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Appendix A IV and AIDS specifications

We discuss in this appendix two important extensions to the log-linear specification de-
scribed in the paper.

A.1 IV estimation of the log-linear model

We present here results for a specification where we instrument for prices. In general, the
endogeneity of prices due to the simultaneous nature of market equilibrium outcomes is a
fundamental aspect of the identification of demand systems. Hence, it is helpful to discuss
how to incorporate IV estimation in specifications that use embedding data. For our empir-
ical environment, we choose to use Hausman instruments, i.e., the prices of the same goods
in other markets. Similar to Hausman and Leonard (2007), these instruments are valid
in our context of weekly data, as factors such as national advertising campaigns – which
could endanger validity – are controlled for by time-fixed effects. Using instruments in
unrestricted product-space demand specifications with many goods may give rise to econo-
metric difficulties, as many instruments that vary independently are required to identify
parameters (Gandhi and Nevo, 2021).

The role of distances in disciplining substitutions in our log-linear specification helps
substantially: we only require instruments to identify a limited number of parameters.
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To instrument for rival prices, we construct
∑
k ̸=j

f(djk; γ)ln(zkt), incorporating the same

functional form as how rival prices are included in the regression. This adds four additional
instruments for the four coefficients in γ.

We present in Figure 1 the results from estimating the log-linear model in Equation
(1) of the paper using Hausman instruments for log price variables. The figure shows that
IV estimates of own-price elasticities are comparable to the OLS estimates, although they
present more outliers (including a few products with upward-sloping demand). Median price
elasticity is −2.590 for this specification, close to the OLS result. Despite the restrictions
on the demand system made possible by the use of the embedding data, the IV estimator
may still struggle to precisely identify all parameters. The distance function implied by the
IV estimates has a similar shape to the one generated by the OLS estimates but is shifted
upwards. Thus, IV estimates generate somewhat larger cross-elasticities in this application
– the median cross-price elasticity is 0.090. Overall, the demand system generated by the
IV estimates is economically similar to the OLS demand system.

Appendix Figure 1: Estimates for the IV Log-linear Model
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Panel A shows the density of own-price elasticities βj for the log-linear model (Equation 1). Panel b shows
f(d) of Equation (2) implied by the estimated γ parameters. OLS (IV) estimates are in blue (orange).

A.2 AIDS specification

As another important extension, we use embedding data in a micro-founded product-space
demand specification: the AIDS model of Deaton and Muellbauer (1980). To do so, we first
transform the data to obtain products’ revenue shares as wj =

qjpj
e where e =

∑J
k=1 qkpk.

2



The demand system is:

wj = αj +
∑

k=1...J

βjkln(pk) + θj ln
(
e

p

)
+ ϵj ,

where p is the Stone price index

ln(p) =
∑
j

w̃j ln(pj) ,

and w̃j is the average revenue share of product j across markets. This demand system is
derived from an expenditure function that is a second-order approximation to any expendi-
ture function (Diewert, 1971), and the demand system itself is a first-order approximation
to any demand system (Deaton and Muellbauer, 1980).

Further economic properties that are normally imposed on this demand system include
adding up, so that

∑
i αi = 0,

∑
i β̃ij = 0, ∀j; homogeneity, or

∑
i β̃ji = 0, ∀j; and symmetry,

or βij = 1
2(β̃ij + β̃ji) = βji. An appealing feature of the AIDS demand system is that

it allows the researcher to model consumers’ choice problems hierarchically —that is, as
a multi-stage budgeting problem (Gorman, 1959). Hence, the demand system described
above can be interpreted as conditional, describing demand for a product in a certain
category conditional on the expenditure in that category. However, that expenditure is
also endogenous. To determine unconditional demand, one needs to also model the top-
level demand equation. To do so in a scanner data context, Hausman and Leonard (2007)
propose a specification:

ln(Qt) = δ0t + Ztθ + δ1ln(pt) + λln(Et) + ηt

where Qt is total category quantity in a certain market, pt is the category price index, and
Et is total expenditure in market t across categories.

Incorporating distances from embeddings in the AIDS model enables us to restrict coef-
ficients as βij = f(dij), or βij = βif(dij). Hence, the main equation of the demand system
becomes:

wj = αj + βown
j ln(pj) + βcross

j

∑
k=1...J

f(djk)ln(pk) + θj ln
(
e

p

)
+ ϵj , (1)

and the economic assumptions can be added to discipline parameters βj .
We estimate Equation (1) using the data of our empirical application. Figure 2 reports

estimates for this model. Overall, own-price elasticities are comparable to the log-linear
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specification, with a median value of −2.781, but with a larger variance across products.
While the distance function is not comparable to the one estimated for the log-linear model
due to different scales, it still comes out monotonically decreasing.

Appendix Figure 2: Estimates for the AIDS Model
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Appendix B Choosing the dimensionality of the embedding

To our knowledge, there is no single, widely accepted method for choosing the dimensionality
(m) of the embedding. Embeddings are used in a wide variety of contexts, and they are
estimated using many different types of data, so we expect the “right” choice of m will be
application-specific. In many cases (e.g. natural language processing, image recognition)
it is typical to compute embeddings with hundreds or even thousands of dimensions. In
our application, we wanted to allow for enough dimensions to adequately approximate all
relevant aspects of the product space, but we also wanted to keep the number of dimensions
low to limit the number of random coefficients we would need to estimate in the BLP models
described in Section III.B of the paper.

Some basic rules of thumb have been suggested, such as the fourth root of the number of
unique categories (which in our case would yield m = 3) or 1.6 times the square root of the
number of unique categories (which in our case would yield m = 15). Since we are using the
embedding for something specific (which is to get pairwise product distances), a more hands-
on approach is to compute embeddings for different values of m and choose the value of m
at which the pairwise product distances settle down—which can be gauged by looking at the
Frobenious distance between the matrixes of pairwise distances, or simply by calculating
the correlation between the pairwise distances for successive values of m. The figure below
plots the Frobenius distances for different values of m. While there is no obvious breakpoint,
the curve visibly flattens beyond m = 8. If instead we rely on simple correlations, we found
that the distances from a 7-dimensional embedding and a 6-dimensional embedding have a
correlation of 0.99, so we concluded that increasing m beyond 6 would have little impact
on our results. Later tests confirmed this: at least for the log-linear models (which are
easy to re-estimate using embeddings of different dimensions), we found that our elasticity
estimates hardly changed if we used higher-dimensional embeddings.

An alternative method we considered for choosing m is based on principal components
analysis (PCA). Although computing an embedding is a form of dimensionality reduction,
the columns of the embedding are not orthogonal. This means that PCA can be applied
to the embedding itself. As a method for determining m, we considered the following
algorithm:

1. Start with m = 1.

2. Iteration:

(a) Compute the embedding with m+ 1 dimensions

(b) Compute the principal components of the m+ 1 columns of the embedding
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Appendix Figure 3: Convergence of product distances for higher-dimensional embeddings
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The figure plots the Frobenius distance between the matrix of pairwise distances from the m-dimensional
embedding and the (m-1)-dimensional embedding.

(c) If a subset of k < m + 1 principal components explain more than T percent
of the variance, stop and choose the dimensionality of the embedding to be m.
Otherwise, increase m and iterate.

An alternative algorithm could be performed in reverse: starting with a large m, incre-
mentally decrease it until it takes all m principal components to explain at least T percent
of the variance. The threshold T is obviously a tuning parameter that must be chosen by
the researcher. In our case, if we choose a threshold of 95 percent, the algorithm above and
its reverse both lead to a choice of m = 6.

Appendix C Details about the survey and triplets sample

As noted by Wilber et al. (2014), the design of the comparison page trades off complexity
(from the respondent’s perspective) and efficiency (from the researcher’s perspective). If
the comparison page shows N products and asks the respondent to identify which K are
closest to the reference, then each comparison page yields K(N −K) triplets. By choosing
N to be large and K = N/2, the researcher would maximize the amount of information she
gets from each comparison page. However, large values of N or K make the comparison
cognitively burdensome for the respondent. The right values of N and K will be context-
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dependent; in our application, we chose N = 8 and K = 2 to keep the comparisons simple
so that each respondent could complete many comparisons in a short amount of time.

While there are some fixed costs of designing and testing an online survey like the one
we used, once it has been prepared it is surprisingly fast and cheap to collect a large sample
of triplets. In our case, we got tens of thousands of triplets from undergraduate students in
exchange for a few extra credit points in one of the authors’ courses. When this is not an
option, or in applications where we would not expect undergraduates to be well-informed
about the product space, running the survey on Mechanical Turk is a natural alternative.
We obtained some of our data this way, paying Turk workers $1.10 to complete a sequence
of 20 product comparison pages, which took them an average of 5 minutes. After posting
the survey on Mechanical Turk, we obtained 54,348 triplets for roughly $300 in less than
24 hours.

Another useful aspect of this method is that researchers don’t need to pre-commit to
a particular sample size. Additional surveys can be collected until increases in the triplets
sample have little to no effect on the embedding. In our case, it appears the embedding
settles down once the size of the triplet sample reaches around 100,000. From our full sample
of triplets, we took 100 random subsamples of size N and recomputed the 100 corresponding
embeddings. To measure the variability of the embeddings, we computed the Frobenius
distances between the matrixes of pairwise product distances and the average matrix of
pairwise product distances. Figure 4 shows how the average Frobenius distance (left panel)
the standard deviations of the individual pairwise product distances (right panel) decline
as we increase the size of the subsamples. Our final sample included over 175,000 triplets,
and it appears that sampling variability in the embedding would not have been much of a
concern for samples above 100,000.

As another way of evaluating sampling error in our pairwise product distances, we also
computed embeddings (and associated matrixes of pairwise product distances) for 100 boot-
strap resamples of our triplets data. For each of these samples, we calculated the Spearman
rank correlation between the pairwise distances djks (the distance between products j and
k for sample s) and the average (across the 100 resamples) of the pairwise distances d̄jk.
The sample that was least correlated with the average still had a rank correlation of 0.982.
In other words, the 100 bootstrap samples all deliver almost the same ranking of pairwise
product distances. We took this to imply that sampling variability from the embedding is
not quantitatively important in our application. But in cases where the embedding exhibits
more sensitivity to changes in the triplets sample, this bootstrap method could be used to
adjust the standard errors of the estimated demand parameters.
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Appendix Figure 4: Variability of product distances for subsamples of the triplets data
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We took 100 random subsamples of size N (horizontal axis) and computed the matrix of pairwise product
distances Di from the resulting embeddings. The left panel plots the average of ∥Di − D̄∥F , where D̄ is
the average of the 100 distance matrixes and ∥·∥F is the Frobenius norm. The right panel plots the 10th,
50th, and 90th percentiles (across products) of the standard deviations (across subsamples) of the pairwise
product distances.

Appendix D Substitution between cereal groupings

To further explore how the use of embeddings affects estimated substitution patterns, we
manually assigned the cereals in our sample to intuitive clusters and measured within-
vs. between-cluster substitution. We divided cereals into the following groups: Chocolate-
flavored high-sugar, Fruit-flavored high-sugar, Low-sugar, Honey-flavored, and Other. We
did not base the groupings on the embedding, but they nevertheless largely correspond
to different regions of the product space as measured by embedding data, and are also
obviously correlated with observed characteristics. Intuitively, we expect that consumers
will substitute more readily between products in the same group. We report in Table 1
below average diversion by group for each of our four models.

The results from this exercise echo previous observations. While the overall level of
diversion depends on the functional form adopted, models that use embedding data predict
higher average substitution to products within the same group. In contrast, models based
on observed characteristics data struggle to predict more substitution to similar products
in the same group.
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Appendix Table 1: Mean Diversion Ratios Between Product Categories

Observed Characteristics (Log-log)
Choc. Fruit Unsw. Honey Other

Chocolate 0.023 0.030 0.028 0.028 0.031
Fruit 0.021 0.029 0.023 0.025 0.027
Unsweetened 0.040 0.050 0.065 0.051 0.061
Honey 0.036 0.045 0.052 0.046 0.049
Other 0.032 0.041 0.044 0.039 0.044

Embeddings (Log-log)
Choc. Fruit Unsw. Honey Other

Chocolate 0.033 0.030 0.029 0.029 0.032
Fruit 0.022 0.040 0.023 0.028 0.029
Unsweetened 0.045 0.053 0.070 0.063 0.071
Honey 0.038 0.045 0.054 0.055 0.056
Other 0.031 0.038 0.044 0.042 0.049

Observed characteristics (BLP)
Choc. Fruit Unsw. Honey Other

Chocolate 0.004 0.006 0.006 0.006 0.006
Fruit 0.004 0.006 0.006 0.006 0.006
Unsweetened 0.004 0.006 0.006 0.006 0.006
Honey 0.004 0.006 0.006 0.006 0.006
Other 0.004 0.006 0.006 0.006 0.006

Embeddings (BLP)
Choc. Fruit Unsw. Honey Other

Chocolate 0.011 0.004 0.002 0.006 0.007
Fruit 0.003 0.009 0.005 0.008 0.005
Unsweetened 0.001 0.005 0.010 0.003 0.007
Honey 0.006 0.008 0.004 0.008 0.005
Other 0.004 0.005 0.006 0.004 0.007

Diversion values are mean diversion ratio to products within each category, read across rows. So, for example,
in the Characteristics Log-log model, the average diversion between Fruit-flavored high-sugar cereals is 2.9
percent, whereas the average diversion from Fruit-flavored high-sugar cereals to Unsweetened cereals is 2.3
percent.
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Appendix E Additional figures and tables

Appendix Figure 5: Survey intro page

Survey respondents completed this preliminary survey before seeing the product comparison pages.
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Appendix Figure 6: Diversion by closest product rank for the log-linear model
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The figure shows the median (across all markets) diversion by closest product rank for the log-linear model
estimated with observable characteristics (in blue) and embedding data (in red).

Appendix Figure 7: Diversion by closest product rank for the BLP model
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The figure shows the median (across all markets) diversion by closest product rank for the BLP model
estimated with observable characteristics (in blue) and embedding data (in red).
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Appendix Table 2: Comparison of Baseline and Flexible Distance Results

Parameter Variable Baseline Flexible
(1) (2)

Estimate SE Estimate SE

γ d
0
jk 0.121 0.002 0.123 0.002

d
1
jk −0.263 0.013 -0.293 0.011

d
2
jk 0.346 0.026 0.440 0.023

d
3
jk −0.191 0.016 -0.257 0.015

ωm xj1 1 − 1 −−
xj2 1 − 0.983 0.052
xj3 1 − 0.000 0.019
xj4 1 − 1.791 0.102
xj5 1 − 1.592 0.083
xj6 1 − 0.994 0.055

Observations 684,476 684,476
R-squared 0.838 0.973
Median Own-Elast −2.486 −2.475

Median Cross-
Elast

0.051 0.054

The table reports estimates of γ and ωm parameters from Equations (2) and (3). Column 1 refers to the
baseline specification of the model, which uses Euclidean distances in the f function. Column 2 refers to
the flexible model using the specification of Equation (3).
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Appendix Table 3: Estimated coefficients of mixed embedding BLP model

Parameter Variable Parameter Interaction

β Price −1.323

(0.382)

Σ Constant 5.882 Π Income Kids
(0.274)

Price 0.857 0.002 −0.318

(0.039) (0.036) (0.071)
x1 0.115 −0.023 -

(0.072) (0.026)
x2 0.164 0.076 -

(0.138) (0.029)
x3 0.000 −0.065 -

(0.181) (0.024)
x4 0.000 0.103 −0.030

(0.242) (0.019) (0.028)
x5 0.177 −0.116 0.059

(0.348) (0.020) (0.036)
x6 1.3283 0.100 −0.024

(0.159) (0.026) (0.034)
x7 0.060 0.101 −0.080

(0.239) (0.030) (0.037)
x8 0.000 −0.032 0.114

(0.335) (0.023) (0.034)
x9 0.980 −0.060 −0.114

(0.088) (0.022) (0.035)

Non-linear Variables Mixed
Median Own-price Elasticity −2.441

Median Outside Diversion 0.235

The table reports estimates (on top) and standard errors (below) for the parameters of the mixed em-
bedding BLP model. Characteristics x1 through x9 refer to sugar, fiber, calories from fat, and a 6D
embedding. n = 32, 385.

Figures 8 through 11 show finer detail of the two-dimensional embedding shown in Figure
2 of the paper, breaking the plot into four regions so that all of the 86 cereal brands in our
sample can be shown.
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Appendix Figure 8: 2-D Embedding: Northwest quadrant

CHEERIOS

FROSTED MINI-WHEATS

LIFE

CINNAMON LIFE

OATMEAL SQUARES

MULTIGRAIN CHEERIOS

RICE CHEX

FROSTED MINI-WHEATS LITTLE BITES

CORN CHEX

CRISPIX

HONEY NUT CHEX

WHEAT CHEX

CINNAMON CHEX

CHOCOLATE CHEX

WHEATIES

SHREDDED WHEAT SPOON SIZE

CINNAMON HARVEST

SHREDDED WHEAT SPOON SIZE WHEAT'N BRAN

HONEY NUT CHEERIOS MEDLEY CRUNCH

0
2

4
 

-4 0
 

14



Appendix Figure 9: 2-D Embedding: Northeast quadrant
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Appendix Figure 10: 2-D Embedding: Southeast quadrant
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Appendix Figure 11: 2-D Embedding: Southwest quadrant
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