q) + y − pQ.

From the first-order condition, we obtain the family of inverse demands P (Q, J) = H ′J(Q).

Furthermore, it is easy to see that given the optimal aggregate quantity Q(p, J) for price p,

the strict quasi-concavity of hJ implies the consumer chooses symmetric quantities qj = Q
J

for all j in the original problem.

Furthermore, none of the assumptions on utility are too restrictive. We show that for any

family of downward sloping aggregate demands there exists a utility function uJ : RJ+1 →

R satisfying the conditions above that rationalize the aggregate demands. Let P (Q, J)

be continuously differentiable and strictly decreasing in Q. Let H be any antiderivative∫
P (Q, J)dQ, which exists because P (Q, J) is differentiable. Then, for some ρ ∈ (0, 1), the

following is a strictly quasi-concave direct utility function that rationalizes P (Q, J) for integer

J when all prices pj in the market are equal:

u(q1, . . . , qJ ,m) = H


Jρ−1

J∑
j=1

qρj

 1
ρ

+m.

Furthermore, we can make sense of J as a continuous variable if we permit a continuum of

varieties q : [0, J ]→ R and let

uJ(q,m) = H

(∫ J

0
Jρ−1qρ(j)dj

) 1
ρ

+m.

We provide two examples in the following to further illustrate the idea of parallel demands

and its applications.

Example 1. Bulow and Pfleiderer (1981) obtain the following three categories of inverse

demands as the unique curves with the property of constant pass-through:
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1. P (Q, J) = αJ − βJQδ, for δ > 0,
2. P (Q, J) = αJ − βJ log(Q) ,
3. P (Q, J) = αJ + βJQ

1/η, for η < 0, which is the constant elasticity inverse demand shifted by
the intercept αJ .

An important case is when βJ = β for all J, then the inverse aggregate demands are linearly

separable in J and Q and they shift in parallel as J moves.2 The fact that these are the

only class of curves for which marginal costs are passed-on in a constant fraction makes

them a tractable benchmark and therefore they have been popular in applied work. Fabinger

and Weyl (2016) generalize Bulow and Pfleiderer (1983) and characterize a broader class of

“tractable equilibrium forms” of the form P (Q, J) = αJ +βQt + γQu which allow for greater

modeling flexibility. Again, as long as β and γ are independent of J , then we say that the

inverse demands shift in parallel.

Example 2. This example shows that our revealed-preference approach allows for rational

preferences that display hate-of-variety (a′(J) < 0). Imagine there is a marginal cost of

consumption cJ for each unit of some good that is consumed; that is, for each unit consumed,

the agent faces a constant cost of evaluating each of J varieties before he chooses. Preferences

are given by

U = H

 J∑
j=1

qj

− cJ J∑
j=1

qj +m

where H is concave. The inverse demands are then P (Q, J) = h(Q) − cJ with h = H ′

decreasing, therefore aggregate demand shifts inward as the variety increases (the intercept

being h(0) − cJ). We can interpret this as the agent displaying a strong degree of thinking

aversion or attention costs. More generally, if the inverse demands are given by P (Q, J) =

a(J)− h(Q) then the sign of a′(J) is unrestricted.
2For example, for the first class one possible family of utility functions, among many, that rationalize the

inverse aggregate demands is given by

uJ(q1, . . . , qJ ,m) = αJ

(
Jρ−1

J∑
i=1

qρi

) 1
ρ

− βJ

(∑J
i=1 qi

)δ+1

δ + 1 +m.
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D Formulas in Calibration

Taking logs and rescaling by W
pQ

equation (11) we obtain the following expression which we

use in Section 5 of the paper:

dlog(W )
dlog(1 + τ)

W

pQ
= Λ̃0

dlog(J)
dlog(1 + τ) −

dlog(p)
dlog(1 + τ) + θττ0

dlog(QL)
dlog(1 + τ) (21)

where Λ̃0 ≡ Λ0
pQ

.

We now show the derivation equation (18) in the paper. Note that the Lerner condition
p−mc
p(1+τ) =

νq
J

(1+θτ τ)εD and the long-run free entry condition
dlogp
dτ
dlogq
dτ

= −p−mc
p

we can identify

νq
J

= −εD
1 + θττ

1 + τ

dlogp
dτ
dlogq
dτ

(22)

We have from Proposition 2, and assuming constant mc, that

dJ

dτ
= − θτJεD

(1 + τ)

1 + 1
εms

+ 1− νq
J

ε∗D

4



and

ρτ =
4− θτ (1+τ)

(1+θτ τ)

(
νq
J

ε∗D
− νq

J
+

νq
J

εms

)
+ ΛεD

(p(1+τ)+t)q

(
θτ (1+τ)
(1+θτ τ)

νq
J

ε∗D

)
4

where 4 ≡ 1 +
[
1 +

ε∗D−
νq
J0

νq
J
εS

] [
1− ΛεD

(1+τ)pq

]
− 1

εms

ΛεD
(1+τ)pq −

νq
J

[
1− 1

εms

]
. Then

4 = − θτJεD
(1 + τ)

1 + 1
εms

+ 1− νq
J

ε∗D
dJ
dτ

 =
− θτ (1+τ)

(1+θτ τ)

(
νq
J

ε∗D
− νq

J
+

νq
J

εms

)
+ ΛεD

(p(1+τ)+t)q

(
θτ (1+τ)
(1+θτ τ)

νq
J

ε∗D

)
ρτ − 1

And so, using ρτ − 1 = (1 + τ)dlog(p)
dτ

, then

ΛεD
pq

(
1

(1 + θττ)

νq
J

ε∗D

)
= −JεD

dlog(p)
dτ

1 + 1
εms

+ 1− νq
J

ε∗D
dJ
dτ

+ 1 + τ

(1 + θττ)

( νq
J

ε∗D
− νq
J

+
νq
J

εms

)
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which implies

Λ
pq

= −ε
∗
D

εD
(1 + θττ)

εD
νq
J

dlog(p)
dτ

dlog(J)
dτ

(
1 + 1

εms
+

1− νq
J0

ε∗D

)
+ (1 + τ) ε

∗
D

εD

(
1
ε∗D
− 1 + 1

εms

)

Now, from ε∗D
εD

= 1+θτ τ
1+τ and equation (22) we get

Λ
p(1 + τ)q = −1 + θττ

1 + τ

(
1 + θττ

1 + τ

) − 1+τ
1+θτ τ

dlog(q)
dτ

dlog(J)
dτ

(
1 + 1

εms
+

1− νq
J0

ε∗D

)
+ 1 + θττ

1 + τ

(
1
ε∗D
− 1 + 1

εms

)

=
(

1 + θττ

1 + τ

) dlog(q)
dτ

dlog(J)
dτ

(
1 + 1

εms
+

1− νq
J0

ε∗D

)
+ (1 + θττ)

(
1
ε∗D
− 1 + 1

εms

)

=
(

1 + θττ

1 + τ

) dlog(q)
dτ

dlog(J)
dτ

(
1 + 1

εms
+

1− νq
J0

ε∗D

)
+ 1
ε∗D

+ 1
εms
− 1


=
(

1 + θττ

1 + τ

) 1
εms

 dlog(q)
dτ

dlog(J)
dτ

+ 1
+

dlog(q)
dτ

dlog(J)
dτ

(
1 +

1− νq
J0

ε∗D

)
+ 1
ε∗D
− 1


=
(

1 + θττ

1 + τ

) 1
εms

 dlog(Q)
dτ

dlog(J)
dτ

+
dlog(Q)
dτ
− dlog(J)

dτ
dlog(J)
dτ

(
1 +

1− νq
J

ε∗D

)
+ 1
ε∗D
− 1


=
(

1 + θττ

1 + τ

) 1
εms

 β̂Q
β̂J

+ β̂Q

β̂J

(
1 +

1− νq
J

ε∗D

)
+

νq
J

ε∗D
− 2



E Data Appendix

E.1 Data Descriptiom

The RMS data records weekly prices and quantities by product at the barcode level, desig-

nated as Universal Product Codes (UPCs), for 35,000 stores in the United States (excluding

Hawaii and Alaska). Products are organized in a hierarchical structure: there are over 2.5

million different UPCs, which are categorized into approximately 1,200 product-modules (e.g.,

fresh eggs, milk, aluminum foil, batteries, frozen desserts). In these data, we aggregate weekly

revenue and quantities sold to the yearly level separately for each UPC. The average yearly
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price for product (UPC) j in store r is calculated by dividing the total yearly revenue (from

the sales of that product) by the number of units sold.

To obtain a module-level price index (aggregating average yearly prices across all of the

products in a module), we follow Handbury and Weinstein (2015) and regress log average

yearly price on UPC fixed effects and store fixed effects, separately for each module and

each year. The estimated store fixed effects serve as the pre-tax price. To measure quantity

demanded, we re-calculate yearly revenue replacing the price of each product j in store r

by the average national price (across all stores in our sample), and then aggregate across

products within a module-by-store-by-year cell. This effectively constitutes a price-weighted

quantity demanded index based on prices that are common across stores, an approach that

is similar to the real consumption index developed by Kaplan, Mitman and Violante (2020).

We measure product variety as the simple count of distinct UPCs with positive sales within

a module-by-store-by-year cell, and we show robustness to alternative variety measure that

weights each variety by its national market share.3

Our sales tax exemptions data is collected from a variety of sources, which includes state

laws, state regulations, and online brochures. All sources are listed in Kroft et al. (2020),

Online Appendix Table OA.2. In general, tax exemptions are set by U.S. states and are

roughly module-specific. We therefore assign a tax exemption status to each state-module-

year cell in our data. We then assign the appropriate tax rate given the inputed exemption

status. In most cases, products are either taxed at the regular rate or fully exempt. In

some states, some products are rather subject to a reduced rate. Our measures do take these

features into account. We examine potential measurement error due to mis-assignment of

exmption status in Section E.4 below.
3Note that when a product does not show up in the RMS data, we don’t know if the product is not in the

data because it wasn’t purchased or because it wasn’t available, so we aggregate to the year level to minimize
the chance we are undercounting variety and avoiding a “mechanical” correlation between declining quantity
demanded and low product variety.
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E.2 Heterogeneous Effects

To investigate whether the reduced-form effects of taxes vary across types of products, we

grouped modules into categories using Nielsen’s product category codes, and Appendix Figure

OA.5 presents the estimates of the effects of taxes on prices, quantity, and variety in each of

the five broad categories (health and beauty care, dry grocery, other food, cleaning products,

other nonfood). We also present estimates of the price elasticity of demand in each of these

categories for comparison, using the methodology in Kroft et al. (2020).

E.3 Robustness

First, we report the yearly OLS and 2SLS estimates for each of the main outcomes reported

in Table 2 (i.e., pre-tax prices, quantity, and variety) for each year in Appendix Figures OA.1

and OA.2. These figures show that the county border pair estimates are very stable across

years and clustered around the across-year simple unweighted average. We gain precision by

pooling the OLS and 2SLS estimates across years, and these figures show that our model-

based estimates are not sensitive to the specific choice of years in the sample.

Second, we show that our results do not rely on specific county border pairs by dropping

each state (one at a time) and re-running our reduced-form analysis dropping all of the county

border pairs that have a county in the dropped state. Appendix Figure OA.3 shows that our

main results are very stable as we drop each state one by one.4

4These results are consistent with the binscatter plots of regression residuals presented in Appendix Figure
OA.6, which show that our estimated effects of taxes on prices, quantity, and variety do not appear to be
driven by outliers. We also show robustness to dropping alcohol and tobacco products in Appendix Table
OA.3, since these products have excise taxes in some states and counties. This would not cause bias in the
reduced-form analysis if the variation in excise taxes is uncorrelated with the variation in ad valorem sales
taxes that is our focus in this paper.
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E.4 Measurement Error in Tax Rates

There are two potential sources of measurement error in how we code tax rates. First, we only

consider state-level exemptions. That is, we do not incorporate county-level exemptions or

county-specific sales surtaxes. Our understanding is that these cases are uncommon. Second,

in practice taxability may vary within modules in some cases. For example, in the state of

New York, fruit drinks are tax exempt as long as they contain at least 70% real fruit juice,

but are subject to the sales tax otherwise. Therefore, some products in Nielsen’s module

“Fruit Juice- Apple”, may or may not be taxed in New York. We coded these products

as tax exempt since we cannot readily identify the specific products that do not meet that

threshold. In cases where it is impossible to tell whether the majority of products in a given

module are subject to the tax or not, we chose to code the statutory tax rate as missing.

This results in excluding less than 3 percent of the observations in our sample.

To insure that our results are not contaminated by measurement error, we re-estimate our

key reduced-form elasticities excluding modules for which we suspect there might be some

within-module variation in exemption status in some states. These modules are listed below:

CANDY-NON-CHOCOLATE
CANDY-CHOCOLATE
FRUIT JUICE - APPLE
FRUIT DRINKS & JUICES-CRANBERRY
FRUIT DRINKS-OTHER CONTAINER
FRUIT JUICE-REMAINING
FRUIT JUICE - ORANGE - OTHER CONTAINER
VEGETABLE JUICE AND DRINK REMAINING
BAKERY - BREAD - FRESH
BAKERY-BUNS-FRESH
BAKERY-ROLLS-FRESH
BAKERY-MUFFINS-FRESH
BAKERY-CAKES-FRESH
BAKERY-BREAKFAST CAKES/SWEET ROLLS-FRESH
BAKERY-DOUGHNUTS-FRESH
BAKERY-BAGELS-FRESH
WATER-BOTTLED
FRUIT-DRIED AND SNACKS
PRECUT FRESH SALAD MIX
FRUIT-REFRIGERATED
COMBINATION LUNCHES
REMAINING-READY MADE SALADS
ENTREES-REFRIGERATED
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SANDWICHES-REFRIGERATED/FROZEN
MAGAZINES SELECTED TITLES
DIETING AIDS-COMPLETE NUTRITIONAL
NUTRITIONAL SUPPLEMENTS

Results for models that exclude the modules listed above are presented in Appendix Table

OA.6. All estimates are very similar to those reported in Table 2.
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(1) (2) (3) (4)

Own tax rate differential 0.187 0.166 0.045
  (0.021) (0.018) (0.011)

Other tax rate differential 0.150 0.120
(0.021) (0.018)

Own tax rate differential -0.844 -0.850 -0.878
  (0.258) (0.227) (0.173)

Other tax rate differential -0.125 0.029
(0.257) (0.227)

Own tax rate differential -0.206 -0.216 -0.270
  (0.125) (0.115) (0.100)

Other tax rate differential 0.015 0.054
(0.106) (0.093)

Specification:
Food dummy y y y y
Cell (border pair by year) fixed effects y

N (observations) 8430 8430 8430 8430

Online Appendix Table OA.1:
Effect of Food and Nonfood Sales Taxes [Placebo Test]

Notes: This table reports regressions of prices, quantity, and product variety on 
average tax rates for food and nonfood products. For each border pair-by-year cell, 
there are two observations: one for food products and one for nonfood products. 
All variables are measured as within-cell differences between the two contiguous 
counties. Own tax rate is the average food tax rate differential for food 
observations and the average nonfood tax rate differential for nonfood 
observations. Other tax rate is the average food tax rate differential for nonfood 
observations and the average nonfood tax rate differential for food observations. 
Standard errors are clustered at the border pair-by-year cell-level. Each regression 
includes a dummy variable for food products. Observations are weighted to reflect 
the number of underlying module-by-store-by-year observations in each cell.

Panel A: Dependent variable is log Prices

Panel B: Dependent variable is log Quantity

Panel C: Dependent variable is log Variety
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Variance of log(1+τ) 0.0010
Standard deviation of log(1+τ) 0.0312

Standard deviation within:
Store × Year cells 0.0269
Module × Border Pair × Year cells 0.0108

Fraction of variance within:
Store × Year cells 74.6%
Module × Border Pair × Year cells 11.9%

Online Appendix Table OA.2
Variance Decomposition of Tax Rates

Notes: This table reports variance decompositions of the tax rate variable in the RMS 
data.
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Dependent Variable: Prices Quantity Variety
(1) (2) (3)

log(1 + τ mcn ) 0.008 -0.678 -0.261
  (0.011) (0.137) (0.060)

log(1 + τ mcn ) 0.011 -0.736 -0.267
  (0.011) (0.135) (0.060)
Specification:
Store fixed effects y y y
Module × County Border Pair fixed effects y y y

Online Appendix Table OA.3: 
Effect of Sales Taxes on Prices, Quantity, and Product Variety

[Robustness to Dropping Alcohol and Tobacco Product Modules]

Panel A: County Border Pair OLS Estimates

Panel B: 2SLS Estimates Using State-Level Tax Rate as Instrument

Notes: Sales tax rates are measured annually based on the rates that were effective on 
September 1. Sales, prices, and variety are measured yearly. The Retail Scanner data is 
restricted to modules above the 80th percentile of the national distribution of sales. All 
reported coefficients are simple averages of nine estimated coefficients -- one for each year 
from 2006 to 2014. The sample is restricted to border counties and observations are 
weighted by the inverse of number of pairs a store belongs to. Standard errors are clustered 
two-way at the state-module level and at the border pair by module level. In panel B, the tax 
rate is instrumented with the state-level, leave-county-out, average tax rate.
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Baseline 
calibration

Average tax rate, τ 0 0.034 0.034 0.034 0.034 0.034
Tax salience parameter, θ τ 0.556 0.500 0.612 0.556 0.556
Demand elasticity, ϵ D 1.170 1.170 1.170 1.287 1.053

Pass-through of taxes into pre-tax prices, d log(p )/d log(1+τ ) 0.039 0.039 0.039 0.039 0.039
Quantity response, d log(Q )/d log(1+τ ) -0.731 -0.731 -0.731 -0.731 -0.731
Variety response, d log(J )/d log(1+τ ) -0.243 -0.243 -0.243 -0.243 -0.243

Markup, (p  - c' (q ))/p 0.080 0.080 0.080 0.080 0.080
Implied conduct parameter, v q /J 0.092 0.092 0.092 0.101 0.083
Inverse elasticity of marginal surplus, ϵ ms -0.903 -0.970 -0.846 -0.903 -0.903
Variety effect parameter, Λ̃0 0.125 0.366 -0.108 -0.113 0.425

Full marginal excess burden (MEB) formula, dW̃/dτ -0.083 -0.140 -0.028 -0.025 -0.156
Alternative MEB formula benchmarks:
  Harberger/CLK benchmark, θ τ *τ 0*d log(Q )/d log(1+τ ) -0.014 -0.012 -0.015 -0.014 -0.014
  Besley(1989)-style benchmark; i.e., full MEB formula with Λ̃0 = 0 -0.053 -0.051 -0.054 -0.053 -0.053
  % difference between full formula and Besley(1989)-style benchma 57.5% 172.9% -48.3% -51.8% 195.3%

Panel D: Calibrated welfare formulas

Notes: This table reports structural parameter estimates by finding parameters that allow the model to match the reduced-form estimates. 
The table reports sensitivity to different assumptions on the demand elasticity and the tax salience parameter.

Alternative demand elasticity and tax 
salience parameters

Online Appendix Table OA.4: Additional Sensitivity Analysis of Calibration Results

Panel A: Calibrated parameters

Panel B: Reduced-form estimates

Panel C: Model parameters estimated by matching reduced-form estimates
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Variety effect parameter, Λ̃0

Ad 
valorem 
tax (dτ )

Specific 
tax (dt )

Ad 
valorem 
tax (dτ )

Specific 
tax (dt )

Ad 
valorem 
tax (dτ )

Specific 
tax (dt )

(1) (2) (3) (4) (5) (6)

d log(p )/d log(1+τ )   or   d log(p )/dt 0.039 0.059 0.036 0.060 0.060 0.056
  Difference b/w ad valorem and specific tax

MCPF τ   or  MCPF t 0.082 0.067 0.048 0.072 0.307 0.033
  Difference between ad valorem and specific tax

d log(J )/d log(1+τ )   or   d log(J )/dt -0.243 0.037 -0.245 0.037 -0.230 0.035
∂ log(π )/∂log(1+τ )   or   ∂ log(π )/∂t -0.041 0.006 -0.041 0.006 -0.041 0.006

∂ log(p )/∂log(J ) -0.106 -0.105 -0.092 -0.091 -0.207 -0.204
∂ log(q )/∂log(J ) -0.751 -0.740 -0.911 -0.897 0.368 0.363
Stability condition (must be >0) 1.822 1.822 1.806 1.806 1.927 1.927

Panel D: Competitive effects of entry

Online Appendix Table OA.5: Counterfactual Scenarios Comparing Ad Valorem and Unit Tax 
Taxes

Notes: This table reports counterfactual estimates of reduced-form effects of specific taxes under different assumptions on the 
variety effect based on using the model parameter estimates of Table 4. The difference between the ad valorem and specific tax 
MCPF  estimates (MCFP τ  - MCPF t ) switches sign as the variety effect increases (comparing columns (1) and (2) to (3) and (4)). 
The difference between ad valorem and specific tax pass-through rate is less sensitive to the variety effect and only switches sign 
when the variety effect is large (columns (5) and (6)).

Baseline variety 
effect estimate,

Λ̃0 = 0.125

-0.020

0.015

Large variety effect 
counterfactual,

Λ̃0 = 1.000

0.004

0.273

Panel A: Pass-through of taxes into pre-tax prices

Panel B: Marginal cost of public funds (MCPF )

No variety effect 
counterfactual,

Λ̃0 = 0.000

-0.024

-0.024

Panel C: The effects of taxes on variety and profits
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Dependent Variable: Prices Quantity Variety
(1) (2) (3)

log(1 + τ mcn ) 0.028 -0.607 -0.198
  (0.017) (0.170) (0.080)

log(1 + τ mcn ) 0.030 -0.671 -0.207
  (0.017) (0.169) (0.080)
Specification:
Store fixed effects y y y
Module × County Border Pair fixed effects y y y

Online Appendix Table OA.6: Robustness to Measurement Error, Effect of 
Sales Taxes on Prices, Quantity, and Product Variety

Panel A: County Border Pair OLS Estimates

Panel B: 2SLS Estimates Using State-Level Tax Rate as Instrument

Notes: The sample is derived from the Nielsen Retail Scanner data covering the years 2006-
2014. The sample excludes modules with potential variation in tax rate exemptions across 
products within the module. Sales tax rates are measured annually based on the rates that 
were effective on September 1. Sales, prices, and variety are measured yearly. All reported 
coefficients are simple averages of nine estimated coefficients -- one for each year from 
2006 to 2014. The sample is restricted to border counties and observations are weighted by 
the inverse of number of pairs a store belongs to. Standard errors are clustered two-way at 
the state-module level and at the border pair by module level. In panel B, the tax rate is 
instrumented with the state-level, leave-county-out, average tax rate.
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Baseline 
calibration

Hold model 
parameters 

fixed

Re-estimate 
model 

parameters
(1) (2) (3) (4) (5) (6) (7)

Average tax rate, τ 0 0.034 0.034 0.034 0.034 0.034 0.034 0.034
Tax salience parameter, θ τ 0.556 0.556 0.556 0.500 0.612 0.445 0.667
Demand elasticity, ϵ D 1.170 1.170 1.170 1.287 1.053 1.404 0.936

Pass-through of taxes into pre-tax prices, d log(p )/d log(1+τ ) 0.039 0.039 0.039 0.039 0.039 0.039 0.039
Quantity response, d log(Q )/d log(1+τ ) -0.731 -0.731 -0.731 -0.731 -0.731 -0.731 -0.731
Variety response, d log(J )/d log(1+τ ) -0.243 -0.193 -0.193 -0.243 -0.243 -0.243 -0.243

Markup, (p  - c' (q ))/p 0.080 0.080 0.072 0.080 0.080 0.080 0.080
Implied conduct parameter, v q /J 0.092 0.092 0.084 0.101 0.083 0.110 0.074
Inverse elasticity of marginal surplus, ϵ ms -0.903 -0.903 -0.804 -0.970 -0.846 -1.047 -0.795
Variety effect parameter, Λ̃0 0.125 0.125 0.157 0.124 0.188 0.160 0.320

Full marginal excess burden (MEB) formula, dW̃/dτ -0.083 -0.077 -0.083 -0.082 -0.100 -0.089 -0.133
Alternative MEB formula benchmarks:
  Harberger/CLK benchmark, θ τ *τ 0*d log(Q )/d log(1+τ ) -0.014 -0.014 -0.014 -0.012 -0.015 -0.011 -0.017
  Besley(1989)-style benchmark; i.e., full MEB formula with Λ̃0 = 0 -0.053 -0.053 -0.053 -0.051 -0.054 -0.050 -0.056
  % difference between full formula and Besley(1989)-style benchma 57.5% 45.6% 57.5% 58.8% 84.1% 77.6% 139.9%

Alternative measure of 
variety response

Alternative demand elasticity and tax 
salience parameters

Online Appendix Table OA.7: Sensitivity of calibration results to alternative values of variety response, demand elasticity, and 
tax salience parameters

Notes: This table reports structural parameter estimates by finding parameters that allow the model to match the reduced-form estimates. The table reports sensitivity to 
different assumptions on the demand elasticity and the tax salience parameter. Columns (2) and (3) use the alternative variety response to taxes, while columns (4) through 
(7) vary both the demand elasticity and tax salience parameters but hold the product of the tax salience parameter and demand elasticity constant in order to ensure that  
dlog(Q)/dlog(1+τ) is constant.

Panel C: Model parameters estimated by matching reduced-form estimates

Panel A: Calibrated parameters

Panel B: Reduced-form estimates

Panel D: Calibrated welfare formulas
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Figure OA.1: Year-by-Year OLS Regression Coefficients

Panel A: log Prices

-.1
5

-.1
-.0

5
0

.0
5

.1
.1

5
Pr

ic
e 

el
as

tic
ity

2006 2007 2008 2009 2010 2011 2012 2013 2014
Year

Panel B: log Quantity

-1
.5

-1
.2

5
-1

-.7
5

-.5
-.2

5
0

O
ut

pu
t e

la
st

ic
ity

2006 2007 2008 2009 2010 2011 2012 2013 2014
Year

Panel C: log Product Variety

-.6
-.4

-.2
0

.2
Va

rie
ty

 e
la

st
ic

ity

2006 2007 2008 2009 2010 2011 2012 2013 2014
Year

Notes: This figures shows yearly estimates of the effects of sales taxes on price (panel A), quantity (panel B) and product
variety (C). All models are based on equation (17) and estimated by OLS. The black vertical bars indicate 95% confidence
intervals. The dashed red horizontal line indicates the average coefficient estimate across all 9 years, and the red area denotes
the 95% confidence interval around that average.
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Figure OA.2: Year-by-Year 2SLS Regression Coefficients
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Notes: This figures shows yearly estimates of the effects of sales taxes on price (panel A), quantity (panel B) and product
variety (C). All models are based on equation (17) and estimated by 2SLS. The instrument is the average state-level, leave-
county-out average tax rate for each module-year cell. The black vertical bars indicate 95% confidence intervals. The dashed
red horizontal line indicates the average coefficient estimate across all 9 years, and the red area denotes the 95% confidence
interval around that average.
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Figure OA.3: Leave-State-Out Regression Coefficients
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Panel C: log Product Variety
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Notes: This figures shows yearly leave-state-out estimates of the effects of sales taxes on price (panel A), quantity (panel B)
and product variety (C). All models are based on equation (17) and estimated by OLS. For each regression, all stores located
in a given state or in a county adjacent to that state are dropped. The blue vertical bars indicate 95% confidence intervals.
The dashed red horizontal line indicates the average coefficient estimate across all 9 years, and the red area denotes the 95%
confidence interval around that average.
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Figure OA.4: Correlations between County Demographics and Tax Rates
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Notes: This figures shows correlation coefficients between county-level demographics (from the American Community Survey)
and county-level average sales tax rates in 2008. Blue dots depict correlations with the average tax rate on food products.
Red squares depict correlations with the average tax rate on non-food products. Green diamonds depict correlations with the
county-specific difference between tax rates on non-food and food products. All correlations are estimated by OLS using a
specification that includes border-pair fixed effects. The horizontal dashed bars indicate 95% confidence intervals. Standard
errors are clustered at the state level.
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Figure OA.5: Heterogeneity Across Product Categories
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Notes: This figures shows estimates of the effects of sales taxes on price (panel A), quantity (panel B) and product variety
(C) for different categories of products. Models for panels A, B and C are based on an augmented version of equation (17),
in which tax rates are interacted with indicators for 5 different categories of goods. Panel D shows corresponding estimates
of the demand elasticity, estimated using the methods described in Kroft et al. (2021). The blue dashed bars indicate 95%
confidence intervals. The red vertical line indicates the average coefficient estimate across all 9 years, and the red area denotes
the 95% confidence interval around that average.
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Figure OA.6: Binscatter Plots of Regression Residuals
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Notes: This figures shows binscatter plots of regression residuals from models estimating the effects of sales taxes on price
(panel A), quantity (panel B) and product variety (C). The number of bins is set to 20. All residuals are based on equation
(17) and estimated by OLS. The red lines show the linear fit, the slope of which corresponds to our main estimates reported
in Table 2.
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