Supplementary Material for Bargaining and Information Acquisition

Kalyan Chatterjee

Miaomiao Dong

Tetsuya Hoshino

September 5, 2024

1 Proof of Proposition 4

1.1 Case of $\lim_{q\to 1} c'(q) = \infty$

We prove Proposition 4 under the assumption that $c'(1) \equiv \lim_{q \to 1} c'(q) = \infty$, under which B will never choose accuracy 1.

Our proof consists of three steps. Consider our model given a cost parameter $\lambda > 0$. First, we derive necessary conditions that any mixed-learning PBE must satisfy. Using the properties, we construct a mixedlearning PBE, denoted $\mathcal{E}_{\lambda}(p^*)$ given a price p^* that S may offer, which is tractable. Second, we show that the PBE $\mathcal{E}_{\lambda}(p^*)$ is Pareto-undominated for a sufficiently small $\lambda > 0$. Third, we examine B's (ex-ante) expected payoff in the PBE $\mathcal{E}_{\lambda}(p^*)$.

Step 1 Consider our model with a cost parameter $\lambda > 0$. We derive some necessary conditions that any mixed-learning PBE must satisfy. These properties are used not only to construct a tractable mixed-learning PBE but also to prove that the PBE is Pareto-undominated.

Lemma 1. For any mixed-learning PBE, if B randomizes information acquisition after an equilibrium price $p \in (L, H)$, the following holds after B is offered price p:

1. B randomizes over two accuracies 0 and $\tilde{q}(p)$; that is, her strategy β is such that $\operatorname{supp}(\beta(\cdot | p)) = \{0, \tilde{q}(p)\}$, where $\tilde{q} : (L, H) \to (0, 1)$ is the function defined by

$$\lambda c'(\tilde{q}(p)) \left(\frac{H-L}{H-p} - \tilde{q}(p)\right) + \lambda c(\tilde{q}(p)) = p - L.$$
(1)

This implicit function \tilde{q} is well-defined.

2. B's posterior probability that S is of type H after observing the price p, denoted $\tilde{\pi}_1(p)$, satisfies equation

$$\tilde{\pi}_1(p) = \frac{\lambda c'(\tilde{q}(p))}{H - p}.$$
(2)

Proof. Consider any mixed-learning PBE, at which B randomizes information acquisition after some price offer p. Suppose that she chooses to acquire information. If B chooses accuracy q > 0 and buys if a signal realization is $\mathbf{x} = H$ and never buys if $\mathbf{x} = N$ then her payoff is $\tilde{\pi}_1(p)q(H-p) - \lambda c(q)$. In the equilibrium, the accuracy $q = \tilde{q}(p)$ after the price p must maximize this payoff. Hence, it satisfies the first-order condition $\tilde{\pi}_1(p)(H-p) = \lambda c'(\tilde{q}(p))$, which gives the desired equation (2).

Next, suppose that she acquires no information. That is, she chooses accuracy 0, after which she buys with probability 1. Her payoff is $\tilde{\pi}_1(p)(H-p) + (1-\tilde{\pi}_1(p))(L-p)$.

B must be indifferent between the two accuracies $\tilde{q}(p)$ and 0 since B randomizes her choice of accuracies. That is,

$$\tilde{\pi}_1(p)(1-\tilde{q}(p))(H-p) + (1-\tilde{\pi}_1(p))(L-p) + \lambda c(\tilde{q}(p)) = 0.$$
(3)

Substituting (2) into (3), we obtain the desired equation (1).

It remains to show that the implicit function \tilde{q} is well-defined. That is, we show that for any $p \in (L, H)$, there exists a unique $q \in (0, 1)$ that solves equation (1). Since c is strictly convex and $\frac{H-L}{H-p} - q > 1 - q > 0$, the LHS of (1) is strictly increasing in $\tilde{q}(p)$. It is also continuous in $\tilde{q}(p)$. Moreover,

$$\begin{aligned} \lambda c'(0)((H-L)/(H-p)-0) + \lambda c(0) &= 0 p - L, \end{aligned}$$

which ensures the existence and uniqueness of q that solves (1).

Lemma 2. The functions $\tilde{\pi}_1$ and \tilde{q} , defined by equations (1) and (2), satisfy the following properties:

- 1. $\lim_{p\to L} \tilde{q}(p) = 0$ and $\lim_{p\to H} \tilde{q}(p) = 0$ for any $\lambda > 0$.
- 2. $\lim_{p\to L} \tilde{\pi}_1(p) = 0$ and $\lim_{p\to H} \tilde{\pi}_1(p) = 1$ for any $\lambda > 0$.
- 3. $\tilde{\pi}_1(p)$ is continuous and strictly increasing for any $\lambda > 0$.
- 4. $\lim_{\lambda \to 0} \tilde{q}(p) = 1$, $\lim_{\lambda \to 0} \tilde{\pi}_1(p) = 1$, and $\lim_{\lambda \to 0} \tilde{\pi}'_1(p) = 0$ for any $p \in (L, H)$.

Proof. The first claim is immediate from (1). We prove the second claim. Since $\lim_{p\to L} \tilde{q}(p) = 0$, we have $\lim_{p\to L} \tilde{\pi}_1(p) = \frac{\lambda c'(0)}{H-L} = 0$. Since $\lim_{p\to H} \tilde{q}(p) = 0$ and (1) is equivalent to $\tilde{\pi}_1(p)(H-L) - \lambda c'(\tilde{q}(p))\tilde{q}(p) = p - L$, we have $\lim_{p\to H} \tilde{\pi}_1(p) = 1$.

We show the third claim. Since the continuity is obvious, we prove that it is strictly increasing. By the implicit function theorem applied to the function \tilde{q} , as defined in (1),

$$\tilde{q}'(p) = -\frac{\lambda c'(\tilde{q}(p))\frac{H-L}{(H-p)^2} - 1}{\lambda c''(\tilde{q}(p))(\frac{H-L}{H-p} - \tilde{q}(p))}.$$
(4)

Substituting it into (2), we have

$$\tilde{\pi}_{1}'(p) = \frac{1 - \tilde{q}(p)\frac{\lambda c'(\tilde{q}(p))}{H-p}}{H - L - \tilde{q}(p)(H-p)} = \frac{1 - \tilde{q}(p)\tilde{\pi}_{1}(p)}{H - L - \tilde{q}(p)(H-p)}.$$
(5)

Note that $\tilde{\pi}'_1(p) > 0$ for any p such that $\tilde{\pi}_1(p) \leq 1$. This is because both the denominator and the numerator of the RHS of (5) is strictly positive. Hence, to show that $\tilde{\pi}_1(p) < 1$ for all $p \in (L, H)$, it suffices to show that $\tilde{\pi}_1(p) < 1$ for all $p \in (L, H)$. Suppose, by negation, that there is some $\hat{p} \in (L, H)$ such that $\tilde{\pi}_1(\hat{p}) = 1$. Then, $\tilde{\pi}_1(p) > 1$ for all $p \in (\hat{p}, H)$ (because if $\tilde{\pi}_1(p) = 1$, we must have $\tilde{\pi}_1(p) > 0$). Since $\lim_{p \to H} \tilde{\pi}_1(p) = 1$ and $\tilde{\pi}_1 > 1$ on (\hat{p}, H) , $\tilde{\pi}_1$ must be weakly decreasing on a neighborhood of H. However, applying $\lim_{p \to H} \tilde{q}(p) = 0$ and $\lim_{p \to H} \tilde{\pi}_1(p) = 1$ to the last expression of (5), we have that $\tilde{\pi}'_1(H) > 0$, a contradiction.

We prove the fourth claim. Let $\lambda \to 0$. If $\tilde{q}(p) \neq 1$ then the LHS of (1) would converge to zero, but the RHS is p - L > 0 for any $p \in (L, H)$. This is a contradiction, and thus $\tilde{q}(p) \to 1$. To show that $\tilde{\pi}_1(p) \to 1$, rewrite (1) as

$$\lambda c(\tilde{q}(p)) \left[\frac{c'(\tilde{q}(p))}{c(\tilde{q}(p))} \left(\frac{H-L}{H-p} - q(p) \right) + 1 \right] = p - L.$$
(6)

Since $\lim_{q\to 1} c'(q) = \infty$, we have $\lim_{q\to 1} \frac{c'(q)}{c(q)} = \infty$.¹ For any fixed $p \in (L, H)$, taking the limit as $\lambda \to 0$, we have $\tilde{q}(p) \to 1$, and thus the term in the square brackets of (6) goes to infinity. Since the RHS is finite, we have $\lambda c(\tilde{q}(p)) \to 0$. Using (2), we can rewrite (1) as

$$\tilde{\pi}_1(p)\left(H - L - \tilde{q}(p)(H - p)\right) + \lambda c(\tilde{q}(p)) = p - L.$$

Taking limit as $\lambda \to 0$ and applying $\tilde{q}(p) \to 1$ and $\lambda c(\tilde{q}(p)) \to 0$, we have $\tilde{\pi}_1(p) \to 1$.

Finally, taking the limit as $\lambda \to 0$ on both sides of (5) and applying $\tilde{q}(p) \to 1$ and $\tilde{\pi}_1(p) \to 1$, we have $\tilde{\pi}'_1(p) \to 1$.

¹We show that $\lim_{q\to 1} c'(q)/c(q) = \infty$. Since the claim is trivial if $\lim_{q\to 1} c(q) < \infty$, let $\lim_{q\to 1} c(q) = \infty$. Suppose, for a contradiction, that $\lim_{q\to 1} c'(q)/c(q) < \infty$. Then, for some M > 0, $c'(q)/c(q) \leq M$ for all q sufficiently close to 1. For any $q_0 \in [0,1)$ that is sufficiently close to 1, integrating both sides, we have $\log(c(q)/c(q_0)) \leq M(q-q_0)$ and thus $c(q) \leq c(q_0)e^{M(q-q_0)}$, but this contradicts the assumption that $\lim_{q\to 1} c(q) = \infty$.

Next, we construct a mixed-learning PBE.

Lemma 3. Given any $\lambda > 0$, there exists some $\underline{p}_{\lambda} \in (L, H)$ such that for any $p^* \in (\underline{p}_{\lambda}, H)$, the following assessment $\mathcal{E}_{\lambda}(p^*)$ is a PBE:

1. Type H of S offers a price p^* with probability 1, and type L offers prices p^* and L with probabilities y^* and $1 - y^*$, respectively, where $y^* \in (0, 1)$ solves equation

$$\tilde{\pi}_1(p^*) = \frac{\pi}{\pi + (1 - \pi)y^*}.$$
(7)

- 2. If B is offered price p^* then:
 - With probability $z^* = L/p^*$, B chooses accuracy 0 and buys with probability 1.
 - With probability $1-z^*$, B chooses accuracy $\tilde{q}(p^*)$ and buys with probability 1 if a signal realization is $\mathbf{x} = H$ and never buys if $\mathbf{x} = N$.

If B is offered any price $p \neq p^*$ then she assigns probability 1 to type L and chooses accuracy 0 and buys if and only if price p is at most L.

Moreover, $\underline{p}_{\lambda} \to L$ as $\lambda \to 0$.

Proof. We derive the necessary and sufficient conditions for this assessment $\mathcal{E}_{\lambda}(p^*)$ to be a PBE. First, we note that if B is offered the price p^* then she randomizes over two accuracies 0 and $\tilde{q}(p^*)$ by Lemma 1.

Second, we derive (7). In the assessment, type L of S offers prices p^* and L with probabilities y^* and $1 - y^*$, respectively. Then, B's posterior probability (that S is of type H) at price p^* is $\frac{\pi}{\pi + (1-\pi)y^*}$. By Lemma 1, this posterior probability, which we have denoted by $\tilde{\pi}_1(p^*)$, must satisfy (2). Since these two representations must coincide,

$$\tilde{\pi}_1(p^*) = \frac{\pi}{\pi + (1 - \pi)y^*}$$

which is the desired (7).

We show that there exists $\underline{p}_{\lambda} \in (L, H)$ such that for any $p^* \in (\underline{p}_{\lambda}, H)$, (7) has a solution y^* . By Lemma 2, $\tilde{\pi}_1$ is continuous and strictly increasing, and $\lim_{p \downarrow L} \tilde{\pi}_1(p) = 0$ and $\lim_{p \uparrow H} \tilde{\pi}_1(p) = 1$. Hence, there must exist a unique $\underline{p}_{\lambda} \in (L, H)$ such that $\tilde{\pi}_1(\underline{p}_{\lambda}) = \pi$, where we recall that $\pi \in (0, 1)$ is the prior probability. Then, we have $\tilde{\pi}_1(p^*) \in (\pi, 1)$ since $p^* \in (\underline{p}_{\lambda}, H)$ by assumption. Since the function $(0, 1) \ni y \mapsto \frac{\pi}{\pi + (1 - \pi)y} \in (\pi, 1)$ is strictly decreasing and continuous, we must have some y^* that satisfies (7).

Third, we see that S has no profitable deviation. Type L is willing to randomize between prices L and p^* if and only if he gains the same profit from both prices. That is, $L = p^* z^*$ because type L makes sales only when B does not acquire information. Hence,

$$z^* = L/p^*,$$

as desired. Type H gains a profit of $p^*(z^* + (1 - z^*)q^*)$. We show that he has no profitable deviation. Indeed, any deviation would yield a profit of at most L, but $p^*(z^* + (1 - z^*)q^*) > L$. This is because, for $z^* = L/p^*$, this inequality is reduced to $z^* < 1$.

Lastly, we show that $\underline{p}_{\lambda} \to L$ as $\lambda \to 0$. For any $p \in (L, H)$, $\tilde{q}(p) \to 1$ and $\tilde{\pi}_1(p) \to 1$ as $\lambda \to 0$ by Lemma 2. By the definition of \underline{p}_{λ} , it follows that $\underline{p}_{\lambda} \to L$.

Step 2 We show the Pareto-undominance of PBE $\mathcal{E}_{\lambda}(p^*)$, which we construct in Lemma 3.

Lemma 4. For each $p^* \in (L, H)$, if λ is sufficiently small then the PBE $\mathcal{E}_{\lambda}(p^*)$ is Pareto-undominated.

Proof. We prove this lemma in seven steps.

Step 1. In any mixed-learning PBE, B must randomize information acquisition after any equilibrium price offer $p' \in (L, H)$.

Proof: Suppose, by contradiction, that there exists a mixed-learning PBE \mathcal{E} such that B does not randomize information acquisition after some equilibrium price $p' \in (L, H)$. Note that p' must be in the support of the prices offered by type H of S (because otherwise, B would never buy as she is sure that S is of type L and thus S would profitably deviate to offering price L). Next, B must choose accuracy 0 after the price offer p'. This is because otherwise, since B would acquire information for sure (as she does not randomize information acquisition), type L would have a profitable deviation of offering price L (since type L makes no sale. Hence, B chooses accuracy 0 after the price offer p'. Let $\alpha \geq 0$ be the probability that B buys the item after the price offer p'.

There is some price p after which B randomizes information acquisition, since \mathcal{E} is a mixed-learning PBE. Then, p is in the support of the prices offered by both types of S, otherwise B would be sure about the type of S. Moreover, it must be that $p \in (L, H)$, otherwise B would not acquire information. By Lemma 1, if price p is offered then B randomizes over two accuracies 0 and $\tilde{q}(p)$. She chooses accuracy 0 with probability z.

Since prices p and p' are in the support of the prices offered by type H of S, his profits from offering both prices are the same; that is, $p(z + (1 - z)q) = p'\alpha$, where α is the probability that B buys (when she does not acquire information). It implies $pz < p'\alpha$. Note that pz and $p'\alpha$ are type L's profits from offering prices p and p', respectively. However, since $pz < p'\alpha$, type L must strictly prefer price p', which contradicts the fact that p is in the support of the prices offered by type L of S.

Step 2. The function \tilde{q} , as defined in (1), is unimodal. That is, there exists a unique $p_{\lambda} \in (L, H)$ such that \tilde{q} is strictly increasing on the interval (L, p_{λ}) and strictly decreasing on the interval (p_{λ}, H) . Moreover, $p_{\lambda} \to L$ as $\lambda \to 0$, which implies that for any fixed $p \in (L, H)$, if λ is sufficiently small then $\tilde{q}'(p) < 0$.

Proof: Recall the derivative $\tilde{q}'(p)$ given in (4). Since the denominator of the RHS in (4) is positive, $\tilde{q}'(p)$ is positive (resp. negative) if and only if its numerator, denoted $\tilde{f}(p)$, is negative (resp. positive), where

$$\tilde{f}(p) \equiv \lambda c'(\tilde{q}(p)) \frac{H-L}{(H-p)^2} - 1.$$

There exists at most one $p_{\lambda} \in (L, H)$ such that $\tilde{f}(p_{\lambda}) = 0$, or equivalently $\tilde{q}'(p_{\lambda}) = 0$. This is because if $\tilde{f}(p_{\lambda}) = 0$ and thus $\tilde{q}'(p_{\lambda}) = 0$ then $\tilde{f}'(p_{\lambda}) = 2\lambda c'(\tilde{q}(p_{\lambda}))(H - L)/(H - p_{\lambda})^3 > 0$. Moreover, there exists $p_{\lambda} \in (L, H)$ such that $\tilde{q}'(p_{\lambda}) = 0$. This is because by Lemma 2, $\tilde{q}(p) \to 0$ as $p \to L$ or $p \to H$ and $\tilde{q}(p) > 0$ for any $p \in (L, H)$. Therefore, we have established the existence and uniqueness of p_{λ} .

Now we show that $p_{\lambda} \to L$ as $\lambda \to 0$. By (2), $\tilde{f}(p) = \tilde{\pi}_1(p)(H-L)/(H-p) - 1$. Since $\tilde{\pi}_1(p) \to 1$ as $\lambda \to 0$ for any $p \in (L, H)$ by Lemma 2, it follows that $\tilde{f}(p) \to \frac{p-L}{H-p} > 0$ and thus $\tilde{q}'(p) < 0$, which implies that $p_{\lambda} \to L$.

Step 3. For any small $\delta > 0$, there exists some $\lambda_{\delta} > 0$ such that if $\lambda < \lambda_{\delta}$ then any mixed-learning PBE has at most one equilibrium price in the interval $(L, H - \delta)$. That is, the set, $\operatorname{supp}(\bigcup_{v} \sigma(\cdot | v)) \cap (L, H - \delta)$, is a singleton or an empty set for any of S's equilibrium strategy σ .

Proof: For any $u_L \in [L, H)$, let Γ_{u_L} be the set of all PBEs such that type *L*'s payoff is u_L . Let $p \in (L, H - \delta)$ be an equilibrium price of some PBE in Γ_{u_L} . By Step 1 with Lemma 1, B randomizes between accuracies 0 and $\tilde{q}(p)$ after price *p* is offered. Moreover, the following holds. First, the probability that B acquires no information, denoted z(p), satisfies $u_L = pz(p)$, since pz(p) is type *L*'s payoff from offering price *p*. Second, type *L*'s payoff from offering price *p*, denoted $\tilde{U}_H(p)$, is

$$\hat{U}_H(p) = pz(p) + (1 - z(p))\tilde{q}(p)p = u_L + \tilde{q}(p)(p - u_L).$$
(8)

Now we show that for any small $\delta > 0$, there exists some $\lambda_{\delta} > 0$ such that for any $\lambda < \lambda_{\delta}$, the function \tilde{U}_H is strictly increasing on the interval $(L, H - \delta)$. Note that

$$\tilde{U}'_{H}(p) = \tilde{q}(p) + \tilde{q}'(p)(p - u_L) = \tilde{q}(p) \left(1 + \frac{\tilde{q}'(p)}{\tilde{q}(p)}(p - u_L)\right).$$

By (4),

$$\tilde{q}'(p) > -\frac{c'(\tilde{q}(p))(H-L)}{c''(\tilde{q}(p))(H-p)(p-L)}.$$

Since $u_L \ge L$ and $H - p > \delta$,

$$\frac{\tilde{q}'(p)}{\tilde{q}(p)}(p-u_L) > -\frac{c'(\tilde{q}(p))}{c''(\tilde{q}(p))\tilde{q}(p)} \frac{H-L}{H-p} \frac{p-u_L}{p-L} > -\frac{c'(\tilde{q}(p))}{c''(\tilde{q}(p))\tilde{q}(p)} \frac{H-L}{\delta}.$$

By Lemma 2, $\tilde{q}(p) \to 1$ as $\lambda \to 0$. Since $\frac{c'(q)}{c''(q)} \to 0$ as $q \to 1$, it follows that $\frac{c'(\tilde{q}(p))}{c''(\tilde{q}(p))\tilde{q}(p)} \to 0$ as $\lambda \to 0$. Moreover, there exists $\eta > 0$ such that $\frac{c'(q)}{c''(q)} < \frac{\epsilon}{H-L}$ for all $q \in (1 - \eta, 1)$. Recall from Step 2 that for any $p \in (L, H)$, if λ is sufficiently small then $\tilde{q}'(p) < 0$. Therefore, there exists $\lambda_{\delta} > 0$ such that if $\lambda < \lambda_{\delta}$ then for $p = H - \delta$, $\tilde{q}(p) > 1 - \eta$ and $\tilde{q}'(p) < 0$. By the definition of p_{λ} , we have $\tilde{q}'(p) < 0$ for any $p \in (p_{\lambda}, H - \delta)$. Since $\tilde{q}(H - \delta) > 1 - \eta$, we have $\tilde{q}(p) > 1 - \eta$ for any $p \in (p_{\lambda}, H - \delta)$, implying that $\frac{c'(\tilde{q}(p))}{c''(\tilde{q}(p))\tilde{q}(p)} < \frac{\delta}{H-L}$ for all $p \in (p_{\lambda}, H - \delta)$. Hence, if $\lambda < \lambda_{\delta}$, then

$$\frac{\tilde{q}'(p)}{\tilde{q}(p)}(p-u_L) > -\frac{c'(\tilde{q}(p))}{c''(\tilde{q}(p))\tilde{q}(p)}\frac{H-L}{\delta} > -1,$$

which implies that $\tilde{U}'_H(p) > 0$ for all $p \in (p_\lambda, H - \delta)$.

Take any equilibrium in Γ_{u_L} . Now we show that if $\lambda < \lambda_{\delta}$, then there is at most one equilibrium price in $(L, H - \delta)$. Indeed, if there were two equilibrium prices p and p' in $(L, H - \delta)$, then by Step 1, B randomizes information acquisition after both prices. This implies that type H of S receives the same payoff from offering p and p' (otherwise one of the price reveals type L and thus B would not acquire information); and type H payoff from offering prices p and p' are $\tilde{U}_H(p)$ and $\tilde{U}_H(p')$, respectively. But since $\tilde{U}'_H(\cdot) > 0$ on $\in (L, H - \delta)$ (for $\lambda < \lambda_{\delta}$), we have $\tilde{U}_H(p) \neq \tilde{U}_H(p')$, a contradiction.

Step 4. There exists $\lambda_{p,\delta} \in (0, \lambda_{\delta})$ such that if $\lambda < \lambda_{p,\delta}$ then in any mixed-learning PBE with an equilibrium price $p \in (L, H - \delta)$, type L of S offers price L with a positive probability. Moreover, $\lambda_{p,\delta}$ weakly increases in p.

Proof. Take any mixed-learning PBE with an equilibrium price $p \in (L, H - \delta)$. B's posterior probability that S is of type H after price p is offered is $\tilde{\pi}_1(p|\lambda) \equiv \tilde{\pi}_1(p)$, where in this proof we write $\tilde{\pi}_1(p|\lambda)$ in order to be explicit about its dependence on λ . By Lemma 2, $\tilde{\pi}_1(p|\lambda) \rightarrow 1$ as $\lambda \rightarrow 0$. Thus, $\tilde{\pi}_1(p|\lambda) \geq \pi$ for any sufficiently small λ . Let $\lambda_p^1 \equiv \sup\{\lambda' > 0 : \tilde{\pi}_1(p|\lambda) \geq \pi, \forall \lambda < \lambda'\}$. That is, λ_p^1 is the highest λ' such that if $\lambda < \lambda'$, then $\tilde{\pi}_1(p'|\lambda) \geq \pi$. By Lemma 2, $\tilde{\pi}_1(p|\lambda)$ is strictly increasing in p, which implies that for any p' > p, if $\lambda < \lambda_p^1$ then $\tilde{\pi}_1(p|\lambda) > \pi$. By the definition of λ_p^1 , this implies that λ_p^1 is increasing in p. Next, let $\lambda_{p,\delta} := \min\{\lambda_p^1, \lambda_\delta\}$. It follows that $\lambda_{p,\delta}$ weakly increases in p.

By the definition of $\lambda_{p,\delta}$, if $\lambda < \lambda_{p,\delta}$, then $\tilde{\pi}_1(p) > \pi$. Moreover, since $\tilde{\pi}_1$ is increasing, we have $\tilde{\pi}_1(p') > \pi$ for all $p' \in (p, H)$. For Bayes' rule to hold, there must be some price $p'' \in [L, p)$ such that $\tilde{\pi}_1(p'') < \pi$, implying that $p'' \in [L, p)$ is in the support of type L's strategy. Moreover, since $\lambda < \lambda_{\delta}$, there is at most one equilibrium price in $(L, H - \delta)$, and since $p \in (L, H - \delta)$ is an equilibrium price, there is no equilibrium price in (L, p); that is $p'' \notin (L, p)$. Combining $p'' \in [L, p)$, we have p'' = L, as desired.

In the rest of the proof, we revert to the original notation and write $\tilde{\pi}_1(p|\lambda)$ as $\tilde{\pi}_1(p)$; that is, we omit its dependence on λ .

Step 5. For any $\delta > 0$, let $p \in (L, H - \delta)$. If $\lambda > 0$ is sufficiently small then the PBE $\mathcal{E}_{\lambda}(p)$, which is constructed in Lemma 3, is Pareto undominated by any mixed-learning PBE with an equilibrium price p.

Proof. Let $\delta > 0$ be sufficiently small, and take any $\lambda < \lambda_{p,\delta}$. By Step 3 and Step 4, any mixed-learning PBE has a unique equilibrium price $p \in (L, H - \delta)$, and type L of S offers price L with a probability y(p) > 0. In such a mixed-learning PBE, type L's payoff is L and type H's payoff is $L + \tilde{q}(p)(p-L)$. To show that $\mathcal{E}_{\lambda}(p)$ is Pareto undominated, it suffices to show that among all such PBEs that S earns those profits, B's payoff is the highest in $\mathcal{E}_{\lambda}(p)$.

B's payoff in $\mathcal{E}_{\lambda}(p)$ is

$$U_B(p) = (1 - \pi)y(p)(L - p) + \pi(H - p),$$
(9)

where y(p) is the probability that type L of S charges price p.

Next, consider another mixed-learning PBE with an equilibrium price p, denoted $\tilde{\mathcal{E}}_{\lambda}(p)$, where $\tilde{\sigma}$ is S's equilibrium strategy. To ease notation, let $\tilde{y}(p) = \tilde{\sigma}(\{p\} \mid L)$ and $\tilde{x}(p) = \tilde{\sigma}(\{p\} \mid H)$.² For PBE $\tilde{\mathcal{E}}_{\lambda}(p)$, let $\tilde{P} = \operatorname{supp}(\bigcup_{v} \tilde{\sigma}(\cdot \mid v)) \cap (L, H)$. By Step 3, there is a single price $p \in \operatorname{supp}(\bigcup_{v} \tilde{\sigma}(\cdot \mid v)) \cap (L, H - \delta)$. Hence, $p' \geq H - \delta$ for all $p' \in \tilde{P} \setminus \{p\}$. B's payoff $\tilde{U}_B(p)$ in $\tilde{\mathcal{E}}_{\lambda}(p)$ is

$$\begin{split} \tilde{U}_B(p) &= (1-\pi) \mathbb{E}_{\tilde{\sigma}(\cdot|L)} [L-p'] + \pi \mathbb{E}_{\tilde{\sigma}(\cdot|H)} [H-p'] \\ &= (1-\pi) (L-p) \tilde{y}(p) + (1-\pi) \mathbb{E}_{\tilde{\sigma}(\cdot|L)} [(L-p') \mathbf{1}_{\{p'\neq p\}}] \\ &+ \pi (H-p) \tilde{x}(p) + \pi \mathbb{E}_{\tilde{\sigma}(\cdot|H)} [(H-p') \mathbf{1}_{\{p'\neq p\}}] \\ &\leq (1-\pi) (L-p) \tilde{y}(p) + \pi (H-p) \tilde{x}(p) \\ &+ (1-\pi) (L-H+\delta) \mathbb{E}_{\tilde{\sigma}(\cdot|L)} [\mathbf{1}_{\{p'\neq p\}}] + \pi \delta \mathbb{E}_{\tilde{\sigma}(\cdot|H)} [\mathbf{1}_{\{p'\neq p\}}]. \end{split}$$

where the inequality is by $p' \ge H - \delta$ for all $p' \in \tilde{P} \setminus \{p\}$. Here, **1** is the indicator function. Since $L - H + \delta < 0$ and $\mathbb{E}_{\tilde{\sigma}(\cdot|H)}[\mathbf{1}_{\{p'\neq p\}}] = 1 - \tilde{x}(p)$, it follows that

$$\tilde{U}_B(p) < \pi \delta(1 - \tilde{x}(p)) + (1 - \pi)(L - p)\tilde{y}(p) + \pi(H - p)\tilde{x}(p).$$

We consider B's posterior after price p is offered. In both $\mathcal{E}_{\lambda}(p)$ and $\hat{\mathcal{E}}_{\lambda}(p)$, B must assign to type H the same posterior probability $\tilde{\pi}_1(p)$ if price p is offered. Hence, $\tilde{y}(p) = y(p)\tilde{x}(p)$ by Bayes' rule. Using this, we have

$$\tilde{U}_B(p) < \pi \delta(1 - \tilde{x}(p)) + [(1 - \pi)(L - p)y(p) + \pi(H - p)]\tilde{x}(p).$$

Now we compare B's payoffs $U_B(p)$ and $\tilde{U}_B(p)$:

$$U_B(p) - \tilde{U}_B(p) > (1 - \tilde{x}(p))[\pi(H - p - \delta) + (1 - \pi)(L - p)y(p)] = (1 - \tilde{x}(p))\pi \left(H - p - \delta - \frac{1 - \tilde{\pi}_1(p)}{\tilde{\pi}_1(p)}(p - L)\right),$$
(10)

where $(1 - \pi)y(p) = \pi \frac{1 - \tilde{\pi}_1(p)}{\tilde{\pi}_1(p)}$ by Bayes' rule. By Lemma 2, $\tilde{\pi}_1(p) \to 1$ as $\lambda \to 0$. For any sufficiently small δ , we have $H - p - \delta > \delta$. For each $p \in (L, H)$, let

$$\lambda_p^2 = \sup\left\{\lambda' \in (0, \lambda_{p,\delta}) : H - p - \delta - \frac{1 - \tilde{\pi}_1(p)}{\tilde{\pi}_1(p)}(p - L) \ge 0 \quad \forall \lambda < \lambda'\right\}.$$
(11)

That is, λ_p^2 is the highest λ' in $(0, \lambda_{p,\delta})$ such that if $\lambda < \lambda'$, then $U_B(p) \ge \tilde{U}_B(p)$. Therefore, if $\lambda < \lambda_p^2$, then B's payoff in $\mathcal{E}_{\lambda}(p)$ is weakly higher than in any mixed-learning PBE with an equilibrium price p. By the definition of λ_p^2 , for any $\eta' \in (0, \frac{H-L}{2})$, $\inf\{\lambda_p^2 : p \in (L + \eta', H - \eta')\} > 0$.

Step 6. For any $\delta > 0$, let $p \in (L, H - \delta)$. If λ is sufficiently small then the PBE $\mathcal{E}_{\lambda}(p)$ is not Pareto dominated by any PBE $\mathcal{E}_{\lambda}(p')$ for any $p' \in (L, H)$. Recall B's payoff in the PBE $\mathcal{E}_{\lambda}(p)$ is given by (9), where $y(p) = (\frac{1}{\pi_1(p)} - 1)/(\frac{1}{\pi} - 1)$ by Bayes' rule.

Proof. First, we show that there is some $\epsilon' > 0$ such that $\mathcal{E}_{\lambda}(p)$ is not Pareto dominated by $\mathcal{E}_{\lambda}(p')$ for any $p' \in (p, p + \epsilon')$. It suffices to show that that $U_B(p) > U_B(p')$ for any $p' \in (p, p + \epsilon')$. We show this by showing that $U'_{B}(p) < -\pi/2$ if λ is small enough. Using the expression of y(p) and taking the derivative of both sides of (9), we have

$$U'_B(p) = \pi(p-L)\frac{\tilde{\pi}'_1(p)}{(\tilde{\pi}_1(p))^2} - (1-\pi)y(p) - \pi.$$

By Lemma 2, as $\lambda \to 0$, $\tilde{\pi}'_1(p) \to 0$ and thus $y(p) \to 0$. Hence, $U'_B(p) \to -\pi$. For some $\lambda_p^3 > 0$, we have $U'_B(p) < -\pi/2$ for any $\lambda < \lambda_p^3$. Let $\epsilon' > 0$ be such that $U'_B(p') < 0$ for all $p' \in (p, p + \epsilon')$. Then, $U_B(p) > U_B(p')$ for any $p' \in (p, p + \hat{\epsilon'})$.

²Step 3 shows that the set, $\operatorname{supp}(\bigcup_v \tilde{\sigma}(\cdot | v)) \cap (L, H - \delta)$, is a singleton. This leaves the possibility that S may offer (multiple) prices greater than or equal to $H - \delta$.

Second, we show that $\mathcal{E}_{\lambda}(p)$ is not Pareto dominated by $\mathcal{E}_{\lambda}(p')$ for any $p' \in [p + \epsilon', H)$. By (9), we have $U_B(p) < \pi(H-p)$. As $\lambda \to 0$, we have $U_B(p) \to \pi(H-p)$. Thus, if λ is sufficiently small then for any $p' \ge p + \epsilon'$, we have $U_B(p) > \pi(H - p - \epsilon') \ge \pi(H - p') > U_B(p')$. Thus, $\mathcal{E}_{\lambda}(p)$ is not Pareto dominated by $\mathcal{E}_{\lambda}(p').$

Third, we show that $\mathcal{E}_{\lambda}(p)$ is not Pareto dominated by $\mathcal{E}_{\lambda}(p')$ for any $p' \in (L,p)$. Let $\gamma > 0$ be small enough that $p < H - \gamma$. By the proof in Step 3, type H's payoff in $\mathcal{E}_{\lambda}(p)$ is given by (8) (when type L's payoff equal $u_L = L$), and is strictly increasing on $(L, H - \gamma)$ if $\lambda < \lambda_{\gamma}$. Since $p < H - \gamma$, for any p' < p, type H's payoff in $\mathcal{E}_{\lambda}(p')$ is strictly less than in $\mathcal{E}_{\lambda}(p)$, and thus $\mathcal{E}_{\lambda}(p)$ is not Pareto dominated by $\mathcal{E}_{\lambda}(p')$.

Step 7. For any $p \in (L, H)$, if λ is sufficiently small then $\mathcal{E}_{\lambda}(p)$ is not Pareto dominated by any mixed-learning equilibrium.

Proof. Let ϵ be small enough that $p - L > 2\epsilon$ and $H - p > 2\epsilon$. We divide the set of all mixed-learning PBEs into three sets: Γ^0 , Γ^+ , and Γ^- , which are the set of PBEs such that the infimum price that type H of S offers is in $[L + \epsilon, H - \epsilon]$, $(H - \epsilon, H]$, and $[L, L + \epsilon)$, respectively.

First, we show that $\mathcal{E}_{\lambda}(p)$ is not Pareto dominated by any PBE in Γ^{0} . Let

$$\lambda_p^6 = \inf \left\{ \lambda_p^2 : p \in [L + \epsilon, H - \epsilon] \right\}$$

where λ_p^2 is defined in (11). As shown at the end of Step 5, $\lambda_p^6 > 0$. By definition, if $\lambda < \lambda_p^6$ then for any PBE in Γ^0 with an equilibrium price $p' \in [L + \epsilon, H - \epsilon]$, $\mathcal{E}_{\lambda}(p')$ is not Pareto dominated by any PBE with an equilibrium price p'. Moreover, if $\lambda < \lambda_p^5$, then by Step 6, $\mathcal{E}_{\lambda}(p)$ is not Pareto dominated by $\mathcal{E}_{\lambda}(p')$. Therefore, if $\lambda < \lambda_p^5$ and $\lambda < \lambda_p^6$, then $\mathcal{E}_{\lambda}(p)$ is not Pareto dominated by any PBE in Γ^0 .

Second, we show that $\mathcal{E}_{\lambda}(p)$ is not Pareto dominated by any PBE in Γ^- . Recall that type *H*'s payoff in $\mathcal{E}_{\lambda}(p)$ is $\tilde{U}_H(p)$, as defined in (8), which converges to p as $\lambda \to 0$ (because $\tilde{q}(p) \to 1$). Since $p > L + \epsilon$, there is a $\lambda_p^7 > 0$ such that if $\lambda < \lambda_p^7$, then $\tilde{U}_H(p) > L + \epsilon$. For any PBE in Γ^- , since type H of S offers a price in $(L, L + \epsilon)$, his payoff is at most $L + \epsilon$, which is strictly lower than his payoff in $\mathcal{E}_{\lambda}(p)$, $\tilde{U}_{H}(p)$. Thus, if $\lambda < \lambda_p^7$, then $\mathcal{E}_{\lambda}(p)$ is not Pareto dominated by any PBE in Γ^- .

Finally, we show that $\mathcal{E}_{\lambda}(p)$ is not Pareto dominated by any PBE in Γ^+ . For any PBE in Γ^+ , the prices that type H of S may offer are above $H - \epsilon$. Thus, B's payoff is at most $\pi(H - (H - \epsilon)) = \pi \epsilon$. In $\mathcal{E}_{\lambda}(p)$, B's payoff $U_B(p)$, as defined in (9), converges to $\pi(H-p)$ as $\lambda \to 0$. Since $p < H-\epsilon$, there is a $\lambda_p^8 > 0$ such that if $\lambda < \lambda_p^8$, then $U_B(p) > \pi\epsilon$. That is, if $\lambda < \lambda_p^8$ then B's payoff in $\mathcal{E}_{\lambda}(p)$ is higher than in any PBE in Γ^+ . Thus, $\mathcal{E}_{\lambda}(p)$ is not Pareto dominated by any PBE in Γ^+ .

Step 3 We examine B's (ex-ante) expected payoff in the PBE $\mathcal{E}_{\lambda}(p^*)$, which is Pareto undominated (Lemma 4). Then, we only need to show that for any $u_B \in (0, \pi(H-L))$, there exists some price p_{λ} such that B's payoff in the PBE $\mathcal{E}_{\lambda}(p_{\lambda})$ converges to u_B as $\lambda \to 0$.

Fix any $\lambda > 0$ and take any $p^* \in (\underline{p}_{\lambda}, H)$, where \underline{p}_{λ} is defined in Lemma 3. Consider B's ex-ante payoff in $\mathcal{E}_{\lambda}(p^*)$. Recall that if price p^* is offered then B randomizes between buying without acquiring information and acquiring information with accuracy $\tilde{q}(p^*)$. This means that B's payoff is the same as the payoff that she obtains from buying without acquiring information. Hence, B's equilibrium payoff is

$$U_B(p^*) = \pi (H - p^*) + (1 - \pi)y^*(L - p^*),$$

where $y^* = \frac{1 - \tilde{\pi}_1(p^*)}{\tilde{\pi}_1(p^*)} \frac{\pi}{1 - \pi}$ by Bayes' rule. Let $\lambda \to 0$. Then $y^* \to 0$ since $\tilde{\pi}_1(p^*) \to 1$ by Lemma 2. Hence, $U_B(p^*) \to \pi(H - p^*)$. Since $\underline{p}_{\lambda} \to L$ as $\lambda \to 0$ by Lemma 3, it follows that for any $p^* \in (L, H)$, there exists a small $\lambda > 0$ such that $p^* > \underline{p}_{\lambda}$. In particular, let $p^* = H - u_B/\pi \in (L, H)$. Then, B's payoff in $\mathcal{E}_{\lambda}(p_{\lambda})$ converges to u_B . This completes the proof of Proposition 4 in the case of $\lim_{q\to 1} c'(q) = \infty$.

Case of $\lim_{q\to 1} c'(q) < \infty$ 1.2

We prove Proposition 4 under the assumption that $c'(1) \equiv \lim_{a \to 1} c'(q) < \infty$.

In the proof of Lemma 1, B's first order condition with respect to q is replaced with

$$q = \begin{cases} 1 & \text{if } \pi_1(p)(H-p) \ge \lambda c'(1) \\ (c')^{-1} \left(\frac{\pi_1(p)(H-p)}{\lambda}\right) & \text{if } \pi_1(p)(H-p) < \lambda c'(1). \end{cases}$$
(12)

If there is no $\tilde{q}(p) \leq 1$ that satisfies (1), that is, if p is such that

$$\lambda c'(1) \left(\frac{H-L}{H-p} - 1\right) + \lambda c(1)$$

then let $\tilde{q}(p) = 1$ and $\tilde{\pi}_1(p) = 1 - \frac{\lambda c(1)}{p-L}$. This way, both the first-order condition (12) and B's indifference condition (between no information and accuracy $\tilde{q}(p)$):

$$\tilde{\pi}_1(p)(1-\tilde{q}(p))(H-p) + (1-\tilde{\pi}_1(p))(L-p) + \lambda c(\tilde{q}(p)) = 0,$$

which is an analog of (3), are satisfied. Moreover, as $\lambda \to 0$, we have $\tilde{q}(p) \to 1$ and $\tilde{\pi}_1(p) \to 1$ in this case.

Lastly, we modify our proofs of Lemma 3 and Proposition 4 to accommodate the present case of $c'(1) < \infty$. If λ is such that there exists no $p \in (L, H)$ satisfying (13) then our proof for Lemma 3 and Proposition 4 is valid without any modification. If λ is such that there exists a $p \in (L, H)$ satisfying (13), then, multiplying H - p on both sides of (13), we have

$$\lambda c'(1) (p - L) + \lambda c(1)(H - p) < (p - L)(H - p).$$
(14)

Since there is a $p \in (L, H)$ satisfying (14), there exists an interval $(p_1^{\lambda}, p_2^{\lambda})$ such that (14), or equivalently (13) holds if and only if $p \in (p_1^{\lambda}, p_2^{\lambda})$. For all $p \in (p_1^{\lambda}, p_2^{\lambda})$, we set $\tilde{q}(p) = 1$ and $\tilde{\pi}_1(p) = 1 - \frac{\lambda c(1)}{p-L}$, and Lemma 3 and Proposition 4 hold.